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We perform first-principle calculations of electron-nucleus scattering on 3He and 3H using the
Green’s function Monte Carlo method and two approaches based on the factorization of the final
hadronic state: the spectral-function formalism and the short-time approximation. These three
methods are benchmarked among each other and compared to the experimental data for the longi-
tudinal and transverse electromagnetic response functions of 3He, and the inclusive cross sections of
both 3He and 3H. Since these three approaches are based on the same description of nuclear dynamics
of the initial target state, comparing their results enables a precise quantification of the uncertainties
inherent to factorization schemes. At sufficiently large values of the momentum transfer, we find
an excellent agreement of the Green’s function Monte Carlo calculation with experimental data and
with both the spectral-function formalism and the short-time approximation. We also analyze the
relevance of relativistic effects, whose inclusion becomes crucial to explain data at high momentum
and energy transfer.

I. INTRODUCTION

The spectrum of the inclusive lepton-nucleus cross sec-
tion exhibits a variety of features that are sensible to
both long- and short-range nuclear dynamics. At low
energies, coherent scattering, excitation of low-lying nu-
clear states, and collective modes are the dominant re-
action mechanisms. At energy transfers on the order of
hundreds of MeV, the leading mechanism is quasielas-
tic (QE) scattering, where the electroweak probe inter-
acts primarily with individual bound nucleons. These,
after interacting with other nucleons, are ejected from
the target. Corrections to this leading one-body mech-
anism arise from processes in which the lepton couples
to pairs of correlated nucleons via nuclear two-body cur-
rents [1–3].

Electron-scattering experiments play a key role in val-
idating the nuclear shell model, as well as in expos-
ing its limitations. A fully quantitative description of
experimental data requires including nuclear correla-
tions, which reduce the occupation probability of low-
momentum shell-model states and lead to the appear-
ance of high-momentum components in the nuclear wave
function. These are generated by the short-range com-
ponent of the nuclear interaction, also relevant for the
stability of neutron stars [4–6]. The experimental inves-
tigation of short-range correlations (SRC) has flourished
over the last few years and it is realized by selecting kine-
matics where the role of short-range correlated pairs of
nucleons become dominant [7, 8]. The analysis of exper-
imental data taken in this kinematic region has unveiled
the importance of the tensor component of the nuclear
potential that causes the dominance of neutron-proton
correlated pairs with respect to the proton-proton and

neutron-neutron pairs [9–11]. In addition, the analysis
of SRC pairs is relevant to improve our understanding of
the interplay between nucleonic and partonic degrees of
freedom [12, 13].

Moreover, current and planned neutrino-oscillation ex-
periments rely on theoretical estimates of lepton-nucleus
cross sections required to reconstruct the energy of the
incoming neutrino [14–18]. The uncertainty associated
with these calculations, often based on simplified mod-
els of nuclear dynamics, is one of the most important
sources of systematic error in these experiments. There-
fore, achieving a robust description of all the reaction
mechanisms at play in the broad kinematic region rele-
vant to accelerator-based oscillation experiments is neces-
sary to improve the accuracy of the extracted oscillation
parameters [19–21].

Microscopic calculations of lepton-nucleus scattering
cross sections use nucleons as fundamental degrees of
freedom and allow one to fully account for the important
many-body effects in both many-nucleon interactions and
electroweak currents. A microscopic approach that has
been extensively used in recent year is the quantum
Monte Carlo (QMC) method [22]. The QMC method, in
particular the Green’s function Monte Carlo (GFMC),
produces results for the inclusive cross sections of 4He
and 12C that are in excellent agreement with available
experimental data [23–25]. In a QMC calculation, nu-
cleons are correlated in pairs and triplets via two- and
three-nucleon interactions, while one- and two-nucleon
electromagnetic currents are used to describe the interac-
tion with the external probe. Two-body currents are con-
structed from the two-nucleon interactions consistently,
that is by imposing that they satisfy charge conserva-
tion with the given two-nucleon interaction. The grow-
ing computational cost of the GFMC with the number of
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nucleons currently limits the applicability of this method
to nuclei with A ≤ 12 nucleons. Furthermore, despite
having relativistic corrections included in the electromag-
netic current operator, the GFMC method is not applica-
ble to lepton-nucleus scattering in the large momentum
and energy transfer regime, where fully relativistic cur-
rents and kinematics must be considered.

An alternative approach that addresses these short-
comings relies on the spectral function (SF) of the nu-
cleus [26–28]. This method is based on the factorization
of the final hadronic states and has the advantage of be-
ing applicable to larger nuclear systems. Moreover, it can
accommodate for both relativistic kinematics and meson-
production mechanism [27, 28]. The latter has been in-
cluded in the SF formalism by using the electroweak pion
production amplitudes generated within the dynamical
coupled-channel (DCC) model [29–31]. The contribu-
tions of these different reaction mechanisms have been
combined to obtain neutrino and electron scattering on
12C for different kinematics [32, 33].

Recently, the Short-time-approximation (STA) [34] has
been developed to calculate nuclear responses in nuclei
with A > 12 within a QMC framework. At present, this
computational algorithm has been tested within the Vari-
ational Monte Carlo (VMC) method [22] to study elec-
tron scattering from the alpha particle. The algorithm
exploits a factorization scheme to consistently retain two-
body physics, namely two-body currents and correla-
tions. Despite limiting the description of the scattering
process to interactions of the probe with pairs of corre-
lated nucleons, the STA is found to be in good agreement
with both GFMC predictions and experimental data for
electron scattering from the alpha particle [34] and, as in
the SF formalism, can accommodate relativistic effects
and meson production reactions.

In this work, we compute the electromagnetic
responses and inclusive double-differential electrons-
scattering cross sections of 3H and 3He, comparing the
GFMC, SF, and STA predictions with experimental data.
Besides the intrinsic interest of our first-principle calcu-
lations, we gauge the accuracy and the regime of validity
of the factorization approximation by comparing SF and
STA results against virtually exact GFMC calculations
that are carried out within the same model of nuclear
dynamics for the initial state. In addition, we compare
the GFMC and STA non-relativistic calculations with
the relativistic results obtained within the SF formalism
(see, e.g., Ref. [35]), and assess the importance of includ-
ing relativistic effects at kinematics regions with higher
values of energy and momentum transfer.

This paper is structured as follows. Sec. II provides the
definition of the electromagnetic responses and inclusive
cross section. Sec. III is devoted to the description of
the GFMC, SF and STA approaches. Our results are
summarized and discussed in Sec. IV, while in Sec. V we
state our concluding remarks.

II. ELECTRON-NUCLEUS SCATTERING
CROSS SECTION

The inclusive double differential cross section for the
scattering of an electron with initial four-momentum k =
(E,k) on a nucleus at rest is written as( d2σ

dE′dΩ′

)
e

=
α2

Q4

E′

E
LµνR

µν , (1)

where the outgoing electron has a momentum k′ =
(E′,k′), α ' 1/137 is the fine structure constant, and
Ω′ is the scattering solid angle in the direction specified
by k′. The energy and the momentum transfer are de-
noted by ω and q, respectively, with Q2 = −q2 = q2−ω2.
The lepton tensor is fully determined by the lepton kine-
matic variables. Neglecting the electron mass, it is given
by

Lµν =
1

EE′
(kµk

′
ν + k′µkν − gµν k · k′) . (2)

The hadronic tensor describes the transition between the
initial and final nuclear states |Ψ0〉 and |Ψf 〉 with energies
EA0 and EAf , where A denotes the number of nucleons in
the nucleus

Rµν(q, ω) =
∑
f

〈Ψ0|Jµ †(q, ω)|Ψf 〉〈Ψf |Jν(q, ω)|Ψ0〉

× δ(EA0 + ω − EAf ) . (3)

The sum included all the possible hadronic final states,
both bound and in the continuum, and Jµ(q, ω) is the
nuclear current operator. For inclusive processes, the
cross section of Eq. (1) only depends on the longitudinal
and transverse response functions, RL(q, ω) ≡ R00(q, ω)
and RT (q, ω) ≡ [Rxx(q, ω) +Ryy(q, ω)]/2, respectively( d2σ

dE′dΩ′

)
e

=

(
dσ

dΩ′

)
M

[( q2
q2

)2
RL(|q|, ω)

+
(

tan2 θ

2
− 1

2

q2

q2

)
RT (|q|, ω)

]
. (4)

The Mott cross section(
dσ

dΩ′

)
M

=

[
α cos(θ/2)

2E′ sin2(θ/2)

]2
(5)

only depends upon the scattering angle θ and on the out-
going electron energy E′.

A. Nuclear current

The GFMC, SF, and STA methods use as input a
many-body nuclear Hamiltonian that consists of non-
relativistic single-nucleon kinetic energy terms, and two-
and three-nucleon interactions

H =
∑
i

− ~2

2m
∇2
i +

∑
i<j

vij +
∑
i<j<k

Vijk , (6)
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where vij and Vijk are sophisticated potentials [3, 22]
that model the interaction between pairs and triples of
nucleons. In this work, the Argonne v18 two-nucleon in-
teraction [36] is utilized in combination with the Illinois-7
three-nucleon force [37] (used in the GFMC calculations)
or the Urbana IX three-nucleon interaction [38] (used
in the STA calculations). The highly-realistic Argonne
v18 [36] potential reflects the rich features of the nucleon-
nucleon force. It is written in terms of operator structures
involving space, momentum, spin and isospin nucleonic
coordinates, predominantly arising from one- and two-
meson-exchange-like mechanisms. The long-range part
of the nucleon-nucleon interaction is due to one-pion-
exchange; the intermediate-range component involves op-
erator structures arising from multipion-exchange sup-
ported by phenomenological radial functions; the short-
range part is described in terms of Woods-Saxon func-
tions [1, 22, 36]. The Argonne v18 has 40 parameters
that have been adjusted to fit the Nijmegen pn and pp
scattering data base [39], consisting of ∼ 4300 data in
the range of 0− 350 MeV, with a χ2/datum close to one.
While fitting data up to 350 MeV, the Argonne v18 repro-
duces the nucleon-nucleon phase shifts up to ∼ 1 GeV, an
indication that its regime of validity extends beyond the
energy range utilized to constrain the adjustable param-
eters. This is also an indication that relativistic effects
are (partially) embedded in the parameters entering the
nucleon-nucleon interaction.

Analogously to the nuclear potentials, electroweak cur-
rents can also be expressed as an expansion in many-body
operators that act on nucleonic degrees of freedom

Jµ =
∑
i

jµ(i) +
∑
i<j

jµ(ij) + · · · . (7)

The ellipsis denotes terms involving three nucleons or
more, which are found to be small [40] and will be ne-
glected in this work.

The electromagnetic current can be schematically writ-
ten as

JµEM = Jµγ,S + Jµγ,z , (8)

where the first term is isoscalar and the second is isovec-
tor, depending upon the isospin operators τz. The rela-
tivistic expression of the one-body current is

jµEM = ū(p′)
[
F1γ

µ + iσµνqν
F2

2mN

]
u(p) , (9)

where p and p′ are the initial and final nucleon momen-
tum. The isoscalar (S) and isovector (V) form factors,
F1 and F2, are given by combinations of the Dirac and
Pauli ones, F1 and F2, as

F1,2 =
1

2
[FS1,2 + FV1,2τz] , (10)

where τz is the isospin operator and

FS1,2 = F p1,2 + Fn1,2 , FV1,2 = F p1,2 − Fn1,2 . (11)

The Dirac and Pauli form factors can be expressed in
terms of the electric and magnetic form factors of the
proton and neutron as

F p,n1 =
Gp,nE + τGp,nM

1 + τ
, F p,n2 =

Gp,nM −Gp,nE
1 + τ

, (12)

with τ = Q2/4m2
N . While the SF formalism uses the

relativistic expressions above, the one-body charge and
current operators employed in the GFMC and STA ap-
proaches are obtained from the nonrelativistic reduction
of the covariant operator of Eq. (9), including all the
terms up to 1/m2

N in the expansion. The charge (0),
transverse (⊥), and longitudinal (‖) components with re-
spect to the three-momentum q of the nonrelativistic ex-
pansion of the current read

j0γ,S(i) =
GSE

2
√

1 +Q2/4m2
N

− i2G
S
M −GSE
8m2

N

q · (σi × pi) ,

j⊥γ,S(i) =
GSE

2mN
p⊥i − i

GSM
4mN

(q× σ)i ,

j
‖
γ,S(i) =

ω

|q|
j0γ,S . (13)

The isoscalar and isovector component of the electric and
magnetic form factors are

GSE,M = GpE,M +GnE,M

GVE,M = GpE,M −G
n
E,M . (14)

The isovector contributions to the current Jµγ,z are ob-

tained by replacing GSE,M → GVE,Mτz.
The gauge invariance of the theory imposes that the

electromagnetic charge and current operators satisfy the
continuity equation

q · JEM = [H, ρEM] , (15)

where ρEM ≡ J0
EM, which provides an explicit connec-

tion between the nuclear interactions and the longitudi-
nal component of the current operators. For instance,
the isospin and momentum dependence of the NN in-
teractions leads to nonvanishing commutators with the
one-body charge operator and hence to the emergence of
two-body terms in the current operator. The GFMC and
STA calculations reported in this work have been car-
ried out using the two-body currents most recently sum-
marized in Refs. [1, 3, 22]. They include both “model-
independent” and “model-dependent” terms as defined
in Ref. [41]. The former are obtained from the nucleon-
nucleon interaction, and satisfy current conservation by
construction. The leading operator is the isovector “π-
like” current, with important contributions also due to
ρ-like terms. The additional two-body currents induced
by the momentum dependence of the nucleon-nucleon in-
teraction have been found to give contributions that are
much smaller than those generated by the static part of
this interaction, in particular the OPE current [42].
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The transverse components of the two-body currents,
i.e., the model-dependent components, cannot be di-
rectly linked to the nuclear Hamiltonian. In this work, we
adopt the latest formulation of Refs. [23–25, 34, 43–45]
and include the isoscalar ρπγ transition and the isovector
current associated with the excitation of intermediate ∆-
isobar resonances. The ρπγ couplings are extracted from
the widths of the radiative decay ρ→ πγ [46] and the Q2

dependence of the electromagnetic transition form factor
is modeled assuming vector-meson dominance. Among
the model-dependent currents, those associated with the
∆ isobar are the most important and enhance the trans-
verse electromagnetic response functions.

It is worthwhile to point out that the realistic interac-
tions and currents utilized in the present work—Argonne
v18 two-nucleon [36] and Urbana IX or Illinois-7 three-
nucleon [37, 38] interactions and associated currents—
provide a quantitatively successful description of many
nuclear electroweak observables [3], including charge
radii, electromagnetic moments and transition rates,
charge and magnetic form factors of nuclei with up to
A = 12 nucleons [1, 40, 42, 44, 47–53], and electromag-
netic response functions [23–25, 34, 43, 45, 54, 55].

III. THEORETICAL APPROACHES

A. Green’s function Monte Carlo

The Green’s function Monte Carlo method is suit-
able to solve the Schrödinger equation of nuclei with up
to A = 12 nucleons with percent-level accuracy. The
ground-state of a given Hamiltonian H is obtained by
propagating in imaginary-time a starting trial wave func-
tion |ΨT 〉

|Ψ0〉 ∝ lim
τ→∞

exp[−(H − E0)τ ]|ΨT 〉 , (16)

where τ is the imaginary time, and E0 is a parameter
used to control the normalization. The above imaginary-
time propagation can also be used to extract dynami-
cal properties of atomic nuclei. The energy dependence
of the response functions can be inferred by computing
their Laplace transform, dubbed as Euclidean response
function [56]

Eα(q, τ) =

∫ ∞
ωth

dω e−ωτRα(q, ω), α = L, T . (17)

Fixing the intrinsic energy dependence of the charge and
current operators to the QE peak: Jα(q) ≡ Jα(q, ωQE),

with ωQE =
√

q2 +m2
N −mN , one can express the Eu-

clidean responses as ground-state expectation values

Eα(q, τ) = 〈Ψ0|J†α(q)e−(H−E0)τJα(q)|Ψ0〉
− |Fα(q)|2e−ωelτ , (18)

where the elastic form factor is defined as Fα(q) =
〈Ψ0|Jα(q)|Ψ0〉. The calculation of the imaginary-time

correlation operator 〈Ψ0|J†α(q)e−(H−E0)τJα(q)|Ψ0〉 is
carried out with GFMC methods similar to those used
in projecting out the exact ground state of H from a
trial wave function. It proceeds in two steps. First, an
unconstrained imaginary-time propagation of the state
|Ψ0〉 is performed and stored. Then, the states Jα(q)|0〉
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evo-
lution, estimates for Eα(q, τi) on a uniform grid of τi
values are obtained by evaluating the scalar products of
e−(H−E0)τiJα(q)|0〉 with 〈Ψ0|J†α(q) — a complete discus-
sion of the methods is in Refs. [23, 24, 45].

The above expectation value is evaluated on a uniform
grid of nτ imaginary-time points [56, 57]. A set of noisy
estimates for Eα(q, τi) can be obtained by performing in-
dependent imaginary-time propagations, from which the
average Euclidean response Ēα(q, τi) and the covariance
Cij between the data at τ = τi and τ = τj can be readily
estimated [23]. Note that, in general, the covariance ma-
trix C is nondiagonal because of correlations among the
imaginary-time points.

Retrieving the energy dependence of the response func-
tions from their Euclidean counterparts is a nontriv-
ial problem. For the smooth quasiealstic responses on
which this work focuses on, we employ a version of
the maximum-entropy technique developed specifically
for this type of problem [45]. It has to be noted that
machine-learning algorithms have recently been devel-
oped to invert the Laplace transform [58] and are capable
of precisely reconstructing the low-energy transfer region
of the response functions.

B. Short-time approximation

In the short-time approximation [34], the response de-
fined in Eq. (3) is calculated performing a real-time prop-
agation. This scheme can be appreciated by rewriting the
response as

Rα(q, ω) =

∫ ∞
−∞

dt

2π
ei(ω+E0)t

× 〈Ψ0|J†α(q) e−iHt Jα(q)|Ψ0〉 , (19)

where we have replaced the sum over the final states with
a real-time propagator. In the STA, we evaluate the real-
time matrix element in Eq. (19) for short times. We re-
tain the full QMC ground state and current operators,
and final state interactions at the two-nucleon level—
specifically, those final state interactions affecting only
pairs involved at the electromagnetic interaction vertex.
In doing so, the STA accounts for two-nucleon interac-
tions and currents and ensuing interference terms, con-
sistently, i.e., satisfying current conservation. In prac-
tice, in the scattering process only two correlated nucle-
ons interact with the probe via both one- and two-body
currents. Schematically, the current-current correlator
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entering the real-time matrix elements can be written as

J† e−iHt J =
∑
i

J†i e−iHtJi +
∑
i6=j

J†i e−iHtJj (20)

+
∑
i6=j

(
J†i e−iHtJij + J†ije

−iHtJi + J†ije
−iHtJij

)
+ · · · ,

where we neglected terms terms with three or more ac-
tive nucleons. In the expansion above, the Hamiltonian
at the vertex correlates nuclei in pairs, that is it only
includes the two-nucleon interaction which in this work
is the Argonne v18. Three-nucleon interaction effects are
ignored in the final states, although they are fully in-
cluded in the ground state. Note that only two nucleons
are propagated. The equations above show how inter-
ference terms between one- and two-nucleon currents are
taken into account. While correctly reproducing the sum
rules, the STA does not reproduce the correct threshold
behavior of the response at values of momentum trans-
fer q . 300 MeV/c. We account for threshold effects by
redistributing the strength of the response to higher val-
ues of energy transfer and preserving the correct value
for the sum rules. Details on how threshold effects are
accounted for can be found in Ref. [34].

After the insertion of a complete set of two nucleon
states, the response in Eq.(19) can be evaluated as an
integral of a response density, Dα(e, Ecm), over the rel-
ative energy, e, and center of mass energy, Ecm, of the
interacting pair (or, equivalently, over relative and CM
momenta, p′ and P′, of the pair of struck nucleons):

Rα(q, ω) =

∫ ∞
0

de

∫ ∞
0

dEcmDα (e, Ecm)

× δ (ω + E − e− Ecm) . (21)

This response has contributions coming from the ground
state for which the exact elastic response is simply ∝
|〈Ψ0|Jα(q)|Ψ0〉|2.

Analogously to the subtraction of the elastic form fac-
tor in Eq. (18), the contribution of the exact elastic
response—illustrated in Fig. 2—is subtracted from the
total response density—given in Fig. 1—that is

D(e, Ecm)−Del(e, Ecm) , (22)

where, for convenience, we omitted the subscript α. The
elastic contribution Del is calculated from the overlaps
between the ground state and intermediate states with
two active nucleons, here schematically denoted with Ψ2.
Assuming that the elastic contribution is large at small
momentum transfer and that that the internal nuclear
dynamics dominates the overlap to states of given p′ and
P′, the elastic contribution to the total response density
can be approximated with

Del(q,p
′,P′) = |〈Ψ0|J (q) | Ψ0〉|2

×
∑
β

〈Ψ0|Ψ2 (p′,P′, β)〉〈Ψ2 (p′,P′, β) |Ψ0〉 , (23)

where the sum runs over all two body quantum numbers
β. In the limit of zero momentum transfer the response is
fully elastic, while at large momentum transfer the elastic
response goes to zero.

0

10050
100

150

0

1,000

e [MeV]
Ecm [MeV]

D
(e
,E

c
m
)
[M

eV
−
2
]

FIG. 1: 3H total longitudinal response density at q =
300 MeV/c, as a function of relative energy and

center-of mass energy.

0

10050
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150

0

2,000

e [MeV]
Ecm [MeV]

D
e
l(
e,
E

c
m
)
[M

eV
−
2
]

FIG. 2: 3H elastic contribution to the total longitudinal
response density at q = 300 MeV/c.

C. Spectral function

In the region of large q it is reasonable to approximate
the hadronic final state with the factorized expression

|Ψf 〉 = |p〉 ⊗ |ΨA−1
n 〉 , (24)

where |p〉 is a plane wave describing the propagation of
the final state nucleon with momentum |p|, while |ΨA−1

n 〉
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describes the (A − 1)-body spectator system. The inco-
herent contribution to the longitudinal and transverse re-
sponse function is obtained by inserting a single-nucleon
completeness relation in Eq. (3)

Rα(q, ω) =
∑

τk=p,n

∫
d3k

(2π)3
dE
[
Pτk(k, E)

× m2
N

e(k)e(k + q)

∑
i

〈k|j†i,α|k + q〉〈p|ji,α|k〉

× δ(ω̃ + e(k)− e(k + q))
]

(25)

where we retain only the one-body current contribution.
In the above equation we used the relations p = k + q
and ω̃ = ω − E +mN − e(k).

The spectral function Pτk(k, E), i.e., the probability
distribution of removing a nucleon with momentum k
and isospin τk = p, n from the target nucleus, leaving the
residual (A−1) system with an excitation energy E, can
be written as [59]

Pτk(k, E) =
∑
n

|〈ΨA
0 |[|k〉 |ΨA−1

n 〉]|2

× δ(E + EA0 − EA−1n ) . (26)

Here |ΨA
0 〉 is the ground state of the Hamiltonian,

such that H|ΨA
0 〉 = E0|ΨA

0 〉, whereas |ΨA−1
n 〉 are the

eigenstates and energies of the (A − 1)-nucleon system:
H|ΨA−1

n 〉 = EA−1n |ΨA−1
n 〉.

Note that in Eq. (26) the state |k〉 represents a single-
particle plane wave with momentum k and isospin τk
(we average over the spin). Using second-quantization
definitions, we introduce the annihilation and creation

operators ak, a
†
k, so that the definition of the SF reads

Pτk(k, E) =
∑
n

|〈ΨA
0 |a
†
k|Ψ

A−1
n 〉|2

× δ(E + EA0 − EA−1n ) . (27)

The single-nucleon momentum distribution is obtained
integrating the spectral function over the removal energy

nτk(k) = 〈ΨA
0 |a
†
kak|Ψ

A
0 〉 =

∫
dEPτk(k, E) . (28)

The proton and neutron spectral function and the corre-
sponding momentum distributions are normalized as∫

dE
d3k

(2π)3
Pp(k, E) =

∫
d3k

(2π)3
np(k) = Z ,∫

dE
d3k

(2π)3
Pn(k, E) =

∫
d3k

(2π)3
nn(k) = A− Z , (29)

where Z is the number of protons and A is the number of
nucleons of a given nucleus. This normalization is con-
sistent with that of the VMC single-nucleon momentum
distributions reported in [60].

For clarity, let us deal with the proton spectral func-
tion first. The single-nucleon (mean-field) contribution
PMF
p (k, E) for A = 3 nuclei corresponds to identifying

|ΨA−1
n 〉 with the ground-state of the A− 1 system

PMF
p (k, E) =

nMF
p (k)δ

(
E −BA +BA−1 −

k2

2mA−1

)
, (30)

where BA and BA−1 are the binding energies of the initial
and the A − 1, remnant nucleus respectively and mA−1
is the mass of the remnant. In the above equation we
introduced the mean-field proton momentum distribution

nMF
p (k) = |〈ΨA

0 |[|k〉 ⊗ |ΨA−1
n 〉]|2 , (31)

in which 〈ΨA
0 |[|k〉 ⊗ |ΨA−1

n 〉 is the Fourier transform of
the single-nucleon radial overlap that can be computed
within both VMC and GFMC [61].

The high removal energy and momentum component
of the spectral function arises from the contribution of
correlated pairs of nucleons, as argued in Ref. [59] and,
more recently, in the context of the contact formal-
ism [62, 63]. It amounts to a three-body final state with a
high-momentum nucleon and a leftover pair of nucleons:
|ΨA−1
n 〉 → |k′〉 |ΨA−2

n 〉 with H|ΨA−2
n 〉 = EA−2n |ΨA−2

n 〉.
Note that we have neglected the correlations between the
struck nucleon |k′〉 and the pair of spectator nucleons. As
a consequence, the state |k′〉 |ΨA−2

n 〉 is not orthogonal to
the ground state of |ΨA−1

n 〉, entering the mean-field piece
of the spectral function.

The corresponding two-body (correlation) contribu-
tion to the SF is given by

P corr
p (k, E) =

∑
n

∫
d3k′

(2π)3
|〈ΨA

0 |[|k〉 |k′〉 |ΨA−2
n 〉]|2

× δ(E + EA0 − e(k′)− EA−2n ) . (32)

Assuming that the (A−2)-nucleon binding energy is nar-
rowly distributed around a central value B̄A−2, we can
use the completeness of the final states |ΨA−2

n 〉 to get

P corr
p (k, E) = Np

∑
τk′=p,n

∫
d3k′

(2π)3

[
np,τk′ (k,k

′)

× δ
(
E −BA − e(k′) + B̄A−2 −

(k + k′)2

2mA−2

)]
, (33)

where mA−2 is the mass of the recoiling A − 2 system
and Np is an appropriate normalization factor. VMC es-
timates of the two-nucleon momentum distribution, de-
fined as

nτk,τk′ (k,k
′) = 〈ΨA

0 |a
†
kaka

†
k′ak′ |Ψ

A
0 〉 , (34)

can be found online [64] for several nuclei with up to
A = 12 nucleons. To isolate the contribution of short-
range correlated nucleons, we introduce cuts on the rel-
ative distance between the pairs of particles in the two-
body momentum distribution. The cut is selected in such
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FIG. 3: Single proton momentum distribution of 3He.

a way that the overall normalization of the nucleon spec-
tral function is correctly reproduced. Selecting pairs with
a given range of relative distance provides an effective
way to orthogonalize |k′〉 |ΨA−2

n 〉 and the ground state of
|ΨA−1
n 〉 by isolating the contribution of short-range cor-

related nucleons in the A− 2 system.
The full SF is given by the sum of the mean-field and

the correlated part [59]

Pp(k, E) = PMF
p (k, E) + P corr

p (k, E) . (35)

The momentum distributions obtained integrating the
total, MF, and correlated spectral function of 3He are
displayed in Fig. 3 and compared to the VMC momen-
tum distribution computed independently. As expected,
the MF component of n(k) dominates the low-momentum
region, whereas the short-range correlated pairs enter-
ing P corr

p mostly contribute to the high-momentum tails.
The sum of the MF and correlation components of the
momentum distribution is in excellent agreement with
the VMC momentum distribution, corroborating the ac-
curacy of our approach.

D. Cross section calculation

The analysis of scaling properties of nuclear response
functions has been discussed in a number of works
[65, 66]. More recently the scaling ansatz has been suc-
cessfully used to interpolate and extrapolate electroweak
response functions for different values of the energy and
momentum transfer [25, 35, 55]. In the present work,
we adopt the same interpolation algorithm based on the
scaling of the nuclear responses presented in Ref. [35].
For the GFMC and STA calculations which rely on a
nonrelativistic treatment of the kinematics, the longitu-
dinal and transverse response functions can be expressed
as a function of the nonrelativistic scaling variable ψnr

defined as

ψnr =
mN

|q|kF

(
ω − |q|

2

2mN
− ε
)

(36)

where kF is the Fermi Momentum and ε is a parameter
chosen to account for binding effects in the initial and
final states. In the present analysis we used kF = 180
MeV and ε = 10 (15) MeV for the 3H (3He) nucleus.
The SF formalism allows one to directly compute the
cross section; the computational cost required to evalu-
ate the nuclear response functions for different values of
ω and q is quite small. In order to test the accuracy
of the interpolation procedure, within the SF approach
we compared the cross-section results obtained from a di-
rect calculation and interpolating the response functions.
Since the SF quasielastic kinematics is fully relativistic,
in this case we use the scaling function defined in Ref. [67]

ψ =
1
√
εF

λ− τ√
(1 + λ)τ + κ

√
τ(1 + τ)

(37)

with

εF =
√
k2F +m2

N/mN − 1 ,

λ =(ω − ε)/(2mN ) ,

κ =|q|/(2mN ) ,

τ =(|q|2 − ω2)/(4m2
N ) .

The values of kF and ε are the sames as in the nonrela-
tivistic case.

IV. RESULTS

The different panels of Fig. 4 display the longitudinal
(left) and transverse (right) electromagnetic responses of
3He for different values of the momentum transfer |q|.
The blue represent the experimental data of Ref. [56].
The black and green curve correspond to the GFMC
one- and one- plus two-body current contributions. The
yellow solid and dashed curves display the STA one-
and one- plus two-body current calculations and the red
dashed line show the SF results, where only the one-body
current operator has been included. At low momentum
transfer, the GFMC results exhibit the correct behavior
in both the longitudinal and transverse channel, prov-
ing to be in excellent agreement with experiments. Once
the elastic contributions are subtracted and the correct
behavior at threshold has been enforced, the STA cal-
culations are very close to the GFMC ones. Final state
interactions, not included in the current SF calculations,
are relevant at q = 300 MeV. Neglecting these correc-
tions yields an excess of strength in the SF results with
respect to the experimental data for the longitudinal re-
sponse and a shift of the quasiealstic peak toward too
large ω values. Note that, in this work we applied a
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quenching factor to the SF response functions by sub-
tracting the incoherent contribution of the elastic form
factor from the sum rule, corresponding to Eq. (18) at
τ = 0. This effect is more significant for the longitudi-
nal response functions at q up to 400 MeV and leads to
a quenching of the strength of the response. The elas-
tic contribution is significantly smaller in the transverse
channel and for this reason it has not been subtracted
from the transverse response functions obtained within
the SF approach. Within the STA, the elastic contribu-
tion was found to be negligible in the transverse chan-
nel, and in the longitudinal for values of the momentum
transfer q ≥ 700 MeV. In the STA, the correct behav-
ior at threshold has been enforced to correctly reproduce
the transverse response functions at q = 300 and q = 400
MeV. In the GFMC and STA calculations, two-body cur-
rents provide the enhancement required to correctly re-
produce the transverse data. The SF results, based on
the single nucleon current alone, slightly underestimate
the data.

The discrepancies between data and the SF results are
also visible for q = 500 MeV because of the missing final-
state interaction (FSI) corrections, while for this kine-
matics the GFMC and STA results nicely agree among
each other and with the experiment. At q = 700 MeV,
relativistic corrections to both the kinematics and the
current operators become sizable and considerably nar-
row the width of the quasielastic peak. The GFMC and
the STA include relativistic corrections in the current
operator up to O(q2/m2). However, this is not suffi-
cient to correctly reproduce the position, the height, and
the width of the peak in neither the longitudinal nor the
transverse channel. On the other hand, for large momen-
tum transfer the factorization of the hadronic vertex is
expected to be a good approximation and the SF results
with relativistic kinematics correctly reproduce experi-
mental data in both panels.

In Fig. 5, we present the longitudinal and transverse
responses of 3H, for the same values of the momentum
transfer as in Fig. 4. To the best of our knowledge, there
are no experimental data available for the 3H electromag-
netic response functions at these values of momentum
transfer. The general behavior of the theoretical curves
is analogous to what observed for 3He. However, even
after subtracting the spurious elastic contribution from
the STA and SF results, the three different approaches
exhibit discrepancies in the position and strength of the
peaks for q = 300 MeV. The absence of FSI corrections
leads to a shift toward large ω in the SF results for both
q = 300 and q = 500 MeV. The STA and GFMC re-
sults nicely agree for q = 500 and q = 700 MeV. Analo-
gously with the 3He responses, for the latter values of the
momentum transfer, relativistic corrections become rel-
evant, as apparent when comparing the essentially non-
relativistic GFMC and STA results with those obtained
within the SF approach.

In Fig. 6 we present the contributions of the differ-
ent nucleon-nucleon pairs for 3H and 3He response func-

tions, compared to the total responses. The data has
been smoothed to remove the numerical artifacts that
can be seen in the responses obtained in the STA for low
and high values of ω. For all practical purposes the same
procedure can be applied to the data in Figs. 4 and 5.
For both the longitudinal and transverse responses the
dominant contribution comes from np pairs. The same is
true for the effect of two-nucleon currents. The longitudi-
nal response (left panel) in 3He has a small contribution
given only by the pp pair, while the contribution of the
nn pair in 3H is negligible, since the charge form factor
of the neutron is very small. In the transverse case (right
panel), both pp and nn pairs give a small contribution to
the total responses.

The inclusive electron scattering cross section on 3He
and 3H targets are shown in Figs. 7 and 8, respec-
tively. The various plots correspond to different values
of the beam energy and scattering angles and display the
double-differential inclusive cross sections as a function
of the energy transfer. The curves and colors scheme
adopted to represent experimental data, GFMC, STA,
and SF theoretical results are the same as in Fig. 4.
The comparison between experiment and theory is re-
stricted to the quasielastic-peak region; reproducing the
experimental data at larger ω would require dealing with
pion-production mechanisms. The inclusion of explicit-
pion degrees of freedom in the GFMC method is in its
infancy [68] and computing the relevant Euclidean re-
sponse functions involves nontrivial challenges for the fu-
ture. On the other hand, since the STA involves only
two active nucleons in the final state, it is amenable to
the inclusion of pion production channels. As with the
SF approach, both the pion-production mechanism and
fully relativistic two-body currents have been included —
see Ref. [32] for recent 12C calculations. However, more
work is required to deal with isospin-asymmetric nuclei,
such as 3H and 3He.

Neglecting the binding in the initial state and FSI,
at the quasielastic peak, the energy and the momentum
transfer are related by ωQE ' (q2

QE +m2
N )1/2−mN . For

the kinematics in which qQE is small, we observe a very
good agreement between the GFMC and the data, while
the STA and SF results show some minor discrepancies
with the experiment. For moderate values of the momen-
tum transfer, there is a very good agreement between the
three approaches and the data. Note that for large values
of the scattering angle, two-body currents enhance the
GFMC and STA results, primarily via the interference
with one-body currents, bringing theoretical calculations
closer to experimental data. For the A = 3 nuclei that
we are considering in this work, the two-body current
contribution amounts to . 10% of the total strength.
This effect is known to be more sizable for larger and
more compact nuclei, such as 4He and 12C, as discussed
in Refs. [23, 25, 34]. In the kinematics with large qQE,
where relativistic effects are dominant, the SF calcula-
tions are in good agreement with the experiment in the
quasielastic region, whereas the GFMC and STA fail to
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FIG. 4: Longitudinal and transverse response functions of 3He.
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reproduce the position and the width of the peak.

V. CONCLUSIONS

We carried out theoretical calculations of the electro-
magnetic response functions and inclusive cross sections
on 3H and 3He nuclei for a variety of kinematical setups.
These observables are relevant for the electron-scattering
program conducted at Jefferson Lab and other facilities
worldwide, which are designed to investigate short-range
aspects of nuclear structure. Our analysis is based on
quantum Monte Carlo methods, as they are ideally suited
for accurately treating both the long- and short-range
components of the nuclear wave function that emerge
from realistic two- and three-body interactions.

We thoroughly benchmarked three approaches: the
Green’s function Monte Carlo, the short-time approxi-
mation and the spectral function. The GFMC, which
has already been extensively employed to perform virtu-
ally exact calculations of inclusive electron- and neutrino-
scattering [25, 35, 44] on 4He and 12C, retains the full
complexity of nuclear many-body correlations in both
the initial and final states of the reaction. The GFMC re-
sults for the electromagnetic response functions and cross
sections of 3H and 3He in the quasielastic region are in
excellent agreement with experimental data, for low and
moderate values of the momentum transfer. In this re-
gard, it is important to include two-body currents, which
bring about a ∼ 10% excess strength with respect to the
one-body case. At larger values of q, the nonrelativistic
GFMC calculations fail to reproduce the correct position
and width of the quasielastic peak. A possible way to im-
prove the GFMC results in this kinematical region is to
consider relativistic corrections in the kinematics com-
bined with the use of a convenient reference frame, as
done in Ref. [35].

The STA and the SF approaches are based on the fac-
torization of the final hadronic state, which allows one
to overcome some of the limitations of the GFMC. The
STA fully retains two-nucleon dynamics and accounts for
correlations in the initial and final state as well as two-
body currents and interference terms. Consistent with
the GFMC results, the latter enhance the transverse re-
sponse functions in the quasielastic region and are needed
to reproduce experimental data. Once the correct be-
havior at threshold is enforced and the spurious elastic
contributions are subtracted from the longitudinal re-
sponses at values of momentum transfer lower than ∼ 300
MeV, a good agreement between the STA calculations
and experimental data is observed for the electromag-
netic responses and cross sections up to moderate values
of the momentum transfer. The current version of the
STA approach suffers from analogous limitations as the
GFMC in the high momentum transfer region that could
be remedied using the strategy of Ref. [35]. The STA is
amenable to a more direct inclusion of relativistic effects
and meson production mechanisms. In this work, the

STA algorithm has been applied to the VMC computa-
tional method, it is, however, exportable to other QMC
methods suited to study larger nuclear systems, e.g., the
Auxiliary Field Diffusion Monte Carlo method [22].

We presented a novel algorithm to obtain the SF of
3H and 3He combining VMC calculations of the nuclear
spectroscopic overlaps with two-body momentum distri-
butions. Since the SF formalism can accommodate fully-
relativistic kinematic and currents, its predictions for
large values of momentum transfer are in better agree-
ment with experiments than both the GFMC and the
STA In particular, the SF results correctly reproduce
the width and the position of the quasielastic peak for
both the longitudinal and transverse responses of 3He
at q = 700 MeV. However, the SF only retains the in-
coherent contribution to the nuclear response function
and cross section. In addition, final state interaction be-
tween the struck nucleon and the spectator system are ne-
glected altogether in the present work. As a consequence,
there are some discrepancies between the SF results and
experiments at low momentum transfer, which are miti-
gated once the spurious elastic contribution is subtracted
from the theoretical calculations. Two-body currents
and pion-production amplitudes have already been im-
plemented in the SF formalism for isospin-asymmetric
nuclei [32]. However, they have not been included in
the present 3H and 3He results because of the nontriv-
ial difficulties involved when dealing with light, isospin-
asymmetric nuclei.

Our analysis has shown that the GFMC, STA and SF
results for inclusive electron scattering on both 3H- and
3He agree reasonably well in all the kinematic regions
that we considered. The reason for this agreement has
to be found in the consistent description of nuclear cor-
relations in the initial target state — and in the rem-
nant systems in the case of STA and SF methods. The
three methods appear to be remarkably close in the re-
gion corresponding to 400 MeV . qQE . 600 MeV. In
this regime, the factorization of the final state appears
to be a reliable approximation and, concurrently, rela-
tivistic effects play a relatively minor role. Besides being
relevant for the current experimental program, our study
paves the way for precise quantification of the uncertain-
ties inherent to factorization schemes. As a follow up of
this work, we intend to carry out a similar analysis for
12C and other A ≤ 12 nuclei, on the line of Ref. [69].

Our work has also highlighted a few current limitations
of these three methods. Relativistic effects in the interac-
tion vertex and in the kinematics of the reaction play an
important role in the high momentum transfer regime.
While the SF approach takes them into account, work
is ongoing to include them in both the GFMC and STA
approaches. On the other hand, some developments are
required in the SF formalism to account for two-body
currents — including their interference with one-body
terms — in isospin-asymmetric nuclei.
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FIG. 5: Longitudinal and transverse response functions of 3H.
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FIG. 7: Inclusive double-differential cross sections for electron scattering on 3He.
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FIG. 8: Inclusive double-differential cross sections for electron scattering on 3H.
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