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ABsTrRACT: Electromagnetic interaction of colliding beams along with other nonlinear fields of-
ten limits the beams’ lifetimes and luminosities. Nonlinearities result in the spread of betatron
frequencies (footprint) and, thus, may enhance dynamic diffusion of particles due to high order
resonances. One of the possible ways to eliminate nonlinearities and overcome the corresponding
difficulties is compensation of nonlinear forces, but, in practice, it is hardly possible to obtain exact
linearity of the system. The compensation with a single nonlinear lens cannot cope with distributed
nonlinearities, nonlinearities due to parasitic crossings, etc. In the article, we present a method to
compute parameters of nonlinear element (lens) that eliminates both the footprint and resonance
strength without achieving full compensation.
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1 Introduction

The use of opposite charge particles for compensation of a kick due to counter bunch in colliders is
an attractive idea [ 1], although there are several issues to be solved for its successful realization (see,
e.g., [2]). One of them is provision of proper non-linear electron charge distribution. For example,
Fig.1 demonstrates the effect of the ideal “electron compressor” on the 2-D tune diagram in the
case of an antiproton-proton collider. The largest “leaf” is the antiproton footprint due to head-on
collisions with round Gaussian proton beam with charge distribution p,(r) = C exp(—r2/20?).
The smaller one shows the footprint in the case when electron beam with a charge density profile
proportional to p,, (r) = —=C-0.83/(1+(r/ o)?) is installed on the antiproton orbit. For convenience
of presentation, we have separated the two plots horizontally, as in fact the second one would be
around zero tune point v(, y) ~ 0. One can see a significant reduction of the tune spread with
the electron beam. It was originally thought that the electron beam with Gaussian charge density
pe(r) = —pp(r) could lead to complete elimination of the footprint, and thus to compensation of
the beam-beam effects.

It was later realized that such an idealized picture of the compensation does not fully reflect the
reality. First of all, the beam-beam footprint itself can be significantly distorted by imperfections
such as crossing angle at the interaction points, numerous parasitic interactions in multibunch
colliders at the locations where the beams are separated and do not actually collide but still interact
via their long-range electromagnetic forces, etc. The collider focusing lattice itself is not usually
perfectly linear and that must be taken into account, too. An additional difficulty is that the
nonlinearities are not usually localized in one element - in contrast, they are distributed over the
collider ring - and a single thin lens might not be able to eliminate all nonlinearities from the particle
motion even if the field distribution in the lens can be controlled. Also of importance is the ratio of
the electron beam length and the beta-function at its location. Finally, creation of an insertion with
a predetermined two or three dimensional field map might be quite challenging.

This article is an attempt to investigate whether a single thin nonlinear lens can be added to an
arbitrary nonlinear focusing lattice in such a way that the particle motion in the modified structure
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Figure 1. “Electron compression” of head-on footprint of antiprotons: blue lines - horizontal and vertical
betatron tune shifts v, and v, due to collisions with a Gaussian proton beam (in units of the head-on beam-
beam parameter £); black - the same with an additional electron lens as described in the text. Numbers in
parentheses show the horizontal and vertical betatron amplitudes in units of the rms antiproton beam size.
The case with electron beam is displaced for clarity.

would become resonance-free, though nonlinear, and the beam of the particles would have zero
footprint. We then apply our results to the experimental project of the beam-beam compensation
with electron beam (BBCEB) in the Tevatron at FNAL [3].

2 Resonance-Free Nonlinear System

Here we present some of the earlier results on resonance-free nonlinear systems [4]. These systems
form a subset of integrable systems, i.e., systems with regular motion, and some of them are
applicable to colliding beams. As an example, let us consider nonlinear (de)focusing due to some
specially prepared electron beam.

Let us first consider particle motion in a focusing lattice consisting of three elements: 1) a drift
space of a unity length (for simplicity); 2) an axially symmetric thin lens, as a representation of the
angular-momentum-preserving linear optics in between interactions; and 3) radial beam-beam kick



ky»(r). The 2D map for particle trajectory coordinates x, y and angles x’, y’ is:

X=x+x,
Sty
e 2.1
r=x"+k,,
);/Zy/"'ky,

where ky = k(r)x/r, ky = k(r)y/r and r = /x> +y%. Due to conservation of the angular
momentum M = xy’ — x’y, the motion can be reduced to 1D, i.e., to r and r’ = (xx’ + yy’)/r. It
can be checked directly that if the total radial kick function is equal to:

b
k(r) = =2r — kpp(r) = =2r — —— 2.2)
1 +ar?
where a and b are free parameters, then there is an additional invariant of motion:
M2
I (r,r’) = (1+ar?) ((r’ +r)+ — ) +br(r' +r)+r2. (2.3)
r

The variables here are changed to ,7’, and we used a simple relation x"> + y'22 = ((rr’)? +
(xy" — yx)?)/r? = r'2 + M?/r?. Tt is easy to find the corresponding electron charge distribution
pe(r) which leads to the necessary kick kpp, (r). Indeed, if the electron beam length is much smaller
than the beta-function at this point, then

C r
kpp(r) = —/ pe(r)rdr. 2.4)
rJo
thus, - .
Pe(”):—Fm- (2.5)

We do not specify here the value of the constant C, since the constants a, b are arbitrary. Since
we provide two invariants of the 2D problem, the resulting motion is regular, though nonlinear (the
frequency of oscillations depends on invariant of oscillations) [4].

3 Numerical Algorithm to Eliminate Footprint

In the previous section, we deal with nonlinear integrable system with quite predictable motion.
One can use that or a similar system in order to eliminate chaotic particle motion. Difficulties
appear if one takes into account nonlinearities and field errors of the real accelerator, which may
significantly change the particle motion. It can cause drastic changes if the nonlinear lens brings the
system close to higher order resonances. To avoid excitation of these resonances, we need a system
with weak dependence of betatron frequency on the oscillation amplitude or with no dependence
at all. Such systems are linear in some appropriate variables. Let us consider all 1D classical
Hamiltonians

H=p*2+U(®x), (3.1

which have the property of constant frequency of oscillations for all initial conditions. (For the sake
of simplicity, we assume the mass of the particle is equal to 1.)
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Figure 2. Potential of the classical Hamiltonian vs coordinate (see text).

Under conditions where the potentials U (x) have only one minimum and the oscillation period
is aknown function 7'(E) of the energy E (a particular value of the above Hamiltonian), the solution
of the problem is given by formula (see e.g. [5]):

X (U) - X1 (U) = (3.2)

I/UT(E)dE
VorJo NU-E’

where X,(U), X|(U) are left and right boundaries for the particle’s motion at the energy E =
U(X1) = U(X2) - see Fig.2. Reversion of X »(U) gives the potential U(X) vs coordinate for both
left and right branches of the potential energy graph. Evidently, we are free to choose only one
of the functions X (U) or X,(U), while the second one is to be determined from Eq.(3.2). For a
constant period T(E) = T = const in this formula yields:

Xo(U) = X1 (U) = gT\/U (3.3)
This formula has a very simple meaning - while one of the branches, e.g., X;(U), is determined,
the second branch must be adjusted to the first one to keep the same period of oscillations 7' for
all energies. In general, symplectic maps have no appropriate “good” invariant (like energy in
the example above), and to find the general form of the maps with constant frequency is a much
more difficult problem. We present here a numerical method to construct such maps. It has simple
physical meaning but has no reliable mathematical foundation.

The idea is as follows: let us select a frequency (tune of the machine) equal to a resonant
one, e.g., the 20th order resonance. This value is chosen for illustration. In fact, for an arbitrary
frequency, there is always a rational number in its vicinity such that the difference is negligible.
There is a simple way to know whether the motion for every particular initial condition has that
frequency or not: one just has to calculate the squared differences of coordinates and momenta at
the beginning and at the end of 20 successive map transformations. E.g., in the normalized variables
x = vecos(¥) and x” = +fesin(y) (Y and € are the betatron phase and action, respectively), one



can make summation over some region of initial conditions x;, x; and get a special function F":
— 2 ’ "n2
F—Z(xf -X;) +(xf - x;)°. (3.4)
J

where indices i and f are for initial and final normalized coordinates and angles, respectively, and
the index j denotes different phase space elements of initial conditions. When this function is equal
to zero F' = 0, then we have: 1) all the frequencies are equal to the particularly chosen value (1/20
in our case); 2) strength of this resonance is equal to zero. In fact, for resonant islands we get the
same average frequency for all phase space elements of the island, but the motion inside the island
has its own frequency. It gives the nonzero difference of initial and final conditions after the number
of turns equal to the number of resonance (20 turns in our case). When the function F is equal to
zero, the motion inside the island is degenerate, so the resonance strength is equal to zero.

We have developed a numerical code to minimize function F. The code can find the solution
with very small F in all the important cases when there are enough parameters for optimization. It
means that the “number” of integrable systems with constant frequency is rather large, such as for
the case of 1D motion with time-independent Hamiltonian, as we have shown above. In the next
section we present the results of numerical calculations of the nonlinear lens for the Tevatron.

4 Application to the Tevatron Electron Beam Lens

Fig.3 shows a schematic view of the Tevatron collider, with three beams: circulating high energy
proton and antiproton beams and short low-energy high current electron beam.
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Figure 3. Scheme and some parameters of bunches in the Tevatron.



Evidently, it is beneficial to collide all three beams in one interaction point (IP): if the electron
bunch goes along with the proton bunch at the interaction region and has the same size, speed,
and charge, then the electromagnetic force due to protons can be compensated for by electrons and
the test particles, antiprotons, experience no total kick at the IP. In reality, it is hard to achieve the
necessary electron current density (equal to the proton one at the IP) with conventional electron
sources. Moreover, often there is no space at the interaction region for necessary additional
equipment. Thus, the electron beam has to be placed somewhere else at the ring, preferably in the
location where transverse beam size is large. For example, at the location where the beta-function
is about 8¢ = 200m, the Tevatron beam size will be about 1 mm rms, compared to about ~ 30um
rms transverse beam size at the IP with 8* = 35 cm. It is desirable to have betatron phase advance
between the IP (marked by a cross in the top picture in Fig.3) and the electron beam location to be a
multiple of 27. It was shown in Ref.[1] that a thermionic electron gun can provide necessary beam
parameters for compensation of the proton bunch impact on antiprotons.

Nevertheless, there is another difficulty coming from the fact that the proton bunch length of
about o, ~35cm is comparable to the beta-function at the interaction point S*. Therefore, the
betatron phase advance for antiprotons at the main IP is large ¢ = f dx/B = sigma,/beta” = 1.
In contrast, the electron beam length of about 2 m is much less than 8¢ and the corresponding
betatron phase of antiprotons passing the electron beam is very small ¢ ~ 0.01 — 0.02. In other
words, effectively, the electron beam kick looks like delta-function if transformed to the main IP -
see lower left picture in Fig.3. Consequently, this short impact due to electrons contains a lot of
resonance harmonics, although the average actions due to proton and electron beams are the same.
One can reduce betatron tune spread by such a lens, but this fact alone does not assure the motion is
more stable than that with no compensation. For example, if the round proton charge is uniformly
distributed along the whole ring - see lower right picture in Fig.3 - than p (antiproton) motion is
regular in spite of the nonlinear force. Introduction of short electron beam results in time-dependent
total force and stochastic dynamics in general. So, the resonance strengths sometimes are more
important than the betatron tune spread.

The numerical procedure suggested in the preceding section is used to fix the situation. We
operated with transverse electron charge distribution which is the sum of the Gaussian distributions

with different rms values:
2

6
pe(r):ZCneXp(_%)’ 4.1
n=1

where C,, are variable coefficients for optimization and o is the rms transverse proton bunch size at
the location of the electron beam. In simulations the electron beam produces a delta-function kick
because of its short “effective” length, while the proton bunch length is presented as a number of
short slices.

We used a somewhat different optimization function than F introduced in previous section,

namely:
—x;)?+ (x} - xlf)2

. (xf
= Z]: x2+ (x])? ' “4.2)

where j is the index for different initial phase-space elements. The denominator of this expression is

added in order to make trajectories with small and large amplitudes the same weight. The numerical



code finds coefficients C,, depending on the proton bunch length. The synchrotron amplitude of
antiprotons is taken to be zero. In the process of optimization, the value F usually decreases by
a factor of ~1000. For example, under conditions of zero length proton bunch, the tune shift due
to protons is £=0.05, with equal horizontal and vertical beta-functions of By = =35 cm we get
C1=0,C,=125,C3=0,C4 =0, C5 =0, Cg = 0 in the units (for normalized variables). For the
proton bunch length of o, = 28*, we get C; = 0.576, C, = 0.048, C3 = 0.08, C4 = 0.042, Cs =
0.04, Cs = 0.4 in the same units. Fig.4 demonstrates the resulting “optimized” distribution and
compares it with the Gaussian distribution C, = 1. Significant difference is clearly seen.
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Figure 4. Transverse electron charge distributions necessary for elimination of resonances and tune spread in
the antiproton motion: black line is for the Gaussian distribution of the electron charge density to compensate
very short proton bunch; red line is for an optimized electron distribution needed to compensate 75-cm long
(rms) proton bunch (see text).

5 Conclusion

We suggest a numerical method to calculate the parameters of a single thin lens necessary to
compensate for effects of accelerator nonlinearities. It can be applied to a problem of non-
linear beam-beam effects in collider rings if a specially prepared electron beam can be used for
compensation. The primary studies of the method have shown that it works as soon as there are
enough parameters to vary non-linear components. Though the method is valid for 1D case of
round beam schemes, it can be generalized for two dimensions.
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