An Improved Measurement of Neutrino Oscillation Parameters by the NOvA Experiment

(The NOvA Collaboration)

1 Argonne National Laboratory, Argonne, Illinois 60439, USA
2 Universidad del Atlántico, Carrera 30 No. 8-49, Puerto Colombia, Atlántico, Colombia
3 Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
4 California Institute of Technology, Pasadena, California 91125, USA
5 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
6 Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
7 Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
8 Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
9 Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
10 Department of Physics, University of Delaware, Newark, Delaware 19716, USA
11 Department of Physics, University of Hawaii, Honolulu, Hawaii 96822, USA
12 Department of Physics, University of Houston, Houston, Texas 77204, USA
13 Department of Physics, University of Idaho, Moscow, Idaho 83844, USA
14 Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
15 Department of Physics, University of Iowa, Iowa City, Iowa 52242, USA
16 Department of Physics, University of Kansas, Lawrence, Kansas 66045, USA
17 Department of Physics, University of Kentucky, Lexington, Kentucky 40506, USA
18 Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
19 Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, USA
20 Department of Physics, University of Missouri, Columbia, Missouri 65211, USA
21 Department of Physics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
22 Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
23 Department of Physics, University of Oklahoma, Norman, Oklahoma 73019, USA
24 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
25 Department of Physics, University of Rochester, Rochester, New York 14627, USA
26 Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
27 Department of Physics, Yale University, New Haven, Connecticut 06520, USA
28 Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
29 Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
30 Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
31 Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
32 Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
I. INTRODUCTION

We report new measurements of neutrino oscillation parameters using neutrino and antineutrino data from the NOvA experiment. The data include a 50% increase in neutrino-mode beam exposure over the previously reported results [1]. We perform a joint fit to the ν_μ, $\bar{\nu}_\mu$, ν_e, and $\bar{\nu}_e$ candidate samples within the 3-flavor neutrino oscillation framework to yield a best-fit point in the normal mass ordering and the upper octant of the θ_{23} mixing angle, with $\Delta m^2_{32} = (2.41 \pm 0.07) \times 10^{-3}$ eV2 and $\sin^2 \theta_{23} = 0.57^{+0.03}_{-0.04}$. The data disfavor combinations of oscillation parameters that give rise to a large asymmetry in the rates of ν_e and $\bar{\nu}_e$ appearance. This includes values of the CP-violating phase in the vicinity of $\delta_{\text{CP}} = \pi/2$ which are excluded by $>3 \sigma$ for the inverted mass ordering, and values around $\delta_{\text{CP}} = 3\pi/2$ in the normal ordering which are disfavored at 2σ confidence.

unknown. If this term is positive, then the third mass eigenstate is the heaviest, and the mass ordering is labeled as the Normal Ordering (NO) (also referred to as Normal Hierarchy). The alternative is referred to as Inverted Ordering (IO). Knowing the mass ordering would constrain models of neutrino masses [11,15] and aid in the resolution of the Dirac or Majorana nature of the neutrino [16,17].

The mass ordering affects the rates of $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations when neutrinos travel through the Earth as compared to a vacuum. Coherent forward scattering on electrons in the Earth’s crust enhances the rate of $\nu_\mu \rightarrow \nu_e$ oscillations and suppresses $\nu_\mu \rightarrow \bar{\nu}_e$ for the NO while the enhancement and suppression is reversed for the IO. This matter effect [18] changes the oscillation probabilities for NOvA by $\sim 20\%$. Depending on the value of δ_{CP} and the mass ordering itself, NOvA may be able to exploit the resulting neutrino-antineutrino asymmetry to measure the sign of Δm^2_{32} and thus determine the mass ordering.

The angle θ_{23} largely determines the coupling of the ν_μ and ν_τ states to the ν_3 mass state. In the case of maximal mixing, $\theta_{23} = \pi/4$, ν_μ and ν_e couple equally to ν_3 [19], which suggests a $\mu - \tau$ symmetry. If non-maximal, θ_{23} could lie in the upper octant (UO, $\theta_{23} > \pi/4$) or lower
octant (LO, $\theta_{23} < \pi/4$) with a stronger ν_μ or ν_τ coupling, respectively. Current measurements of θ_{23} are near maximal mixing \cite{11}, \cite{6}, \cite{7}, but significant uncertainties remain making it the least precisely measured mixing angle.

NOvA also has sensitivity to δ_{CP}, which will increase the $\nu_\mu \rightarrow \nu_\tau$ oscillation probability if $\sin \delta_{\text{CP}}$ is positive and suppress oscillations if negative (the effect is reversed for antineutrinos). Additionally, a non-zero value of $\sin \delta_{\text{CP}}$ would identify the neutrino sector as a source of CP violation which is central to some explanations of the matter-antimatter asymmetry observed based on leptogenesis \cite{20} \cite{21}.

Here, we reanalyze the data taken in the antineutrino-mode beam from June 29, 2016, to February 26, 2019, with an exposure of 12.5×10^{20} protons on target (POT) delivered during 321.1 s of beam-on time. These data are combined with an increased, and reanalyzed, neutrino-mode beam exposure of 13.6×10^{20} POT from 555.3 s of beam-on time recorded between February 6, 2014, to March 20, 2020. During these periods, the proton source achieved an average power of 650 kW, and a peak hourly-averaged power of 756 kW.

In addition to the increased neutrino-mode beam exposure, this analysis introduces various improvements that will be described in detail in the following sections. There are changes to the underlying neutrino interaction simulation, particle propagation, and detector response models. The reconstruction uses a new initial clustering algorithm and expands the use of neural networks. Furthermore, the Near-to-Far extrapolation is now performed using an additional variable, reconstructed transverse momentum, that further constrains the FD predictions and reduces the impact of systematic uncertainties on the analysis by up to 9%. Finally, we have improved some systematic uncertainties and introduced new ones associated with the above changes.

\section{The NOvA Experiment and Simulations}

NOvA observes ν_μ ($\bar{\nu}_\mu$) $\rightarrow \nu_\tau$ ($\bar{\nu}_\tau$) appearance and ν_μ ($\bar{\nu}_\mu$) disappearance oscillations using two functionally-identical tracking calorimeters \cite{25} deployed in the NuMI beam at Fermilab \cite{26}. Charged particle tracking is accomplished via PVC cells filled with a mineral oil-based liquid scintillator \cite{27}. The cells are $6.6 \times 3.9 \text{ cm}$ in cross section and are oriented in alternating vertical and horizontal planes to achieve 3D reconstruction. The 290 ton Near Detector (ND) is located 100 m underground and ~1 km from the production target. The main body of the ND is followed by a muon range stack where the active planes are interleaved with steel plates. The 14 kton Far Detector (FD) is located at Ash River, MN, ~810 km from the source. Being located on the surface with a modest rock overburden, the FD receives a cosmic-ray flux of 130 kHz. This analysis benefits from an updated simulation of the geometries of the detectors and their surroundings that more accurately reflects the surrounding rock composition and detectors as built.

Both detectors are centered 14.6 mr rad off the beam axis and receive a narrow-band neutrino flux peaked at 1.8 GeV. Magnetic focusing horns are used to select the sign of the neutrino parents, producing a 93% (92%) pure ν_μ ($\bar{\nu}_\mu$) beam between 1–5 GeV. The majority of contamination is due to “wrong-sign” neutrinos (i.e. $\bar{\nu}_\mu$ in a ν_μ selected beam and vice versa). The neutrino flux delivered to the detectors is calculated using GEANT4-based simulations of particle production and transport through the beamline components \cite{26} \cite{28} reweighted to incorporate external measurements using the Package to Predict the Flux (PPFX) \cite{29} \cite{35}.

Neutrino interactions are simulated using a custom model configuration of GENIE 3.0.6 \cite{40} \cite{50} tuned to external and NOvA ND data. This configuration uses models created by the València group \cite{51} \cite{52} for charged-current (CC) quasi-elastic (QE) scattering and interactions with two nucleons producing two holes (2p2h). The CCQE model includes the effects of long-range nucleon correlations calculated according to the Random Phase Approximation (RPA) \cite{51} \cite{53} \cite{54}. The CCQE axial vector form factor is a z-expansion parameterization tuned to neutrino-deuteron scattering data \cite{55}. A local Fermi gas represents the initial nuclear state in both the València QE and 2p2h models, while in all other processes the initial nuclear state is represented by a global relativistic Fermi gas with a high-momentum tail to account for short-range nucleon correlations \cite{55}. Baryon resonance (RES) and coherent pion production are simulated using the Berger-Sehgal models with final-state mass effects taken into account \cite{57} \cite{58}. Deep inelastic scattering (DIS) and non-resonant background below the DIS region are described using the Bodek-Yang model \cite{59} with hadronization simulated by a data-driven parameterization \cite{60} coupled to PYTHIA \cite{61}. RES, DIS, and non-resonant background processes are tuned by GENIE to free nucleon inclusive and exclusive 1- and 2-pion production CC neutrino scattering data. Final state interactions (FSI) are simulated by the GENIE hN semi-classical intranuclear cascade model in which pion interaction probabilities are assigned according to Oset et al. \cite{62} and pion-nucleon scattering data.

The 2p2h and FSI models in this GENIE configuration are adjusted to produce a NOvA-specific neutrino interaction model tune. The 2p2h model is fit to ν_μ CC inclusive scattering data from the NOvA ND. Inspired by Gran et al. \cite{63}, this 2p2h tune enhances the base model as a function of energy and momentum transfer to the nucleus. The pion FSI parameters are changed to obtain agreement with π^+ on 12C scattering data \cite{64} \cite{70}.

The propagation of final state particles through the detectors is simulated by an updated version of GEANT4 (v10.4) \cite{71}, which provides the input for the detector response simulation \cite{72}. In addition, a custom patch to the new version implements an exact calculation us-
ing Sternheimer’s method \[^{[23]}\] to calculate the density effect correction to the Bethe equation, compared to the approximate parameterization used previously.

The absolute energy scale for both detectors is calibrated using the minimum ionizing portion of stopping cosmic-ray muon tracks. The calibration procedure is now applied separately to the data in shorter time periods to account for an observed 0.3% decrease in detected light per year.

III. RECONSTRUCTION AND SELECTION

The first stage of reconstruction is to group hits, which are measurements of deposited energy in a cell above a preset threshold, into single-neutrino-interaction events. The initial grouping, performed based on hit proximity in time and space, is now performed with a new method that reduces the rate of mis-clustered hits in the high occupancy environment of the ND \[^{[73]}\]. Mis-clustering had previously led to differences in data-MC selection efficiency. The other reconstruction techniques remain unchanged from the previous analysis \[^{[1]}\].

For each event, initial selections are applied to ensure basic data quality. Additionally, events are required to be sufficiently far from the edges of the detector such that energy is not lost to exiting final-state particles, and entering background events are not selected as signal. These containment criteria have been re-optimized for this analysis due to changes in the geometry model and hit grouping algorithm, but follow the same outline as described in Ref. \[^{[1]}\].

A convolutional neural network, CNN\(_{evt}\) \[^{[26]}\], is used to classify neutrino event candidates into \(\nu_e\) CC, \(\nu_\mu\) CC, NC, or cosmogenic background. The scores of CNN\(_{evt}\) are used to create two non-overlapping samples of either inclusive \(\nu_\mu\) (\(\bar{\nu}_\mu\)) CC or \(\nu_e\) (\(\bar{\nu}_e\)) CC candidate events. Updates to this algorithm provide improved performance and decreased dependency on calorimetric energy, the dominant source of systematic uncertainty in the results presented here. To reduce the influence of calorimetric energy on classification decisions, a scale factor is applied to all pulse heights during network training. These scale factors are drawn on an event-by-event basis from a normal distribution with a 1 \(\sigma\) range from 0.9 - 1.1 \[^{[74]}\].

Effective rejection of cosmogenic backgrounds at the FD is paramount due to the significant flux of cosmic-ray particles it receives. A new CNN trained to identify and reject cosmogenic backgrounds has been introduced. This is utilized alongside boosted decision trees (BDTs), retrained on samples selected to contain signal-like cosmogenic particles. Together these selections reduce the cosmic contamination in the selected samples to <5%, a total reduction of 6 orders of magnitude, comparable to the previous analysis. For fully contained \(\nu_e\) events, the BDT replaces the previous cosmic rejection method, which directly used reconstructed position and kinematic event information.

TABLE I. FD energy resolution and purity\(^{1}\), in the selected energy ranges (0-5 GeV for \(\nu_e\) and 0-4 GeV for \(\nu_\mu\)), for the subsamples used in the Near-to-Far extrapolation and oscillation fits. \(E_{\text{trac.}}\) for the \(\nu_e\) samples is defined in the text. The \(\nu_\mu\) (\(\bar{\nu}_\mu\)) peripheral is a rate-only sample, therefore, \(E_\nu\) is not determined.

<table>
<thead>
<tr>
<th>Sample bins</th>
<th>Energy res.</th>
<th>Sample purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_e) (\bar{\nu}e) (\nu\mu) (\bar{\nu}_\mu)</td>
<td>Core, Low CNN(_{evt}) 14.1% (13.7%)</td>
<td>51% (36%)</td>
</tr>
<tr>
<td></td>
<td>Core, High CNN(_{evt}) 9.4% (8.9%)</td>
<td>79% (69%)</td>
</tr>
<tr>
<td></td>
<td>Peripheral (E_{\text{trac.}})</td>
<td>57% (43%)</td>
</tr>
<tr>
<td></td>
<td>Combined 10.7% (8.8%)</td>
<td>69% (58%)</td>
</tr>
<tr>
<td>(\nu_\mu) (\bar{\nu}_\mu)</td>
<td>1 (lowest (E_{\text{trac.}})) 7.8% (8.5%)</td>
<td>99% (99%)</td>
</tr>
<tr>
<td></td>
<td>2 9.2% (8.9%)</td>
<td>99% (99%)</td>
</tr>
<tr>
<td></td>
<td>3 10.4% (9.7%)</td>
<td>97% (98%)</td>
</tr>
<tr>
<td></td>
<td>4 (highest (E_{\text{trac.}})) 11.5% (10.2%)</td>
<td>92% (95%)</td>
</tr>
<tr>
<td></td>
<td>Combined 9.1% (8.2%)</td>
<td>96% (98%)</td>
</tr>
</tbody>
</table>

Neutrino energy, \(E_\nu\), is determined using different methods for the \(\nu_e\) and \(\nu_\mu\) CC candidate events. The energy of \(\nu_e\) CC candidates is estimated using a 2D quadratic fit to the electromagnetic (EM) and hadronic calorimetric energies. The EM and hadronic components produce different detector responses and are separated using a third CNN classifier that identifies EM-like hit clusters within the event \[^{[77]}\]. For \(\nu_\mu\) CC candidates, \(E_\nu\) is the sum of the muon track energy, determined by the track length, and the total calorimetric energy of the hadronic system, \(E_{\text{had}}\). The muon is identified with a BDT that utilizes track length, multiple Coulomb scattering, and energy deposition, while the hadronic system is taken as all hits not associated with the muon track.

The selection criteria and energy estimation techniques were developed based on ND beam and FD cosmic data, along with simulated samples prior to inspecting the FD beam data distributions. The algorithms were trained separately on neutrino and antineutrino beam modes due to differences in beam purity and interactions.

The sensitivity of the oscillation fit is enhanced by splitting the fully contained \(\nu_e\) and \(\bar{\nu}_e\) CC, “core”, samples into low and high purity bins, based on the scores output by CNN\(_{evt}\). At the FD, the \(\nu_e\) (\(\bar{\nu}_e\)) selection efficiency for signal events in the core sample is 54% (64%) \[^{[4]}\]. To further increase the size of the FD sample, a “peripheral” selection is included, consisting of events that fail the containment or cosmic rejection requirements but pass more strict selection criteria on the cosmic BDT and CNN\(_{evt}\). This sample increases the total \(\nu_e\) (\(\bar{\nu}_e\)) selection efficiency to 63% (75%) \[^{[1]}\] but is included only as an integrated rate in the oscillation fits due to possible energy fluctuations.

\[^{1}\] The FD sample efficiency, purity, and energy resolution are based on the simulated event samples at the determined best-fit point. Wrong-sign events are treated as background for the \(\nu_e\) (\(\bar{\nu}_e\)) CC samples and signal for the \(\nu_\mu\) (\(\bar{\nu}_\mu\)) CC samples. For the efficiency calculations, the denominator is the number of true signal interactions in the detector with no other selection criteria applied.
bias caused by particles leaving the detector. Properties of these subsamples are summarized in Table I.

For ν_μ CC candidates, the position and amplitude of the oscillation maximum in the FD energy spectra are strongly dependent on Δm^2_{32} and θ_{23}, respectively. To maximize the sensitivity to these parameters, the candidates are divided into four equally populated samples based on the hadronic energy fraction, $E_{\text{frac}} = E_{\text{had}}/E_{\nu}$, which is correlated with energy resolution and background contamination as summarized in Table I. Sensitivity is further increased by using variably-sized E_{ν} bins for these samples.

IV. NEAR-TO-FAR EXTRAPOLATION

This analysis extracts oscillation parameters using data-driven predictions of the FD spectra largely derived from high statistics measurements in the ND. The ν_μ ($\bar{\nu}_\mu$) disappearance and ν_e ($\bar{\nu}_e$) appearance signal spectra in the FD are predicted using the spectra of ν_μ ($\bar{\nu}_\mu$) CC candidate events in the ND (Fig. 1a). The procedure begins with reweighting the simulation to obtain agreement with the data in each reconstructed E_{ν} bin of the ND ν_μ ($\bar{\nu}_\mu$) CC candidate samples. Predicted rates of NC, ν_μ CC, and $\bar{\nu}_e$ CC interactions in the samples ($<0.5\%$ total) are taken directly from the simulation and subtracted. The wrong-sign component of the samples (2.9% and 10.5% in the neutrino and antineutrino beams respectively) is also taken directly from the simulation. The resulting corrected $\nu_\mu + \bar{\nu}_\mu$ CC reconstructed E_{ν} spectra are transformed to true E_{ν} using the simulation. The spectra are then multiplied by the appropriate far-to-near ratios of the simulated samples in bins of true E_{ν}. This step accounts for beam divergence, differences in selection efficiency and acceptance between the two detectors, and the differences in the ν_μ and ν_e cross sections. Oscillation probabilities are applied to yield the predicted disappearance or appearance signal spectra in true E_{ν} at the FD. Matter effects are included in the oscillation probability calculations, with the Earth’s crust density assumed to be uniformly $2.84 g/cm^3$ [78]. Finally, the predicted spectra are converted back to reconstructed E_{ν}.

To reduce potential bias and the impact of uncertainties from the neutrino interaction model, the extrapolation to predict the disappearance and appearance signals is performed using variables in addition to E_{ν}. As in the previous analysis, the extrapolation for disappearance is done separately in each reconstructed hadronic energy fraction range (as given in Table I), enabling neutrino interaction processes that occur in different inelasticity regions to be constrained independently. In this analysis, the extrapolation for both disappearance and appearance is additionally performed separately in bins of reconstructed transverse momentum, p_T, of the final state charged lepton. The smaller transverse extent of the ND leads to lower acceptance at higher p_T in the ND than in the FD (Fig. 2), which results in the extrapolated predictions being sensitive to the modeling of the p_T-dependence of the neutrino interactions. Extrapolating in bins of p_T reduces this sensitivity by enabling the ND data to constrain the p_T-dependence. In the ND samples, the p_T bins divide each E_{ν} bin into three equal populations for the extrapolation, and the resulting FD predictions are summed over the p_T bins for the oscillation fit.

Background spectra at the FD are also predicted using data-driven techniques. Cosmogenic backgrounds in both the appearance and disappearance samples are estimated using FD data collected outside the NuMI beam time window. Beam-induced backgrounds in the appearance samples are primarily CC interactions from the irreducible $\nu_e + \nu_\mu$ component of the beam, with contributions from mis-identified NC and $\nu_\mu + \bar{\nu}_\mu$ CC interactions. Following the procedure from Ref. [1], the FD spectra for these backgrounds are predicted using the spectra of ν_e ($\bar{\nu}_e$) CC candidate events in the ND (Fig. 1b). Misidentified neutrino interactions in the disappearance samples and ν_τ CC interactions in the appearance samples are subdominant backgrounds that are taken directly from the simulations.
V. SYSTEMATIC UNCERTAINTIES

The impacts of systematic uncertainties are evaluated by varying the simulation via event reweighting or simulating alternative event samples and repeating the extrapolation procedure. Uncertainties associated with the neutrino flux, neutron modeling, and detector calibrations are unchanged from the previous analysis [1].

Detector calibration uncertainties remain dominant and are driven by a 5% uncertainty in the calorimetric energy scale. Additionally, a new time-dependent calibration uncertainty is included to account for any residual differences remaining after performing the calibration over shorter time periods as mentioned previously.

Neutrino interaction model uncertainties are evaluated using the event reweighting framework in GENIE with additional uncertainties constructed by NOvA as follows. Uncertainties on CCQE RPA, low-Q^2 RES suppression, 2p2h, and non-resonant and incoherent Nπ production are established for the new model set using methods similar to those in Ref. [20]. Pion FSI uncertainties are based on comparisons to π^+ on 12C scattering data [64-71] and prior studies using an alternative neutrino interaction generator [81]. Uncertainties on the ν_e ($\bar{\nu}_e$) CC cross section relative to the ν_μ ($\bar{\nu}_\mu$) CC cross section due to radiative corrections and possible second-class currents are unchanged from previous analyses [82].

As in the previous analysis, uncertainties are included that are detector specific or account for differences between the ND and FD: the detector masses, beam exposures, kinematic acceptances, beam-induced pile-up, ν_e CC selection in the ND, and cosmogenic backgrounds in the FD. The improved hit clustering algorithm reduces pile-up effects in the ND, decreasing uncertainties for the associated data-MC selection efficiency differences. An uncertainty for kinematic acceptance differences between the detectors was overestimated in the previous analysis and is subdominant in this analysis after correction. Extrapolating in p_T bins would have substantially reduced the effect of this uncertainty even if left uncorrected.

Uncertainties arising from the custom light model are assigned based on comparison to a more robust response model that was not fully incorporated into the simulation for this analysis. This model is constrained by a sample of ND proton candidates in addition to the muon sample used previously. Differences in the detector response between the proton and muon samples also provide a data-driven uncertainty on the relative production of Cherenkov and scintillation light in the model.

Quantities affected by lepton reconstruction uncertainties include the muon energy scale and lepton angle. The muon energy scale uncertainty now includes a detector mass uncertainty with a component that is uncorrelated between the detectors, plus a correlated component accounting for the Fermi density effect and muon range differences across models. Extrapolating in p_T bins introduces a dependence on the reconstructed lepton angle for which a 10 mrad uncorrelated uncertainty is applied.

Figure 3 shows the impact of the systematic uncertainties on the measurement of $\sin^2 \theta_{23}$, Δm_{32}^2, and δ_{CP} as evaluated at the determined best-fit point. The extrapolation method significantly reduces the impact of the detector correlated beam flux and neutrino interaction model uncertainties. In contrast, energy calibration and uncorrelated uncertainties that reflect ND-FD differences are less constrained by extrapolation. Figure 3 also shows the impact of uncertainties for extrapolation with and without p_T bins. Extrapolating in p_T bins reduces the interaction model uncertainty by 10-30%, and the total systematic uncertainty by up to 9%. Detector calibration, detector response, and neutron modeling uncertainties that affect the reconstructed energy of the recoiling hadronic system, which is correlated with p_T, are more modestly reduced. The extrapolation in bins of p_T depends on reconstructed lepton kinematics and results in a marginal increase in the associated uncertainties.

VI. RESULTS

The extrapolated predictions of the FD spectra are recomputed for varying oscillation parameters and compared to data using a Poisson negative log-likelihood ratio, $-2 \ln L$. The best-fit parameters minimize $-2 \ln L$. The following solar and reactor neutrino experiment constraints are used: $\Delta m_{32}^2 = 7.53 \times 10^{-5} \ eV^2$, $\sin^2 \theta_{12} = 0.307$, and $\sin^2 \theta_{13} = 0.0210 \pm 0.0011$. The parameters Δm_{32}^2, $\sin^2 \theta_{23}$, and δ_{CP} are varied without constraints while the 64 systematic uncertainties are assigned penalty terms equal to the square of the number of standard deviations by which they vary from their nominal values. The value of $\sin^2 \theta_{13}$ is allowed to float.
similarly. Feldman-Cousins’ unified approach is used to determine the confidence intervals for the oscillation parameters.

Figure 4 shows the energy spectra of the \(\nu_\mu \) CC, \(\bar{\nu}_\mu \) CC, \(\nu_e \) CC, and \(\bar{\nu}_e \) CC candidates recorded at the FD. The distributions are compared to the oscillation best-fit expectations. Table II summarizes the total event counts and estimated compositions of the selected samples. The CC candidate event samples recorded at the FD include

![Figure 4](image)

TABLE II. Event counts at the FD, both observed and predicted at the best-fit point (see Table III).

<table>
<thead>
<tr>
<th>Neutrino beam (\nu_\mu) CC</th>
<th>Neutrino beam (\nu_e) CC</th>
<th>Antineutrino beam (\bar{\nu}_\mu) CC</th>
<th>Antineutrino beam (\bar{\nu}_e) CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_\mu \to \nu_\mu)</td>
<td>201.1</td>
<td>1.7</td>
<td>26.0</td>
</tr>
<tr>
<td>(\nu_\mu \to \nu_\mu)</td>
<td>12.6</td>
<td>0.0</td>
<td>77.2</td>
</tr>
<tr>
<td>(\nu_\mu \to \nu_e)</td>
<td>0.1</td>
<td>59.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(\nu_\mu \to \nu_e)</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Beam (\nu_e + \bar{\nu}_e)</td>
<td>0.0</td>
<td>14.1</td>
<td>0.0</td>
</tr>
<tr>
<td>NC</td>
<td>2.6</td>
<td>6.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Cosmic</td>
<td>5.0</td>
<td>3.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Others</td>
<td>0.9</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Signal</td>
<td>214.1±104.5, 50.0±2.3</td>
<td>103.4±7.0, 19.2±0.5</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>8.2±1.9, 26.8±1.7</td>
<td>2.1±0.7, 14.0±0.9</td>
<td></td>
</tr>
<tr>
<td>Best fit</td>
<td>222.3</td>
<td>85.8</td>
<td>105.4</td>
</tr>
<tr>
<td>Observed</td>
<td>211</td>
<td>82</td>
<td>105</td>
</tr>
</tbody>
</table>
The best-fit parameter values for each choice of \(\theta_{23} \) octant and mass ordering.

Figure 5 compares the 90% confidence level contours for \(\Delta m_{23}^{2} \) and \(\sin^2 \theta_{23} \) with those of other experiments [87,90]. Allowed regions in \(\sin^2 \theta_{23} \) and \(\delta_{CP} \) are shown in Fig. 6 and are compared with a recent best fit from T2K [87].

As shown in Fig. 6, the T2K best-fit point is in the NO but lies in a region that NOvA disfavors. However, some regions of overlap remain. Figure 6(b) shows that for IO, the T2K allowed region at 90% confidence level is entirely contained within the corresponding NOvA allowed region. This outcome reflects in part the circumstance that T2K observes a relatively more pronounced asymmetry in \(\nu_{e} \) versus \(\bar{\nu}_{e} \) oscillations.

Although each experiment reports a mild preference for NO, it has been suggested that a joint fit of the two experiments might converge on an IO solution [93]. Some authors have also explored the possibility that the differences in the \(\nu_{\mu} \rightarrow \nu_{e} \) and \(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \) rates seen by the experiments are explained by additional non-standard matter effects [94,95].

In conclusion, we have presented improved measurements of oscillation parameters \(\Delta m_{23}^{2}, \sin^2 \theta_{23}, \text{and } \delta_{CP} \), including an expanded data set and enhanced analysis techniques with respect to previous publications. These measurements continue to favor the normal mass ordering and upper octant of \(\sin^2 \theta_{23} \), as well as values of the oscillation parameters that do not lead to a large asymmetry in \(\nu_{\mu} \rightarrow \nu_{e} \) and \(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \) oscillation rates.

VII. ACKNOWLEDGMENTS

This document was prepared by the NOvA collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is man-

2 While this paper was in its final internal review, an updated analysis was published by the T2K collaboration [92]. In Ref. [92], the dataset remains unchanged and the same approach is used. The conclusions drawn from the comparisons of the contours remain unchanged.
aged by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by the U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, GA UK, Czech Republic; the RAS, RFBR, RMES, RSF, and BASIS Foundation, Russia; CNPq and FAPESP, Brazil; STFC, UKRI, and the Royal Society, United Kingdom; and the State and University of Minnesota. We are grateful for the contributions of the staffs of the University of Minnesota at the Ash River Laboratory and of Fermilab.

[38] P. Skubic et al., Neutral Strange Particle Production by 300-GeV Protons, Phys. Rev. D 18, 3115 (1978)

[70] E. S. Pinzon Guerra et al. (DUET), Measurement of σ_{ABS} and σ_{CX} of π^+ on carbon by the Dual Use Experiment at TRIUMF (DUET), Phys. Rev. C 95, 045203 (2017). arXiv:1611.05612 [hep-ex].

[86] See Supplemental Material at [to be inserted by publisher] for the profiles of these surfaces on the Δm_{23}^2 and $\sin^2 \theta_{23}$ axes as well as the surfaces computed for the inverted hierarchy case (2021).

[95] S. S. Chatterjee and A. Palazzo, Non-standard neutrino interactions as a solution to the NO$