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Abstract

The goal of this lecture is to introduce the student to the theory of Special
Relativity.

Not to overload the content with mathematics, the author will stick to the sim-
plest cases; in particular only reference frames using Cartesian coordinates and
translating along the common z-axis as in Fig. 1 will be used.

The general expressions will be quoted or may be found in the cited literature.

Keywords
special relativity, CAS, accelerator school

1 Introduction

In the second half of the XIX century Maxwell had summarized all known electromagnetic phenomena
in four partial differential equations for electric and magnetic fields. These equations contain a numerical
constant, ¢, which has the dimension of a velocity and the value of the speed of light in vacuum. Far
from the sources, the Maxwell equations contains also the wave equation
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where the constant c plays the role of the velocity of propagation of the wave. This led to the conclusion
that the light was an EM wave which propagates with velocity ¢ with respect to a supporting medium
and that Maxwell equations were valid in a frame connected to that medium. Moreover as pointed
out by Poincaré and Lorentz, Maxwell equations are not invariant in form (covariant) under Galilean
transformations which at that time were believed to connect inertial observers. This would mean that the

Galilean principle of relativity that Physics laws are the same for all inertial observers would hold good
only for Mechanics laws.

In his paper [1] Einstein proposed a different solution which proved to be the correct one.

2 Galilean transformations and Classical Mechanics

The quantitative description of physical phenomena needs a reference frame where the coordinates of
the observed objects are specified, a ruler for measuring the distances and a clock for describing the
coordinates variation with time. Geometry says how coordinates in two different reference frames are
related. If we assume for sake of simplicity two reference frames simply shifted along one of the axis®,
for instance by x along Z, the relationships are (see Fig. 1)

/ / /
T =x—xy Y=Yy 2z =2z

If " is moving along the common z-axis with speed V=2V with respect to S, assuming the origins
coincide at t=0 it is

“All other cases can be obtained by introducing a rotation of the axis and a shift of the origin.
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Fig. 1. The accented frame S’ is shifted by z, with respect to S.

¥ =r—zy=x-Vt Yy =y ==z Q8

Eqgs.(1) are the Galilean coordinate transformations. By differentiating with respect to time it is

i=z-V 4=y =z )

where we have implicitly assumed that ¢'=t and that the lengths are the same. From Eqgs.(2) we see that
velocities add. If the light from a source on a train propagates in the z-direction with velocity Zc, for an
observer at rest on the railway platform it would propagate with velocity z(c + V') (see Fig. 2).
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Fig. 2. Light source on a train moving along the z-direction with uniform speed V" wrt the railway platform.

By differentiating Eqs.(2) wrt time we get
T =z Yy =9 Z=2z 3)

that is the acceleration of a body is the same for all observers related by Galilean transformations.

The basic laws of classical dynamics are

1. A free body perseveres in its state of rest, or of uniform motion (principle of inertia). Reference
frame where the principle of inertia holds good are said inertial.

2. In an inertial reference frame it is [ — md, that is the acceleration, @, is proportional to the
applied force, F, through a constant, m (“inertial mass”). In other words, if in an inertial frame a
body appears to be accelerated it means that there must be something acting on it. Implicitly it is
assumed that m is a characteristic of the body which doesn’t depend upon its status of motion.

3. Whenever two bodies interact they apply equal and opposite forces to each other.



The second and third laws combined give the total momentum conservation for an isolated system. The
three laws of dynamics hold good in inertial frames. If an inertial frame exists, all reference frames in
uniform motion with respect to it are inertial. As they are all equivalent it is reasonable to assume that all
mechanics laws are the same for inertial observers (principle of relativity). More precisely, the principle
states that the laws must have the same form (covariance). If we chose a non inertial frame for describing
the motion of an object, the numerical results would be the same if the motion of the reference frame
itself is accounted for correctly. However the equation of motion for the observed object would take a
different form.

Are mechanics laws invariant under Galilean transformations? Suppose that Alex is studying the motion
of a ball let to fall under the earth gravitation force. Alex measures that the object is subject to a constant
acceleration of @ ~ 9.8 ms™°. By using different balls he finds that the acceleration is always the same,
g. He concludes that there must be a force acting on the balls which is directed towards the center of the
earth and having magnitude mg. Betty is on a train moving uniformly with velocity V=2V with respect
to Alex (see Fig. 3).

Fig. 3. Alex, at rest on the railway platform, studies the motion of objects under the gravitation force. Betty is on
a train moving along the z-direction with uniform speed £V wrt the railway platform.

From Egs.(3)

./

i'=i=0 §=j
and as the mass, m is a constant, she will agree with Alex on magnitude and direction of the force.
Classic mechanics laws are covariant under Galilean transformations.
The relativity principle allows us to chose the most convenient frame for describing an event.
We want to show in a more formal way that Newton law is invariant under Galilean transformations by
using an example. Let us suppose we have a system of particles and that the forces between them depend
upon the reciprocal distances, r;;. In the S inertial reference frame it is

F; = —VriZjU@’ij) = m;a;

In the moving frame S’ the Newton law must take the same form with the potential U having the same
functional dependence upon the new variables as in the old ones. From the Galilean transformations
Egs.(1) and (3) it is rgj = Tij» a@, = d; and V,» =V, and therefore, as the mass is a scalar invariant, it
is indeed
F = -V ,2.U(r.) = md,
Q r; i (Al

3 Galilean relativity and EM wave equation

Using the cyclic rule” the wave equation®
LA
or® o’

’
P =3, 2
ox; j Ox; az;

“For simplicity we have chosen the x-axis along the direction of propagation.




becomes under Galilean transformation
d=0

and it is clearly not covariant. As anticipated, Maxwell equations would describe EM laws in a partic-
ular reference frame, and as such, a privileged one. It was conjectured the existence of a medium, the
luminiferous aether, supporting the propagation of EM waves, as the air supports sound waves. This
medium had to be extremely rarefied to be undetectable directly and it would permeate the whole space.
The speed of light would be ¢ with respect to the medium and, accordingly to Eqs.(2), would be different
for an observer moving with respect to the medium.

Experiments for demonstrating the existence of the aether, by measuring the speed of light under different
conditions were attempted, the most famous of them being those performed by Michelson and Morley
using an interferometer.

The arrangement is schematically shown in Fig.4. The light is split into two orthogonal patterns of equal
length by the partially silvered glass M, reflected back by mirrors M1 and M2 and recombined on a
screen. If the earth is at rest in the aether, the recombined waves are in phase but if the earth is moving
the time needed by the two waves for reaching the screen would be different and an interference pattern
should be observed on the screen S.

M1

S

Fig. 4. A schematic view of Michelson-Morley interferometer experiment.

For avoiding errors due to incorrect mirrors angle or to the distances between the two mirrors and the
partially silvered glass being not identical, the apparatus can be rotated so that the possible interference
fringes would move.

The result of the first experiment in 1887 was negative. It was repeated with higher accuracy apparatuses
during the following 50 years, however the result was always negative. Theories proposed to justify
the negative result were contradicted by other experiments. A detailed quantitative description of these
experiments may be found in [2]

Attempts of modifying the still relatively new EM laws in such a way that they would be invariant under
Galilean transformations led to predictions of new phenomena which could not be proved experimentally.

4 Relativistic Kinematics
In 1905 Einstein [1] proposed a solution to the dilemma based on two postulates:
1. Physics laws are the same in all inertial frames, there is no preferred reference frame.

2. The speed of light in the empty space has the same finite value c in all inertial frames.

At that time the existence of the aether was still widely accepted and not yet ruled out by experiments. It
is worth noting that Lorentz had found the coordinates transformation which leave Maxwell’s equations
invariant in 1904, before the publication of Einstein’s paper, accompanied however by an erroneous
interpretation. It is in Einstein paper that such transformations are physically justified and therefore
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extendable to the whole Physics. In particular, the concept of time was critically addressed and the fact
that the time is not universal comes as a consequence of the light having a finite velocity.

Let us summarize Einstein reasoning. In order to describe the motion of an object we need to equip each
point of our reference frame with identical clocks and rulers. Is it possible to synchronize the clocks
by sending light rays. For instance we can imagine of sending a light ray from a point A to B and B
reflecting it back to A (see Fig.5). The two observers sitting in A and B may agree in setting the clock
in B at the arrival of the signal to a given value ¢tz while A will set its own clock to 2¢ 5 when receiving
back the signal. However if we want the speed of light to be c=3x 10® m s~! we shall measure the
distance, L, between A and B and set t g=L/c.

MIRROR

A B

Fig. 5. Synchronization procedure of the clocks in A and B.

Assuming the clocks are identical, they will stay synchronized. For this procedure we use the light
because, we have assumed that it propagates in vacuum with constant velocity so that we can be assured
that the velocity is the same in both directions.

Once all clocks within one frame are synchronized we can establish the chronological sequence between
events happenings in different places within the same frame of reference.

The observer S’ moving with respect to S may synchronize its own clocks with the very same procedure.
However this synchronization procedure observed by the resting observer is not correct. Suppose A and
B lying on the common z-axis with B on the right of A (zp > x 4) as shown in Fig.6: while the light
moves to B, B moves further away and once reflected back to A, A moves toward the light. Therefore
observed by S the time needed to reach B is obtained by setting

ctg =L+ Vtg
(L = zg — z4) which gives
tg=L/(c=V)
while the time needed to reach A is obtained from
ctp=L—-Vity
that is
ty=L/(c+V)
and 1 1 2VL
tpta= L<C—V - C+V> N A1 - (V/e)?) 7

Therefore for S, S’ clocks are not synchronized. If the clocks in the moving frame would be synchronous
with the stationary ones they wouldn’t be synchronous in their own frame. The “stationary" frame would
dictate the timing. However stationarity is relative, the inertial frames are all equivalent: if there exist no
privileged frame, we must abandon the idea of universal time. Relativity of time is a consequence of the
speed of light being finite.

As a consequence events which may be simultaneous for S are in general not simultaneous for S’ and
the other way round.
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Fig. 6. Synchronization procedure of S’ clocks as seen by the “resting" observer.

5 Lorentz transformations

By assuming the speed of light constant in all reference frames, the Galilean transformations, implying
the addition of velocity rule, must be modified. The new transformations must reduce to the Galilean
ones when the relative motion is slow (V' < ¢). According to the first Einstein postulate, the empty space
is isotrope (all direction are equivalent) and homogeneous (all points are equivalent); it would make no
sense to postulate that the laws are invariant in a space which is not homogeneous and isotrope. As time
18 not universal, it must be included in the coordinate transformation.

Resorting to arguments of space homogeneity and isotropy, and to the Einstein postulates it is relatively
simple to work out the correct coordinates transformation.

Homogeneity implies the relationship between the coordinates must be linear:

o' = a7 + agoy + ar3z + ayt
Y = a5 + any + g3z + anyt
7 = a31x + aszpy + a33z + asgyt

t' = ay @ + agy + agz + ayt

where the coefficients a;; may depend upon the relative speed V.

The points on the z-axis where y=2z=0 must transform to y'=2'=0 at all times which means that
(91 =031=094=03,=0. The points with y=0 (the z-z plan) must transform into 3'=0 and therefore it is
also ay3=0. The points with z=0 (the z-y plan) must transform into z'=0 and therefore it is also a35=0.
Because of isotropyy, time must be invariant for a sign inversion of the coordinates y and z which means
a0=a43=0. So we are left with 8 unknown coefficients:

z = a11x + ajoy + a3z + ayyt
y/ = a2y
2 = agyz
t' = agx + agyt
For a point on the y-axis (x=2=0) it is
= aoly + a4t
and therefore 2’ value would depends on the sign of y which again contradicts the hypothesis of isotropy.

Therefore it must be a;5,=0. The same argument can be used to set a;3=0. We are left with

/
Tr = a1 x + (1141/'
/

Y = ay
/
Z = Q33%
/
t = A1 T + 0/44t



The value of a4, is found by observing that

y/ =axn(V)y = azQ(V)am(_V)y/

that is ago(V)agy (—V)=1. Because ayy=1 for V' — 0, the correct choice is agy=1. In the same way it is
found ag3=1.

The origin of the S’ frame is described in S as = V't and has by definition =0 at any time. Therefore
0= ZE6 = Q11T + (114t = aHVt + a14t

that is a4 and a;; are related by
ajg/ay ==V

and the equation for 2’ becomes
/
z = ay(x +ayt/an) = an(z - V)

For finding the values of the remaining coefficients aq, a4, and ay4 we resort to the fact that the speed
of light is the same in .S and S’ and that the wave equation is invariant in form. Suppose an EM spherical
wave leaves the origin of the frame S at ¢ = 0. The propagation is described in S by the equation of a
sphere which radius increases with time as

R(t) =2 + % + 2° = &2 4)
In S’ the wave propagates with the same speed ¢ and therefore
R/2 (t/) _ .73/2 + y/2 + Z/2 _ 62t12
which writing the coordinates Z, y/, 2" and t' in terms of z, Yy, z and ¢t becomes
a%1x2 + a%l‘/QtQ — 2a12Vt + y2 + 2% = CQailxz + 02a4214t2 + 2a4q 044t
Rearranging the terms it is
(G%l — CQCL?u)Q?Q — 2(0/%1‘/ + C20/41a44>3:'t + y2 + 22 = (C2a?14 — G/%1V2>t2

Comparing this equation with Eq.(4), we get a system of 3 equations in the 3 unknown a4, a4; and ayy

2 2 2
all—ca41:1

2 2
a11V +c ay1044 = 0

2 2 2 1,2 2
ctay —a1V =c

which is solved by

1
1] = Oy = —F—7—7—7—=
V1= (V/e)?
V/c2
ay = ———F7—7—
1—(V/e)®

The final coordinates transformation for a uniform motion along the z-axis with relative speed V' is
therefore



=@ —pet) Y=y =z o =A(ct—pr) 5)

with
1

1-p?

The inverse transformation from S’ to S is obtained by replacing 3 with — /3. The transformation can be
written also in matrix form

and [=V/c

2
Il

ct’ 1 —B 0 0\ [et ct
/

x| -5 1 00 x| T
J1=7 o o 1 0]y FEy
2 0 0 01 2 2

Successive collinear Lorentz transformations are obtained by matrix multiplication.

The matrix elements may be also written as

with xO:ct, xI:x, ac2=y and 2°=2.

It is worth noting that for V' < ¢, that is 8 —0 and v —1, Lorentz transformations coincide with the
Galilean ones, while if V' > ¢, v becomes imaginary and the transformations are meaningless. The fact
that c is the limit velocity is not a Einstein postulates, it is a consequence of the Lorentz transformation.
Fig. 7 shows ~y as function of .

~
T

Fig. 7. ~ as function of 8 = v/ec.

The general expression of the Lorentz transformation of parallel translation with arbitrary direction of
the relative velocity reads [4]

. 1. - <
ot =~(ct — F-7) #l=F+ L 7F — fet (6)

with 5 =V /c.
Time is one of the 4 coordinates describing an event and as the spatial coordinates is subject to a (Lorentz)
transformation between moving frames.



For spatial coordinates it is always possible if for instance x5 > x; to find a new coordinates frame such
that z5 < }.
Is it possible to find a Lorentz transformation which inverts the temporal order of events?

Assume an event happening at the time ¢; at the location z; in S and a second event happens at ¢, in x5
with ¢, > t;. Is it possible to find a Lorentz transformation such that ¢, < t1? In S’ it is

ct) =v(ct; — Bxy)

cty = (cty — B,)
and therefore
c(ty — t1) = Y[e(ty — t1) — By — 21)]
Therefore it is ty < t) if B(zg — 3;) > c(ty — t;), that is if V(zg — x;)/(ty — ;) > ¢*. This may be
possible depending on the values of 9 — x; and t, — t;. However if the first event in S drives the second

one, x5 and ¢4 are not arbitrary.
If w is the speed of the signal triggering the second event from the first one it is

Ty — 1z = w(ty — 1) .
ety = 1) = ylelts — 1) = Bulty — 1)) = yelty — 1) (1 - 7;”)

which is always positive as w < c. Causality is not violated.

6 Some consequences of Lorentz transformations:
length contraction and time dilation

As a consequence of Lorentz transformations, lengths are not invariant. Consider for instance a rod
along the z-axis and at rest in the moving frame S’. The length of the rod in S” is L'. The length in S is
determined by the positions of the rod ends at the same time and therefore from Eq.(5) with ¢,=t,

L' =ay — ) = y(zy — 21) = 7L

The moving rod is shorter than in the frame where it is at rest (length contraction). However the length
of a rod aligned with one of the two axis perpendicular to the direction of motion is invariant. For this
reason angles are in general not invariant.

Suppose a clock at rest in S measuring a time interval ¢, — t; between two events happening at that same
location in S. From Eq.(5) with z:;=x, the time interval in S’ between the two events is

ty =ty =ty — 1)

which is larger than measured in S (dilation of time). Moreover events happening at the same time but
in different places in S, will be no more simultaneous in the moving frame S’. In fact using Eq.(5) with
t1=t2 it is

c(ty — t1) = VB8(z; — )
which is non vanishing if x; # .

In general it is named as proper the interval (in space or time) measured in a inertial frame where the
observed object is at rest.

Let us suppose that we have two synchronized clocks, C'1 and C2, at the origin O of S and that at t=0 we
set C'2 in uniform motion along the z-axis with velocity V. After a time ¢~,=T, when C2 accordingly to



time dilation strikes 7'/, the clock C2 inverts its direction. When C?2 arrives back in O, C'1 strikes 27
and C?2 instead 27"/~y. This may look as a paradox because the notion of motion is relative: with respect
to C2, it was C'l moving and therefore C2 should strike 27" and C'1 instead 27'/y. However when they
are both in O we can compare their time and only one outcome is possible. The mistake is considering
the two situations equivalent, while they are not. C'2 has been set in motion by the action of some kind
of force and some kind of force also is responsible for changing its direction, while C'1 has experienced
no force. Indeed direct experiments involving clocks have shown that time dilation is real [3].

7 Lorentz transformations for velocity and acceleration

The relativistic transformation for the velocity follow from the Lorentz transformations for the coordi-
nates

y oo de-Vdt v, -V
At dt—vde/ 1—v,B/c
dy' d v
vy = = Y = . 7)
dt'  y(dt —Vdx/c®) V(1 —vB/c)
dz dz v

Ta T (dt— Vde/R) AL —vB/0)

with 8 = V/c, v, = dx/dt, v, = dy/dt and v, = dz/dt. The inverse transformation is obtained by
replacing V' with —V. Unlike the classical case, also the components of the velocity perpendicular to the
motion, when non vanishing, are affected by the motion. This is a consequence of the fact that the time
is not invariant and therefore, although the lengths perpendicular to the motion direction are unchanged,
the time needed to cover them is changed.

As an exercise, let us use these expressions for a light ray. For v,=c and v,=v,=0 it is

’ c—V c—V I

le—V/c:cc—V:c and v, v, =0

(%

.. / / /
For v,=c and v,=v,=0 it is v,=—V, v,=c/7, v,=0 and

vl + vf +02 =ViP4 P - (Ve =¢

As expected, the speed of light is invariant.

In a similar way as for the velocity it is possible to find the transformation for the acceleration [2]

/ a

T 1= 0,80
_ a, azv,B/c
W A8 - uh) ®
a axvzﬂ/c

T U= Bl (- b))

Acceleration is not invariant under Lorentz transformations unless both v and V' — 0.
8 Experimental evidence of relativistic kinematics

In his papers Einstein suggested possible experiments for confirming the validity of his theory. Here we
give some examples: light aberration, (transverse) Doppler effect and lifetime of unstable particles.
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Light aberration

Light aberration is the apparent motion of a light source due to the movement of the observer. It was first
discovered in astronomy. Consider a source emitting photons at an angle 6 with respect to the x-axis in
the S frame where v, =csin 6 and v,=ccos 6 (see Fig.8). In S it is v;:cl sin @ and v,=c cos@’. Using
Galilean transformations for the velocity components v,, and v,

/
and v, =v, -V

/_
’Uy—U

Y

tan 6’ = v, /v, = v,/(v, — V)

sin 6
tan 6’
" (cos@ — f3)
Using instead Lorentz transformations
sin 0
tand’ =
v(cos O — )
y
— /’I/’
=] I
£ —
5 o
n e
< 8
u,=ccosf )

400 ‘ ‘
class. 160
350 | rel. 1 4
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Fig. 9. Angles observed in the moving frame .
g g g Fig. 10. 0’ vs. ~y for 6=90".

X

Fig. 8. Source emitting a light ray at an angle 6 with respect to the z-axis in .S.

for $=0.2 and 5=0.9.
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High energy experiments involving emission of photons confirm the relativistic expression. Fig.9 shows
the classical and relativistic relationships between the emission angles for 5=0.2 and 5=0.9. We see that
0'=0 for 0 and 180 degrees for both the classical as well as the relativistic expression. In all other cases it
must be paid attention whether the angles are specified in the moving or in the rest frame. Fig.10 shows
how the angle 6=90" transforms as function of .

Doppler effect

In the following we give an alternative computation of light aberration by using the undulatory descrip-
tion of light which allows also to treat the Doppler effect.

Consider a plane light wave propagating in the direction 7 = & cos 8 + ¢ sin 6

A(z,y;t) = cos [k(z cosf + ysinf) — wt] )

where k=w/c is the wave number. The wave must have the same form when observed in S’
Az’ s t) = cos [k (2" cos 0’ + ¢/ sinf) — W't']
Expressing the coordinates in S in terms of the coordinates in S’, Eq.(9) gives

B(:U/, y'; t/) = cos {[k:fy(x’ + Bct) cos + Y sin 0)] — wv(t/ + ,B:U//c)}

Comparing with the expression for A(z',1/;t") we get

E cos = kycosf — wyB/c = ky(cos — j3) (10)
K'sin@ = ksiné (11
w' = —kvyBccos @ + yw = yw(1 — Bcosb) (12)

From Egs. (10) and (11) it is

sin 0
+(cos 0 — B)

which is the result found previously. In addition Eq. (12) gives the wavelength measured by two observers
in relative motion. Suppose that the source is at rest in .S so that w is the proper frequency, wq. Thus it is

tan 6’ =

w' = wyy(1 — Bcosh)

where 6 is the propagation angle in the source reference frame. For 0=0 it is

R el
N1+

and therefore w’ < wp for B > 0 (receiver moving away from source), while W > wy for B < 0 (receiver
moving towards the source).

For §=90" (in the frame where the source is at rest) it is
W =Wy

Unlike the classical case, relativistically it is expected the existence of a transverse Doppler effect which
is a consequence of time being not invariant. This was predicted by Einstein who also suggested in 1907
an experiment using hydrogen ions for measuring it. The experiment realized for the first time by Ives
and Stilwell in 1938 proved the correctness of Einstein prediction.
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Lifetime of unstable particles

Beside e , p and n, in nature there are particles which are produced by scattering process and unlike et
P and n, are “short-living". Their number decays in time as

N(t) = Nye /™

Pions are produced by bombarding a proper target by high energy protons and leave the target with v ~
2.97x10% m/s that is £=0.99 and v ~ 7. The lifetime of charged pions at rest is 7,=26x 10" s. The
time, ¢, needed for the pions at rest to decay by half is

_f N, _
N() = Nye t/T:?O — [=18ns
It is observed that they are reduced to the half after 37 m from the target. If their lifetime would be
as when at rest they should become the half already after about 5 m. The experimental observation is
explained if the pion lifetime in the laboratory frame is

T = "YTy

as predicted by time dilation. The decaying pions produce muons which are unstable too. Their lifetime
at rest is 2.2 us, small however larger than pion one. Time dilation may allow us realizing future colliders
smashing muons if we are able to accelerate them to high energy very quickly!

9 Relativistic Dynamics

Assuming F invariant and m constant, Newton law, F = md, is not invariant under Lorentz transfor-
mations because, as we have seen, @ is not invariant. In addition the mass cannot be a constant because
by applying a constant force to an object its speed would increase indefinitely becoming larger than c.
Classical mechanics must be modified to achieve invariance under Lorentz transformations and the new
expressions must reduce to the classical ones when the speed of the objects is much smaller than c.

The relativistic mass

In the 1905 paper, Einstein used the Lorentz force and the electro-magnetic field transformations to
achieve the generalization of the definition of momentum and energy. We follow here instead the ap-
proach by Lewis and Tolman [5].

In 1909 MIT professors of chemistry Lewis and Tolman suggested a more straightforward reasoning
with respect to Einstein original one and which involved purely mechanical arguments.

Let us assume there are two observers, Alex and Betty, moving towards each other with the same velocity
as seen by a third observer, Charlie (see Fig. 11). Betty sits in S and Alex in S’. Alex and Betty have
identical elastic balls. Betty (see Fig. 12) releases the red ball with vf =0 and vf # 0, while Alex
(Fig. 13) releases the green ball with speed v;A:O and 17;‘4 numerically equal and opposite to the red ball
velocity, that is

The experiment is set so up that the two balls collide and rebound as shown in Fig. 14.
Now let us consider Betty point of view. For Betty it is

Apy =0 Apl =2mpv?
Aps =0 Apt = —2my0l

We recall Lorentz transformation of velocity

/ v

Ty

()
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B i. —» C point of view

>

X
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z R A

Fig. 11. Betty and Alex frames as seen by the third observer Charlie. They move towards each other with equal
and opposite velocity along the x-axis.

" —
e . A

Fig. 12. The elastic collision as observed by Fig. 13. The elastic collision as observed by
Betty. Alex.

As we know the values of the velocity components in the moving frame we need here the inverse of the
velocity transformation Eq. (7), that is

vy, +V
Ve = T T2,
1+ 0,5/
/
,UZ
v, =

(1 +vB/c)

In our case v;:v;A=O and v;:vle=—vf and therefore vf = V before and after the collision, and
A 1A B
UV, = U, /Vz_vz /’Y (13)

withy = 1/4/1 — (v /¢)?, before the collision and

A
vt = vl fy =0l [y (14)

.\ /‘
’/c\-

Fig. 14. The elastic collision as observed by Charlie. The two balls are scattered under the same angle of incidence.

Momentum, classically defined as p=m, is conserved if A(ﬁA + ﬁB )=0. Itis Apf:Apf:O. In addition
it must be



B A
Apz = _Apz
which using Eqgs. (13) and (14) and the definition of momentum gives

1
vazB = _mA'Uf = *TTLAUE — My =7ymp
v

We may assume that v is small so that m is the mass at rest, mg, and m 4=m(v).

So we have found that
m(v) = ymy

where my is the mass in the reference frame where the object is at rest. We can keep the momentum
definition, p=m, from classical dynamics by giving up the invariance of mass. It is worth noting that
in modern physics language m is used for denoting the rest mass. An approach similar to Lewis and
Tolman one is used in [2] where the elastic scattering of two identical particles is observed in the center
of mass and in the frame of one of the two particles. The assumption done here (and in [2]) is that the
scattering angle is equal to the incidence one which is a possible realization of an elastic scattering.
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The relativistic energy
As the mass depends upon v, let us write the Newton law F=mdv /dt as
- dp  d . _dvy dv
F = i %(7771021) =moU—, + MY gy
By scalar multiplication of the r.hs. and L.h.s. by ¥, it is

. dp
=T
L dp L dv v? 3 dv v272 3 dv
Ve T Mot gy o vy = movv(l+ 2 ) =moy" vy
that is
d—E:F"U:m 3vd—v
dt 07Vt

It is easy to verify that this equation is satisfied if we define the energy as
E=md = 7m002

For v=0, it is EO:m002 which has the meaning of the energy at rest. Relativistically the energy of a
free particle at rest is non-vanishing. The (relativistic) kinetic energy is obtained by subtracting the rest
energy from the total energy

1
T =mc® — myc® = moc®(y — 1) # §7m0v2

which gives the classical kinetic energy 1" ~ m0v2 /2 forv < c.

Experiments confirmed the validity of the relativistic relationship between p’and .

In particular Bertozzi experiment [6] measured directly the velocity of an e~ beam accelerated in a linear
accelerator. The experimental arrangement is shown in Fig. 15. The e~ speed was measured through the
time of flight. The kinetic energy was computed from the accelerating field and from the measurement
of the heat deposited at the aluminum target. The results in Fig. 16 confirm Einstein prediction and also
show clearly the presence of a limit speed, c.

552 WILLIAM BERTOZZI

(S

i
N I
Equipetential 1 meter 1
Tt eton !
of tinac |
|
.

ight fasher _.ligl

Charging belt-

Short tube signalling at end of flight path
start of clectron burst | Gscilloscope

down the fiight poth
~3%107see

Electron burst charge diskibulion
s a funetion of fime.

F16. 1. Scheratic diagram of the experiment set up for measuring the time of fight of the
electron burst from the Van de Craaff.

Fig. 15. Bertozzi apparatus (from [6]).

Relativity is of fundamental importance for accelerators where the particles may be accelerated to speed
near to c. In a ring accelerator dipole magnets keep the particles on the design orbit and longitudinal
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% = 2E, /mc?
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Fig. 16. Bertozzi results (from [6]). The solid line is the calculation using classical formulas, while the dashed
line is the relativistic prediction. The dots are the experimental results.

radio-frequency electric fields boost their energy. The relationship between momentum and speed dic-
tates how the frequency of the accelerating electric field and the dipole field must be varied with energy.

The dipole field must be ramped up according to momentum for keeping the particles on the design orbit
(p=p/eB). The electric field frequency, which is a multiple of the revolution frequency, is

Be c /2
frf:hfrev:hf:hﬁ Y -1

c 1
fri & hz(l - W)
At large v the revolution frequency is almost constant. This is particularly true for ¢ which have 1836
larger ~ than protons for the same energy. Fig. 17 shows the CERN PS Booster case where the protons
kinetic energy is ramped from 160 MeV to 2 GeV.

which for large v becomes

cb GevV] ——
frevfMHz

0.5

0O 02 04 06 08 1 12 14 16 18 2
T[GeV]

Fig. 17. Momentum and revolution frequency in the CERN PS Booster as a function of the kinetic energy. The
ring is about 157 m long.
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While in classical mechanics the mass is an invariant scalar conserved in physics processes, relativisti-
cally the rest mass alone is not conserved.

To show that the rest mass is not conserved we consider an inelastic scattering (kinetic energy is not
conserved) between two identical particles, A and B, with rest mass m. In the center of mass, S', it is
7 =—i'P. We may assume ¥ A=_iB=z/ (see Fig. 18). After colliding the two particles glue together
in a new particle, C, at rest in S’ (see Fig.19) so that momentum is conserved. In the reference frame, S,
where A is at rest, the particle B moves before the collision with speed vf =20 /(1 + v / 02) while after
the collision C' moves with speed vg =0’ (see Figs. 20, 21). The mass of B in S is

my _ myll+ (/)]
L — @Bl 1o’

mp =

Momentum conservation in S requires

A B c mav’ m&'
Dy Dy = Pz — 0 = 5 = 0 P
before after \/1 - (UB/C) \/1 - (U /c)

Using the value found for Uf and solving for mg we get

2m0

1 (/)"

C _
mo =

C )
mg — 2mg = 2my| ———x=—1
1 (/e)?

The rest mass of the product particle C' is larger than the sum of the starting particle rest masses and the
difference, multiplied by A&, is just the initial total kinetic energy in S’, T + T. The kinetic energy
in S’ has been completely converted into mass. Although the kinetic energy is not conserved the total
energy, kinetic plus energy at rest, is conserved. The fact that the sum of the rest masses is not conserved
is a fact well known to every high energy particle physicist. An example is the annihilation of a et
pair into 2 photons.

e

, v=v'
V=V —_—
—_—

(before collision) (after collision)

Vp(=V) vy (=)

Fig. 19. After inelastic collision the two par-
ticles glue together in the particle C' at rest in
/!

S

Fig. 18. Identical particle colliding head-on
observed in the center of mass frame , S’

10 4-vectors

While relativistically lengths and time depend upon the motion of the observer, the interval defined as
(ds)” = [d(et)]” — (dz)” — (dy)® ~ (dz)°
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y y
(before collision) (after collision)
VB
Be—m————- @ A(vy=0)
0 X 0 *
Fig. 20. Particles observed before collision in Fig. 21. Particle C after collision as seen in
the frame S where A is at rest. S.

is invariant under Lorentz transformations. Indeed
ds/2 _ C2dt/2 o (dx/2 + dy/Z + dZIQ)
= (Pt + fPda® — 2Bcdtdr — B2Pdt” — da® + 2Bcdt dx) — dy — dz°
= 72 [(1 — 62) (c2dt2 — dx2)] — dy2 —dz?
= Adt? — da® — dy2 —d2? = ds®
If (cty, 21,1, 21) and (cty, 9, Yo, 29) are the coordinates of two events in S we ask whether it is possible

to find an inertial frame S’ where the two events happen in the same place. As the interval is invariant
this means that

(As)? = (As)?
and therefore
(eA)? = (cAt)? — (Ax? + Ay + AZP)

where we have set At =ty — t;, Ax = x4 — x; and so on. The Lh.s. of this equation is always positive.
Therefore the answer is affirmative if (A3)2 >0. Such intervals are called time-like intervals. The time
in S between the two events is

At = }\/CQAR — (A2® + AP+ AP = Aas
c c

By using the Lorentz transformations we find that the speed of the frame S’ with respect to S is

V=\/Ax2 + Ay* 4+ Az?/At which is smaller than ¢ because (As)? >0.
Now we ask if it is possible to find an inertial frame where the two events happen at the same time.
In this case (As')? = (As)? implies that

(cAt)? — (Az® + Ay® + AZ%) = —(A2? + Ay + A <0

that is (As)2 must be negative. The distance between the two events in S’ is

\/Ax/2 + Ay + AP = \/AJIQ + Ay® + A2 — (cAt)?

which is a real number as the argument of the square root on the L.h.s is positive.

By using the Lorentz transformations we find
0 = cAt' = y(cAt — BAT)

that is the speed V of the frame S’ with respect to S is V:czAt/ Az. The constraint v < ¢ imposes
Ax /At > c. This means that between the two events there may exist no causality connection. These
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intervals are called space-like intervals. Finally the case As'=As=0 corresponds to events connected by
a light ray.

Let us consider a particle moving with velocity #(¢), non necessarily uniform, in S. The time interval
dr evaluated in a inertial frame S” where the particle is instantaneously at rest is called proper time. It is

related to the time measured in S by
dt
dr =\/1—v*/Pdt = —
~y

and for a finite time interval

T2 dr
t2_t1: ﬁ
o4/ 1—v"/c

The proper time is by definition an invariant. This results also from the fact that ¢?dr? is the invariant
ds® evaluated in the frame where the particle is instantaneously at rest. This definition of proper time
contains the definition given in Section VI as a particular case when the particle is not accelerated.

An object which 4 components transform as (ct, x,y, z) is a 4-vector. In the same way as done for
intervals, one can prove that for any 4-vector the quantities

AVBV = AOBO — (Ame + AyBy + AZBZ)
and in particular
AYA, = AF— (A2 + A2+ A2)

are invariant.

Classically the scalar products, A B,andin particular the length of vectors, A - A, are invariant.

11 Minkowski space-time

In 1907 the mathematician Hermann Minkowski, who was Einstein professor at Ziirich Polytechnic,
showed that the special theory of relativity can be formulated by using a 4-dimensional space with metric
tensor’, g, given by

+1 0 0

0o 0 0 -1

Lorentz frames are those where the metric tensor takes this special form; they are connected by Lorentz
transformations. The points of Minkowski space-time are the events and the vectors in this space have 4
components (4-vectors) which transforms according to Lorentz transformations.

The transformations for momentum and energy may be found directly from the definitions and the
Lorentz transformations for the velocity, without introducing the notion of 4-vectors. The result is

2
Py = (p, — EV/c) Py =Dy P, =Dp,

E =~y (E-Vp,)

Here it is a 4 x4 matrix defining the scalar product.
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with vy, = 1/4/1 — v? / A A posteriori we notice that the transformations have the same form as the
coordinates transformations with 7 — Fand t — E/c” and therefore (E /¢, p) is a 4-vector.

A more elegant way of reaching the same result is by noticing that (E/c, ) must transform according
to Lorentz transformations, and therefore it is a 4-vector. Indeed owing to the fact that the proper time
interval dr = dt/~ is an invariant and that (cdt, dx, dy, dz) transforms obviously as (ct, z,y, z), the
quantity (4-velocity) defined as

cdt dv dy dzy\ ¢ cdt dr dy dz\ _ .
(W’E’E’%) = (’yﬁmary%,v@) = (ye,77) (15)

transforms according to Lorentz transformations. Multiplying the 4-velocity by the rest mass we get

mo(ve,vV) = (E/c, p)
which is also a 4-vector (energy-momentum or 4-momentum vector) and therefore transforms according
to Lorentz transformation.

Relativistically energy and momentum are closely connected. If in one inertial reference frame energy
and momentum are conserved (Ap=0 and A E£'=0), for example in a collision between particles, they are
conserved in every other inertial frame because a 4-vector having all components vanishing in a reference
frame will have vanishing components in any other one too.

Similarly if momentum is conserved for two inertial observers (Ap=Ap '=0), the energy too must be
conserved.

12 Newton and Minkowski force and their relativistic transformation

We may write the relativistic Newton law ﬁ:dﬁ /dt in terms of 4-vectors. In the particle proper frame

dp” .,
?— f (16)

with (po’plapzupg)z(E/C)px)pyapz) and (f07 f17 f27 f3)=(f07 an Fya Fz) The Lh.s. is a 4-vector and
therefore also f: the Minkowski force, on the r.h.s. must be a 4-vector related to the Newton force F.

The space part of the equation of motion is

v _
dr

I
2
S

o= o =F =

The time part of Eq. (16) is

fO_dL)()_

_dp’ _ 1.dp°)? 1 d(Efe)?
dT 2p0

= _ 17
dr 2p0 dr (7

The invariance of (E/c)® — - = (mgc)? implies that
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which inserted in Eq. (17) gives

o 1 dE/O)* 1 _.df mogyT , = I
= — = 72 . — = . F = 'F 18
/ op?  dr 2p° P E/c (VF) =8 (19

The Minkowski force is therefore

‘We notice that

which is the expression of the work done by a force F= f /-
In absence of external forces (ﬁ =0) itis f =0 and momentum and energy are conserved.

Being a 4-vector, Minkowski force transforms following Lorentz transformations. It must be paid atten-
tion to distinguish between the particle velocity, ¥/, in the S frame and the frames relative speed that we
will denote by V. Using the general expression of Lorentz transformations Eq. (6) we have

o= (f° =By f)

- - Yv — 1,- - = —
f'=Ff+2— By )Py —wi'By
By
The Newton force transformation writes
17 = v — 1.5 =\ 3 = = =
v F' =~F + 7 By - (WF) ] By —whv (78 - F) (19)
1%

The inverse transformation is obtained by replacing EV with —EV

= 17 —-1.> I 2N A = 13 =2
YF =+~'F + WBQ By - (' F)]By +why (8 - F) (20)
\%4

13 Relativistic transformation of EM fields

The force acting on a charged particle moving in a EM field is the Lorentz force
F=qE+qixB
The corresponding Minkowski force is

fV:(Vg'ﬁavﬁ)=q[75~(ﬁ+6x§),7(ﬁ+6x§)]

with v = 1/4/1 — (V/¢)?. This equation can be written in matrix form as

£ o E, E, E, ve
f ! _ 9| E; 0 cB, —cB, YU,
f o E, —cB, 0 cB, YUy
£ E, ¢B, —cB, 0 YU,



Minkowski force and the 4-velocity (¢, y0) (Eq. 15) are 4-vectors. Using the Lorentz transformation £
from S to S’ and £ from $' to S we get

" £ 0 E, E, &, Ve
1 1

ij _r f2 _4, E, 0 cB, —cB, -1 7:11%

f f c E, —cB, 0 cB, Y vy

3 £ E, ¢B, —cB, 0 ¥'v,

Requiring that the Minkowski force in S” has the same form as in S, it must be

0 E, E, E. 0 E, E, E,
E, 0 ¢B, —cBy,| _ ol B 0 B, —cBy| .1
E; —c1§; 0 cB,, E, —cB, 0 cB,
E, ¢B, —cB, 0 E, ¢B, —cB, 0
which yelds the field components in S’
/ / V
Ey = ’YV(Ey - VB,) By =MW (By + ?Ez
/ !/ V
Ez:’YV(EZ—’_VBy) Bz:’}/\/(Bz_? Y

In alternative to the previous formal approach, we give here a way for finding directly the field transfor-
mation from physical considerations.

The force acting on a charged particle moving in a EM field is the Lorentz force
F=qE+qixB
The corresponding Minkowski force is
f'=(0B8-FAF) =q[y8-E.y (E+7x B)]
In a second reference frame, S’, the force must have the same form
[ =GB FAF)=q[y8 E.A (B +v x B)]

where we assumed ¢’ = ¢ which is a fact experimentally proven with high precision.

Knowing how the Minkowski force transforms it is possible to get the expressions for the field transfor-
mations.

Let us consider the case of a particle at rest in .S subject to the fields Eand B.In S itis
F=qE

In the frame S’ moving with translational motion along the common Z-axis with velocity V' with respect
to it is v,=—V and vé:vé:O. The force components in S’ are

F, = q(E, +v,B, —v_.B,) = qE,
F, = q(E, — v,B. +v.B}) = qE, + qV B,
q

F, = q(E. + v,B, — v,B,) = qE. — qV B,
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From Eq. (19) the force components transform as

v —1 o
wFy=Fy+ Y By Fy = ywF,
By
’VVF;:Fy
’YVF;:FZ

with 7y, = 1/4/1 — (V/c)?. Writing explicitly the force in terms of the fields we get

E, =B, By=w(B,+VB.) E.=w(E -VB,)
The inverse transformation are obtained replacing V' with — V'

Ealz: = E:v Eg,; = 7V<Ey_VBz) E; = 'YV(Ez"i_VBy)

Finding out the transformation for the magnetic field is a more complicated because the electric force
cannot be made vanishing by a convenient choice of the reference frame. We consider again the two
frames S and S’, with S’ moving with velocity V along the common Z-axis. For a charged particle
moving in S’ along the §/-axis it is v, =V, vyzv;/yv and v,=v,=0. The force in S’ is

Fp=q(Ey+vB.)  F,=qE, F,=q(E,—uv,B)

Using the force transformation we get

w—1 9 v v
Yy =~'q(E, + v, B)) = yF, + Vﬁz BvyE, — ’YV’YﬂV(fo + %Fy)
v

~y v,V 0l v,V
= Fy—wy yg Fy = Q(Ex + Usz) - WY yQ Q(Ey - UIBZ)
A% c A% c

V' Fy=~'4E, = vF, = vq(E, — v,B.)
V' FL =Y 4(E; — vyBy,) = vF, = 7q(E + v, B, —v,B,)

Using the transformations already found for the electric field and the fact that in this case it is 'y/vv =",
we notice that the equation for FZ,/, is an identity while the other two equations give

~y v,V
'YUyB; = Usz — 7 y2 (Ey - VBz)
A% c

VI’YV(EZ + VBy) - ’YV/UyB,x = V(Ez + VBy - vyBa:)

The magnetic field component transformations are therefore

%4
7Ey)

B; = 'YV(BZ - 02

B, =B,
The transformation for B, is obtained considering a particle moving along the #-axis and writes

|4
Bg// = ’YV(By + ?Ez)
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The expressions found are valid for a translational motion along the x-axis. In the general case when 1%
has an arbitrary direction the field transformations write [4]

2
E' = (E+V x B) - (B, - E)3y
T+l
) @
x E) - —— (3, - B)By

B =~ (B -
Y ( p—

Ow‘ <u

Decomposing the fields in their components parallel and perpendicular to the relative velocity V, these
relations may be written also as

E/:Ell +7V(EL+V X é)
L Ly
B' = B +7V(BL—? x E)
where we made use of the identity
2 52
Y By

R

Transformation of a charge distribution

Let us consider a distribution of charges at rest in S’. The charge density is given by

,Ol(x/ y/ S t/) _ qN
U de'dy' dz’

In S, moving with velocity —V with respect to S’ (see Fig. 22), the volume element is
g y P g

d /
drdydz = idy/dz'
Y

where we have taken into account the length contraction in the x direction.

Fig. 22. Charge distribution at rest in S’ .

The charge density in S is therefore

qN /

p= dxdydz - P

As the charge distribution moves in S with velocity +2V/, in .S there is a current moving in the z direction
with density

Je=pV =79V
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and in general
j=pV =90V

There is an analogy with the energy-momentum 4-vector (E /¢, p) or (me, p) withp — mandj — p.
In fact renaming by p, the charge density in the rest frame, p’, we may write

m
p=po——
mg

j=p g
OTn0

as m/mg=". Therefore (pc, j ) is a 4-vector. Indeed the transformations we have found are the (inverse)
Lorentz transformations for the particular case j =0.

In the Lorentz gauge

102
2 ot

the equations for the scalar and vector potential take the form

V- -A=—

10°®
S -Vie=L
¢ Ot €0
1 9°A -]
5=y - VA=
c ot €C
Using the d’ Alembert operator
1 9 5
O0=—-—5-V
& ot?
these equations can be combined in a single one
(03 ]‘ (03
0A" = —5 o/ (22)
€oC

with A0=<I>/c, A=A, AQ:Ay, A3=A_ and J'=cp, J'=j,, J2=jy, J3=j.. We know now that (cp,7)is
a 4-vector and it is easy to verify that the d’ Alembert operator is invariant under Lorentz transformations.

—,

Therefore by requiring covariance of the Eq. (22) also (®/c, A) must be a 4-vector.

Direct proof of invariance of Maxwell Equations

Knowing how fields and sources transform one can prove that Maxwell equations are invariant under
Lorentz transformation.

For example let us prove that

The partial derivatives in S” and in S are related by the cyclic rule

0 Oct 0 or 0 oy 0 0z 0 0 0
@:@@—I—ﬁct/%—i_adl@iy%—@ct/% 7<3ct+68x>
0 dct 0 or 0 oy 0 0z 0 0 0
o ~od 0t od0x ' ox Oy | oa 02 ’Y(ﬁ )
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0 0 0 0

oy y 97 02
By using the cyclic rule, the EM field transformations and the fact that Maxwell equation hold good in
S, we find

., OE, OFE, OFE.
VE=—F+—"2+-—=
oz oy’ o7

_ OE, N OE, N OF. ﬁéE;
-7 ox y 0z K Oct

0F, ok, OF, 0B, B, oF,
=~ o +76y +’78z _Way +7V82 +7660t

. 0B, 0B, OE,
—’W'E‘W<ay‘az> ot

p ~  10E
=1L v B-=Z
FYEO K <VX 026t>x

_ Ly
€0 €nC
— (e —Bi
- €0C (,OC B]x)
!
_r
€0

which prove the invariance of the first Maxwell law under Lorentz transformations.

14 Some geometrical aspects of special relativity

Let us consider our observer O at the origin of the inertial frame S. We can represent the  and w = ct
coordinates® measured by O on two orthogonal axis (see Fig. 23). This graphical illustration was intro-
duced by Minkowski. Any event is represented by a point in the Minkowski diagram and the trajectory
of a particle will be a sequence of points called “world line". The angle between the tangent to a material
particle world line and the w-axis is always smaller than 45°, as the particle speed is always smaller than
c. The world line of a light ray is a straight line at 45,

Particle

World Iin?\

(o] X

=

Light world line

Fig. 23. (z,w) diagram relative to the inertial reference frame S.

Let us consider the (z,w) diagram relative to an inertial reference frame S. The world lines of light
waves delimit the grey area in Fig. 24 and define the so called light cone. For any event point inside the
grey area, P, it is w? — z° >0. That is the interval As between those points and O are time-like and, as
seen in the previous section, this means that it is always possible to find a Lorentz transformation where
the event happens in the same place and therefore it can be established their chronological sequence. The

“For simplicity only the space coordinate  is considered.
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events in the upper part of the grey region for which ¢ >0 happen after the event O. This region is called
future with respect to O ). The events represented by points in the lower part of the grey region for which
t <0 happen before O (past). As the interval As? is invariant the fact that the P is a future event with
respect to O does not depend upon the reference frame.

All points like () outside the grey area correspond to space-like intervals because A82=(Ct)2 - 2% <.
As previously shown these are space-like intervals for which it is not possible to find a reference frame
where the events happen in the same space point. Therefore it is not possible to establish a chronological
sequence between them. This region is called elsewhere.

Fig. 24. The light cone relative to the observer O. P is an event in the future, while () is an “elsewhere” event.

15 SOME APPLICATIONS OF THE EM FIELD TRANSFORMATIONS

The fact that physics laws are the same in any reference frame allows us to solve problems in the
most convenient reference frame. Here we show two typical examples which are relevant in acceler-
ator physics.

The field of a moving charge
The EM fields generated by a charge at rest in the origin of the S’ frame is

-
o 4T
drey "3
B'=0
Y oos
\'%
T~
0 q

Fig. 25. Particle moving along the z-axis of reference S.

We can use the field transformations found in Section XIII for computing the fields in the frame where the
particle is uniformly moving. We chose the frame so that particle moves along the z-axis (see Fig. 25).

The electric field in S is




Expressing the accented particle coordinates in terms of the coordinates in S, that is =’ = ~v(z — vt),
y'=y and 2'=z, the electric field components are

g _ 4 V(x — vt)

* = Ure, W@ —ut) +y° + 22]3/2
_q Y

YT Amey 2 (z — ot)? + o2 + 2]

p_ 4 vz

z 47T€0 ["}/2(37 o Ut)2 + y2 + Z2]3/2

As the particle is moving, in S there is also a magnetic field. Using the magnetic field transformations it
is

E/:O:§||+7v(§i_?XE)
which means
By =0
.1, o
BJ_:?UXE
c

We may evaluate the electric field at the time ¢ = 0 f

—

q or

E =
47T€O [’}/2172 + y2 + 22]

3/2

Denoting with 6§ the angle between the Z-axis and 7~ and using the relationship

Vr? +y* + 2% =447 (1 — B sin” 0)
we get
q 1-p° 7

E =
Ameg (1 — % sin® 9)3/2 r

The electric field is still radial and follows the 1/ 7% law, but has no more a spherical symmetry. The
magnetic field is perpendicular to the plane defined by 7 and ¥/. In accelerators, particles are often “ultra-
relativistic” that is their speed in the laboratory frame is almost c. For 5 — 1 itis E — 0, unless 6=90"
or 270° where the field is enhanced by a factor 7.

Forces between moving charges

Let us consider an uniform cylindrical beam of radius R of equally charged particles moving with veloc-
ity v along £ (see Fig. 26). Each of them experiences a repulsive electric force and an attractive magnetic
force.

In the reference frame S’ where the particles are at rest there is no magnetic field. Inside the beam
(' < Ryitis

q2/\/7“/ )\/ — N/L/

/ /
FT’/ = qEr/ = 2

2meg R

"At a different time 7 the fields take at (z, y, z) the same values as at (x — vf, y, z) for t=0.
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Fig. 26. Uniform cylindrical charge distribution.

that is the force acting on each charge is purely radial.

By using Eq. (20) for the Newton force transformation with v'=1, 3'=0, =7, 8,=3 and EV . F'=0, and
we get

/
Fi=0  F=_Fi=——dxn

where the line density in S, ), is related to the line density in S’, ', by A\ = vN/L'. In the reference
frame S the force is still radial and repulsive, but it is reduced by a factor 1/ 72.

Beam in accelerators may be approximated by a uniform cylindrical charge distribution. We see that the
repulsive force between the equally charged particles becomes smaller at high energy.

16 THE CM ENERGY

The center of momentum, usually referred as center of mass, for an isolated ensemble of particles is
defined as the inertial frame where it holds

o my Vs
hi=) ————=0
Zz‘: Zz':\/l—‘/a/c2

where V is the frame speed with respect to the laboratory.

We have seen that (E/c)® — |]? is an invariant with value mgc”. For the total energy and momentum of
the ensemble
E=) E ad P=> jp
i i
the invariant evaluated in the CM frame ig 5
(Smve) - i 5= (Srire)
where F; is the energy of the i — th particle in the CM frame. Let us consider two simple cases:

a) two ultra-relativistic particles colliding “head-on”;

b) one ultra-relativistic particle hitting a particle at rest.

For the system of two particles it is

(By + Eé)z (Ey + E2)2

2 = 2 — (1 + Da) - (P1 + Pa)
E, + E,)? L
=¥—p?—p§—2p1‘p2
C
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Moreover for ultra-relativistic particles it is
E
pP=muv~mec= —
C

Case a): p)/p1 = —pPa/ps (see Fig. 27).

p].—>

Fig. 27. Two particles colliding head-on.

(EY+Ey)’ Ef FEy _E\E, E FE5 _EBE, FFE,
C C C C C C C C

and thus
Ei + Ey = 2\/E,F,

For instance, for the LHC pp collider it is F=F,=6.5 TeV and the energy in the center of mass is
E} + FE5=2x6.5=13 TeV. For the p/ e* HERA collider, which was in operation until 2007, with £,=920
GeV and F,=27.5 GeV itis F} + F5=318 GeV. Case b): i = 0 and F, = mg¢” (see Fig. 28).

ISI o——
Fig. 28. Particle hitting a second particle at rest in the laboratory frame S.

2 2 — -
5 = 5 — Pl — P2 — 2p1 - Do

(E1+E)° Ef By BB, E E} _EE
3 =t g2t = g2
C C C C C C C

El +E2 \/ E2—|—2E1 \/E2 mo QC +2E1) ~ \/2E1E2
For example, with F5 = 0.938 GeV (proton rest mass) to get in the CM an energy of 318 GeV must be
E, =54 TeV.

From this example we see the advantage of collider experiments with respect to fixed target ones in terms
of available energy.

17 THE RELATIVISTIC HAMILTONIAN OF A PARTICLE IN A EM FIELD

Let us consider a physical system in the presence of generalized forces which can be derived from a
function U = U(g,, ¢;) (generalized potential).

It is possible to associate to such system a lagrangian function £ = T' — U, T being the kinetic energy.
The dynamics of the system is described by the Lagrange equations

afocy or
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The coordinates (g;, ¢;) may be just the components of (7, ?j), but it can be convenient or even necessary
to use other variables.

The generalized forces are related to the function U by [7]

dq; oUu doUu
F, = Ay =
"2 ara[ aqﬁdtaq'j

which if the coordinates (7, 7) are used (q; /Or,=0;,) gives
d

dov g —VU + —-V,U

F,=— -
@ (VU)o + dt dv,, dt

Very often physics problems are described by using the Lagrange or the Hamilton formalism. It is
therefore useful to derive the relativistic lagrangian function for a particle in an EM field.

The Hamilton principle says that between all patterns connecting the point (g; 1,¢; 1;t;) to the point
(¢i.2, 4 2: t2) the system will actually follow that one for which the integral (action)

to
S = dtL(q;, 4s; t)
t
has a minimum or a maximum. This principle specifies the dynamics as well as the Lagrange equations
do. First we find the lagrangian function for a free particle, L., by asking the action to be a Lorentz
invariant.

We rewrite the action by using the proper time dr = dt /7

(2

T2
S = dt/*“free :/ deyﬁfree
71
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In order to be 7Lt an invariant £ ;... must be proportional to 1/+ so that the dependence on -y disap-
pears from the integral.

Let us write than L., = /7. For a free particle the Lagrange equation becomes

i a‘Cfree _
dt  ov
Inserting our expression for L ¢,... we have
d 0« 1d

—_— e — o — — = O
dt Ov ~y o2 dt e

which reduces to the Newton law d(mgyv)/dt = 0 if we set @ = —mgc’. Therefore the relativistic

lagrangian function of the free particle is

2
ne

v

£f?”ee -

Now let us compute the lagrangian function related to the EM fields. The Lorentz force is
F=qE+qixB
The EM fields in terms of scalar and vector potentials are (MKSA units)

—

B=VxA E=_-Vd_- =
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Thus the Lorentz force can be written as

ﬁ—q(—qu—%?Jrﬁxva)

We use the identity
V(@ -b)=(a-V)b+(b-V)d+adx (Vxb)+bx(Vxa)
for transforming the term 7 X V x A
TxVxA=V(A-0) - (7-V)A
Thus the Lorentz force is
0A -

F=qV(~®+ A7) —a5 —a(V-V)A=gV(-0+

N
=
|
T

We recognize that the generalized potential is U = q® — q[f - U. Indeed

d d o dA
el —— b —gA 7)) = —g-
g VeV = g Vele® —gd - 0) = —a

because the EM potentials do not depend upon the particle velocity.

In conclusion, the Lorentz force for a particle in an EM field may be written in terms of a generalized

potential U as

d
—VU + =V, U

F
dt

with .
Uzq((I)—A-ﬁ’)

and the particle lagrangian related to the EM field is
Ly =-U= —q<I>—|—q/_f-17

The total lagrangian is obtained adding the lagrangian of the free particle

2

L= _° —q<I>+qff-17 (23)

The hamiltonian function is related to the lagrangian function by

Mg P) =) Pig;— L (24)
with
oL
b= —— =pi + 44,
3%‘

The hamiltonian must be a function of ¢; and P; and therefore we must express ¢; (or v;) in terms of FP;.
From
pi = P, — q4,

and the relationship between momentum and energy

22 2 2 2.2 4 2 4
c’p"=F —Ejy=myy'c —mge
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we get

-,

moy’c® —mge® =p* = (P — qA) - (P — gA)

and therefore R .,
P P—qA

=c
Mo \/mgc2 + (]3 — q/T)Q

Inserting this expression in Eqgs. (23) and (24) we finally find the hamiltonian function

U=

H(g;, P) = ZH‘% - L= C\/(l3 — qA)? + mic® + q®

18 Some relationships

1 v 1
1= (v/c) 7
— 2 2
. . moyu v p
m =My D ="7myv = (7> = 5 5
1— (v/c)? ¢ (mge)” +p
E 2
E =mé LBy = m062 — = mo’ycz =y
EO mgc
T = E — Ey = mgyc® — myc® = moc2('y -1)
2 4 2 4
mgpcC mopc

B2 = (T + Ey)? = m¥c* = m2y2ct =

1—(v/e)  1—p*/(mic +p?)
mgc4

= 22(
moc

mgc2 + p2) = m%c4 + (32])2

E
cp = cymgu = Ecmov = cmov = BFE cp~FE for B—1

0 mopc

2

A table of relationships between 3, v, momentum and relativistic energy, together with their relative
variations, may be found in [8].
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