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ABSTRACT

We present a proposal for a cold copper distributed coupling accelerator
that can provide a rapid route to precision Higgs physics with a compact 8 km
footprint. This proposal is based on recent advances that increase the efficiency
and operating gradient of a normal conducting accelerator. This technology also
provides an e+e− collider path to physics at multi-TeV energies. In this article,
we describe our vision for this technology and the near-term R&D program
needed to pursue it.
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1 Introduction

A top priority for the global particle physics community is to carry out precision studies
of the Higgs boson using an e+e− collider. In this article, we present a new proposal
for such a collider based on recent advances in the technology of cold copper distributed
coupling accelerators. Distributed coupling is a novel form of power distribution in the RF
accelerator that allows for increased accelerator performance and better optimization. Cold
copper refers to the operation of the accelerator at cryogenic temperatures to increase RF
efficiency and the achievable accelerating gradient. These new technologies are described
by the acronym C3 , or “Cool Copper Collider” [1, 2]. Specifically, we propose a C3 linear
collider on an 8 km footprint. This collider can reach 250 GeV in the center of mass energy
(CM) using innovative technologies, with the possibility of a relatively inexpensive upgrade
to 550 GeV on the same footprint. This will achieve the goals of precision Higgs boson and
top quark measurements and it will at the same time provide a basis for the extension of
e+e− physics into the multi-TeV energy range.

A facility of this type is urgently needed by the particle physics community. The urgency
grows out of the great success of particle physics over the past 30 years which, paradoxi-
cally, has led to increasing uncertainty about its future. We began this period with tentative
theories for the strong and weak sub-nuclear interactions. These theories were mathemati-
cally elegant, based on Yang-Mills gauge theories, but stood on an uncertain experimental
footing. Since 1989, we have confirmed the predictions of these theories for the basic force
carriers W and Z to the parts-per-mil level. We have discovered the missing particles pre-
dicted by this theory — the top quark and the Higgs boson – and we have shown that their
properties fit the theoretical predictions. We have stress-tested the Cabibbo-Kobayashi-
Maskawa model of flavor mixing and CP violation and shown that so far it explains all
experimental observations. Finally, at the Large Hadron Collider (LHC), we have observed
complex reactions involving the strong and the weak interactions and shown that the results
match the theoretical predictions in all of their subtlety. We can now confidently claim that
the “Standard Model” of particle physics (SM) is established.

At the same time, we are more and more strongly persuaded that this SM is incomplete.
It cannot account for the most obvious properties of the universe at large — the existence
of the dark matter and dark energy that make up 95% of the mass of the universe and the
large excess of matter over antimatter. But even more troubling is the fact that the SM is
simply unable to answer the major questions about its own structure: Why do its coupling
constants take the values that are observed? Why are the masses of the quarks and leptons
so different, and what physics leads to the observed pattern? Why does the Higgs field have
a non-zero value in space, without which there would be no mass spectrum for the other
elementary particles? It is now common to describe the SM as an “effective” theory that
should be derived from some more fundamental theory at higher energies. But we have
almost no evidence on the properties of that theory.

Our successes have become a liability in reaching this goal. Scientists from other fields
now have the impression that particle physics is a finished subject. They question our
motivations to go on to explore still higher energies. This skepticism confronts the reality
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that the next collider, whatever its technology, will be an expensive scientific instrument.
The scale of an energy frontier collider is also challenging to the young people in our field.
They need to see qualitatively new capabilities realized during their active scientific careers.
But it will require a concerted effort to design and construct the next collider within 15
years from now. That is where the urgency lies.

To address this situation, our community needs to put forward an ambitious program
to discover the now-unknown fundamental interactions that underlie the SM. The commu-
nity [3, 4] is converging globally on a program with two essential elements:

1. Construction of an e+e− Higgs factory: Among all of the SM particles, the Higgs
boson is the most central, the most tightly connected to the mysteries of the model
and, at the same time, the particle least well studied. With a next-generation e+e−

collider, it will be possible to measure the properties of the Higgs boson to the 1%
level and below, a level that allows the discovery of effects from models beyond the
SM. Several alternative technologies allow the construction of an e+e− Higgs factory
within 15 years, but this also requires a willing national host and a strong push from
our global community.

2. Development of multiple routes to an affordable multi-TeV collider: The first expec-
tation for the energy scale of the new fundamental forces was the 1 TeV scale of
Higgs boson physics. From the LHC experiments, we now see that (barring some
special scenarios) this physics is most likely to appear at a higher energy scale. On
the other hand, that scale cannot be orders of magnitude higher than 1 TeV if we
expect to have a physics explanation for the Higgs field and its vacuum value. Reach-
ing parton-parton CM energies of order 10 TeV should be the next goal. This goal is
not realizable with any current technology. Cost and power consumption are major
issues. We need to study as many feasible routes as possible, so that at least one route
can succeed.

For the first of these elements, the leading candidate now is the International Linear
Collider (ILC) in Japan [5]. The technical design is virtually complete, and the technology is
mature. Still, there remains the question of whether Japan will offer to host this project. On
a longer time line, the Future Circular Collider (FCC) electron-positron stage may provide
a solution [6]. But this depends on funding the needed 100 km tunnel, which costs as
much as the LHC and brings no physics capability in itself. The Circular Electron-Positron
Collider (CEPC) in China may provide another possible solution [7, 8]. As opposed to
linear machines, circular colliders are strongly limited by synchrotron radiation above 350–
400 GeV center of mass energy.

For the second of these elements, ideas are being pursued based on proton-proton col-
liders with high-field magnets [9], muon colliders [10, 11], and plasma-wakefield electron
accelerators [12, 13]. The proton-proton route now seems feasible but with a very high cost;
the other routes have technical barriers to overcome. These very high energy options will
require significant time and R&D to realize.

2



The development of cold copper distributed coupling accelerating cavities can provide an
alternative route to achieve both steps in this program. Our optimism about the capabilities
of optimized copper accelerating cavities is based on new design ideas detailed in [1, 2].
The most important problem for operation of a normal-conducting cavity at high fields
is electrical breakdown. Cavities optimized for efficiency, high accelerating gradient and
low breakdown have small irises that prevent power flow at the fundamental frequency.
Individual feeds to each cavity from a common RF manifold, all in the same copper block,
solve this problem. Modern numerically controlled manufacturing techniques can build
appropriate manifolds and individual cavity feeds in an extremely cost-effective way. We
have also discovered that operation of these cavities at 80◦K increases their material strength
and conductivity, giving marked improvements in performance. These two innovations
lead to the C3 concept, a new elevated baseline for normal-conducting electron
accelerators.

Although there is no engineered and costed design for a 250 GeV e+e− C3 yet, this
proposal is based on the SLC experience at SLAC and the extensive design work for ILC
and CLIC. C3 adds significant capabilities that allow robust designs with an accelerating
gradient of 120 MeV/m.

This linac technology could be extended up to a 3 TeV collider by some combination
of raising the gradient and extending the machine. The primary challenges for the linac in
the multi-TeV range are the cost and required power. These can be mitigated by highly
efficient, low-cost RF power sources that are now being developed. Additionally, beyond
1 TeV beam-beam interactions increase the challenges associated with the beam delivery
system and final focus. Beyond 3 TeV we enter terra incognita. Here futuristic concepts
such as muon colliders [10, 11] or plasma wakefield accelerators [12, 13] may be required.
However, we believe that the C3 concept, augmented with additional new ideas, can also
provide a route to these high energies. We will discuss this issue in Sections 5.2 and 5.3.

R&D on the C3 concept is already being pursued at SLAC, UCLA, INFN, LANL and
Radiabeam, along with closely related research in high gradient RF acceleration with CERN,
KEK, PSI, MIT, and many other partners in the high gradient research community [14].
There is direct synergy with the development of compact electron accelerators for medical
applications [15, 16, 17, 18] and the creation of compact X-ray free electron lasers [19, 20]
(FELs). This technology will be further developed, and it is expected to meet many of
its initial goals within the Snowmass and P5 timelines, using our current resources. The
development of accelerators at the 100 GeV scale and higher will require dedicated resources
from HEP.

A C3 e+e− collider could in principle be sited anywhere in the world. If the ILC goes
forward in Japan, an energy upgrade using C3 accelerators could be built, re-using the ILC
damping rings, tunnel, and other conventional facilities. However, it is important to note
that the entire C3 program could be sited in the United States. With the cancellation
of the Superconducting Super Collider and the end of Tevatron operations the US has
largely abandoned construction of domestic accelerators at the energy frontier. C3 offers
the opportunity to realize an affordable energy frontier facility in the US. This may be
crucial to realize a Higgs factory in the near term, and it will also position the US to lead
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the drive to the next, higher energy stage of exploration.

The structure of this paper is the following: In Section 2, we will sketch out a staged
physics program leading to an e+e− collider for Higgs boson studies at 250 and 550 GeV.
Section 3 will present the near-term R&D program for this collider, including work that is
already being pursued and a proposal for a C3 demonstration facility reaching energies of
a few GeV. Section 4 will describe the design of the 550 GeV collider, explain the logic of
the staged upgrade path, and present a cost model. Section 5 will discuss how to extend
this technology to multi-TeV energies, explaining the issues that must be solved and some
possible pathways toward their solution. Section 6 gives our conclusions.

2 Steps to a C3 Higgs factory

We describe a roadmap for C3 to study the properties of the Higgs boson and improve
other precision probes of the SM, and, eventually, to achieve energies that will allow the
discovery and study of new particles beyond the reach of the LHC. In this section, we
will describe the evolution of a C3 accelerator to its 550 GeV stage, which would achieve
high-precision measurements of the couplings of the Higgs boson and the top quark. The
timeline that we propose for achieving this goal is shown in Table 1.

2019-2024 2025-2034 2035-2044 2045-2054 2055-2064

Accelerator

Demo proposal
Demo test
CDR preparation
TDR preparation
Industrialization
TDR review
Construction
Commissioning
2 ab−1 @ 250 GeV
RF Upgrade
4 ab−1 @ 550 GeV
Multi-TeV Upg.

Detector

LOIs
TDR
Construction
Commissioning

Table 1: Timeline and Milestones for the proposed C3 development

The planned High Luminosity era of the LHC (HL-LHC), starting in 2027∗, will extend
the LHC dataset by a factor 10, and produce about 170 ×106 Higgs bosons and 120,000

∗This refers to the updated schedule presented in June 2021 [21], as the LHC schedule is evolving, the
starting date of HL-LHC could change.
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Higgs boson pairs. This will allow an increase in the precision for most of the Higgs boson
couplings measurements [22]. HL-LHC will dramatically expand the physics reach for Higgs
physics. Current projections are based on the Run 2 results and some basic assumptions
that systematic uncertainties will scale with luminosity and that improved reconstruction
and analysis techniques will be able to mitigate pileup effects. Studies based on the 3000
fb−1 HL-LHC dataset estimate that we could achieve 2-4% precision on the couplings to W ,
Z and third generation fermions. But the couplings to first and second generation fermions
will still largely not be accessible and the self-coupling will only be probed with O(50%)
precision.

There are good reasons to measure the Higgs boson properties at higher precision than
will be possible at the HL-LHC. With the basic Higgs mechanism for mass generation
now demonstrated, the next task for Higgs studies is to search for the influence of new
interactions that can explain why the Higgs field has the properties required in the SM. If
the new particles associated with these interactions are too heavy to be produced at the
HL-LHC, they can still make an imprint on the pattern of Higgs boson couplings. If we
wish to prove the existence of these effects and to understand their pattern, we will need
a very precise understanding of the Higgs boson properties, with measurements of 1% or
better. Through global analyses, such high precision measurements can also improve the
interpretation of LHC data and lead to a stronger comprehensive map of where new physics
might lie.

An e+e− Higgs factory has a distinctive duty to gain insight on the Higgs Yukawa
couplings at the next level beyond the third generation fermions. In the SM, the Higgs
Yukawa couplings are exactly proportional to mass. This simplistic picture deserves close
scrutiny. Tagging of charm and strange quarks, as previously demonstrated at SLC/LEP,
gives effective probes for advancing this program. There is a broader program to investigate
the potential deeper connection of Higgs boson with flavor and CP violation. The cleaner
e+e− environment aided by beam polarization could become a sensitive probe to reveal
more subtle phenomena.

Studies for the four current e+e− Higgs factory proposals—ILC, CEPC, CLIC, and
FCC-ee—demonstrate that experiments at these facilities can meet and even exceed these
requirements for high precision. Actually, despite their different strategies, the four pro-
posals lead to very similar projected uncertainties on the Higgs boson couplings [23]. The
improvement in the precision of Higgs boson couplings expected from the ILC in comparison
to the HL-LHC is shown in Table 2. C3 follows a program very similar to that proposed
for the ILC. We thus expect similar results, subject to considerations described below, for
similar integrated luminosities and detector capabilities. C3 is expected to be less expensive
for reaching the energy of 500-600 GeV. But its key point is that it provides a more secure
basis for extension to higher energies.

Although most of the gain in precision in Higgs boson couplings will be realized already
at the 250 GeV stage, there are important reasons to continue the e+e− program to an
energy of 500—600 GeV. First, this energy is above the crossover point at which the WW
fusion reaction e+e− → ννh overtakes the e+e− → Zh reaction and becomes the dominant
mode of Higgs boson production. This means that, in the 550 GeV data, the Higgs boson
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is mainly produced by a different mechanism with different sources of systematic errors. A
deviation from the SM predictions observed at 250 GeV can be cross-checked in this new
dataset. The σ · BR for WW fusion to h with decay to WW ∗ depends quartically on the
Higgs-W couplings and thus is a very powerful addition to the dataset. Second, this energy
is needed to give a substantial cross section for the process e+e− → Zhh, which allows
us to measure the Higgs self-coupling.The expected 20% error on the Higgs self-coupling
will allow us to exclude or demonstrate at 5 σ the large enhancements to the self-coupling
typically needed in models of electroweak baryogenesis [24]. Third, this energy choice is
well above the threshold for e+e− → tt, far enough that top quark pairs are produced
with relativistic velocities. A short run (200 fb−1, about 6 months) at 350 GeV suffices
to measure the short-distance top quark mass to a precision of better than 40 MeV. After
this, a long run at 500-600 GeV would allow unambiguous separation of the effects of the
various top quark electroweak form factors and measurement of these to the parts-per-mil
level [25].

While the CM energy of 250 GeV is very specifically called for as the peak of the e+e− →
Zh cross section, the optimal energy for the full machine is less precisely determined. As
explained above, the second stage of the C3 should reach a high enough energy that the Higgs
processes of WW fusion, e+e− → ννh, and double Higgs bosons production e+e− → Zhh
have substantial cross sections and that top quarks should be produced through the process
e+e− → tt at relativistic velocities. At 500-600 GeV, it is also important to be far enough
above the threshold for e+e− → tth to provide sufficient statistics for the measurement
of the top quark Yukawa coupling. The statistical error on this measurement decreases
by a factor 2 when one chooses 550 GeV rather than 500 GeV as the CM energy [25].
In principle, higher energy gives more of an advantage, but this must be balanced against
increased cost and footprint. For the purpose of this paper, we have set the design energy of
C3 at 550 GeV. A crucial difference between models in which the Higgs boson is elementary
and those in which the Higgs are composite is that, in the latter class, the top quark is
also partially composite, with modified W and Z couplings. The 550 GeV measurements
have great power to test for this property. Moreover, at 550 GeV, an e+e− collider is as
powerful as HL-LHC in searches for Z ′ bosons and light quark and lepton compositeness
and provides a complementary set of tests [26].

Two differences between the C3 and ILC accelerator designs should be noted. First, our
C3 proposal assumes a conventional positron source with zero polarization, as opposed to
30% for ILC. There is almost no difference between the two cases in the expected precision
in Higgs boson couplings for a given luminosity [27]. Positron polarization does allow
the collection of additional datasets that may be useful in controlling systematic errors.
C3 is compatible with the addition of a polarized positron source as an upgrade. For
energies well above 500 GeV, the enhanced cross section for e−Le

+
R collisions makes this

advantageous. Second, the time structure of the electron and positron bunch trains is
different, with C3 having a bunch spacing of 3-5 ns as opposed to the ILC bunch spacing
of 366 ns. While detailed simulation studies are required to fully assess the effects of the
backgrounds in the detector, the existing ILC detector designs, SiD and ILD, would adapt
well to C3 . In particular, a dedicated optimization of the vertex detector design could
absorb the different time structure without compromising the physics goals. Thus, we expect
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Collider HL-LHC C3 /ILC 250 GeV C3 /ILC 500 GeV
Luminosity 3 ab−1 in 10 yrs 2 ab−1 in 10 yrs + 4 ab−1 in 10 yrs
Polarization - Pe+ = 30% (0%) Pe+ = 30% (0%)

gHZZ (%) 3.2 0.38 (0.40) 0.20 (0.21)
gHWW (%) 2.9 0.38 (0.40) 0.20 (0.20)
gHbb (%) 4.9 0.80 (0.85) 0.43 (0.44)
gHcc (%) - 1.8 (1.8) 1.1 (1.1)
gHgg (%) 2.3 1.6 (1.7) 0.92 (0.93)
gHττ (%) 3.1 0.95 (1.0) 0.64 (0.65)
gHµµ (%) 3.1 4.0 (4.0) 3.8 (3.8)
gHγγ (%) 3.3 1.1 (1.1) 0.97 (0.97)
gHZγ (%) 11. 8.9 (8.9) 6.5 (6.8)
gHtt (%) 3.5 – 3.0 (3.0)∗

gHHH (%) 50 49 (49) 22 (22)
ΓH (%) 5 1.3 (1.4) 0.70 (0.70)

Table 2: Precision on the Higgs boson couplings from SMEFT analysis (assuming flavor universality
and no exotic decay modes) expected from HL-LHC and ILC/C3 [22, 24, 26]. All numbers are in %
and indicate 68% C.L. probability to deviations in the different effective Higgs couplings. The e+e−

250 results include some LHC measurements, and the e+e− 500 results include the e+e− 250 data.
The projections in the last column are computed for 500 GeV, following [26], except that for gHtt

(marked with ∗) the result given is for 550 GeV. Additional comparisons under different assumptions
can be found in [23].

that the projected precision given in Table 2 for ILC will also apply to C3 at 250 GeV. It
should be emphasized that the demands that the program of precision measurements places
on systematic errors in tracking, heavy-quark tagging, jet energy measurement, and beam
polarization measurement are very challenging for both machines.

While the acceleration technology of C3 is well grounded, there are many technical as-
pects such as alignment and refrigeration flow that require a string test of at least three
cryomodules, although simultaneous RF powering is not required. This requires a demon-
stration facility for the C3 technology. Still, we foresee that the 250 GeV C3 can begin
operation close to or even before the end of data-taking at the HL-LHC as shown in Ta-
ble 1. One should note that the luminosity of an optimized linear collider increases roughly
proportional to the CM energy; thus, our timeline includes successively larger luminosity
samples in equal intervals of time.

The R&D program to demonstrate the C3 technology is described in Sec. 3. The goal
of this program is a “string test” of three cryomodules. In each of the 9 m cryomodules,
4 linac rafts (populated with two 1 m accelerating structures), two tunable cryogenic per-
manent quadrupoles and beam position monitors will be installed. The cryomodules will
demonstrate the full C3 gradient of 120 MeV/m to accelerate an electron beam by 1 GeV
per cryomodule. We believe this is the minimum required demonstration to propose the full
accelerator. We expect that the optimization of the cavity shape and the implementation
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of higher order mode suppression can be understood in the next three years, even before
the construction of a demonstration facility. The string test will then provide a verifica-
tion of this program and a test of the stability of the system in continuous operation. The
demonstration accelerator may be directly useful for a driver of an X-ray free electron lasers,
and, certainly, 5–10 GeV accelerators built with this technology will provide a new class of
compact X-ray sources.

With the technology demonstration achieved, we will be ready to construct the accel-
erator that will be capable of reaching 500–600 GeV when powered to 120 MeV/m. The
other elements needed for a linear collider—the sources, damping rings, and beam delivery
system—already have mature designs created for the ILC and CLIC. Presently, our baseline
uses these directly, however we will look for further cost optimizations for the specific needs
of the C3 . In Table 3 we make a direct comparison between the existing linear collider
designs and C3 .

Collider NLC[28] CLIC[29] ILC[5] C3 C3

CM Energy [GeV] 500 380 250 (500) 250 550
σz [µm] 150 70 300 100 100
βx [mm] 10 8.0 8.0 12 12
βy [mm] 0.2 0.1 0.41 0.12 0.12

εx [nm-rad] 4000 900 500 900 900
εy [nm-rad] 110 20 35 20 20

Num. Bunches per Train 90 352 1312 133 75
Train Rep. Rate [Hz] 180 50 5 120 120
Bunch Spacing [ns] 1.4 0.5 369 5.26 3.5
Bunch Charge [nC] 1.36 0.83 3.2 1 1
Beam Power [MW] 5.5 2.8 2.63 2 2.45

Crossing Angle [rad] 0.020 0.0165 0.014 0.014 0.014
Crab Angle 0.020/2 0.0165/2 0.014/2 0.014/2 0.014/2

Luminosity [x1034] 0.6 1.5 1.35 1.3 2.4
(w/ IP dil.) (max is 4)

Gradient [MeV/m] 37 72 31.5 70 120
Effective Gradient [MeV/m] 29 57 21 63 108
Shunt Impedance [MΩ/m] 98 95 300 300

Effective Shunt Impedance [MΩ/m] 50 39 300 300
Site Power [MW] 121 168 125 ∼150 ∼175

Length [km] 23.8 11.4 20.5 (31) 8 8
L* [m] 2 6 4.1 4.3 4.3

Table 3: Beam parameters for various linear collider designs. Final focus parameters for C3 are
preliminary.

We believe that the most effective way to stage C3 is to construct the complete set of
cryomodules for 550 GeV together with an RF system that will produce an initial gradient
of 70 MeV/m. The level of RF power required is very close to that already available
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with modulators and klystrons that can be ordered from industry. Since the RF system is
the primary cost driver for the Main Linac, this substantially lowers the cost of reaching
250 GeV. In parallel with the design of the 250 GeV accelerator, we will pursue R&D
dedicated to dramatically lowering the cost of RF power and transferring these innovations
to industry. Then, when the 250 GeV machine is complete, we will be in a good position
to purchase the additional RF needed for the upgrade to 550 GeV.

It may be possible to do physics at an intermediate stage in the construction at the Z
pole, 91 GeV. We do not consider this a part of our baseline, but we mention the possibility
in case there is community interest. There is low-hanging fruit here. With a luminosity
of 1 × 1033cm−2s−1, one-tenth of the 250 GeV design luminosity, a 2-year program would
produce 1 billion polarized Z bosons, enough to increase the precision on sin2 θw and the
polarization asymmetries Ac and Ab by more than an order of magnitude over the results
of LEP and SLC.

This then describes the physics program for C3 shown in Table 1. Before 2040, and
possibly coincident with the end of the HL-LHC run, the era of precision Higgs boson
measurements would begin. After 10 years of data-taking to achieve 2 ab−1, half a million
tagged Higgs bosons, the accelerator would turn on at the design energy of 550 GeV. Here it
would acquire 4 ab−1, giving an new, independent, dataset on the Higgs boson and a novel
dataset on top quark production and decay. Both the Higgs program and the top quark
program will reach levels of precision at which one could realistically prove the presence of
deviations from the SM. C3 will also provide the first step toward realizing an accelerator
at which the new particles responsible for those deviations could be produced and explored
in detail.

3 Current and near-future R&D on C3 acceleration

The required development towards a 550 GeV C3 is modest: The basic technology is
extremely well demonstrated; the fundamentals of low emittance beams were established
by SLC in the 1990’s; and complete designs have been worked out for NLC, JLC and the
ILC. Additional improvements for copper accelerators are based on high gradient research
efforts and developments for CLIC and for low energy accelerator applications.

Very recently, there have been two key technological advances that have overcome previ-
ous limitations of this technology in reaching high field and low rates of electrical breakdown.
In this section, we will describe these advances and the path from our present understanding
to a full machine proposal. We will first discuss the questions that are being addressed now
in the C3 R&D program. A complete machine design will require the successful operation
of a C3 demonstration facility. We will describe the needed facility and its goals, and we
will estimate the time scale and cost needed.
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Vacuum Space for Distributed Coupling Linac
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Figure 1: (top) Vacuum space for a one meter long 40-cell C-band accelerating structure operating
in the π mode. (bottom) The magnitude of the electric and magnetic field in each cavity. Cavity
geometries were optimized to limit the electric and magnetic fields strengths. The peak surface
electric field to accelerating gradient ratio is 2.22. The perturbation to the magnetic field from the
RF coupler increases the peak magnetic field by 1.2.

3.1 New design ideas for normal conducting accelerators

The C3 structure grew from a study of the fundamental limitations of high accelerating
gradients and breakdown in normal conductors. Major improvements in fields and break-
down rates are possible with an optimized cavity shape that limits peak surface electric and
magnetic fields, but with the seemingly problematic feature of an iris too small to propa-
gate the fundamental RF mode. This led to the idea of an easily fabricated RF manifold
and distributed coupling machined from the same blocks of metal as the accelerator. The
distributed coupling powers the cavities at the correct phase and with equal fractions of RF
power. Developing this idea led to the two major advances:

1. RF power can be distributed to the cells of a copper accelerator individually through a
distributed coupling waveguide. With optimized cavity geometries, this scheme allows
us to efficiently power the cells while maintaining strict limits on peak surface electric
and magnetic fields. A diagram of the structure’s vacuum space is shown in Fig. 1.
The structure can be mass-produced efficiently with currently used techniques.

2. Operating a copper structure at cryogenic temperatures allows us to further reduce
RF power requirements while increasing the achievable beam loading and accelerating
gradient, through a combination of increased material strength and reduced strain.
A key parameter, the surface resistance, is shown as a function of temperature in
Fig. 2. Almost all of the improvement is achieved by operation at liquid nitrogen
temperature, 77◦K.
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Figure 2: Surface resistance of copper as a function of temperature including the anomalous skin
effect. The reduction for surface resistance at 77K and 5.712 GHz (C-band) is a factor 2.55 compared
to 300 K. [30, 31]

The result of these two advances is a reduction in the required RF power to establish
the gradient by greater than a factor of six compared to other normal conducting acceler-
ators with similar beam aperture, see Table 3. The RF to beam power efficiency increases
significantly to 45% and plays an important role in the feasibility of extending C3 to the
multi-TeV scale. The achievable accelerating gradient also increases. The full collider de-
sign we propose here has a gradient of 120 MeV/m, but this number is not limited by the
accelerator technology, but rather by an overall optimization with the cost of RF power. As
we will discuss in Sec. 5, engineering improvements here can provide a path to much higher
energies.

RF accelerators can operate over a wide range of frequencies. Most RF accelerators
developed for a linear collider operate between 1-12 GHz. A detailed study of cavity geom-
etry for 1 nC bunches shows that C-band (5.712 GHz) is the optimal frequency to realize
C3 . The principal trade-offs are a reduced structure efficiency at lower frequency, but
better beam dynamics for the 1 nC electron bunch train. C-band allows us to maintain a
highly efficient structure, high gradient operation and excellent beam dynamics with proper
damping and detuning of the cavities.

C3 utilizes split-block fabrication to produce ∼1 meter structures with all cavities ma-
chined out of two or four copper slabs. The cavities are machined with modern CNC
methods and the cavity surfaces require no post CNC machining, greatly reducing the
production cost. Bonding of the two halves is needed, but the bonding is parallel to the
direction of current flow and has an extremely small impact on the RF performance of
the accelerating mode. Higher-order mode detuning can be incorporated by adjusting the
cavity geometry of each cell during fabrication. This is already a standard procedure. Slot
damping with lossy materials will suppress long range wakefields further.
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These two ideas are the basis for a new, highly efficient generation of copper RF accel-
erators. We now turn to the question of how these features can be demonstrated to give a
firm foundation for the C3 design.

3.2 Optimization of the RF accelerating structure

The final accelerator structure for C3 including wakefield damping and detuning will be
fabricated and tested in the first year of the demonstration facility described in the next
section. This meter scale structure will integrate all of the advanced concepts and meet all
of the technical requirements for C3 , including operation at high gradient. However, many
of these key concepts and design elements have already been demonstrated using current
laboratory facilities, and we continue to advance the state of the art to increase the technical
readiness of C3 .

High gradient operation of a distributed coupling accelerator at normal and cryogenic
temperatures has already been demonstrated (including acceleration of beam) in multiple
single and multi-cell structures [1, 2, 32, 33]. High gradient operation with low breakdown
rate has been demonstrated at C-band [34]. A one-meter C3 prototype was fabricated
using the desired split-block technique and passed low power RF tests at cryogenic tem-
peratures [35]. Slot damping features were incorporated into a prototype structure without
reducing RF performance. Cryogenic RF properties were measured at C-band, demon-
strating a reduction of a factor of more than 2.5 in RF surface resistance [36]. RF designs
for cavity detuning and cavity damping to meet the requirements for a multi-TeV collider
have been developed. Additional structures are now being produced and tested. Since test-
ing does not necessarily require cryogenic operation, we expect that the structures can be
quickly optimized.

Distributed coupling also allows one to optimize the phase advance between cells while
adjusting for the cavity length. For the beam aperture in our design, a cavity phase advance
of 135◦ is optimal and increases the shunt impedance (133 MΩ/m) by nearly 10% over the
π-mode (120 MΩ/m). The structure design assumed in this paper is a π-mode accelerator
with a factor 2.5 improvement in shunt impedance at 77◦K, as was measured in our proto-
type. However, we will continue to improve this design up through the initial phase of the
demonstration facility, in so far as it does not impact the cryomodule design. This approach
provides a 300 MΩ/m shunt impedance for its planned mode of operation (beam aperture
radius 2.62 mm). For comparison, NLC structures operated with a shunt impedance of up
to 98 MΩ/m for the periodic cells (with a standing wave equivalent shunt impedance of
50 MΩ/m) [28], albeit with a larger aperture (beam aperture radius 3.75 mm). CLIC struc-
tures currently under consideration operate with a shunt impedance of 95.4 MΩ/m (with
a standing wave equivalent shunt impedance of 39 MΩ/m) and a beam aperture radius
3.15-2.35 mm [29].

Combining all of these advances into a single mass-producible accelerating structure
remains a high priority that must be completed early in the demonstration facility phase of
the program. We plan that the complete damped and detuned accelerating structure design
will be fabricated in the first year of the demonstration facility, allowing for engineering
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refinements of the structure. The accelerating structure can be fully tested outside of
the cryomodule, allowing for multiple iterations during the operation of the demonstration
facility if these are needed.

3.3 A C3 demonstration facility

To complete the TDR for the accelerator that we describe here, we will need a full demon-
stration of the C3 Main Linac technology on the GeV scale. This demonstration can be done
in parallel with the preparation of the TDR. The outstanding technical achievements of the
ILC, CLIC and NLC collaborations are central to the rapid realization of the C3 proposal.
Many of the subsystems for the accelerator complex are interchangeable between linear col-
lider concepts with manageable modifications to account for variations in pulse format and
beam energy. Because these subsystems are already mature, the C3 demonstration facility
can focus on the specific set of technical milestones associated with the C3 concept itself:

• Development of a fully engineered and operational cryomodule including linac sup-
ports, alignment, magnets, BPMs, RF/electrical feedthroughs, liquid and gaseous
nitrogen flow, and safety features.

• Operation of the cryomodule under the full thermal load of the Main Linac and max-
imum liquid nitrogen flow velocity over the accelerators in the cryomodule, demon-
strating an acceptable level of vibrations.

• Operation with a multi-bunch photo-injector to induce wake fields, using 8 high charge
bunches and a tunable-delay witness bunch.

• Achievement of 120 MeV/m accelerating gradient in single bunch mode for an energy
gain of 1 GeV in a single cryomodule, including tests at higher gradients to establish
breakdown rates.

• Acceleration and wakefield effect measurements with a fully damped-detuned struc-
ture.

• Development, in partnership with industry, of the baseline C-band RF source unit
that will be installed with the Main Linac. The RF source unit will be modified from
existing industrial product lines.

A dedicated demonstration facility can complete these milestones within 5 years. This
short timeline is possible because the footprint of the facility is small and can utilize ex-
isting accelerator infrastructure. It can leverage existing DOE test facilities (e.g., SLAC’s
End Station B). It would require only 18 commercially-available 50 MW RF sources to
achieve the full string test, as described below. Though we anticipate building additional
modules, it should be possible to finalize the design of the accelerating structure including
demonstrations of accelerating gradient and detuning/damping prior to completion of the
cryomodule.
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We plan for a string test of 3 9-meter cryomodules assembled in series. The 18 RF sources
will suffice to power all three cryomodules at 70 MeV/m, two modules at 120 MeV/m, or
one module at 170 MeV/m. This will provide a variety of tests of the robustness of the
accelerator design. These include a full structure test at the expected gradient for C3 250
and tests of full-power operation at the expected gradient of the C3 550, with a minimum
of three cryomodules. Operating the structures at up to 170 MeV/m could provide the
margin and breakdown statistics needed to confirm a higher gradient of operation for the
energy upgrade to C3 550 (for example, 155 MeV/m) in the exact same footprint as C3 250
or for a multi-TeV extension of the Main Linac. In any configuration, the facility will test
the vibration-tolerance in cryogenic operation. Modification of the RF source for tunnel-
ready mass production can proceed in parallel to the demonstration of the cryomodules.
This five-year timeline is well aligned with the timeline for the preparation of the C3 TDR,
which would be informed by the progress of the demonstration facility for the Main Linac
specifications.

Both the demonstration facility and the full TDR would require an O(100M$) invest-
ment. For the TDR this is based on the effort required to produce the ILC TDR [5].

This demonstration facility could also be utilized to pursue additional technical mile-
stones which could have significant impact on improving the accelerator complex on the
timescale of the TDR. This would include the demonstration of a cryogenic RF photo-
injector capable of producing a polarized electron beam with a brightness sufficient to
eliminate the electron damping ring, and the development of RF pulse compressors which
would simplify cooling requirements (critical for electrical power consumption with expan-
sion of the complex to the multi-TeV scale) and potentially reduce the overall RF source
cost.

After completion of the demonstration milestones for C3 , this facility would continue on
with a high impact R&D program. It would provide opportunities to further advance the
state of the art for C3 upgrades (improvement of RF sources, testing with different bunch
parameters and pulse formats, etc.). The demonstration accelerator would also provide a
source or injector to enable R&D opportunities for other advanced accelerator concepts
(such as gamma-gamma colliders, plasma wakefield acceleration, structure wakefield accel-
eration, etc.). These alternate concepts could also include C3 technology in their eventual
implementation. The facility would also carry out research on related accelerator R&D
(FELs, beam dynamics, extreme bunch compression, etc.), including the possibility of stag-
ing multiple cryomodules to achieve higher energy.

3.4 Development of an ultra-low-emittance e− gun

The significant increase in peak surface fields with cryogenic copper also opens a new
frontier in the development of high brightness polarized electron sources [37]. The achieved
surface fields in cryogenic copper structures are in principal sufficient to produce an asymmetric-
emittance low enough that it would negate the need for the electron damping ring [38]. Early
stage R&D for this cryo-RF electron gun is underway, so that a source of this type could
be utilized for the demonstration facility. If fully realized on this timescale, it could be
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adopted for the baseline TDR C3 proposal.

3.5 Low cost RF source development

As the facility energy increases, RF source cost plays and every larger role. To mitigate
this, we can either make more efficient RF accelerator structures (at least until beam loading
dominates) or reduce the cost of RF sources. Recognizing this need, the DOE General
Accelerator R&D road-map for RF Accelerators calls out a goal of developing concepts
which will be able to reduce the current large-volume unit cost of about $7.5/peak-kW
to $2/peak-kW of RF. Many concepts are being pursued to achieve this goal [39], and
the C3 demonstration facility would be and excellent proving ground for maturing this
technology and integrating it in a compatible way with the overall system’s RF-only energy
upgrade. There would be a 15 year-window from the start of the demonstration facility
construction to the energy upgrade in order to develop these concepts and transition them
to industry.

4 C3 design for 250 and 550 GeV

In this section, we describe the design of the 250 and 550 GeV colliders in detail. The
summary of the Main Linac parameters for C3 is provided Table 4.

4.1 C3 Strategy

Our goal is to deliver the Higgs on the fastest timescale that is practical with an accel-
erator complex capable of pursuing a rich physics program for decades. With this goal in
mind, we envision that the C3 250 Main Linac will be built at a gradient of 70 MeV/m.
This is approximately the optimal gradient for 7.5 $/peak-kW RF. This is almost a factor
of two lower than the gradient required for C3 550 (120 MeV/m). This lower gradient will
provide many benefits:

• Reduction of the peak power required to establish the gradient in the structure. This
allows for increased beam power at lower energy to boost the luminosity. It reduces the
cost of the Main Linac sufficiently to utilize presently available RF source technology.

• Margins in the main linac design for RF power(8%) and gradient (≈ 150 MeV/m,
with additional RF power) in the first phase of operation.

• Margins for high availability operation - additional cryomodules (3%) with complete
RF ready for acceleration of the next train.

• Reduction of commissioning time of the Main Linac. The breakdown rate for the lower
initial gradient has been demonstrated to be exceedingly low. As with most copper
accelerators, the achievable accelerating gradient for a fixed breakdown rate increases
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with operation and conditioning of the accelerator. The 120 MeV/m accelerating
gradient at an acceptable breakdown rate† would be achievable well in advance of the
energy upgrade.

• Opportunity for an energy upgrade to proceed in parallel with data collection during
the initial Higgs run at 250 GeV. This energy upgrade would leave the cryomodules
untouched and would consist only of the addition of RF sources in the Main Linac
tunnel. This would virtually eliminate linac construction down time between the
250 GeV run and operation at higher energy.

• Opportunity for any advances in RF source technology that are achieved during the
timeline of the demonstration facility and construction of the accelerator complex to
be implemented for the second stage, potentially offering a dramatic reduction in the
cost of the energy upgrade.

The main downside of this approach is the added linac length required, which increases
both the tunnel length and the number of cryomodules for C3 250. However, the total length
of the Main Linac is less than 4 km, and this length would be required later in any event
to reach 550 GeV. Because of the relatively low cost of tunnelling and C3 cryomodules
compared to the RF sources presently available, we believe it is preferable to construct
C3 250 at 70 MeV/m, and then add RF power for a future energy upgrade.

For the energy upgrade which will occur in parallel to the 250 GeV CM run additional
RF source power will be installed on the existing operating Main Linac, and additional
magnets will be installed in the beam delivery system (BDS). Additional cryomodules which
can provide energy margin for the 250 GeV CM run will be installed either during the final
phases of construction or during machine down-time during the operation of the accelerator.
The RF power per meter into the structure will increase from 30 MW/m to 80 MW/m during
the upgrade with the addition of RF sources and possibly RF pulse compressors increasing
the gradient from 70 MeV/m to 120 MeV/m. Utilizing the original margin in length and
the additional gradient the new CM energy for C3 will be 550 GeV.

C3 is capable of extending its energy reach with additional Main Linac length into
the multi-TeV range. While the specific energy of these future upgrades will certainly be
informed by the physics of the Higgs program at 250 and 550 GeV, there is no technical
limitation to extending the Main Linac into the multi-TeV range. Operation in a higher
energy range (>550 GeV) would require a longer, re-optimized BDS.

4.2 Main Linac

The Main Linac is constructed from 9 m cryomodules, see Fig. 3, each of which houses
eight 1 m distributed coupling accelerating structures supported on four 2 m girders. The
girders also support permanent magnet quadrupoles, BPMs, coarse and fine alignment
movers, and position sensor fixtures. The cryomodule has four penetrations for RF power,

†3x10−7/pulse/m
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Parameter Unit
Note Baseline Compact

Center of Mass Energy GeV 91 250 550 550

Luminosity x1034 cm−2s−1 0.4 1.3 2.4 2.4
Single Beam Power MW 0.7 2 2.5 2.5

Single Linac Active Length km 0.56 1.83 2.45 1.9
Injection Energy Main Linac GeV 10 10 10 10

Train Rep. Rate Hz 120 120 120 120
Bunch Charge nC 1 1 1 1

Flat-Top RF Pulse Length ns 700 700 260 195
Bunch Spacing Periods (ns) 30 (5.26) 30 (5.26) 20 (3.5) 15 (2.6)

Bunches per Train 133 133 75 75
Average Current µA 16 16 9 9

Peak Current A 0.19 0.19 0.3 0.385
Loaded Accel. Gradient MeV/m 70 70 120 155
RF Power for Structure MW/m 30 30 80 140

Table 4: Main Linac parameters for C3 upgrade path. Luminosity parameters are scaled from
ILC/CLIC documentation using beam power, emittance and bunch charge. Two options, Baseline
and Compact, are listed for C3 550. The Baseline option is the cost optimized operating gradient
for $2/peak-kW RF source cost. The Compact option selects a higher gradient for a 7 km site.

each with two waveguides, each waveguide powering one accelerating structure. The total
cryogenic thermal load for the complex at 250 GeV is 9 MW. This thermal load is removed
through nucleate boiling of liquid nitrogen. Liquid nitrogen flows by gravity through the
cryomodule to replace the Nitrogen that has evaporated. Thus, the Main Linacs must
be horizontal with straight segments of about 1 km. Nitrogen gas is removed from the
Main Linac at penetrations that are spaced at approximately 1 km and transported to a
re-liquification plant before being reintroduced into the Main Linac.

The goal of the demonstration facility will be to test cryomodules of the final design.

Each cryomodule contains 4 rafts; each raft supports two 1 m accelerator sections and
a quadrupole with mechanically integrated Beam Position Monitor. The accelerators and
quads are attached to the raft with 5 d.o.f. ball joint adjustable tie rods, and are aligned
on the bench before insertion into the cryomodule. The Z position of the midpoint is
mechanically fixed.

The rafts have coarse and fine alignment, with each raft having 5 d.o.f. ball joint
adjustable tie rods. The Z position of the midpoint is fixed. Each tie rod has both a 200
micron travel piezoelectric actuator, and a magnetically coupled manual screw adjustment
from outside the cryomodule. The fine alignment of the rafts will be beam based and
dynamic with a bandwidth of ∼100 Hz.

The coarse alignment of the rafts is done with stretched wires. Each wire is ∼20 m long
and spans two cryomodules, with the wires starting on successive cryomodules. Each raft
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Figure 3: Cutaway view of a cryomodule.

has two wire position sensors for each wire, one on the first accelerator and the other on
the quad. The sensors measure X and Y, with a precision of ∼100 microns. The rafts are
slightly over-constrained with 8 measurements for 5 d.o.f.

The stretched wire method is chosen since it must operate in air, vacuum, and under
slowly flowing liquid nitrogen.

4.3 Main Linac cryogenics

The increased copper conductivity at ∼80 K improves the accelerator efficiency to more
than recover the capital and operating expenses of the refrigeration plants. The acceler-
ator is in cryomodules that house 4 rafts; each raft supports 2 accelerator sections and a
permanent magnet quadrupole and Beam Position Monitor.

Sectors consist of 10 cryomodules, super-sectors consist of 10 sectors. (The actual Main
Linacs may contain partial super-sectors.)

The cryomodule is a vacuum insulated tube with an inner radius of 30 cm. The accelera-
tor components are under slowly flowing LN at a pressure of ∼1.1 bar, with the LN ∼25 cm
above the cryostat low point. The LN is introduced at the super-sector boundaries or the
ends, and flows in both directions (one if at an end) for at most 500 m. Gaseous nitrogen
counterflows, is removed at the boundaries or ends, is re-liquified, and then re-injected.
The LN for one direction of flow enters at 7.2 l/s, and flows at a velocity (at the entry) of
0.06 m/s (0.2 km/hr).

The LN flow is driven by gravity. The spans between super-sectors are laser straight,
the mid-span is normal to the earth radius at its location, and thus the LN is deeper at
the center of a super-sector by ∼7 cm. The beam will be bent in the vertical plane at the
super-sector boundary by ∼80 micro-radians to go into the next super-sector. For a 100
GeV beam, this requires a dipole with a kick of 0.05 T-m.

For C3 250 and C3 550, the power dissipated in one accelerator section is 2500 W,
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Figure 4: Cryomodule and four RF sources as installed in the Main Linac.

or 0.4∼W/cm2. This is the nucleate boiling regime, and the expected temperature rise is
∼2 K. The temperature rise in the copper block in a 1D approximation is 0.6 K.

The counterflow gas flow has an area equivalent to a 23 cm radius pipe, and has a
pressure drop over the full length of less than 10 mbar.

For C3 250, the total cooling power for each linac is 4.6 MW, and a cooling run is 508
m. The cooling power per cooling run is ∼1.2 MW, which is a medium scale cryo plant.
Further optimization is needed to see if fewer but larger plants are more cost effective.

For the initial construction of the Main Linac, each of the cryomodules is powered by
four RF sources (modulator and klystron), see Fig. 4. The sources operate at 5.712 GHz and
deliver 65 MW for every 2 meters of structure. The power is split in a hybrid and transported
to each accelerating structure. The klystron design will be based on advances developed
through the High Efficiency International Klystron Activity (HEIKA) collaboration. This
includes the implementation of the core oscillation method to retrofit exisitng 50 MW
designs to boost power and efficiency [40]. Demonstrations of this design from commercial
prototypes at X-band are expected in 2022.

4.4 Main Linac tunnel layout

The C3 tunnel layout would be adapted to its location. A cut and cover site, suitable for
a horizontal layout, is extremely attractive for both cost and schedule reasons. The tunnel
layout, Fig. 5, adopts the ILC Asian Region baseline ‡ to match our costing model for the

‡ILC TDR Figure 11.6
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Figure 5: Cross section of the tunnel layout matching the profile of the ILC tunnel for the combined
RF and accelerator gallery. Area shown underneath the gallery floor is not representative of scale.

accelerator complex. All major equipment fits in the same cross section as the ILC tunnel.
The RF source gallery is separated from the Main Linac by a shielding wall to simplify
access. Along with RF sources (klystron, modulator and low level RF), the modulator
cooling water and electrical power distribution at 480 V power are in the RF gallery. The
accelerator tunnel includes the installed cryomodules, ring to Main Linac transport, possible
linac bypass for machine development, and emergency vent lines for the nitrogen in the
cryomodules. Air supply, high voltage power distribution and water drainage are housed
below the tunnel floor. Cross-gallery access is envisioned every 100 m with surface access
every 1 km to correspond with penetrations for liquid and gaseous nitrogen. The main linac
will also dominate the electrical power consumption for the site. Table 5 compares these
parameters for C3 250 and C3 550.
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Parameter Unit Value Value

Center of Mass Energy GeV 250 550

Temperature K ∼80 ∼80
Pulse Length ns 700 250

Cryogenic Load ∼80 K MW 9 9
Est. RF Power (Both Linacs) MW 40 58

Est. Power for Cryogenic Cooling (Both Linacs) MW 60 60
Total Est. Power (Both Linacs) MW 100 118

RF Source efficiency (AC line to linac) % 65 65

Table 5: Main Linac power parameters for C3 at 250 GeV and 550 GeV center of mass energy.

4.5 Accelerator complex

Great effort has been expended towards the design and optimization of the accelerator
complex for earlier linear collider designs. This excellent work can be leveraged to un-
derstand the pre-conceptual layout for the full C3 accelerator complex. However, as the
design matures these systems will be re-visited and redesigned for implementation with the
C3 beam format, bunch charge and repetition rate. The electron and positron source, the
damping rings, and the BDS are the principal systems of the accelerator complex that are
auxiliary to the Main Linac. The conceptual layout of the C3 accelerator complex is shown
in Figure 6.

The baseline electron (polarized) and positron (unpolarized) sources are conventional
LC designs. For the electron source, this consists of a polarized DC gun, buncher and
accelerator. However, we are also exploring the possibility of a polarized RF gun described
in Section 3.4. For the positron source, the closest design relevant to the C3 bunch structure
is the CLIC design§. Positron polarization is a possible upgrade once the full RF system
is installed. An additional electron bunch train would be extracted from the Main Linac
at high energy (125 GeV) and sent to an undulator for polarized photon production and
transport to a positron production target. The positron beam must be transported to a
damping ring before being accelerated by the Main Linac.

For the damping rings, a conservative design has two damping rings, one for the electrons
and one for the positrons. A pre-damping ring is also utilized for the positron beam.
Four electron and positron bunch trains are stored in each of the damping rings. The
main damping rings have a ∼900 m circumference. The electron damping ring might be
eliminated with the advent of a polarized RF photoinjector.

Scaling of the beam delivery system for a maximum single beam energy of 275 GeV
from 500 GeV for the ILC TDR [5] reduces the length of the BDS by 500 m. Furthermore,
we also remove the upstream polarimeter in favor of the downstream polarimeter reducing
the length an additional 200 m. For C3 , the downstream polarimeter can measure the

§CLIC CDR 3.1.3.2
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Figure 6: Conceptual layout (not to scale) for the accelerator complex of C3 550. The full accelerator
complex fits on an 8 km site.
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Figure 7: Preliminary layout of the BDS for 250 GeV CM. An additional 300 m of drift space
between components would allow magnets to be added for higher energy operation at 550 GeV.

polarization and the depolarization from beam-beam interactions by comparing interacting
and separated beams. The length for the BDS is approximately 1.5 km on each side.
Preliminary simulations of for 250 GeV CM indicate that a 1.2 km BDS is feasible, see
Figures 7 and 8.

4.6 Upgrade to 550 GeV

The completion of the C3 250 provides a Main Linac with a full complement of cry-
omodules capable of operation at 120 MeV/m. The upgrade to 550 GeV will then mainly
entail the addition of RF power sources, to increase the RF power supplied to each meter
of linac from 30 MW to 80 MW, doubling the accelerating gradient of the C3 250.

During the construction and commissioning of C3 250 we will build a Main Linac tunnel
of sufficient length and fully occupied with cryomodules for the upgrade to 550 GeV CM.

Using present-day cost estimates, the cost of the RF in going directly to 120 MeV/m
operation would be 75% of the of the total linac cost per GeV. In our staged plan, we
achieve savings in two ways, first by constructing the C3 -250 with RF sources very close
to those already produced in large scale by industry, then by relying on the R&D program
described in Sec. 3.4 to provide RF power at much reduced cost for the upgrade. These
additional RF components would be ordered and installed during the C3 250 operation, still
allowing substantial time to realize the benefits from the new developments.

Additional magnets will be required in the beam delivery system. These magnets will
be installed during the machine down time during the physics run for C3 250. The length
and design of the BDS for C3 250 will be sufficient to incorporate the additional magnets
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Figure 8: Optics of the preliminary layout of the 250 GeV CM BDS.

for C3 550.

4.7 Cost model

While developing an accurate cost for any major project is a difficult task, it is par-
ticularly challenging in the early stages of a proposed facility. However, given the scale of
this endeavor, it is important that we use a cost model to guide our selection of parame-
ters, staging and the overall design of the accelerator complex. In an attempt to provide a
cost estimate with reasonable accuracy, we have built a cost model for the accelerator that
leverages the ILC and CLIC studies to price key components of the accelerator complex.
We rely on ILC for the cost of conventional facilities associated with the subsystems of the
accelerator complex (e.g. outfitted tunnel, conventional facilities for damping rings), CLIC
for the component costs of the injectors, damping, beam delivery and beam transport and
ILC for the IR.

In addition, we use the cost of fabrication of our prototype C3 structure to estimate
the cost of the cryomodule, and vendor estimates for the cost of the reliquification plants.
Similar to ILC and CLIC, here we will quote a Capital Cost for C3 that includes M&S,
procurement of equipment and construction by qualified vendors. This cost specifically
excludes laboratory labor and contingency. The cost is quoted in units ILCU=$=CHF
for comparison with other concepts. However, we have not completed an estimate of the
laboratory labor required for C3 . This would require a detailed plan with industry vendors
given that major components (all RF sources, cryomodules, etc.) could be supplied and
installed by external vendors.
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Sub-Domain % %

Sources Injectors 8 35
Damping Rings 12
Beam Transport 15

Main Linac Cryomodule 10 33
C-band Klystron 23

BDS Beam Delivery and Final Focus 8 13
IR 5

Support Infrastructure Civil Engineer 5 19
Common Facilities 11

Cryo-plant 3

Total 3.7B$ 100 100

Table 6: Cost breakout for C3 250 operating at 70 MeV/m. Cost of the outfitted tunnel (51k$/m)
and the RF source RF source cost ($7.5/peak-kW), derived from ILC and CLIC respectively, are
scaled for the length and RF power needed for the Main Linac. The cryomodule cost of (100k$/m)
is based on our production costs.

We emphasize that while this exercise was extremely useful in selecting the key parame-
ters and staging plan for C3 , we believe we have reached the limit of utility for cost scaling
and we must now evaluate C3 specific subsystems of the accelerator complex. This is critical
for two reasons. First, the subsystems have some key differences from earlier designs. For
example, the injector should utilize the same C3 technology as the Main Linac. Also, we
have reduced the length of the BDS with a specific energy limit of 550 GeV in order to
facilitate fitting the accelerator onto an existing laboratory site. Second, the Main Linac
for C3 250 GeV CM is no longer the cost driver for the overall accelerator complex. This
places C3 250 in a unique position where cost savings on any subsystem will
have an appreciable impact on the overall cost. We must now revisit the particle
sources, BDS and supporting infrastructure to understand how we can simplify and improve
to reduce to overall cost of the facility.

Our present estimate for the capital cost of C3 250 is in the range of 3.5-4B$ (10%
RF margin, 10 GeV energy margin). The cost breakdown for the accelerator complex is
35% sources, 35% Main Linac, 15% BDS, 15% supporting infrastructure. The detailed
breakout for one specific scenario is shown in Tab. 6.

5 Extending the C3 concept to higher energies

We have now described the C3 concept as a practical and cost-effective way to realize
an e+e− precision Higgs factory. But it is also an important aspect of this concept that it
offers a path to e+e− experiments at much higher energy.

The precision Higgs program, including the measurement of the top quark Yukawa
coupling to 1.6% and the Higgs self-coupling to 10%, requires only measurements at CM
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energies below 1 TeV. In this regime, the klystron-based design that we have proposed
here has clear advantages. The CLIC two-beam accelerator is put forward as a solution for
multi-TeV e+e− experiments. But C3 can also be applied here. The original C3 paper [1]
offered a design of a 2 TeV collider. In Sec. 5.1, we will present a parameter set for a 3 TeV
C3 collider that is a simple extension of our 500 GeV design, using the same gradient and
simply making the Main Linac longer. Either scheme provides a practical way, with known
technology, to provide a lepton collider experiment at 3 TeV in the center of mass. It will be
interesting, as these concepts develop, to make a detailed comparison of the two schemes.

Beyond 3 TeV, two additional issues arise for e+e− colliders. First, the beam power
needed to obtain the required luminosity grows. Second, the beam-beam interaction of
electron and positron bunches increases, leading to large energy spread and disruption in
e+e− collisions. However, we see new ideas that can overcome these problems. We will
describe some of these ideas in Secs. 5.2 and 5.3. We are optimistic that we can bring
these ideas to maturity over the course of the C3 Higgs program to provide electron linear
colliders that advance the technology we have presented here to 10 TeV and above.

There are important physics goals for e+e− colliders at energies of order 3 TeV. Probably
the most appreciated goal is that of discovering new heavy particles with only electroweak
interactions. The mass reach of 1.5 TeV available here goes beyond what is possible at the
HL-LHC. An illustrative benchmark here is the possibility of discovering the Higgsino at a
mass of 1 TeV, the mass value at which the pure Higgsino can be thermally produced in the
early universe with the relic density observed for dark matter. The search for this particle
is considered to be well beyond the reach of the HL-LHC and is very challenging even for a
100 TeV proton-proton collider [41]. A 3 TeV e+e− collider can also make precision studies
of vector boson scattering at vector boson CM energies above 1 TeV and can extend the
measurement of the top quark electroweak form factors to multi-TeV momentum transfers.
Both of these programs give windows into new physics beyond the reach of HL-LHC. Many
more examples are discussed in the CLIC report [42]. It should be noted that, at 3 TeV,
the physics goals of e+e− and muon colliders are essentially identical.

A 3 TeV e+e− collider will also provide a stepping-stone to electron colliders in the
energy region of 10 TeV and higher. The goal of such colliders will be to discover and study
models of electroweak symmetry-breaking at their natural energy scale. These include
models of supersymmetry with naturally heavy partner masses such as models with Dirac
gauginos and models of Higgs as a Goldstone boson, which require new strong interactions
at the 10 TeV mass scale. A collider at these energies could also discover leptoquark bosons
that might play a role in flavor physics. Although the beam-beam interaction will be severe
in e+e− collisions at these energies, a high-energy electron collider can be operated as a γγ
collider that provides a comparable reach for new particle discovery and polarized beams
for the detailed characterization of those new particles.

5.1 Operation at 3 TeV with 120 MeV/m

Starting from the design parameters of the C3 550 collider and simply extending the
length, it is straightforward to propose a design for a 3 TeV e+e− collider. As an example,
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Parameter Unit Value Value

Center of Mass Energy GeV 250 3000

Temperature K 77 77
Main Linac Cost G$/TeV 4.8 3

Accel. Grad. MeV/m 70 120
RF Source Cost $/peak kW 7.5 2
RF Compressors k$/m n/a 15

Pulse Length ns 700 250
Cryogenic Load at 77 K MW 9 36.6

Est. AC Power for RF Sources MW 40 395
Est. Electrical Power for Cryogenic Cooling MW 60 255

RF Source efficiency (AC line to linac) % 65 65

Table 7: Main Linac parameters for C3 at 3 TeV center of mass energy.

we present a parameter set assuming the same accelerating gradient, 120 MeV/m. Each
side of the BDS would need to be extended to 3 km. The main linac length would be
13.5 km on each side. The total footprint of the complex would be 33 km or approximately
the length of ILC in the 500 GeV TDR. The design of the main linac would match our
previous study at 2 TeV center of mass energy [1] and the parameters would scale linearly.
Given the timescale of a 3 TeV center of mass energy collider, we assume a reduced RF
source cost of $2/peak-kW which is the target cost for the GARD RF Roadmap.

We emphasize that experimentation at this collider is a direct extension of lower energy
experiments. The experimental environment would be close to that already studied in full
simulation by the CLIC collaboration [43].

5.2 Ideas for Higher-Gradient Operation

To reach CM energies of 10 TeV and above, with conventional RF acceleration, we will
need to achieve accelerating gradients significantly higher than 120 MeV/m. The possibility
of operating the C3 accelerator at higher gradients is a tantalizing one. Experiments at
both room and low-temperature have significantly exceeded the 120 MeV/m accelerating
gradient proposed for C3 550. Gradients of up to 250 MeV/m have been achieved in
cryogenic RF structures in this frequency range. Unfortunately, the required RF power
scales as the accelerating gradient squared which increases the overall cost of the Main
Linac. Space limitations, significant reductions in RF power cost, or improved accelerator
structure shunt impedance (efficiency) may render the operation at higher gradient more
appealing. During the timescale of the demonstration facility we will have the opportunity
to push the accelerating gradient of the C3 linac well beyond 120 MeV/m, measure the
break down rate in realistic operating conditions and make a determination of the physical
limit of the installed cryomodules capacity for higher gradient.

Operating beyond 250 MeV/m for an RF accelerator would require a new topology for
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Parameter Unit

Center of Mass Energy GeV 550 3000
Luminosity x1034 cm−2s−1 2.4 6

Single Beam Power MW 2.5 13.5
Single Linac Active Length km 2.45 13.4

Injection Energy Main Linac GeV 10 10
Train Rep. Rate Hz 120 120
Bunch Charge nC 1 1

Flat-Top RF Pulse Length ns 260 260
Bunch Spacing Periods (ns) 20 (3.5) 17 (3.5)

Average Current µA 9 9
Peak Current A 0.3 0.3

Loaded Accelerating Gradient MeV/m 120 120
RF Power for Structure Flat-Top MW/m 80 80

Table 8: Main Linac parameters for C3 upgrade path.

the linac. One possibility that is actively being researched is the use of shorter RF pulses
and higher repetition rates at significantly higher frequencies (100-300 GHz). Structures in
this frequency range have exceeded GV/m surface fields. High frequency structures made
significant progress in recent years and are now being utilized for beam acceleration and
beam manipulation but still require significant R&D before formulating a proposal for a
high energy facility. Extensive investigations into the beam dynamics of such structures are
required to confirm the viability for a high luminosity application such as a linear collider.
Studies of beam transport in these structures with high gradients (500 MeV/m) and pC
bunches indicate it is possible to transport the beam while accounting for effects from short
and long range wakes. Long range wakefields are particularly challenging at high frequency.
Operating with a bunch in every RF period is one approach to increasing the beam current
and allow only for harmonic excitation of higher order modes. The harmonics would need
to be at integer multiples of the drive frequency greatly reducing the number of modes
which must be damped. With a bunch charge of 1 pC in every cycle, operation at 300
GHz would provide the same peak current during the RF pulse as C3 550. Recovering
luminosity would require high repetition rates and reduced beam emittance. Powering of
such structures would also require very different approach than presently envisioned for C3 .
High frequency RF sources can be extremely efficient with fast-wave cyclotron resonance
masers and long pulse formats. Matching these RF sources to high luminosity applications
requires the development of active quasi-optical pulse compression which is ongoing. Beam-
driven (wakefield) RF sources, as envision for CLIC, may also be a possible option for such
high frequency operation.

Finally, although C-band is the optimal frequency for the 250—500 GeV region, it has
been discussed since the 1990’s that higher frequencies could be preferred for operation with
smaller bunches to obtain greater power efficiency at higher gradients (see, for example,
[44]). Attempts then to realize this approach stumbled on the issue of breakdown. It is
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now appealing to revisit this program in the light of the advances from C3 , to see whether
operation at X- or even W-band can give a practical route to very high gradients.

5.3 Mitigating the e+e− beam-beam interaction

The e+e− beam-beam interaction grows rapidly in the multi-TeV region, limiting the
luminosity. What can be done about this? First, we are talking here about a discovery, not
a precision machine. We can live with 20-30% spread in the luminosity spectrum. At 10
TeV energies, the path length cτγ of b and c quarks and τ leptons is 20 cm or more, so no
vertex detector is needed. The major problem with an e+e− design is then to convey the
disrupted beam safely to the beam dump.

To work at the highest luminosities, though, it becomes advantageous to convert the
electron beam to a photon beam and use the electron collider as a γ—γ collider. There are
three ways that this conversion can be accomplished. The first is to Compton scattering
from the beam of a high-power micron-wavelength laser. These lasers are undergoing rapid
development in brightness and repetition rate [45]. The second is to Compton scattering
with a Free-Electron Laser as the photon source, using a short C3 accelerator as a driver [46].
A third, still rather speculative, approach is to use short e+e− bunches in the deep quantum
regime of beamstrahlung to generate the hard photons [47, 48]. There is room here also for
many new ideas.

As we pursue the practical goal of building a C3 Higgs factory, we will also pursue the
lines of investigation sketched here toward designing a linear collider for the 10-TeV energy
region based on the C3 concept. This path starts with many advantages over competing
competing technologies. We are optimistic that it can reach the goal.

6 Conclusions

We present a proposal for a cold copper (cryogenic) distributed coupling linear e+e−

collider that can provide a rapid route to precision Higgs physics with a compact 8 km
footprint. C3 is based on recent advances in copper accelerator technology that allow
robust designs with an accelerating gradient of 120 MeV/m. C3 follows a program very
similar to that proposed for the ILC, aiming at collecting data at 250 and 550 GeV in
the center of mass, with a relatively inexpensive upgrade on the same footprint. We thus
expect to achieve precision measurements of similar quality to those discussed for ILC and
other e+e− Higgs factories. This program, starting before 2040, and possibly coincident
with the end of the HL-LHC run, will achieve the goals of precision Higgs boson and top
quark measurement at which one could realistically prove the presence of deviations from
the SM. At the same time, C3 will also provide the first step toward the extension of e+e−

physics into the multi-TeV energy range.

Although there is as yet no engineered and costed design for a 250 GeV e+e− C3 , this
approach is based on the SLC experience at SLAC and the extensive design work of ILC
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and CLIC. Our present estimate for the capital cost of C3 250 is in the range of 3.5-4B$
(10% RF margin, 10 GeV energy margin). The cost breakdown for the accelerator complex
are 35% sources, 35% Main Linac, 15% IP, 15% supporting infrastructure. This places
C3 250 in a unique position where cost savings on any subsystem will have an appreciable
impact on the overall cost.
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