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Abstract

Wide-field astronomical surveys are often affected by the presence of undesirable reflections (often known as
“ghosting artifacts” or “ghosts”) and scattered-light artifacts. The identification and mitigation of these ar-
tifacts is important for rigorous astronomical analyses of faint and low-surface-brightness systems. However,
the identification of ghosts and scattered-light artifacts is challenging due to a) the complex morphology
of these features and b) the large data volume of current and near-future surveys. In this work, we use
images from the Dark Energy Survey (DES) to train, validate, and test a deep neural network (Mask R-
CNN) to detect and localize ghosts and scattered-light artifacts. We find that the ability of the Mask
R-CNN model to identify affected regions is superior to that of conventional algorithms and traditional
convolutional neural networks methods. We propose that a multi-step pipeline combining Mask R-CNN
segmentation with a classical CNN classifier provides a powerful technique for the automated detection of
ghosting and scattered-light artifacts in current and near-future surveys.

Keywords: Deep Learning, Object Detection, Image Artifacts

1. Introduction

Wide-field photometric surveys at optical and
near-infrared wavelengths have provided a wealth
of astronomical information that has enabled a bet-
ter understanding of the processes that govern the
growth and evolution of the Universe and its con-
tents. Near-future surveys, such as the Vera C.
Rubin Observatory’s Legacy Survey of Space and
Time (LSST; Ivezić et al., 2019)1, will further ex-
pand our knowledge of the Universe by extending
measurements to unprecedentedly faint astronom-
ical systems. Such surveys will produce terabytes
of data each night and measure tens of billions of
stars and galaxies.

∗Corresponding author; FERMILAB-PUB-21-374-AE
Email address: dtanoglidis@uchicago.edu (Dimitrios

Tanoglidis)
1https://www.lsst.org/

Images collected by optical/near-infrared surveys
often contain imaging artifacts caused by scattered
and reflected light (commonly known as “ghost-
ing artifacts” or “ghosts”) from bright astronomical
sources. These image artifacts are an unavoidable
feature of many optical systems. The effective mit-
igation of ghosts and scattered-light artifacts, and
the spurious brightness variations they introduce,
is important for the detection and precise measure-
ment of faint astronomical systems. In particular,
since many ghosts cover a large image area with
relatively low surface brightness, they constitute
a significant source of contamination in studies of
the low-surface-brightness Universe, a major goal
of current and upcoming surveys (e.g., Greco et al.,
2018; Brough et al., 2020; Kaviraj, 2020; Tanoglidis
et al., 2021b).

Modern wide-field telescopes and instruments
greatly reduce the occurrence and intensity of
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ghosts and scattered-light artifacts by introducing
light baffles, and high efficiency anti-reflective coat-
ings on key optical surfaces. Strict requirements on
the number and intensity of ghosts and scattered-
light artifacts were achieved during the construc-
tion of the Dark Energy Camera (DECam; Ab-
bott et al., 2009; Flaugher et al., 2015), which has
enabled state-of-the-art cosmological analyses with
the Dark Energy Survey (DES; DES Collabora-
tion, 2005, 2016; DES Collaboration et al., 2018,
2021b).2, Other smaller surveys have implemented
novel optical designs to mitigate the presence of
ghosts and scattered-light artifacts (Abraham and
van Dokkum, 2014).

Despite these successful efforts, it is often impos-
sible to completely remove ghosts and scattered-
light artifacts. For example, the DES 3-year cos-
mology analyses masked ∼3% of the survey area
around the brightest stars, and ∼10% of the sur-
vey area around fainter stars (Sevilla-Noarbe et al.,
2021). Additional mitigation steps that go beyond
the original survey design requirements are particu-
larly important for studies of low-surface-brightness
systems.

The large datasets produced by surveys like DES
make the rejection of these residual artifacts by vi-
sual inspection infeasible. The situation will be-
come even more intractable in upcoming surveys,
like LSST, which will collect ∼ 20TB/night and
∼ 15PB of data over its nominal 10-year sur-
vey.3 Furthermore, the deeper imaging of LSST
will place even tighter requirements on low-surface-
brightness artifacts (LSST Science Collaboration,
2009; Brough et al., 2020).

To mitigate residual ghosts and scattered-light
artifacts, DES uses a predictive Ray-Tracing algo-
rithm as the core of its detection process. This
algorithm forward models the physical processes
that lead to ghosting/scattered-light events (Kent,
2013), such as the configuration of the telescope and
camera optics, and the positions and brightnesses
of known stars obtained from catalogs external to
the survey (for a more detailed description of the
Ray-Tracing algorithm, see Kent 2013 and Sec. 2
of Chang et al. 2021). While the Ray-Tracing algo-
rithm is largely successful in predicting the presence
and location of artifacts in the images, this algo-
rithm is also limited in predicting the amplitude

2https://www.darkenergysurvey.org/
3https://www.lsst.org/scientists/keynumbers

of the ghost image by the accuracy of the optical
model and the external star catalogs used.

Recently, Chang et al. (2021) demonstrated an
alternative approach using a convolutional neural
network (CNN; Lecun et al., 1998) to classify DES
images containing ghosts and scattered-light arti-
facts. CNNs constitute a class of deep neural net-
works that are inspired by the visual cortex and op-
timized for computer vision problems. Since their
invention, CNNs have found numerous applications
in the field of astronomy, including galaxy morphol-
ogy prediction (e.g., Dieleman et al., 2015; Cheng
et al., 2021), star-galaxy separation (e.g., Kim and
Brunner, 2017), identification of strongly lensed
systems (e.g., Lanusse et al., 2018; Davies et al.,
2019; Bom et al., 2019; Huang et al., 2020, 2021),
classifying galaxy mergers (e.g., Ćiprijanović et al.,
2021), and many other applications. The CNN de-
veloped by Chang et al. (2021) was able to predict
whether an image contained ghosts or scattered-
light artifacts with high-accuracy (∼ 96% in the
training set, ∼ 86% in the test set), but did not
identify the specific pixels of the image that were
affected by the presence of artifacts. Since ghosts
and scattered-light artifacts often affect a subregion
of an image, flagging entire images rejects a signif-
icant amount of high-quality data.

In contrast to classic CNNs, object detection al-
gorithms are designed to determine the location of
objects in an image (e.g., place bounding boxes
around objects or mask exact pixels that belong to
objects). In this work, we study the use of a deep
learning-based object detection algorithm, namely
a Mask Region-Based Convolutional Neural Net-
work (Mask R-CNN; He et al., 2017), to predict
the location of ghosts and scattered-light artifacts
in astronomical survey images. Mask R-CNNs have
recently been demonstrated as an accurate tool to
detect, classify, and deblend astronomical sources
(stars and galaxies) in images (Burke et al., 2019).

Using 2000 manually annotated images, we train
a Mask R-CNN model to identify artifacts in DES
images. Comparing the results to those of the Ray-
Tracing algorithm on ghost-containing images, we
find that Mask R-CNN performs better in mask-
ing affected regions — indicated by the value of the
F1 score (a combination of precision and recall).
This demonstrates that deep learning-based object
detection algorithms can be effective in helping to
address a challenging problem in astronomical sur-
veys without any a priori knowledge of the optical
system used to generate the images.
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This paper is organized as follows. In Sec. 2,
we present the dataset, including the annotation
process, used in this work. In Sec. 3, we de-
scribe the Mask R-CNN algorithm, implementa-
tion, and the training procedure. In Sec. 4 we
present results from the Mask R-CNN model, in-
cluding examples of predicted masks, custom and
commonly used evaluation metrics, and we com-
pare its performance to that of a conventional algo-
rithm. We further summarize our results and their
applications, and conclude in Sec. 5. The code
and data related to this work are publicly avail-
able at the GitHub page of this project: https:

//github.com/dtanoglidis/DeepGhostBusters.

2. Data

In this section, we describe the datasets used
for training and evaluating the performance of the
Mask R-CNN algorithm for detecting ghosts and
scattered-light artifacts. We briefly describe the
DES imaging data, our manual annotation proce-
dure, the creation of masks, and the agreement be-
tween the human annotators who performed these
tasks.

2.1. Dark Energy Survey Data

DES is an optical/near-infrared imaging survey
that completed six years of observations in January
2019. The DES data cover ∼ 5000 deg2 of the
southern Galactic cap in five photometric filters,
grizY , to a depth of i ∼ 24 mag (DES Collabora-
tion et al., 2021a). The observations were obtained
with DECam, a 570-megapixel camera mounted on
the 4m Blanco Telescope at the Cerro Tololo Inter-
American Observatory (CTIO) in Chile (Flaugher
et al., 2015). The focal plane of DECam consists of
62 2048× 4096-pixel red-sensitive scientific charge-
coupled devices (CCDs), while its field-of-view cov-
ers 3 deg2 with a central pixel scale of 0.263′′.

Our data come from the full six years of DES ob-
servations (DES Collaboration et al., 2021a). For
the training, validation, and testing of the Mask
R-CNN model, we use 2000 images that cover the
full DECam focal plane and are known to contain
ghosts and scattered-light artifacts. These are part
of the positive sample used in Chang et al. (2021)
to train a CNN classifier to distinguish between im-
ages with and without ghosts. This dataset was as-
sembled by selecting images that the Ray-Tracing
program identified as likely to contain ghosts, and

subsequently visually inspecting them to correct for
false detections.

As described in Chang et al. (2021), the image
data were down-sampled images of the full DECam
focal plane. Images were produced with the STIFF
program (Bertin, 2012), assuming a power-law in-
tensity transfer curve with index γ = 2.2. Minimum
and maximum intensity values were set to the 0.005
and 0.98 percentiles of the pixel value distribution,
respectively. The pixel values in each image were
then normalized to a range whose minimum and
maximum corresponded, respectively, to the first
quartile Q1(x) and third quartile Q3(x) of the full
distribution in the image, by multiplying each pixel

value, xi, by a factor si = xi−Q1(x)
Q3(x)−Q1(x)

. Focal plane

images were originally derived as 800×723-pixel, 8-
bit grayscale images in Portable Network Graphics
format, which were then downsampled to 400×400
pixels for use with the Mask R-CNN. The data from
Chang et al. (2021) are publicly available.4

2.2. Annotation process

Training the Mask R-CNN algorithm requires
both images and ground-truth segmentation masks
identifying objects of interest in each image. To
create these masks, we used the VGG Image Anno-
tator (VIA; Dutta and Zisserman (2019))5, a simple
manual annotation software for images, audio, and
video. We split the 2000 images into batches of 100
images, and we randomly assigned each batch to
one of eight authors for annotation.6

During manual annotation, we categorized the
ghosting and scattered-light artifacts into three dis-
tinct morphological categories:

1. ‘Rays’: These are scattered-light artifacts orig-
inating from the light of off-axis stars scat-
tering off of the DECam filter changer (Kent,
2013). They emanate from one of the edges of
the image and span several CCDs. This is the
most distinct artifact category and is not com-
monly confused with either of the other two
categories.

2. ‘Bright’: These are high-surface-brightness
ghosting artifacts that come from multiple re-
flections off the DECam focal plane and the C4

4https://des.ncsa.illinois.edu/releases/other/

paper-data
5https://www.robots.ox.ac.uk/~vgg/software/via/
6Note that not every author annotated the same number

of images; six of us annotated 200 images and two of us
annotated 400 images.
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(a) (b)

(c) (d)

Figure 1: Examples of full-focal-plane DECam images containing ghosts and scattered-light artifacts. The corresponding
“ground truth” masks (right) were manually annotated. There are three categories of ghosting artifacts: image (a) contains a
scattered-light artifact classified as ‘Rays’; image (b) shows the masks for the ‘Rays’ in red; image (c) contains both ‘Bright’
and ‘Faint’ ghosts, and the corresponding masks in blue and yellow, respectively, are shown in image (d).

or C5 lenses (Kent, 2013). They are usually
relatively small in size and circular or ellipti-
cal in shape. They have more distinct borders
and are considerably brighter compared to the
following category.

3. ‘Faint’: These are lower-surface-brightness
ghosting artifacts that come from multiple re-
flections between the focal plane and the C3

lens or filter, or internal reflections off of the
faces of the C3, C4, and C5 lenses (Kent, 2013).
They are circular or elliptical in shape and are
usually larger in size and significantly fainter
than ‘Bright’ ghosts.

In Fig. 1, we present two examples of DECam
images that contain ghosts and scattered-light ar-
tifacts, along with the annotated ground truth

4



0 5 10 15 20 25 30 35 40

Area/Area CCD

10−3

10−2

10−1

N
or
m
al
iz
ed

F
re
qu
en
cy

Rays

Bright

Faint

Figure 2: Histograms of the distribution in size (area) of the
three artifact types presented in this work. The areas are
quoted as multiples of the area of a single CCD.

masks. We trained the Mask R-CNN for these three
distinct categories due to their significant morpho-
logical difference.

In total, our dataset contains 1566 ‘Rays’, 2197
‘Bright’, and 2949 ‘Faint’ artifact instances. In
Fig. 2, we present the distribution in size (area)
of these three ghost categories. The area of each
ghosting artifact is presented as a fraction of the
area of a single DECam CCD (area of artifacts in
pixel over area of a CCD in pixels). Most ‘Rays’
have an area that covers fewer than 10 CCDs.
‘Bright’ ghosts are also relatively small in size, with
a few spanning more than a couple of CCDs. On
the other hand, ‘Faint‘ ghosts are large in size, with
a significant fraction of them covering an area of 20–
30 CCDs. Many images contain multiple ghosts or
scattered-light artifacts.

We note that the ghosting and scattered-light ar-
tifacts do not always have clear boundaries (espe-
cially those of type ‘Rays’) and that the distinction
between ‘Bright’ and ‘Faint’ ghosts is not always
well defined. For that reason we expect some dis-
agreement between the human annotators in the
extent and shape of the ground truth masks and in
the assigned labels.

In Fig. 3, we overlay the masks generated by all
eight annotators for the same two DECam images
presented in Fig. 1. The colors correspond to the
number of annotators that have labeled the region
as containing an artifact; dark purple corresponds
to fewer votes, while light yellow corresponds to
more votes. We do not distinguish between the dif-
ferent artifact types in this image.

The right panel of Fig. 3 shows a significant vari-
ation in the masks created by the different annota-
tors for the ‘Rays’. The left panel shows generally
good agreement between the different annotators
for the most prominent ghosts in the image; how-
ever, there is a large area on the right of the image
that is labeled by only two annotators. We discuss
the agreement between the human annotators in
more detail in Appendix A. In Section 4, we demon-
strate that the Mask R-CNN is able to out-perform
conventional algorithms even in the presence of the
label noise introduced by disagreements in the ex-
istence, mask region, and classification of artifacts
by individual annotators. Reduction in label noise
from more uniform annotation could improve the
performance of the algorithm in the future.

3. Methods

We use Mask R-CNN (He et al., 2017), a popular,
state-of-the art instance segmentation algorithm, to
detect and mask ghost and scattered-light artifacts.

Mask R-CNN is a powerful and complex algo-
rithm, the latest in a series of object detection mod-
els, collectively known as the R-CNN family.7 It
builds upon many deep learning and computer vi-
sion techniques; we refer the reader to Weng (2017)
for a detailed description of the R-CNN family.

Instance segmentation (e.g., for a review, Mueed
Hafiz and Mohiuddin Bhat, 2020) combines the
functions of object detection and image segmenta-
tion algorithms. Object detection (e.g., for a re-
view, Zhao et al., 2018) is an active area of research
in computer vision, with the goal of developing algo-
rithms that can find the positions of objects within
an image. Semantic segmentation (e.g., for a re-
view, Minaee et al., 2020) on the other hand refers
to the problem of pixel-level classification of dif-
ferent parts of an image into pre-defined categories.
Instance segmentation is used to simultaneously de-
tect objects in an image and to create a segmenta-
tion mask for each object.

A schematic description of the Mask R-CNN
workflow is presented in Fig. 4. In the first stage
of the model, the input images are fed into a pre-
trained deep CNN — such as VGG (Simonyan and
Zisserman, 2014) or ResNet (He et al., 2015) —

7Mask R-CNN is the latest in the R-CNN family for 2D
object detection. Mesh R-CNN (Gkioxari et al., 2019) is a
more recent addition to the family, and it is able to predict
3D shapes of the detected objects.
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Figure 3: Masks created by the eight different annotators (overlaid on top of each other) for the same two images presented in
Fig. 1. The colors indicate the number of annotators that have labeled a given pixel as containing a ghost, from dark purple
(one annotator) to light yellow (all the eight annotators).

Backbone CNN

RPN

Feature maps
of RoIs

Mask FCN pixel 
classification

Joint

RoIAlign

Softmax
classification

Bounding box
regression

Binary 
classification

Bounding box
regression

Figure 4: High-level schematic overview of the Mask R-CNN
model. Figure adapted from Weng (2017).

also called the backbone network. The last, fully
connected, classification layers of this network have
been removed, and thus its output is a feature map.
This feature map8 is passed into the Region Pro-

8In practice, most Mask R-CNN implementations – like

posal Network (RPN) to produce a limited num-
ber of Regions of Interest (RoIs) to be passed to
the main network – i.e., candidate regions that are
most likely to contain an object.

The RPN is a simple CNN that uses a sliding
window to produce a number of anchor boxes –
boxes of different scales and aspect ratios – at each
position. When training the RPN network, two
problems are considered — classification and re-
gression. For classification, the algorithm consid-
ers the possibility that there is an object (without
considering the particular class) that fits inside an
anchor box. For regression, the best anchor box
coordinates are predicted. The anchor boxes with
the highest object-containing probability scores are
passed as RoIs in the next step. The loss of the
RPN network is composed of a binary classification
loss, LRPN,cls, and a bounding box regression loss,
LRNP,bbox, such that LRPN = LRPN,cls +LRNP,bbox.

Each of the proposed RoIs has a different size.

the one we are using in this work – use a Feature Pyramid
Network (FPN; Lin et al., 2016) on top of the backbone. The
FPN combines low-level features extracted from the initial
stages of the backbone CNN with the high-level feature map
output of the last layer. This improves the overall accuracy
of the model, since it better represents object at multiple
scales.

6



However, the fully connected networks used for pre-
diction require inputs of the same size. For that
reason, the RoIAlign method is used to perform a
bilinear interpolation on the feature maps within
the area of each RoI and output the interpolated
values within a grid of specific size, giving fixed-
size feature maps of the candidate regions.

Finally, these reshaped regions are passed to the
last part of the Mask R-CNN that performs three
tasks in parallel. A softmax classifier learns to pre-
dict the class of the object within the RoI; the
output is one of the K + 1 classes, where K are
the different possible object types (Lcls loss), plus
one background class. A regressor learns the best
bounding box coordinates (Lbbox loss). Finally, the
regions pass through a Fully Convolutional Network
(FCN) that performs semantic segmentation (Lmask

loss), i.e. a per-pixel classification, that creates the
masks. The total loss of this Mask R-CNN part is
thus Ltot = Lcls + Lbbox + Lmask.

The DeepGhostBusters algorithm is the Mask R-
CNN implementation by Abdulla (2017), trained
on our manually annotated dataset of ghosting and
scattered-light artifacts. This code is written in
Python using the high-level Keras9 library using
a TensorFlow10 backend. We use the default 101-
layer deep residual network (ResNet-101; He et al.
2015) as the backbone convolutional neural network
architecture.

0 10 20 30 40 50 60 70
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α = 4× 10−3 α = 4× 10−4 α = 4× 10−5 α = 4× 10−6

Training

Validation

Figure 5: Total loss of the Mask R-CNN model as function
of the training epoch. The training is performed using a
progressively smaller learning rate, α.

Before training, we randomly split the full

9https://keras.io/
10https://www.tensorflow.org/

dataset of 2000 images into a training set (1400
images), a validation set (300 images), and a test
set (300 images). The annotation process was per-
formed before this random split. Such a random
split is generally important in machine learning
problems for these three sets to be representative of
the general population, but it becomes even more
important here because different human annotators
have different annotation styles. This could cre-
ate significant systematic differences between the
ground truth masks in the datasets if not properly
randomized.

In computer vision problems where only a small
training set is available, it is common to use trans-
fer learning to improve results (for recent reviews,
see Wang and Deng 2018 and Zhuang et al. 2019).
Transfer learning is a process where the weights of a
network that has already been trained for one detec-
tion task are used for a different, but related, task,
usually with some further training. This speeds up
the training process, reduces overfitting, and pro-
duces more accurate results. Here, we initialize the
learning procedure (i.e., use transfer learning) us-
ing the weights learned from training Mask R-CNN
on the Microsoft Common Objects in Context (MS
COCO) dataset11 (Lin et al., 2014), which consists
of ∼ 330k images (∼ 2.5M object instances) of 91
classes of common or everyday objects.

To reduce overfitting, we employ data augmen-
tation (e.g., Shorten and Khoshgoftaar, 2019), by
performing geometric transformations on the im-
ages and the masks. Specifically, we randomly ap-
ply zero to three of the following transformations:

• Rotation of the image and the masks by 270
degrees.

• Left-right mirroring/flip of the images and
masks.

• Up-down mirroring/flip of the images and
masks.

We re-train our model using stochastic gradient
descent to update the model parameters. Similarly
to what was proposed in Burke et al. (2019), the
training is performed in different stages with pro-
gressively smaller learning rates, α, at each stage.
This allows for a deeper learning and finer tuning
of the weights, while minimizing the risk of overfit-
ting.

11https://cocodataset.org/#home

7
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Specifically, in the first stage (15 epochs), we re-
train the top layers only and use a learning rate
of α = 4 × 10−3. Then, we train all the lay-
ers with decreasing learning rates: 20 epochs at
α = 4 × 10−4, 20 epochs at α = 4 × 10−5, and
20 epochs at α = 4 × 10−6. In total, we trained
the model for 75 epochs, after which overfitting
occurs. In all stages (training, validation, test)
we ignore detections with less than 80% confidence
(DETECTION MIN CONFIDENCE = 0.8). We utilized
the 25 GB high-RAM Nvidia P100 GPUs avail-
able through the Google Colaboratory (Pro ver-
sion). The training took ∼ 4 hours to complete.
The inference time is ∼ 0.34s per image to predict.

In Fig. 5, we present the total loss as a function of
the training epoch for both training and validation
sets. In Appendix B, we show the training history
for the individual components of the total loss.

4. Results

We use an independent DECam test set to eval-
uate the performance of the DeepGhostBusters
Mask R-CNN in detecting and masking ghost and
scattered-light artifacts. We use both custom met-
rics appropriate for the problem at hand and met-
rics commonly used in the object detection litera-
ture. We also compare the performance of Deep-
GhostBusters with the conventional Ray-Tracing
algorithm. Finally, we test the classification per-
formance of DeepGhostBusters when it is presented
with a dataset that also contains images that lack
any ghosts or scattered-light artifacts.

4.1. Example Performance

We first present the mask and class predictions
of the DeepGhostBusters Mask R-CNN model on
four example images (Fig. 6). The two top panels,
(a) and (b), correspond to the same images whose
ground truth masks were presented in Fig. 1. As
in Fig. 1, the different colors represent the differ-
ent ghosting artifact types: red for ‘Rays’, blue for
‘Bright’, and yellow for ‘Faint’.

These examples demonstrate both the successes
and failures of our model. For example, in panel (a)
the model has successfully masked most of the cen-
tral ‘Faint’ ghost, but it has also missed a significant
part of its periphery, as well as the prominent ghost
on the right of the image. Furthermore, although it
has successfully deblended and separately masked
the small ‘Bright’ ghost that is superimposed on the

larger ‘Faint’ one, it has only partially masked the
one on the left. Panel (b) presents a characteris-
tic example of a false positive detection: predicting
a mask for a ‘Faint’ ghost that is not there. The
Mask R-CNN has predicted a mask that success-
fully covers most of the prominent ‘Rays’-type ar-
tifact; it is also able to detect the smaller ‘Rays’ on
the right. However, it has also erroneously masked
a large central region (containing the edges of the
rays) as a ‘Faint’ ghost. Panels (c) and (d) present
mostly successful detections, although with some
false negatives, as the undetected ‘Faint’ ghost on
the top-left corner of panel (d). We next formally
quantify and evaluate the performance of the Mask
R-CNN model and compare it with that of the con-
ventional Ray-Tracing algorithm.

4.2. CCD-based metrics

The DECam focal plane consists of 62 science
CCDs. The conventional Ray-Tracing algorithm
used by DES flags affected focal plane images on
a CCD-by-CCD basis — i.e., if a CCD contains
a ghost or scattered-light artifact, the entire CCD
is removed from processing. To compare the per-
formance of the Mask R-CNN to the conventional
algorithm, we develop metrics that are based on
whether a CCD contains a ghost or scattered-light
artifact.

The resulting metrics depend on the size of in-
dividual artifacts. This is important for the prob-
lem at hand: for example, we care how well the
algorithm can mask a larger ghost compared to a
smaller one. At the same time, given the challenges
of this problem (e.g., overlapping sources and bor-
ders that are not always well defined), assessing the
performance at the CCD-level can be more robust
than comparisons at the more granular pixel level.

We consider each image as a 1D array of length 62
with entries 0 and 1, where 0 corresponds to CCDs
that do not contain a ghost, and 1 corresponds to
those that do contain a ghost. For a batch of M
images containing N = 62 ×M CCDs, we define
the number of true positives (NTP ), true negatives
(NTN ), false positives (NFP ), and false negatives
(NFN ). Then, we define the CCD-based precision
(purity) and recall (completeness) as:

PrecisionCCD =
NTP

NTP +NFP
, (1)

RecallCCD =
NTP

NTP +NFN
. (2)

8



(a) (b)

(c) (d)

Figure 6: Predicted masks on four example images that contain the three distinct artifact types — scattered-light ‘Rays’ (red),
‘Bright’ ghosts (blue), and ‘Faint’ ghosts (yellow). The top panels correspond to the images presented in Fig. 1.

Based on the science case of interest, one may
want to maximize either the precision or the re-
call. For example, for systematic studies of low-
surface-brightness galaxies, high recall for ghosts
and scattered-light artifacts may be preferred at the
expense of some loss in precision.

One approach to assessing the trade-off between
precision and recall is to define the F1 score, which

is the harmonic mean of the precision and recall,

F1CCD = 2

(
PrecisionCCD · RecallCCD

PrecisionCCD + RecallCCD

)
(3)

Note that we can use the above definitions for each
type of artifact individually or for all artifact types
combined.

The above metrics are based on the notion of a bi-
nary classification of CCDs as affected by ghosts or
scattered-light artifacts. In reality, the ghosts and
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Figure 7: CCD-based (a) precision (blue) and recall (orange), and (b) F1 score as a function of the CCD area threshold (see
main text) from the Mask R-CNN model and for the three ghosting artifact categories (‘Rays’, ‘Bright’, and ‘Faint’).

scattered-light artifacts will only cover some frac-
tion of the CCD area. Thus, we define a threshold
for the fraction of the CCD area that must be cov-
ered for the CCD to be classified as affected. In
Appendix C we present examples of masked CCDs
for two different area thresholds. Here, we study
how the performance metrics change as a function
of that threshold.

In panel (a) of Fig. 7, we present precision and re-
call as a function of the CCD area threshold for the
three artifact categories individually. These met-
rics are related to the number of CCDs (as opposed
to the number of artifacts) that were correctly or
incorrectly classified. Therefore, the differences we
observe between the artifact types depend on the
different sizes of the artifacts. For example, as
we have seen (Fig. 2), ‘Faint’ ghosts tend to cover
∼ 10 − 30 CCDs, while ‘Bright’ ghosts are signifi-
cantly smaller, covering ∼ 1 − 3 CCDs. Thus, the
classification and masking of a single large ‘Faint’
object has a greater effect on the metrics than the
detection of two or three ‘Bright’ ghosts.

There are a few interesting trends to notice in this
figure. First, for ‘Rays’ and ‘Bright’ ghosts, the pre-
cision is higher than the recall and almost constant
as the area threshold changes. The high precision
score (∼ 80%) for these categories is easy to under-
stand: these are the most distinct and prominent
ghosts, and thus it is hard for a CCD with a ‘Faint’
ghost (or for a CCD without a ghost) to be mistaken
as containing either of these types of artifacts.

Second, the recall score for ‘Rays’ is ∼ 70% and
constant as a function of the threshold. The recall
score for ‘Bright’ ghosts greatly degrades with area
threshold and it is generally low (less than 50%).
‘Bright’ ghosts are relatively small, only partially
covering the CCDs that contain them; as we in-
crease the area threshold, only a few such ghosts
can pass it.

A third interesting point is that ‘Faint’ ghosts
have higher recall than precision, in contrast to
the two other categories. ‘Faint’ ghosts are usually
large: even though some may go undetected, the
largest cover many CCDs and are usually detected
(at least partially), thus pushing the CCD-based re-
call (completeness) to higher values. On the other
hand, some ‘Bright’ ghosts, especially those with a
significant overlap with larger ‘Faint’ ghosts can be
misclassified as ‘Faint’, leading to a lower precision.

In panel (b) of Fig. 7, we present the F1 score
as a function of the CCD area threshold. The F1
score (see Eq. (3)) is useful as a way to compare
the performance of the classifier for different ghost
types using a single metric. As we can see in this
figure, the Mask R-CNN performs best in finding
CCDs containing ‘Rays’, while CCDs containing
‘Faint’ ghosts are identified with higher efficiency
than CCDs containing ‘Bright’ ghosts.

In practice, we are interested in the ability of the
DeepGhostBusters Mask R-CNN to detect combi-
nations of ghosts and scattered-light artifacts. We
present the CCD-based precision and recall as a
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Figure 8: CCD-based (a) precision and (b) recall of the Mask R-CNN model (blue lines) and the Ray-Tracing algorithm (orange
lines). We consider both the combination of all types of artifacts (solid lines) and the combination of ‘Rays’+‘Bright’ (dashed
lines).
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Figure 9: CCD-based F1 scores for the same models and
ghost type combinations as in Fig. 8.

function of the area threshold in Fig. 8 (panels (a)
and (b), respectively); we also present the F1 score
in Fig. 9 for the two combinations, ‘Rays’+‘Bright’
(solid blue lines) and ‘Rays’+‘Bright’+‘Faint’ (all
ghost types, dashed blue line).

We chose this combination for two reasons: first,
it allows a fairer comparison with the Ray-Tracing
algorithm, which is not tuned for very low-surface-
brightness ghosts (see next subsection); second, for
a practical application, we may not need to reject
CCDs containing very faint ghosts, because these
have little influence on the surface brightness of real

sources and can be effectively deblended.

4.3. Comparison with the Ray-Tracing algorithm

Next, we compare the performance of our Mask
R-CNN model in detecting ghost-containing CCDs
to that of the Ray-Tracing algorithm. We note a
few details of this comparison:

• The test dataset consists only of images known
to contain at least one ghost or scattered-light
artifact.

• When plotting metrics as a function of the
CCD area threshold, this threshold is applied
only to the ground-truth masks. This accounts
for the fact that we only have predictions from
the Ray-Tracing algorithm on a CCD-by-CCD
basis.

• The available output from the Ray-Tracing al-
gorithm does not distinguish between the dif-
ferent artifact categories. Furthermore, the
Ray-Tracing algorithm applies a threshold to
the predicted surface-brightness of artifacts,
and thus is not optimized to detect ‘Faint’
ghosts. For that reason we exclude ‘Faint’
ghosts when evaluating metrics to compare
performance between the Ray-Tracing and
Mask R-CNN algorithms.

We plot the CCD-based precision and recall
(Fig. 8) and F1 score (Fig. 9) resulting from the
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Ray-Tracing algorithm (orange lines) and Mask R-
CNN (blue lines), as a function of the ground truth
threshold area. We consider two categories of arti-
facts selected based on the ground truth masks: all
ghost types combined (solid lines) and the combi-
nation of ‘Rays’+‘Bright’ ghosts (dashed line).

We first consider the limit of zero percent CCD
area threshold: a single pixel of an artifact has to
be in the CCD to be classified as ghost-containing.
The Ray-Tracing algorithm achieves a high preci-
sion score, which, for the case when the combi-
nation of all ghost types is considered, is higher
than that from the Mask R-CNN for the same case
(∼ 0.9 vs. ∼ 0.7). However, for the same case the
recall is much lower (∼ 0.8 vs. ∼ 0.3). In other
words, Ray-Tracing produces results high in purity
but low in completeness. When the combination of
only ‘Rays’+‘Bright’ ghosts is considered, both the
precision and the recall from the DeepGhostBusters
Mask R-CNN model are significantly higher than
those from the Ray-Tracing algorithm.

Fig. 8 shows that precision decreases, while re-
call increases as a function of the CCD area thresh-
old for both artifact combinations. As we increase
the threshold, fewer CCDs are labeled as contain-
ing artifacts and thus the purity decreases while the
completeness increases.

The F1 score, which combines precision and
recall, demonstrates that the performance of the
Mask R-CNN model is significantly higher than
that of the Ray-Tracing algorithm for all area
threshold values and for both artifact combinations
(Fig. 9).

To facilitate the numerical comparison of the
performance of the algorithms, we present in Ta-
ble 1 the values of the different metrics for the two
models, at a one pixel (> 0%) CCD area thresh-
old, for both algorithms. The results for both ar-
tifact category combinations (‘Rays’+‘Bright’ and
‘Rays’+‘Bright’+‘Faint’) are presented.

4.4. Standard object detection evaluation metrics

We now examine the Average Precision (AP; Ev-
eringham et al., 2010), a metric that is commonly
used by the computer vision community to as-
sess the performance of object detection algorithms.
The AP is defined as the area under the Precision-
Recall (PR) curve:

AP =

∫ 1

0

p(r)dr, (4)

where p(r) is the precision, p, at recall level r. In
practice, an 11-point interpolation method is used,
and the AP score is calculated as:

AP =
1

11

∑
ri∈R

p̃(ri), (5)

where p̃ is the maximum precision at each recall bin
and R = {0.0, 0.1, . . . , 1.0}. Precision and recall are
defined using the common formulae (Eqs. 1 and 2),
but here the number of true positives, true nega-
tives etc. refer to detections of individual artifacts
and not single CCDs.

To define the detection of an artifact, we intro-
duce the concept of the Intersection over Union
(IoU; also known as the Jaccard index; Jaccard
1912), which quantifies the overlap between the
masks of the ground truth and the prediction. As
the name suggests, it is defined as the ratio of the
area of the intersection of the predicted mask (pm)
and the ground truth (gt) mask over the area of the
union of the predicted and ground truth masks:

IoU =
area of intersection

area of union
=
area(gt ∩ pm)

area(gt ∪ pm)
. (6)

An IoU threshold is then used to determine if a
predicted mask is a TP, FP , or FN . It is common
to evaluate the AP score at different IoU levels, and
we denote the AP at a IoU threshold β as “AP@β”.

By calculating the PR curves and the AP score
at different IoU threshold and for the different arti-
fact categories, we evaluate the performance of the
Mask R-CNN model for different artifact categories.
Furthermore, by determining how AP varies with
increasing IoU, we evaluate the agreement between
the true and predicted masks.

In Fig. 10, we present the PR curves and the
corresponding AP scores for IoU thresholds in the
range 0.5 − 0.9 (with step size 0.05) for the three
artifact types in panels (a)-(c), individually, and
for all artifact types combined in panel (d). We
find that ‘Bright’ ghosts are most easily detected
by the Mask R-CNN, while ‘Faint’ ghosts are the
most challenging to detect — in agreement with our
expectations. Furthermore, for ‘Rays’, the AP de-
creases rapidly with increasing IoU threshold: the
model struggles to accurately reproduce the ground
truth masks for these artifacts. This is expected,
because these artifacts do not have clear bound-
aries, as demonstrated by variation in the mask re-
gions defined by the human annotators.

In that section, we have shown that the Mask
R-CNN algorithm is superior to the Ray-Tracing
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Table 1: CCD-based evaluation metrics (precision, recall, F1 score) for the Mask R-CNN and Ray-Tracing algorithms, at 0%
CCD area threshold.

aaaaaaaaaa
Metric

Model
Mask R-CNN Ray-Tracing

Rays+Bright Rays+Bright+Faint Rays+Bright Rays+Bright+Faint

Precision 84.3% 68.7% 64.7% 89.9%
Recall 63.6% 82.5% 48.4% 23.5%
F1 score 72.5 % 75.0% 55.4% 37.3%
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Figure 10: Precision-Recall curves and Average Precision scores at different IoU threshold values in the range 0.50 − 0.90. We
show these metrics for the different ghost types in this work (‘Rays’-‘Bright’-‘Faint’), and for all ghost types, combined.
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in detecting CCDs affected by ghosts or scattered-
light artifacts.

4.5. Using Mask R-CNN to classify ghost-
containing vs. ghost-free images

So far, the images used for training and testing
the performance of the Mask R-CNN model were
known (by visual inspection) to contain at least
one ghost or scattered-light artifact. However, most
DECam images do not contain prominent ghost or
scattered-light artifacts, and thus they systemati-
cally differ from those used to train and test the
model. Such differences may result in a large num-
ber of false positive detections (e.g., real astronom-
ical sources, especially large and bright objects) or
systematically failing to detect ghosts in some im-
ages — for example, images that contain only very
small or very faint ghosts.

To test the performance of the Mask R-CNN on
images that do not contain ghosts, we use a set
of 1792 images with an equal number of ghost-free
and ghost-containing images. This set of images
is independent of the 2000 images used to train,
validate, and test the Mask R-CNN model. They
constitute the test set used in Chang et al. (2021).
For this dataset, the ground truth labels refer to the
presence of a ghost in the image — not the number
of ghosts or the regions affected by ghosts.

We run Mask R-CNN on this dataset: when the
algorithm predicts the existence of even a single
ghost or scattered-light artifact in the image, we as-
sign a predicted label ‘HAS GHOST’ to that image.
Otherwise the assigned predicted label ‘CLEAN’.
The confusion matrix resulting from this process is
shown in Fig. 11. The accuracy is 79.7%, the pre-
cision is 77.3%, and the recall is 84.3%. Both the
numbers of false positive and false negative cases
are high: false positives occur at ∼ 22.7% of the
total number of images classified as positives, and
the false negatives occur at (Dimitrios)....

However, visual inspection of false positive ex-
amples and the predicted masks revealed that
most contain objects or exhibit features simi-
lar to those found in ghost-containing images.
These include bright streaks from artificial Earth-
orbiting satellites (mimicking ‘Rays’), low-surface-
brightness emission from Galactic cirrus, images
with poor data quality (due to cloud coverage that
diffuses starlight), or large resolved stellar systems
(e.g., dwarf galaxies and globular clusters). These
are very similar to the cases of false positives re-
turned by the CNN classifier in Chang et al. (2021).

Similarly, most of the false negatives contain very
small and faint ghosts (and usually each image con-
tains only one such ghost) that could have been eas-
ily missed even by a human annotator.12 Thus, we
conclude that the false positives/negatives are qual-
itatively different from the true positives/negatives.
and that – in practice – the Mask R-CNN is much
better in classifying images that contain unusual
and/or problematic areas, compared to what one
would naively assume from the confusion matrix
(Fig. 11).

We note that in practical applications of Mask
R-CNN, we can reduce the number of false posi-
tives by first applying the CNN classifier presented
in Chang et al. (2021), and then applying the Mask
R-CNN only to those images that are identified as
containing ghosts or scattered-light artifacts. The
results of this process on the test dataset are pre-
sented in panel (b) of Fig. 11. We find that we are
able to reduce the number of false positives to less
that of the Mask R-CNN alone, but at the expense
of increasing the number of false negatives. This
combined model has an overall accuracy of 83.1%,
precision of 87.3%, and recall of 75.6%. Because
of this trade-off, the final decision of pre-processing
with a CNN depends on the particular problem and
whether we are willing to reject otherwise real astro-
nomical objects (false positives) or to have residual
ghost and scattered-light artifacts (false negatives).

5. Summary and Conclusions

In this work, we applied a state-of-the art ob-
ject detection and segmentation algorithm, Mask
R-CNN, to the problem of finding and masking
ghosts and scattered-light artifacts in astronomi-
cal images from DECam. The effective detection
and mitigation of these artifacts is especially im-
portant for low-surface-brightness science, an im-
portant target of future surveys.13 Given the sheer
volume of data generated by current and upcoming
surveys, automated methods must be used for the
identification of these artifacts.

In this paper, we compared the performance of
the Mask R-CNN algorithm to two previous ap-
proaches, each of which has benefits and limita-

12Examples of false positives and false negatives can be
found in Appendix D.

13See, for example, https://sites.

google.com/view/lsstgsc/working-groups/

low-surface-brightness-science
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Figure 11: (a) Confusion matrix of predictions of the Mask R-CNN model on a dataset containing an even number of ghost
containing and clean images. An image is predicted to ‘have ghost’ if even a single ghost is detected in that image by the
Mask R-CNN model. (b) Confusion matrix of the predictions of the combined CNN + Mask R-CNN model (CNN model from
Chang et al. (2021)). An image is said to ‘have ghost’ if and only if both the CNN and the Mask R-CNN models agree on that
(otherwise the prediction is ‘clean’).

tions. First, the conventional Ray-Tracing algo-
rithm currently used by DES identifies individual
CCDs affected by ghosting or scattered-light arti-
facts. This is a predictive model that does not use
the actual imaging data to detect artifacts. Thus,
its performance is limited by the accuracy of the
optical model and external catalogs of bright stars,
and it fails to detect a significant number of arti-
facts. Second, we compared to a relatively standard
CNN (Chang et al., 2021), which does not depend
on modeling the optical processes that lead to the
generation of artifacts or on external catalogs of
bright astronomical objects. Furthermore, it sepa-
rates “ghost-containing” from “clean” images with
high accuracy. However, as a classifier, it does not
identify the affected subregion(s) within the image:
if used without further investigation, it can lead
to the rejection of useful information from non–
affected parts of the image.

The Mask R-CNN approach presented in this
work has the benefits of a deep learning approach —
i.e., it does not depend on physical modeling, except
through that training data, themselves — that can
predict the locations of ghosts and scattered-light
artifacts, which can be used to create CCD- and
pixel-level masks of the affected region of an image.

We compare the ability of Mask R-CNN in mask-
ing affected CCDs in ghost-containing images with
that of the Ray-Tracing algorithm. We find that

the Mask R-CNN model has superior performance,
as measured by the F1 score, which is the harmonic
mean of the precision (purity) and the recall (com-
pleteness). These results hold across different CCD
area thresholds and for the two combinations of
the morphological classes discussed in this work —
‘Bright’+‘Rays’ and ‘Bright’+ ‘Rays’+‘Faint’. At
the threshold of one pixel (> 0%), for example, and
for the combination ‘Rays+Bright’ the F1 score of
the Mask R-CNN model is 72.5% as opposed to
55.4% of the Ray-Tracing algorithm.

One weakness of our method is that it produces a
large number of false positives when presented with
images that do not contain ghosts or scattered-light
artifacts — although many of these false positives
contain other types of artifacts or bright astronomi-
cal objects. We show that, to mitigate this problem,
a CNN classifier similar to that discussed in Chang
et al. (2021) can be used as a pre-processing step
before the Mask R-CNN is applied to images that
are predicted to contain ghosts or scattered-light
artifacts. This process reduces the number of false
positives by a factor of two and increases the num-
ber of false negatives, and improves the accuracy.

The results presented here highlight the promise
of object detection and segmentation methods in
tackling the identification of ghosts and scattered-
light artifacts. Since deep learning models that are
trained on one data set can be adapted to a new
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data set with many fewer examples through transfer
learning, the DeepGhostBusters algorithm trained
on DECam images can potentially be adapted and
retrained to identify such artifacts in future sur-
veys. Indeed, cross-survey transfer learning has al-
ready been shown to significantly reduce the need
for large annotated datasets in deep learning-based
classification cases (e.g., Domı́nguez Sánchez et al.,
2019; Khan et al., 2019; Tanoglidis et al., 2021a).
Additionally, these results indicate that such tech-
niques are also promising for different, but related,
problems, such as the the detection of artifacts from
cosmic rays, satellite trails, etc. (e.g., Goldstein
et al., 2015; Desai et al., 2016; Melchior et al., 2016;
Zhang and Bloom, 2020; Román et al., 2020; Pail-
lassa et al., 2020). Such automated techniques can
facilitate the efficient separation of artifacts from
scientifically useful data in upcoming surveys like
LSST.
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Appendix A. Human annotator agreement

As mentioned in Sec. 2.2, human annotators do
not always agree on the mask boundaries and the
artifact types. A significant disagreement may af-
fect the performance of the Mask R-CNN, so we
study extent of the disagreement in more detail,
which may suggest avenues for improvement of the
annotation process.

All eight annotators were given a common sub-
set of 50 images that were randomly drawn from the
full dataset described in Sec. 2.1. When an annota-
tor creates a mask for a specific artifact, they give
a ‘vote’ to the region covered by that mask. A sec-
ond annotator will create a different mask around
the same object. The pixels where there is an over-
lap between the two masks will receive two votes in
total while the non-overlapping parts only one. The
same process continues for all the eight annotators.
The same region may receive multiple different clas-
sifications (e.g., votes for both ‘Bright’ and ‘Faint’
ghosts).

In Fig. A.12, we present histograms of the dis-
tribution of the number of votes each pixel in the
dataset received during the annotation process. We
restrict it to pixels that have received at least one
vote. We present the distributions for each artifact
category separately in panels (a)-(c), and the case
where we do not distinguish between different types
in panel (d). A distribution that has a strong peak
in the region of ∼ 8 votes indicates that there is a
very good agreement between the annotators.

The histogram for ‘Rays’ shows a strong bimodal-
ity, with many pixels receiving 8 votes , but also
many pixels receive just 1–2 votes. These artifacts
are distinct and bright, and hard to confuse with

any one of the other two types. However, they do
not have very clear boundaries, so, while annota-
tors agree on the bulk of the pixels affected by a
ghost, they do not agree on the extent/edges of the
masks they create.

The histogram of votes for ‘Bright’ artifacts,
panel (b), presents a peak at the low end (1–3
votes). This can be explained by the fact that there
is significant confusion about the class of some large
ghosts, which most annotators classify as ‘Faint’,
while a few classify as ‘Bright’. Since they are much
larger compared to other typical ‘Bright’ ghosts, the
distribution is dominated by the pixels belonging to
these confusing artifacts.

Generally, there is a good agreement between the
annotators when it comes to ‘Faint’ ghosts, with
over 30% of the pixels having received the full eight
votes. When not distinguishing between the dif-
ferent types of artifacts (panel (d)), we see very
good agreement between the annotators in mask-
ing ghost-containing pixels, with ∼ 45% of those
pixels having received the maximum 8 votes, and
an additional ∼ 25% having received seven votes.
Only ∼ 10% of the pixels have received only one
vote.

From the above discussion, we conclude that
there is generally good agreement in the mask-
creation process. Some confusion exists between
‘Faint’ and ‘Bright’ ghost types, because the dis-
tinction between the two is quite arbitrary. Some
potential avenues for improvement are to consider
these two categories as one, define more specific cri-
teria for each class, or have multiple persons anno-
tate the same images and assign each artifact to the
class that receives the most votes.

Appendix B. Training History

In Fig. 5, we presented the total loss as a function
of the training epoch (training history). The total
loss, Ltot, is the sum of the classification, bound-
ing box, and mask loss (see Sec. 3). We present
the training histories for these losses individually
in Figs. B.13, B.14, and B.15, respectively. As de-
scribed in the main text, we train the model using
progressively smaller learning rates for a finer tun-
ing of the parameters. We stopped the process at
75 epochs due to overfitting thereafter.
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Figure A.12: Distribution of the number of votes each pixel in our dataset has received as containing a ghost, from the eight
annotators. We include only pixels that have received at least one vote. We present the distributions for each ghost type
separately (panels (a)-(c)) and without distinguishing between the different types (panel (d)).

Appendix C. Masking CCDs

To help the reader better understand how the im-
posed area threshold affects the number of CCDs
classified as ghost-containing (Sec. 4.2), in this Ap-
pendix we present the predicted artifact masks and
the affected CCDs for two different threshold lev-
els, for the same images presented in the top row of
Fig. 6.

Specifically, in the panels (a) and (c) of Fig. C.16
we map (in blue) those CCDs that are classified
as ghost-containing when even a single pixel of the
predicted artifact mask lies within that CCD (> 0%
threshold). In panels (b) and (d) we show, for the
same images, the CCDs masked as ghost-containing
when at least half of area of the CCD has to be cov-
ered by an artifact to be classified as such (50%

threshold). To make the comparison easier, we
overlay (yellow contours) the mask predictions of
the Mask R-CNN model, without distinguishing be-
tween the different ghosting and scattered-light ar-
tifact types.

Appendix D. False Positive and False Neg-
ative examples

Here we present examples of false positive
and false negative classifications of ghosts and
scattered-light artifacts from the Mask R-CNN
method outlined in Sec. 4.5. Fig. D.17 presents
examples of false positives (panel (a)) and the cor-
responding mask predictions of the Mask R-CNN
model (panel (b)) for the same images. The color
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Figure B.13: Classification loss as a function of the training
epoch.
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Figure B.14: Bounding box loss as a function of the training
epoch.
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Figure B.15: Mask loss as a function of the training epoch.

scheme of the predicted masks follows that of the
main text (see Fig. 6).

As discussed in the main text, Sec. 4.5, most of
those images are qualitatively different from other
ghost-free images and contain either other types of
artifacts — for example, Earth-orbiting satellites
((2,2), (3,1)), airplane trails (1,4), structured cloud
cover ((1,5), (3,2), (3,3)) or large galaxies ((2,2),
(2,5)) and resolved stellar systems (4,1), where the
tuplets signify rows and columns, respectively.

Fig. D.18 presents some examples of false nega-
tives. These images contain ghosts (as confirmed
by visual inspection), but they are actually very
small or faint and hard to distinguish at the resolu-
tion presented here. Thus, it is not a surprise that
these have been classified as “clean” by the mask
R-CNN model, because they are different from the
more prominent ghost-containing images that the
network was trained on.
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M., 2016. Detection and removal of artifacts in astro-
nomical images. Astronomy and Computing 16, 67–78.
doi:10.1016/j.ascom.2016.04.002, arXiv:1601.07182.

Dieleman, S., Willett, K.W., Dambre, J., 2015. Rotation-
invariant convolutional neural networks for galaxy mor-
phology prediction. MNRAS 450, 1441–1459. doi:10.
1093/mnras/stv632, arXiv:1503.07077.

Domı́nguez Sánchez, H., Huertas-Company, M., Bernardi,
M., et al., 2019. Transfer learning for galaxy morphology
from one survey to another. MNRAS 484, 93–100. doi:10.
1093/mnras/sty3497, arXiv:1807.00807.

Dutta, A., Zisserman, A., 2019. The VIA annotation soft-
ware for images, audio and video, in: Proceedings of
the 27th ACM International Conference on Multimedia,
ACM, New York, NY, USA. URL: https://doi.org/10.
1145/3343031.3350535, doi:10.1145/3343031.3350535.

Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J.,
Zisserman, A., 2010. The pascal visual object classes (voc)
challenge.

Flaugher, B., Diehl, H.T., Honscheid, K., et al., 2015.
The Dark Energy Camera. AJ 150, 150. doi:10.1088/
0004-6256/150/5/150, arXiv:1504.02900.

Gkioxari, G., Malik, J., Johnson, J., 2019. Mesh R-CNN.
arXiv e-prints , arXiv:1906.02739 arXiv:1906.02739.

Goldstein, D.A., D’Andrea, C.B., Fischer, J.A., et al., 2015.
Automated Transient Identification in the Dark Energy
Survey. AJ 150, 82. doi:10.1088/0004-6256/150/3/82,
arXiv:1504.02936.

Greco, J.P., Greene, J.E., Strauss, M.A., et al., 2018. Illu-
minating Low Surface Brightness Galaxies with the Hy-
per Suprime-Cam Survey. ApJ 857, 104. doi:10.3847/
1538-4357/aab842, arXiv:1709.04474.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017.
Mask R-CNN. arXiv e-prints , arXiv:1703.06870
arXiv:1703.06870.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep Resid-
ual Learning for Image Recognition. arXiv e-prints ,
arXiv:1512.03385 arXiv:1512.03385.

Huang, X., Storfer, C., Gu, A., et al., 2021. Discovering New
Strong Gravitational Lenses in the DESI Legacy Imaging
Surveys. ApJ 909, 27. doi:10.3847/1538-4357/abd62b,
arXiv:2005.04730.

Huang, X., Storfer, C., Ravi, V., Pilon, A., Domingo, M.,
Schlegel, D.J., Bailey, S., Dey, A., Gupta, R.R., Her-
rera, D., Juneau, S., Landriau, M., Lang, D., Meisner,
A., Moustakas, J., Myers, A.D., Schlafly, E.F., Valdes,
F., Weaver, B.A., Yang, J., Yèche, C., 2020. Finding
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Examples of False Positives

(a)

Examples of False Positives (Predicted Masks)

(b)

Figure D.17: (a) Example images classified as ghost-containing (false positives) and the corresponding predicted masks (lower
panel, (b)).
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Examples of False Negatives

Figure D.18: Examples of false negatives, i.e. images that were classified as ‘clean’ by the Mask R-CNN model (no objects
detected). In practice, the artifacts present in these images are very small and faint, and often go undetected by human
annotators.
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