
MNRAS 000, 000–000 (0000) Preprint 31 May 2021 Compiled using MNRAS LATEX style file v3.0

Dark Energy Survey Year 3 results: curved-sky weak lensing mass map
reconstruction

N. Jeffrey,1,2? M. Gatti,3,4† C. Chang,5,6 L. Whiteway,2 U. Demirbozan,3 A. Kovacs,7,8 G. Pollina,9 D. Bacon,10

N. Hamaus,9 T. Kacprzak,11 O. Lahav,2 F. Lanusse,12 B. Mawdsley,10,10 S. Nadathur,10 J. L. Starck,12 P. Vielzeuf,3

D. Zeurcher,11 A. Alarcon,13 A. Amon,14 K. Bechtol,15 G. M. Bernstein,4 A. Campos,16 A. Carnero Rosell,17,18,19

M. Carrasco Kind,20,21 R. Cawthon,15 R. Chen,22 A. Choi,23 J. Cordero,24 C. Davis,14 J. DeRose,25,26 C. Doux,4

A. Drlica-Wagner,5,27,6 K. Eckert,4 F. Elsner,2 J. Elvin-Poole,23,28 S. Everett,26 A. Ferté,29 G. Giannini,3
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ABSTRACT

We present reconstructed convergence maps, mass maps, from the Dark Energy Survey (DES) third year (Y3) weak

gravitational lensing data set. The mass maps are weighted projections of the density field (primarily dark matter) in
the foreground of the observed galaxies. We use four reconstruction methods, each is a maximum a posteriori estimate
with a different model for the prior probability of the map: Kaiser-Squires, null B-mode prior, Gaussian prior, and

a sparsity prior. All methods are implemented on the celestial sphere to accommodate the large sky coverage of the
DES Y3 data. We compare the methods using realistic ΛCDM simulations with mock data that are closely matched
to the DES Y3 data. We quantify the performance of the methods at the map level and then apply the reconstruction
methods to the DES Y3 data, performing tests for systematic error effects. The maps are compared with optical
foreground cosmic-web structures and are used to evaluate the lensing signal from cosmic-void profiles. The recovered
dark matter map covers the largest sky fraction of any galaxy weak lensing map to date.

Key words: gravitational lensing: weak – cosmology: large-scale structure of Universe – methods: statistical

1 INTRODUCTION

Weak gravitational lensing is one of the primary cosmologi-
cal probes of recent galaxy surveys (for a detailed review of
weak lensing see Bartelmann & Schneider 2001; Mandelbaum
2018a). By measuring the subtle distortions of galaxy shapes
due to the mass distribution between the observed galaxies
and us the observers, we are able to place tight constraints
on the cosmological model describing the Universe and asso-

? E-mail: niall.jeffrey@phys.ens.fr
† E-mail: mgatti@ifae.es

ciated nuisance parameters. In particular, weak lensing most
tightly constrains the content of matter in the Universe (Ωm)
as well as the level at which matter clusters (σ8, defined to be
the standard deviation of the linear overdensity fluctuations
on a 8 h−1 Mpc scale). Weak lensing also has great potential
to constrain dark energy by using galaxy shapes measured at
a range of redshifts. In addition to information about the cos-
mological model describing the Universe, the reconstructed
maps of the mass distribution from weak lensing are rich in
information about the interaction between galaxies, clusters,
and the cosmic web.

The main focus of weak lensing analyses to date has been
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the measurement of two-point summary statistics such as cor-
relation functions or power spectra (Troxel et al. 2018; Hilde-
brandt et al. 2017; Hikage et al. 2019; Hamana et al. 2020).
A zero-mean Gaussian density field can be statistically com-
pletely characterized by its two-point statistics. The method-
ologies for measuring and modelling these two-point statis-
tics are now relatively well-developed and standard analyses
of two-point statistics in weak lensing now take into account
several non-trivial systematic effects that were not known a
decade ago. These effects include intrinsic alignment (IA),
clustering of source galaxies, small-scale modelling of bary-
onic effects, and uncertainty in photometric redshift calibra-
tions (a detailed review of recent developments in these areas
can be found in Mandelbaum 2018b).

In the standard model of cosmology, the initial highly-
Gaussian density field becomes increasingly non-Gaussian on
small scales through non-linear structure formation. As the
techniques for two-point analyses mature, it is natural to
ask whether we could extract significantly more information
from the same data simply by going to higher order (i.e. non-
Gaussian) summary statistics, and whether we understand,
at the same level as the two-point statistics, the non-trivial
systematic effects in these higher-order statistics. Common
higher-order statistics with weak lensing include shear peak
statistics (Dietrich & Hartlap 2010; Kratochvil et al. 2010;
Liu et al. 2015; Kacprzak et al. 2016; Martinet et al. 2018;
Peel et al. 2018; Shan et al. 2018; Ajani et al. 2020), higher
moments of the weak lensing convergence (Van Waerbeke
et al. 2013; Petri et al. 2015; Vicinanza et al. 2016; Chang
et al. 2018; Vicinanza et al. 2018; Peel et al. 2018; Gatti
et al. 2020b), three-point correlation functions or bispectra
(Takada & Jain 2003, 2004; Semboloni et al. 2011; Fu et al.
2014), Minkowski functionals (Kratochvil et al. 2012; Petri
et al. 2015; Vicinanza et al. 2019; Parroni et al. 2020), and
machine-learning methods (Ribli et al. 2019; Fluri et al. 2018,
2019; Jeffrey et al. 2021). Many of these have recently been
applied to data (Liu et al. 2015; Kacprzak et al. 2016; Mar-
tinet et al. 2018; Fluri et al. 2019; Jeffrey et al. 2021), often
performing well in terms of cosmological constraints.

This paper will focus on the key element for many of the
methods described above: a weak lensing convergence map,
often referred to as a mass map. Such a map quantifies the
integrated total mass along the line of sight (weighted by a
lensing efficiency that peaks roughly half-way between the
source and the observer). Two crucial features make a con-
vergence map appealing for extracting higher-order statistics:
1) the map preserves the phase information of the mass dis-
tribution and 2) the convergence is a scalar field, which can
be easier to manipulate/model than a shear field (the latter
is closer to what we observe, as explained in Sec. 2). Many
methods for generating these convergence maps have been
proposed; the foundation of most of them is the direct inver-
sion algorithm developed in Kaiser & Squires (1993, hereafter
KS), a purely analytic solution for converting between shear
(the observable) and convergence. Many papers are based on
the KS method, including cosmological analyses (Van Waer-
beke et al. 2013; Vikram et al. 2015; Chang et al. 2015; Liu
et al. 2015; Chang et al. 2018; Oguri et al. 2018).

The main difficulties associated with the KS method are
the treatment of the noise and mask effects. In practice,
galaxy surveys only observe a part of the sky, and mask
out different regions of their sky footprint where the shear

field cannot be properly estimated. This usually affects the
map-making process, resulting in a poor estimate of the con-
vergence field near masked regions and near the edge of the
footprint. Moreover, we can observe only a noisy realisation
of the shear field, which often leads to a noise-dominated es-
timate of the convergence field. Methods more sophisticated
than KS were developed to deal with these issues. These in-
clude noise modelling and signal priors, either in closed-form
(Marshall et al. 2002; Lanusse et al. 2016; Alsing et al. 2017;
Jeffrey et al. 2018b; Price et al. 2019) – this is the approach
we will take in this work – or implicitly learned using samples
from the prior (e.g. using deep learning Shirasaki et al. 2019;
Jeffrey et al. 2020). Many methods have been shown to im-
prove some aspects of the reconstruction of the convergence
maps, but ultimately the choice of method depends on the
science application of these maps.

Therefore there is no single comprehensive test for compar-
ative performance between methods; a number of different
tests have to be considered.

One goal of this paper is to present an objective and
systematic comparison between several map reconstruc-
tion methods using the same set of simulations and data.
We present results using the DES Y3 shear catalogue of
100,204,026 galaxies in 4143 deg2. These results highlight ex-
pected differences in the maps constructed using the different
algorithms and illustrate the advantages or disadvantages of
their use in different science cases. We present a comprehen-
sive framework under which most of the convergence map-
making methods described previously can be connected and
compared. We focus particularly on four methods that span
the range of the most popular methods: KS, null B-mode
prior, Gaussian prior (Wiener), and halo-model sparsity prior
(Glimpse). The methods are applied first to a set of DES Y3-
like mock galaxy catalogues to demonstrate the performance
of each method when the true underlying convergence field is
known.

Applying the four methods to the DES Y3 data, we fulfil
further goals of performing tests for effects of observational
systematic error. We compare the reconstructed weak lensing
convergence maps with DES observations of foreground struc-
tures; this has further applications for future cosmographic
studies and full analyses correlating these maps with cosmo-
logical observables (e.g. type Ia supernovae, galaxies and cos-
mic web structures). Further papers (to follow) will use the
maps generated here for cosmology analyses and inference.

The structure of the paper is as follows: in Sec. 2 we pro-
vide the theoretical background for weak gravitational lensing
and the framework that connects convergence with observable
quantities in a galaxy survey. In Sec. 3 we present a mathe-
matical framework in which the four different mass mapping
methods of interest (KS, null B-mode, Wiener, Glimpse) are
seen to differ only with respect to the priors that are adopted.
The data products and simulations used in this work are de-
scribed in Sec. 4. In Sec. 5 we carry out a series of tests
on mass maps generated from the four methods and com-
pare them systematically. We then apply the four methods
to the DES Y3 data in Sec. 6 and present tests for additional
systematic residuals from observational effects. We addition-
ally compare and analyse the maps with observations of fore-
ground structures. We conclude in Sec. 7.

MNRAS 000, 000–000 (0000)
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2 WEAK GRAVITATIONAL LENSING ON THE SPHERE

We begin with the gravitational potential Φ and the matter
overdensity field δ ≡ δρ/ρ̄; these real scalar fields on space-
time are related by the Poisson equation

∇2
rΦ(t, r) =

3ΩmH
2
0

2a(t)
δ(t, r) . (1)

Here t is time, r is a comoving spatial coordinate, Ωm is the
total matter density today, H0 is the Hubble constant today,
and a ≡ 1/(1 + z) is the scale factor.

Weak gravitational lensing is the small distortion of the
shapes of distant galaxies caused by the gravitational warping
of spacetime (and hence the distortion of light paths) by mass
located between the galaxies and an observer; see Bartelmann
& Schneider (2001) for a comprehensive introduction.

We will parametrize the observer’s past lightcone as
(χ, θ, ϕ) with χ the comoving radial distance from the ob-
server and θ, ϕ a point on the observer’s celestial sphere.
The effect of weak lensing can be encapsulated in the lens-
ing potential, denoted φ, a real scalar field on the lightcone;
its value is related to the gravitational potential Φ projected
along the line of sight:

φ(χ, θ, ϕ) =
2

c2

∫ χ

0

dχ′
fK(χ− χ′)
fK(χ)fK(χ′)

Φ(χ′, θ, ϕ). (2)

This equation assumes the Born approximation (the path of
integration is not perturbed by the intervening mass). Here
the angular distance function fK is sin, the identity, or sinh
depending on whether the curvature K is positive, zero, or
negative.

The radial dependence of φ in equation 2 would allow a
three-dimensional analysis; however, instead of this, we inte-
grate away the radial dependence using as a weight function
the normalised redshift distribution n(z) of source galaxies,
obtaining

φ(θ, ϕ) =

∫
dχ n(z(χ)) φ(χ, θ, ϕ), (3)

a real scalar field on the celestial sphere.
To handle φ as well as derived quantities we use the for-

malism of spin-weight functions on the sphere as described in
Castro et al. (2005). Let sYlm(θ, ϕ) denote the spin-weight s
spherical harmonic basis functions. Recall that the covariant
derivative ð increments the spin-weight s while its adjoint ð̄
decrements it; these operators act in a straightforward fash-
ion on the basis functions.

The convergence κ = κE + iκB (of spin-weight 0 i.e. a
scalar) and shear γ = γ1 + iγ2 (of spin-weight 2) are related
to the lensing potential via:

κ =
1

4
(ðð̄ + ð̄ð)φ, (4)

γ =
1

2
ððφ. (5)

The convergence satisfies

κ(θ, φ) =
3ΩmH

2
0

2c2
×∫ ∞

0

dχ n(z(χ))

∫ χ

0

dχ′
fK(χ′)fK(χ− χ′)

fK(χ)

δ(χ′, θ, φ)

a(χ′)
.

(6)

We now move to harmonic space, obtaining harmonic co-
efficients φ̂`m, κ̂`m and γ̂`m for φ, κ and γ respectively. Here
for example:

γ =
∑
`m

γ̂`m 2Y`m (7)

with

γ̂`m =

∫
dΩ γ(θ, ϕ) 2Y

∗
`m(θ, ϕ). (8)

We can decompose the harmonic coefficients into real and
imaginary parts: κ̂`m = κ̂E,`m + iκ̂B,`m and γ̂`m = γ̂E,`m +
iγ̂B,`m. In harmonic space, equations 4 and 5 become:

κ̂`m = −1

2
`(`+ 1)φ̂`m (9)

and

γ̂lm =
1

2

√
(`− 1)`(`+ 1)(`+ 2)φ̂`m. (10)

Thus

γ̂lm = −

√
(`− 1)(`+ 2)

`(`+ 1)
κ̂`m. (11)

3 MASS MAP INFERENCE

The formalism introduced in the previous section relates an
ideal complex shear field defined on the full celestial sphere
γ to the convergence field κ for a given source redshift distri-
bution. This ideal shear field is full-sky, sampled everywhere,
and noise-free. Inferring the unknown convergence field from
ellipticity measurements of a finite set of source galaxies in
the presence of survey masks and galaxy shape noise (dis-
cussed below) is the challenge of mass mapping.

The real and imaginary parts of the shear γ are relative to
a chosen two dimensional coordinate system. In weak lens-
ing, the observed ellipticity (Bartelmann & Schneider (2001)
equation 4.10) of a galaxy εobs is related to the reduced shear
g plus the intrinsic ellipticity of the source galaxy εs through

εobs ≈ g + εs,

where g =
γ

1− κ .
(12)

In the weak lensing limit, the reduced shear is approximately
the true shear, g ≈ γ. This allows an observed shear to be
defined, γobs = εobs; this can be interpreted as a noisy mea-
surement of the true shear that has been degraded by shape
noise (caused by the unknown intrinsic ellipticities εs of the
observed galaxies):

γobs ≈ γ + εs . (13)

MNRAS 000, 000–000 (0000)



4 N. Jeffrey, M. Gatti et al.

The shape noise is larger than the lensing signal by a factor of
O(100) per galaxy. It is therefore a dominant source of noise.

In a Bayesian framework we consider the posterior distri-
bution of the convergence κ conditional on the observed shear
γ (here we have dropped the subscript obs for brevity) and
on the model M:

p(κ|γ,M) =
p(γ|κ,M) p(κ|M)

p(γ|M)
, (14)

where p(γ|κ,M) is the likelihood (encoding the noise model),
p(κ|M) is the prior, and p(γ|M) is the Bayesian evidence.

We formulate all reconstructed convergence κ maps as the
most probable maps (given our observed data and assump-
tions); this is the peak of the posterior i.e. the maximum a
posteriori estimate. From equation 14 we see that the maxi-
mum a posteriori estimate is given by

κ̂ = arg max
κ

log p(γ|κ,M) + log p(κ|M) , (15)

whereM is our model (which in our case changes depending
on the chosen prior distribution). Here, the elements of the
vectors κ and γ are the pixel values of a pixelized convergence
map and the observed shear field, respectively.

We can express the linear data model in matrix notation,

γ = Aκ+ n , (16)

where the matrix operation A corresponds to the linear trans-
formation from the ideal (noise-free and full-sky) convergence
field to the shear field (equation 11). The noise term n is the
vector of noise contributions per pixel (equation 13).

Assume that the average shape noise per pixel on the ce-
lestial sphere (e.g. per HEALPix Górski et al. (2005) pixel)
is Gaussian distributed, so that the likelihood (dropping M
for brevity) is given by

p(γ|κ) =
1√

(det2πN)
exp
[
− 1

2
(γ−Aκ)† N−1(γ−Aκ)

]
(17)

where it is assumed that the noise covariance N = 〈nn†〉 is
known and that the average noise per pixel is both Gaussian
and uncorrelated (so that N is diagonal). With this likeli-
hood, the masked (unobserved) pixels have infinite variance.

Under the assumption that the variance per galaxy due to
weak lensing is negligible in comparison to the variance due to
the intrinsic ellipticity, we can generate noise realisations by
rotating the galaxy shapes in the catalogue and thus removing
the lensing correlations. This procedure is extremely fast, and
allows us to easily construct a Monte Carlo estimate of the
noise covariance N.

3.1 Prior probability distribution

This work considers four forms for the prior probability distri-
bution p(κ|M) that appears in equation 15. This prior prob-
ability is intrinsic to the method and cannot be ‘ignored’ (in
the sense that not including a prior is identical to actively
choosing to use a uniform prior).

The various prior probability distributions used in this
work correspond to various mass mapping methods, with each

prior arising from a different physically motivated constraint.
They are:

(i) Direct Kaiser-Squires inversion. In the absence of smooth-
ing this corresponds to a maximum a posteriori estimate with
a uniform prior:

p(κ) ∝ 1 . (18)

Although this is an improper prior as it is cannot be nor-
malized, the resulting posterior is nevertheless normalizable.
One may set wide bounds for this distribution and in practice
these would not impact the final result.

Usually the Kaiser-Squires inversion is followed by a
smoothing of small angular scales, where it is expected that
noise dominates over signal. This corresponds to a lower
bound on the prior with respect to angular scale.

(ii) E-mode prior (null B-modes). As discussed further in
Sec. 3.3, this prior incorporates our knowledge that weak
gravitational lensing produces negligible B-mode contribu-
tions. This corresponds to the log-prior

−log p(κ) = iIm(κ)=0 + constant , (19)

where the indicator function iIm(κ)=0 is discussed in Sec. 3.3.

(iii) Gaussian random field prior, assuming a certain E-mode
power spectrum (and with zero B-mode power). The maxi-
mum a posteriori estimate under such a prior (combined with
our Gaussian likelihood) corresponds to a Wiener filter. The
prior distribution

p(κ) =
1√

(det2πSκ)
exp
[
− 1

2
κ† S−1

κ κ
]
, (20)

with the power spectrum contributing to the signal covari-
ance matrix Sκ, will be discussed in Sec. 3.4.

(iv) Sparsity-enforced wavelet ‘halo’ prior with null B-modes.
In the late Universe it is expected that quasi-spherical halo
structures form. A wavelet basis whose elements have this
quasi-spherical structure in direct (pixel) space should be a
sparse representation of the convergence κ signal. This is in-
cluded in the log-prior distribution

−log p(κ) = λ||φ†κ||1 + iIm(κ)=0 , (21)

where the l1 norm of the wavelet transformed convergence
φ†κ is small when the convergence field contains quasi-
spherical halo structures, for a suitable choice of wavelet
transform φ†. Unlike the case of the Gaussian prior, where
the lack of B-modes can be included in the power spectrum,
here the second term is added to enforce that the signals com-
patible with the prior contain only E-modes. This is further
discussed in Sec. 3.5.

In the rest of this section we will explain the physical moti-
vation for these choices and show how they are implemented.

3.2 Kaiser-Squires on the sphere

In the flat sky limit, for relatively small sky coverage, the ð
operators on the sphere may be approximated using partial

MNRAS 000, 000–000 (0000)



DES Year 3: weak lensing mass map reconstruction 5

derivatives ∂ with respect to θ and φ. In this regime the
relationship between shear γ and convergence κ (equations
4 and 5) reduce to

γ̃(k) =
k2

1 − k2
2 + 2ik1k2

k2
1 + k2

2

κ̃(k) , (22)

where k1 and k2 are the components of k, defined in terms
of the Fourier transform

κ̃(k) =

∫
R2

dθ κ(θ) exp
[
iθ · k

]
, (23)

where θ has components θ and ϕ. The well-known Kaiser-
Squires (KS) method estimates the convergence by directly
inverting equation 22.

For the DES Y3 sky coverage, the flat sky approximation
cannot be used without introducing substantial errors (Wallis
et al. 2017), so as in the Y1 mass map analysis (Chang et al.
2018) we require a curved-sky treatment. KS on the sphere
corresponds to a decomposition of the spin-2 field γ into a
curl-free E-mode component and a divergence-free B-mode
component, as described in Sec. 2.

With these components γ̂E,`m and γ̂B,`m we use equation 11
to recover κ̂E,`m and κ̂B,`m, which transform as scalars using
a spin-0 spherical harmonic transform to recover κ(θ, ϕ) =
κE(θ, ϕ) + i κB(θ, ϕ).

The spherical harmonic operations described above are
entirely analogous to CMB linear polarization, where the
Q and U Stokes parameters correspond to the γ1 and γ2

components. As such, all spherical harmonic transforma-
tions use either the scalar or ‘polarization’ transforms of
HEALPix (Górski et al. 2005). All maps presented in this
work use NSIDE = 1024 and all relevant spherical harmonic
transforms use `max = 2048.

As with flat-sky KS, this generalization of KS to the celes-
tial sphere corresponds to an inverse of the linear operation
A in equation 16 and, as such, corresponds to a maximum
likelihood estimate (c.f. equation 17) of the convergence field
κ. Direct KS inversion therefore corresponds to a maximum
a posteriori estimate with a uniform prior p(κ) ∝ 1.

Even with this Bayesian maximum a posteriori interpre-
tation, the KS reconstruction method has the advantage of
simplicity: the transformation is linear if B-modes are in-
cluded (which can be a useful mathematical property) and
the method is computationally straightforward.

As is standard practice the KS inversion is followed by a
smoothing of small angular scales, corresponding to a lower
bound on the prior with respect to angular scale. We treat
the choice of the angular smoothing parameter as a free pa-
rameter, the effects of which we investigate using simulated
data (Sec. 5).

3.3 Null B-mode prior

We can decompose a convergence map into a real E-mode
and imaginary B-mode component

κ = κE + i κB , (24)

where the shear representation of the E-mode κE is curl-free
and the B-mode κB is divergence-free.

The Born-approximation weak lensing derivation (see
Sec. 2) makes it clear that weak gravitational lensing gener-
ates no B-mode components. Higher order contributions can
contribute to non-zero B-modes (e.g. Krause & Hirata 2010),
although these effects are generally much smaller than the
leading E-mode contribution. Additionally, intrinsic align-
ments of galaxies can induce non-zero B-mode contribu-
tions (Blazek et al. 2019; Samuroff et al. 2019), although
intrinsic alignment effects are not included in this map re-
construction analysis. We also note that systematic effects,
such as shear measurement systematic errors of point-spread-
function residuals, can also generate spurious B-modes (e.g.
Asgari et al. 2019), but no significant B-modes have been
measured in the DES Y3 shear catalogue (Gatti, Sheldon
et al. 2021).

The standard KS reconstruction generates spurious B-
modes due to shape noise and masks. It is therefore well-
motivated to have a prior probability distribution for conver-
gence κ that gives no probability to κB and the KS uniform
prior to κE only, giving the following log-prior

−log p(κ) = iIm(κ)=0 + constant , (25)

where the indicator function of a set C is defined as

iC(x) =

{
0 if x ∈ C
+∞ otherwise ,

(26)

which in our case gives zero prior probability to convergence
κ maps with an imaginary component (corresponding to B-
modes). The maximum a posteriori estimate with this prior
and Gaussian likelihood is given by the following optimisation
problem:

κ̂ = arg min
κ

(γ −Aκ)† N−1(γ −Aκ) + iIm(κ)=0 . (27)

This formulation allows us to maximize the log posterior
(equation 15) using Forward-Backward Splitting (Combettes
& Wajs 2005), with a proximity operator corresponding to
an orthogonal projector onto the set C. This is implemented
with the following iterative method

κ(n+1) = Re
[
κ(n) + µA†N−1(γ −Aκ(n))] , (28)

where µ controls the gradient steps and is free to be cho-
sen within certain broad conditions (see Combettes & Wajs
2005), which allows us to represent the iterative method as

κ(n+1) = Re
[
κ(n) + µ′A†

[
ng �

(
γ −Aκ(n))]] , (29)

where � is an element-wise (Hadamard) product. Here we
have absorbed the amplitude of the noise variance into µ′

leaving just a vector of number of galaxies per pixel ng with
galaxy weights according to Sec. 4. In practice, the second
term can be numerically unstable due to the forward and
backward transforms (A, A†) on the HEALPix sphere, be-
coming increasingly problematic for low signal-to-noise data,
which necessitates some regularization of the gradient update
steps. As with KS, we ultimately smooth small scales of the
reconstructed map, and we therefore initialise κ(0) with the
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6 N. Jeffrey, M. Gatti et al.

smoothed KS reconstruction and include the smoothing op-
eration after each gradient update step which also serves as
a regularizer in the gradient descent. This also implies that
the final map would be slightly smoother than if it had been
smoothed only at the end of the iterative procedure.

Although the motivation and the algorithm are somewhat
different, this method is inspired by and gives a similar out-
come to that shown in Mawdsley et al. (2020). The algorithm
described here is also similar to the GKS special case of the
MCALens method for flat-sky mass mapping as described in
the appendices of Starck et al. (2021).

3.4 Gaussian prior (Wiener filter)

This prior is that of a Gaussian random field, which is appli-
cable for the density field on large scales at late times,

p(κ|Sκ) =
1√

(det2πSκ)
exp
[
− 1

2
κ† S−1

κ κ
]
. (30)

The maximum a posteriori estimate with this prior and
Gaussian likelihood is given by the following optimisation
problem:

κ̂ = arg min
κ

(γ −Aκ)† N−1(γ −Aκ) + κ† S−1
κ κ . (31)

The solution to this problem is the Wiener filter:

κ̂W = Wγ

W = SκA
†[ASκA

† + N
]−1

.
(32)

Here Sκ and N are the signal and noise covariance matrices
respectively, which are 〈κκ†〉 and 〈nn†〉 for this problem.

Direct evaluation of the matrix W, which has at least 1012

elements and is sparse in neither pixel space nor harmonic
space, would be extremely computationally expensive. We
therefore make use of a class of methods that use additional
messenger fields (introduced by Elsner & Wandelt 2013) to
iteratively transform between pixel space, where N is diago-
nal, and harmonic space, where Sκ is diagonal. Such methods
have seen widespread use in cosmology where the signal co-
variance is often sparse due to the statistical isotropy of the
underlying signal (Jasche & Lavaux 2015; Alsing et al. 2017;
Jeffrey et al. 2018a).

For a Wiener filter messenger field implementation on the
sphere we the Dante package (Kodi Ramanah et al. 2019),
which uses an optimized novel messenger field implementa-
tion to perform Wiener filtering on the sphere for spin-2 fields.
We test convergence by doubling the Dante precision (with
precision parameter from 10−5 to 5×10−6), which effectively
corresponds to increasing the number of iterations, and show-
ing a negligible MSE change of 3× 10−5 per cent with simu-
lated data.

The signal covariance matrix in harmonic space is diagonal,
with elements given by an assumed fiducial power spectrum.
Our fiducial E-mode power spectrum is taken as the power
spectrum of the convergence truth map from the simulated
data (see Sec. 4) which was corrected for the mask using the
NaMaster1 pseudo-C` estimation code (Alonso et al. 2019).

1 https://github.com/LSSTDESC/NaMaster

We explicitly provide a B-mode power spectrum set to zero,
thus simultaneously achieving the null B-mode prior equiva-
lent to Sec. 3.3.

3.5 Sparsity prior

The optimisation problem solved by the Glimpse algorithm
using a sparsity prior is

κ̂ = arg min
κ

(γ−Aκ)† N−1(γ−Aκ)+λ||ωΦ†κ||1+iIm(κ)=0 ,

(33)

where ω is a diagonal matrix of weights, and Φ† is the inverse
wavelet transform. The indicator function iIm(·)=0 in the final
term imposes realness on the reconstruction (null B-modes).
The use of nonuniform discrete Fourier transform (NDFT) al-
lows the first term to perform a forward-fitted Kaiser-Squires-
like step without binning the shear data, allowing the smaller
scales to be retained in the reconstruction. The full algorithm,
including the calculation of the weights, is described in Sec.
3.2 in Lanusse et al. (2016).

Glimpse operates on a small patch of the sky, which it
treats as flat. Input shear data is transferred (projected) from
the celestial sphere to the tangent plane (i.e. the plane tan-
gent to the sphere at the patch centre); the ‘shear to con-
vergence’ calculation is done on the tangent plane (where
the flatness simplifies the analysis); the results (which are re-
ported at a lattice of points - call this an ‘output lattice’)
are then mapped back to the sphere. The mapping between
sphere and tangent plane is the orthographic projection.

To analyse the large DES footprint we run Glimpse on
multiple (overlapping) small patches and paste the results
together. We set each of our patches to be 256 square degrees
(a compromise: larger would stress the flat-sky approximation
while smaller would suppress large-scale modes). The density
of such patches is one per 13 square degrees. The output
lattices were set to have 330 × 330 points. Each pixel in our
draft convergence map (HEALPix NSIDE = 2048) is obtained
from a weighted average of the convergences at all the output
lattice points, from all the patches, that happen to fall in
that pixel. The weights are chosen to be unity in the centre
of each patch but to fall away to zero (sharply but smoothly)
away from the central one-ninth of each output patch. As a
last step the output convergence map is downsampled to a
NSIDE = 1024.

An alternative to this patching strategy would be to im-
plement wavelets on the sphere. The sparsity-based statisti-
cal model described by Price et al. (2021) demonstrate such
a strategy, with the added benefit of sampling the posterior
distribution (not just maximization), though uses wavelets
on the sphere that have infinite support in pixel space.

The choice of wavelet transformation (sometime called a
‘dictionary’) depends on the structures contained in the sig-
nal. Theory predicts the formation of quasi-spherical haloes
of bound matter. It is standard practice to represent the spa-
tial distribution of matter in haloes with spherically sym-
metric Navarro-Frenk-White (Navarro et al. 1996) or Sin-
gular Isothermal Sphere profiles. The starlet, Coefficients of
Isotropic Undecimated Wavelets (Starck et al. 2015), in two
dimensions are well suited to represent the observed conver-
gence of a dark matter halo. The wavelet transform used in
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the Glimpse algorithm is the starlet (Starck et al. 2007),
which can represent positive, isotropic objects well. This prior
in the starlet basis represents a physical model that the mat-
ter field is a superposition of spherically symmetric dark mat-
ter haloes.

The full Glimpse algorithm is described in detail in
Lanusse et al. (2016).

3.6 Properties of inferred maps

As described above, each of our maps is a maximum a posteri-
ori estimate given the observed data; that is, each is the most
probable map for the data given one of our assumed models.
All mapping methods take into account the same noise co-
variance matrix (characterising the noise amplitude and dis-
tribution across the observed area); differences between the
maps arise from the different assumptions about the prior
probability distribution for the underlying convergence κ.

Although the map (in practice this is a set of pixel values)
is the most probable map, a given statistic of the map will
not necessarily correspond to the most probable statistic. For
example, if the convergence κ field is indeed Gaussian, we can
see that the resulting most probable map is the Wiener filter
map. The two-point statistics (e.g. power spectrum) of the
Wiener filtered map will comprise terms such as 〈κ̂κ̂†〉 =
〈Wγγ†W†〉. If the signal-to-noise ratio is not infinite (i.e.
S + N 6= S), equation 32 for W shows that the two-point
statistics of the Wiener filtered map 〈κ̂κ̂†〉 will have lower
amplitude than those of the truth 〈κκ†〉.

This is no contradiction: the pixel values forming their
most probable combination κ̂ maximize p(κ|γ), but would
not maximize a transformed probability p(κ2|γ). For most
summary statistics, the map cannot simultaneously be the
most probable map and be trivially used to derive the most
probable summary statistic. If we evaluated the full poste-
rior p(κ|γ) rather than evaluating a maximum a posteriori
point-estimate, we could transform the probability density to
further evaluate functions of the map (e.g. spectra, correla-
tion functions, moments).

If we wished to jointly estimate the map and a given statis-
tic µ used in the map-making process (e.g. C` for Wiener fil-
tering or λ for the sparsity prior) we could instead form the
joint posterior p(κ, µ|γ) and jointly estimate µ. It has been
demonstrated that under certain assumptions one can indeed
jointly sample the lensing map and the unknown power spec-
trum (Wandelt et al. 2004; Alsing et al. 2017) or the unknown
λ parameter (e.g. Higson et al. 2019; Price et al. 2019) if this
is desired. In this work we evaluate a point-estimate that
maximizes p(κ|γ) and, as we do not aim to evaluate the full
posterior, we fix C` (even doubling the amplitude leads to
sub-5-percent change in mean-square-error for the point esti-
mate) and tune λ using simulated data (Sec. 5).

For inference using map-based statistics, the theoretical
predictions can be simply adjusted for the given map re-
construction. In a forward-modelling framework (as used by
many higher-order statistics), the predictions are measured
from mock maps and the same operations are applied consis-
tently to the mock data and to the observed data.

0.0 0.5 1.0 1.5

z

0.00

0.01

0.02

n
(z

)

bin 1

bin 2

bin 3

bin 4

Figure 1. Redshift distributions as estimated in data for the four

DES Y3 tomographic bins (Myles et al. 2020).

4 DATA AND SIMULATIONS

In this paper we used data products from the first three years
(Y3) of the Dark Energy Survey (DES, Dark Energy Sur-
vey Collaboration et al. 2016; Abbott et al. 2018), and mock
galaxy catalogues that were tailored to match the data. DES
is a five-year survey that covers ∼ 5000 deg2 of the South
Galactic Cap. Mounted on the Cerro Tololo Inter-American
Observatory (CTIO) four metre Blanco telescope in Chile,
the 570 megapixel Dark Energy Camera (DECam, Flaugher
et al. 2015) images the field in grizY filters. The raw images
were processed by the DES Data Management (DESDM)
team (Sevilla et al. 2011; Morganson et al. 2018; Abbott et al.
2018). For the full details of the data, we refer the readers to
Sevilla-Noarbe et al. (2020) and Gatti, Sheldon et al. (2021).

4.1 The DES Y3 shear catalogue

The DES Y3 shear catalogue, described in detail in Gatti,
Sheldon et al. (2021), builds upon the Y3 Gold catalogue
(Sevilla-Noarbe et al. 2020). It is created using the METACAL-

IBRATION algorithm (Huff & Mandelbaum 2017; Sheldon &
Huff 2017), which infers the galaxy ellipticities starting from
noisy images of the detected objects in the r, i, z bands.
The METACALIBRATION algorithm was used previously in the
DES Y1 analysis (Zuntz, Sheldon et al. 2018). METACALIBRA-
TION provides an estimate of the shear field, and it relies
on a self calibration framework using the data itself to cor-
rect for the response of the estimator to shear as well as
for selection effects. Objects are included in the catalogue
if they pass a number of selection cuts designed to reduce
potential systematic biases (Gatti, Sheldon et al. 2021). In-
verse variance weights are assigned to galaxies. The final DES
Y3 shear catalogue has 100,204,026 objects, with a weighted
neff = 5.59 galaxies arcmin−2.

Despite the METACALIBRATION response self-correcting for
most of the multiplicative bias, it is known that for the DES
Y3 shear catalogue there is an additional multiplicative bias
of approximately 2 or 3 per cent (MacCrann et al. 2020). This
factor arises partly from a shear-redshift-dependent detection
bias due to blending of galaxy images, for which the META-

CALIBRATION implementation adopted in DES Y3 is unable
to account (Sheldon et al. 2020). This multiplicative factor
is left uncalibrated but is marginalised over in the main cos-
mological analysis. In Gatti, Sheldon et al. (2021) the shear
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catalogue has also been tested for additive biases (e.g. due to
point-spread-function residuals). In particular, the catalogue
is characterised by a non-zero mean shear whose origin is un-
known and which is subtracted at the catalogue level before
performing any analysis.

A two-stage blinding procedure was used in the DES Y3
analysis to mitigate confirmation bias. The first level of this
procedure blinded the shear catalogue by means of a multi-
plicative factor, in a fashion similar to what has been adopted
in the Y1 analysis (Zuntz, Sheldon et al. 2018). The second
level of blinding (Muir et al. 2020) was applied to the sum-
mary statistics under examination (e.g. cosmic shear, galaxy-
galaxy lensing, galaxy-galaxy clustering). Since in this work
we do not directly measure any summary statistics from the
data maps, only the first level of blinding has been consid-
ered. All the systematic tests on the maps obtained from the
data have been performed first using the blinded catalogue,
and then repeated after unblinding.

The shear catalogue is further divided into four tomo-
graphic bins; redshift distribution estimates (Fig. 1) for each
of the tomographic bins are provided by the SOMPZ method
(Myles, Alarcon et al. 2020), further informed by clustering
(WZ) constraints (Gatti, Giannini et al. 2020a). The n(z) are
also tweaked to take into account the redshift-dependent ef-
fect of blending (MacCrann et al. 2020). When running the
cosmological analysis, constraints on the n(z) are further im-
proved by shear-ratio constraints (Sánchez et al. 2020). The
tomographic bins are selected so as to have roughly equal
number density.

The catalogue is then used to create shear maps (i.e. pix-
elized maps for the two components of the shear field). The
maps are constructed using a HEALPix pixelization (Górski
et al. 2005) with NSIDE = 1024 (corresponding to a pixel size
of 3.44 arcmin). The estimated value of the shear field in the
map pixels is given by:

γνobs =

∑n
j=1 ε

ν
jwj

R̄
∑n
j=1 wj

, ν = 1, 2, (34)

where ν refers to the two shear field components, n is the
total number of galaxies in the sample, wj is the per-galaxy
inverse variance weight, and R̄ is the average METACALIBRA-

TION response of the sample. Eq. 34 is used to create shear
field maps for the full catalogue as well as for the four tomo-
graphic bins. As mentioned earlier, the multiplicative shear
bias is left uncalibrated when creating the shear maps. Any
non-zero mean shear is subtracted from the catalogue before
creating the maps.

4.2 Simulated mock galaxy catalogue

To build our simulated galaxy catalogue, we use a single reali-
sation of the 108 available Takahashi et al. (2017) simulations.
These are a set of full-sky lensing convergence and shear maps
obtained for a range of redshifts between z = 0.05 and 5.3 at
intervals of 150 h−1 Mpc comoving distance.

Initial conditions were generated using the 2LPTIC code
(Crocce et al. 2006) and the N-body simulation used L-
GADGET2 (Springel 2005) with cosmological parameters
consistent with WMAP 9 year results (Hinshaw et al. 2013):
Ωm = 0.279, σ8 = 0.82, Ωb = 0.046, ns = 0.97, h = 0.7.
The simulations begin with 14 boxes with side lengths L =
450, 900, 1350, ..., 6300 h−1 Mpc in steps of 450 h−1 Mpc, with

six independent copies at each box size and 20483 particles
per box. Snapshots are taken at the redshift corresponding
to the lens planes at intervals of 150 h−1 Mpc comoving dis-
tance. The average matter power spectra of the simulations
agree with the revised HALOFIT (Takahashi et al. 2012) pre-
dictions within 5 per cent for k < 1 h Mpc−1 at z < 1, for
k < 0.8 h Mpc−1 at z < 3, and for k < 0.5 h Mpc−1 at z < 7.
A multiple plane ray-tracing algorithm (GRayTrix, Hamana
et al. 2015) is used to estimate the values of the shear and
convergence fields for the simulation snapshots. Shear and
convergence field maps are provided in the form of HEALPix
maps with resolution NSIDE = 4096.

We use the convergence and shear maps at different red-
shifts to generate a simulated DES Y3 shape catalogue, using
the following procedure. First, we generate convergence and
shear field HEALPix maps for the four DES Y3 tomographic
bins (and for the full catalogue as well) by stacking the shear
and convergence snapshots, properly weighted by the fiducial
DES Y3 redshift distributions of the bins. Simulated galax-
ies are then randomly drawn within the DES Y3 footprint
according to the DES Y3 number density. Each simulated
galaxy is assigned a shear and convergence value depending
on its position (i.e. by looking at the value of that particu-
lar pixel of the convergence and shear maps into which they
fall). To assign realistic shape noise and weights to the sim-
ulated galaxies, we make use of the fiducial DES Y3 shape
catalogue. In particular, we randomly rotate the ellipticity of
each galaxy in the data such that it can be used as intrin-
sic ellipticity. This intrinsic ellipticity is added to a random
galaxy of the simulated catalogue, using the shear addition
formula (e.g. Seitz & Schneider 1997). We also assign to the
simulated galaxy the inverse variance weight from the same
real galaxy we used to obtain the intrinsic ellipticity. Follow-
ing this procedure, we obtain a simulated DES Y3 catalogue,
with the same number density, shape noise and weights of
the catalogue in data. Finally, following Eq. 34, we use the
simulated catalogue to create a NSIDE = 1024 ‘true’ conver-
gence map, which will be used as comparison in all the tests
on simulations.

5 SIMULATION TESTS

In this section we discuss and compare the different mass map
methods outlined in Sec. 3. To this aim, we use simulated
convergence maps and a number of different statistics to test
the quality of the reconstruction with respect to the input
convergence map available in simulations. Here, we only show
tests on the maps created using the full shear catalogue.

We do not expect any conclusion drawn in this section
to change when considering tomographic maps rather than
the full map. All the maps considered have been converted
to HEALPix (Górski et al. 2005) maps with NSIDE = 1024
(corresponding to a pixel resolution of 3.44 arcmin).

As mentioned in the introduction, there is no single com-
prehensive test for comparative performance between meth-
ods. Rather, a number of different tests can be performed,
aimed at highlighting the advantages and disadvantages of
each method. In particular, Sec. 5.1 discusses how different
methods deal with mask effects, Sec. 5.2 shows the conver-
gence field estimates in the presence of realistic shape noise
from the different methods when realistic, noisy shear fields
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Figure 2. Simulated noise-free DES Y3 weak lensing mass maps. Top left panel : the original input convergence field map. Top right panel :

the convergence field map (E-mode) obtained using the spherical KS algorithm from a noiseless realisation of the shear field. Bottom left

panel : residual map of the input convergence field and the KS map. Bottom right panel : KS B-mode map. Maps have been smoothed at
10 arcmin for visualisation purposes. Inset : RAcentre, Deccentre = 70◦,−40◦; ∆RA, ∆Dec = 15◦, 10◦.
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Figure 3. Zoomed-in version of the residual maps for the KS (left)

and null B-mode prior methods (right). The maps have been
zoomed close to the edge of the footprint. The null B-mode prior
method is characterised by a lower amplitude of the residual map,
owing to a better handling of the mask effects.

are provided as input, while Secs. 5.3–5.5 show quantitative
tests on a number of summary statistics. In these tests, when-
ever meaningful, we varied the parameters of the method (i.e.
the θ parameter for KS and null B-mode prior methods and
the λ parameter for Glimpse). We note that these tests are
by no means exhaustive, as other summary statistics could be
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Figure 4. Power spectrum of the reconstructed maps, for the KS
and the null B-mode prior methods, obtained from a noiseless re-

alisation of the shear field. No smoothing has been applied to the

recovered maps. We compare here with the power spectra of the
input convergence field.

examined (e.g. higher order statistics, phases, peaks). While
we think the tests presented in this section allow us to char-
acterise the advantages and disadvantages of each method,
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Figure 5. Simulated DES Y3 weak lensing mass maps, obtained from a noisy realisation of the shear field, with different map making

methods. Top left panel : noisy KS E-mode reconstructed map. Top right panel : null B-mode prior method reconstructed map. Bottom left
panel : Wiener filter reconstructed map. Bottom right panel : Glimpse reconstructed map. The maps in the top panels have been smoothed

at 10 arcmin; no further smoothing is applied to the maps showed in the lower panels. Inset : RAcentre, Deccentre = 70◦,−40◦; ∆RA,

∆Dec = 15◦, 10◦.

further tests could be performed depending on the particular
science application.

5.1 Mask effects

To demonstrate the effects of the mask and missing data,
we generate a mock catalogue with no shape noise. Fig. 2
shows the input true convergence map (top left), the KS E-
mode reconstruction (top left), the KS residual map (bottom
left), and the KS B-mode map (bottom right). The residual is
defined as the difference between the input true map and the
reconstructed E-mode map. In these figures the maps have
been smoothed with a Gaussian kernel with σ = 10 arcmin
for visualisation.

In the noise-free case all methods other than KS (including
Wiener and Glimpse) have a null B-mode prior and are thus
equivalent. In this noise-free limit, the noise covariance be-
comes a binary matrix (for the mask) and the signal factors
can divide out (although our code implementations of Wiener
and Glimpse would not be able to deal with this zero limit in
practice). The noise-free result is therefore the same for the
null B-mode prior method, the Wiener filter, and Glimpse.

From the KS residual map (bottom left), where the resid-
ual is between the KS idealised case with no shape noise and
the truth, we recover most of the features of the input conver-
gence map, except for the part of the map close to the edges of
the DES footprint. As discussed in Sec. 3, the KS reconstruc-
tion is susceptible to mask effects in the case of partial sky
coverage, resulting in a non-zero residual map and spurious
B-modes (i.e. E-mode leakage). The amplitude of the residual
map is strongly reduced when a null B-mode prior is applied,
as shown in Fig. 3. We can also quantify the effect of the null
B-mode prior by measuring the power spectra of the recov-
ered maps. In Fig. 4 we compare the power spectra of the KS
and null B-mode prior maps with the input convergence map
power spectrum. The maps have not been smoothed in this
comparison. We use the HEALPix routine anafast to esti-
mate the power spectra of our maps. The power spectra are
binned in 20 bins between ` = 0 and ` = 2048. Fig. 4 clearly
shows that the KS method underpredicts the power spectrum
at large scales, due to mask effects and E-mode leakage. The
null B-mode prior, on the contrary, better recovers the power
spectrum at all scales. This holds in the case the spurious
B-modes are caused only by mask and edge effects. As all the
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methods other than KS include a null B-mode prior, these
methods are less susceptible to mask effects.

5.2 Reconstruction from realistic mock data

Fig. 5 shows the reconstructed maps from the simulated re-
alistic noisy shear catalogue using the four methods for com-
parison. Again, the KS and the null-B-mode reconstruction
have been smoothed at 10 arcmin. The Glimpse reconstruc-
tion uses a sparsity parameter of λ = 3 (discussed below).
Recall that all the map making methods take into account
the noise covariance matrix of the data, thereby characteris-
ing the noise amplitude and distribution across the observed
area. As a result, all methods naturally take into account
inhomogeneities in the noise properties across the DES Y3
footprint.

The KS E-mode map is now noticeably degraded compared
to the noise-free example (Fig. 2). Though the most signifi-
cant features of the input convergence field can still be spot-
ted by eye, a number of noise-induced small-scale peaks dom-
inate the reconstructed map. The null B-mode prior method
map looks similar to the KS E mode map, whereas the im-
pact of noise is reduced in the case of the other methods, due
to their signal priors in the map inference process. In par-
ticular, the sparsity prior adopted by the Glimpse method
suppresses the noise enhancing peaky features, which are as-
sumed to be the result of a superposition of spherically sym-
metric dark matter haloes (a feature that can be noted in the
zoomed-in portion of the Glimpse map). The noise is also
suppressed in the case of the Wiener filter reconstruction, al-
though the map shows fewer peak features compared to the
Glimpse map. The Wiener method has a prior distribution
for which the convergence field is a realisation of Gaussian
random field, and therefore it is better suited to recover the
large-scale structures in the map that have been less affected
by non-linear structure collapse.

5.3 Pearson correlation coefficient

The first statistic we examine is the Pearson correlation co-
efficient, which quantifies the correlation between the true
convergence from simulation and the reconstructed conver-
gence from the simulated mock data catalogue. The Pearson
coefficient also reveals the ability of one method to preserve
the phases of the convergence field, as it would assume low
values if phases were not preserved. The Pearson correlation
coefficient, defined for two convergence fields κ1 and κ2, is
given by

rκ =
〈κ1κ2〉√
〈κ2

1〉
√
〈κ2

2〉
, (35)

where 〈κ1κ2〉 is the sample covariance estimated using pixel
values of κ1 and κ2.

In this case, we compute the Pearson correlation coefficient
between the true simulated convergence map and the recon-
structed E-mode convergence map. The results are shown in
Fig. 6. In general, the closer to unity the Pearson coefficient
value, the better the reconstruction.

For KS and the null B-mode prior methods the smooth-
ing parameter of the Gaussian kernel σ was varied, while
for Glimpse we varied the sparsity parameter λ. Recall that

in our implementation of the null B-mode prior method the
map is recursively smoothed at every iteration of the algo-
rithm, so that the final map is slightly smoother than if it
were smoothed only at the end of the iterative procedure.
This means that in practice a given value of the smooth-
ing parameter θ for the null B-mode prior method should be
compared to a slightly larger value θ for the KS method.

The effect of the tuning parameter for the null B-mode
prior method is similar to KS, although the former method
performs slightly better at small smoothing parameter val-
ues. The KS and null B-mode prior methods maximise the
Pearson coefficient at 10 and 5 arcmin of smoothing respec-
tively. This is due the small angular scales being shape noise
dominated, with 5 − 10 arcmin corresponding to the scale
where the amplitude of shape noise is comparable to the am-
plitude of the signal. One can interpret this as the smoothing
up to 5− 10 arcmin removing more small-scale noise-induced
spurious structures than true signal. A different shape noise
contribution (or, equivalently, a different data set) would
change this scale; in the limit of no shape noise, the opti-
mal scale would be the smallest scale allowed by the pixeliza-
tion scheme. The null B-mode prior method performs slightly
better than KS at small θ because of the extra regularisation
(i.e. smoothing) performed at every step of the iterative algo-
rithm; this further suppresses noise, improving the Pearson
coefficient at small scales.

For Glimpse, the level of suppression of the shape noise is
controlled by the sparsity coefficient λ, for which we found
λ = 3 to optimize the Pearson correlation coefficient. The
Wiener filter has no free parameters in our implementa-
tion provided the fiducial power spectrum is assumed. Both
Glimpse and the Wiener filter outperform standard KS and
null B-mode prior methods, delivering a higher Pearson co-
efficient.

5.4 RMSE

The second statistic we examine is the root-mean-square error
(RMSE) of the residuals, defined to be

RMSE(κtruth, κrecon) ≡

√√√√ 1

N

N∑
p=1

∆κ2
p, (36)

where N is the number of pixels and ∆κp is the difference
between the reconstructed map and the true map in pixel
p. Again, we only consider E-mode maps and maps recov-
ered from noisy estimates of the shear field. The results are
shown in Fig. 6. In general, the closer to zero the RMSE, the
better the reconstruction. The RMSE reveals the ability of
one method to preserve the phases and the amplitude of the
convergence field.

The results from this test match those from the Pearson
coefficient test. The null B-mode prior method shows a sim-
ilar trend to the KS method, although it is characterised by
a smaller RMSE at small scales. The Glimpse and Wiener
methods perform better (i.e. the RMSE is closer to zero) than
standard KS and the null B-mode prior methods.

For KS and the null B-mode prior methods the RMSE is
reduced strongly with smoothing, indicating that the vari-
ance at small scales is completely dominated by shape noise,
reaching a minimum after smoothing the reconstructed maps
at 10− 20 arcmin. We note that the minimum of the RMSE
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Figure 6. Top: Pearson correlation coefficient between the reconstructed map and the true, noiseless convergence map, for the four different

mass map methods. When possible, we varied the tuning parameters of the methods. Errors are estimated from jackknife resampling.
Bottom: RMSE (see Sec. 5.4 for a definition) for the four different mass map methods. When possible, we varied the tuning parameters

of the methods. Errors are estimated from jackknife resampling.

signal and the maximum of the Pearson coefficient for these
two maps are at a similar smoothing parameter value (even
though the value does not need to be exactly the same). For
these two methods, the RMSE should converge at very large
smoothing parameter values (larger than those showed here)
to the RMSE of the original field, as the reconstructed map
signal goes to zero. Similarly to the Pearson coefficient case,
the null B-mode prior method has a smaller RMSE compared
to KS at small scales, due to the extra noise suppression of
the algorithm.

The Glimpse and Wiener methods have a significantly
smaller RMSE compared to KS, meaning the reconstructed
Glimpse and Wiener maps map is more accurate than KS on
the pixel level. For Glimpse the minimum RMSE is reached
for a sparsity parameter λ = 3, the same value that max-
imises the Pearson coefficient.

5.5 Power spectra

We now examine, for each method, the power spectrum of
the residual map (defined to be the difference between the
reconstructed map and the input convergence map) and the
power spectrum of the reconstructed map. Recall that the
reconstruction κ̂ is a maximum a posteriori estimate, so the
power spectrum of κ̂ is not expected to match the power
spectrum of the underlying field (Sec. 3.6).

The differences between power spectra highlight the effect
of different priors on the maximum a posteriori reconstruc-
tion, whereas the residual map power spectra show at which
scales the recovered maps are most similar to the input con-
vergence field. For these tests, we use the maps recovered
from a noisy version of the shear field. We use the HEALPix
routine anafast to estimate the power spectra of our maps.

The power spectra are binned in 20 bins between ` = 0 and
` = 2048. For the KS and the null B-modes prior methods,
we considered the maps with 10 arcmin smoothing; for the
Glimpse method, we considered the map obtained with spar-
sity parameter λ = 3.

The left panel of Fig. 7 shows the power spectra of the
maps compared to the power spectrum of the input conver-
gence field. There is a clear signal suppression at small scales
and high multipoles; this is a consequence of the priors im-
plemented by the different methods to reduce the impact of
noise (which dominates the small-scale regime). The KS and
the null B-modes prior methods show similar behaviour, as
they implement similar priors; however, the null B-mode prior
method suppresses the small-scale signal slightly more com-
pared to KS. In general, none of the methods reproduce the
correct amplitude of the input theory power spectra; this is to
be expected with point-estimate reconstructions of the map
(Sec. 3.6).

The right panel of Fig. 7 shows the power spectra of the
residual maps. At large scales the Wiener map shows the
smallest amplitude, indicating that it performs best at repro-
ducing the large-scale pattern of the convergence field. For
Wiener and Glimpse maps, the residuals steadily increase
at larger multipoles; indeed, none of the methods is able to
recover the small-scale information. Besides this main trend,
the KS and null B-mode prior maps also show an increment
in the residual map power spectrum around ` ∼ 300. The
smoothing prior is not able to reduce the impact of shape
noise at these scales, causing the residual map power spec-
trum to increase substantially. This shows that the Wiener
and Glimpse methods are indeed better than the KS and
null B-mode prior methods at recovering intermediate scales.
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Figure 7. Simulations. Left panel : power spectrum of the reconstructed maps obtained from a noisy realisation of the shear field with

respect to the power spectrum of the input convergence field. For the KS and the null B-mode prior methods, we considered the maps

with 10 arcmin smoothing; for the Glimpse method, we considered the map obtained with sparsity parameter λ = 3. As discussed in
Sec. 3.6, the power of the maximum a posteriori estimates will not match the power of the truth, and is expected to be reduced. For

the Wiener filter, this reduction is known analytically as a function of signal and noise covariance. Right panel : power spectrum of the

residual map, defined as the difference between the recovered map and the input convergence field.

5.6 Convergence one-point distribution and recovery of the
input convergence pixel values

In Fig. 8 we show the one-point distribution function (PDF)
of the convergence field. For KS and the null B-mode prior re-
constructions we considered maps with 10 arcmin smoothing,
and we used λ = 3 for Glimpse.

The PDFs of the pixel values of the reconstructed maps
are not identical to those of the input. This is expected. As
all reconstructions are a maximum a posteriori estimate of
the underlying convergence field, the variance (and possibly
higher-order moments) of the reconstructed map will be sup-
pressed. The asymmetric distributions are a sign that the
recovered map is not dominated by noise, whose PDF is com-
pletely symmetric.

We also show in Fig. 9 density plots illustrating the relation
between the values of the pixels of the recovered maps and
those of the input convergence map. For a perfect reconstruc-
tion, the density plots would look like a straight, diagonal line
(the black line in the Figure). In general, it can be noted that
the values of the pixels of the recovered maps scatter more
around zero than the values of the pixels of the input map.
This is a consequence of the noise; however, as already noted
in Fig. 8, the density plots not being perfectly symmetric
means that the maps are not dominated by noise. Generally,
pixels with negative (positive) values in the recovered maps
are also associated to the ones with negative (positive) values
in the input convergence map, although with a large scatter.
The scatter is larger for pixels with positive values, due to
the long positive tail of the convergence PDF.

The density plots for the Wiener filter and Glimpse maps
are tighter, whereas KS and null B-mode prior method show
a larger scatter. The density plots convey the same informa-
tion encoded by the RMSE: a higher (lower) RMSE value
is associated to a tighter (broader) density plot around the
black diagonal line in Fig. 9.

6 APPLICATION TO DATA

6.1 Map reconstruction

In this section we present the reconstructed mass maps us-
ing DES Y3 weak lensing data. We show only maps cre-
ated using the full catalogue. We also created maps for
the four tomographic bins; they are not shown here, but
they will be made publicly available following publication at
https://des.ncsa.illinois.edu/releases.

Fig. 10 shows the four maps obtained with the KS, null
B-mode prior, Wiener filter and Glimpse methods, obtained
from the METACALIBRATION catalogue. We recall that these
maps have been obtained applying the METACALIBRATION re-
sponse correction and the inverse variance weights, as ex-
plained in Sec. 4. The maps obtained with the different meth-
ods visually show the same differences as the ones obtained
in simulations (Fig. 5), with the Wiener and Glimpse maps
particularly suppressing the noise thanks to their priors.

6.2 Systematic error tests

We perform a number of tests on the recovered maps. We first
test if any spurious correlation exists between our maps and
quantities that are not expected to correlate with the conver-
gence maps. The shear catalogue used to produce the mass
maps have been largely tested in Gatti, Sheldon et al. (2021),
but the potential correlation between convergence maps and
systematic errors was not investigated there. We therefore
consider a number of catalogue and observational proper-
ties as potential systematic errors, in a fashion similar to
what was done in Gatti, Sheldon et al. (2021). In particular,
we consider the two components of the point-spread-function
(PSF) ellipticity at the galaxy position (PSF1, PSF2), their
E and B-modes maps (PSFE , PSFB), and the size of the PSF
(TPSF). As observing condition properties, we consider mean
air-mass, mean brightness, mean magnitude limit (depth),
mean exposure time, and mean seeing (all in the i-band).

A few maps were considered in the shear catalogue tests
and so are excluded here. For example, we do not include the
signal-to-noise ratio maps among the systematic maps, as we
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Figure 9. Density plots showing the relation between the values of the pixels of the recovered maps and the input convergence field map. A

map that perfectly recovered the truth would have a density plot that followed the black solid line. All of the density plots are normalised.

The linear correlation between variables shown in this plot is quantified by the Pearson correlation coefficient discussed in section 5.3. As
discussed in Sec. 3.6, the pixel variance of the as maximum a posteriori estimates will not be equal to pixel variance of the truth, and is

expected to be reduced.

actually expect to measure a signal (indeed, overdense regions
of the sky should be populated by red elliptical galaxies with
high signal-to-noise). Similarly, we expect (and measure) at
high significance a correlation between galaxy colours and our
mass maps.

We follow Chang et al. (2018) and create (using mean-
subtracted values) a systematic map MS for each of the sys-
tematic errors. We first assume a linear dependence between
the convergence maps and the systematic maps:

κE = bMS. (37)

We fit all the pixel values of the convergence maps assuming
such a linear relationship with the systematic maps. We show
the measured coefficient for each of these systematic maps in
the left panel of Fig. 11. Errors are estimated using jackknife
errors. We do not find any particularly significant correlation;
individually, the coefficients are measured with a significance
smaller than 3σ. The overall χ2 of the null hypothesis (con-
sidering the correlations among the 10 systematic maps con-
sidered here) is 6, 12, 10, and 17 for 10 d.o.f., for KS, null
B-mode prior, Wiener, and Glimpse respectively, indicating
compatibility with no significant dependence on systematic
errors. We also compute the Pearson coefficient between the
convergence maps and the systematic maps; results are shown

in the right panel of Fig. 11 (note that in the same Figure we
also show the Pearson coefficient with redMaPPer clusters,
discussed in the next section). The main difference with the
linear fit is that the Pearson coefficient does not assume a
priori any relation between the convergence maps and sys-
tematic maps. Again, we do not find any strong evidence of
systematic contamination, with the χ2 of the null hypothesis
being 5, 5, 7, and 10 for 10 d.o.f., for KS, null B-mode prior,
Wiener, and Glimpse respectively.

6.3 Structures in the reconstructed maps

6.3.1 Galaxy cluster distribution

For obvious reasons the true convergence map is not avail-
able in data; nevertheless we can check that the reconstructed
mass maps probe the foreground matter density field by cor-
relating them with a sample of other tracers. For visualisation
purposes, we show in Fig. 12 the Glimpse map with a few
redMaPPer clusters superimposed.

From Fig. 12 we can see that clusters tend to populate the
densest regions in the reconstructed convergence map and
avoid the regions with negative convergence signal.
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Figure 10. METACALIBRATION DES Y3 weak lensing mass maps, obtained from the official DES Y3 shear catalogue and created using

different map making methods. Top left panel : noisy KS E-mode map Top right panel : E-mode map obtained with the null B-mode prior
method. Bottom left panel : E-mode Wiener filter map. Bottom right panel : E-mode Glimpse map. The maps in the top panels have been

smoothed at 10 arcmin; no further smoothing is applied to the maps showed in the lower panels. Inset : RAcentre, Deccentre = 70◦,−40◦;
∆RA, ∆Dec = 15◦, 10◦.

We also report in Fig. 11 the Pearson coefficient between
the maps and the effective richness of redMaPPer clusters at
z < 0.6. In particular, we follow Jeffrey et al. (2018b) and
define an effective lensed cluster richness λeff

R :

λeff
R = λR

p(χ)χ

a(χ)
, (38)

where λR is the redMaPPer cluster richness, a(χ) is the scale
factor evaluated at the comoving distance to a given clus-
ter χ, and p(χ) is the lensing efficiency, defined as p(χ) =∫ +∞
χ

dχ′n(χ′)χ
′−χ
χ′ , with n(χ′) the redshift distribution of the

source galaxies used to create the mass maps as a function of
comoving density. The effective richness is then normalised to
the mean of the effective richness of all clusters considered.
For all the maps, the measured Pearson coefficient shown in
Fig. 11 is significantly larger than 0, showing how the recov-
ered maps successfully trace the foreground matter density
field. Again, we use parameter value θ = 10 arcmin for the
KS and the null B-mode prior reconstruction and λ = 3 for
Glimpse by default. For the redMaPPer result in the right
panel of Fig. 11, we also plot θ = 5 arcmin and λ = 1 (the

triangular figure markers), which were shown to improve the
correlation for these maps.

6.3.2 Cosmic void imprints

Cosmic voids are an increasingly favoured cosmic probe and
have now already been successfully used to extract cosmolog-
ical information (for a recent overview see Pisani et al. 2019).
We expect these large lower-density regions in the cosmic web
to display a typical imprinting in the convergence signal when
cross-correlated with weak lensing mass maps (for previous
results from DES Y1 data see Chang et al. 2018).

We create a catalogue of so-called ‘2D voids’ (Sánchez et al.
2017) from the DES Y3 redMaGiC (Rozo et al. 2016) pho-
tometric redshift data set by searching for projected under-
densities in tomographic slices of the galaxy catalogue. On
average, these tunnel-like voids correspond to density min-
ima that are compensated by an overdense zone in their sur-
roundings. With this simple approach, we detect 3, 222 voids
in the DES Y3 data set, which are larger on average, although
also less underdense, than most voids from other void finders
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Figure 11. Left panel : Best fit values for the coefficient of the relation κE = bMS for a given systematic map S. The values of the slopes are
shown for different tomographic bins, and the uncertainties are estimated through jackknife resampling. Right panel : Pearson coefficient

between the recovered convergence map and the systematic maps S. Uncertainties are estimated through jackknife resampling. When

applicable, systematic maps are considered in the i-band. For the redMaPPer cluster correlation (right panel) we also show the result for
different tuning parameters (see text for details) that are shown with with triangle markers.
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Figure 12. METACALIBRATION DES Y3 weak lensing mass maps using galaxies in the third redshift bin (see Figure 1), obtained with

the KS method, with redMaPPer clusters in the redshift range 0.3 < z < 0.5 (green circles) superimposed. In the wide field, we
randomly selected a subsample of the clusters with richness λRM > 35; for the small inset, we zoom in on the (randomly chosen) location

(RA,Dec) = (70◦,−40◦) (cyan marker on the large map). The circles are centred at the cluster centre, with the size of the circles scaling
with the mass (richness) of the clusters. Visually, the clusters coincide with the high κ regions and avoid the low κ regions. The κ map is
smoothed by a 1 deg Gaussian filter to highlight large-scale features.
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(see e.g. Fang et al. 2019). They certainly are useful tools in
void lensing studies (Davies et al. 2018) and they have been
widely used in previous DES analyses (see e.g. Vielzeuf et al.
2021; Kovács et al. 2017, 2019; Fang et al. 2019).

The lensing imprint of typical individual voids is expected
to be undetectable (Amendola et al. 1999). Therefore, after
selecting our void sample, we follow a stacking method to
measure the mean signal of all voids (see e.g. Vielzeuf et al.
2021). Knowing the angular size of voids, we re-scale the local
mass map patches around the void centres. In such re-scaled
units, we then extract convergence κ patches five times the
R/Rv = 1 void radius, stack them to increase signal-to-noise,
and measure radial profiles from the average κ patch. With-
out a large set of simulations to estimate covariance of the
void profile statistic, we estimate uncertainty using a void-
by-void jackknife method (see e.g. Sánchez et al. 2017). We
then correct these re-sampling based uncertainties with refer-
ence to previous DES Y1 void analysis results that used more
accurate Monte Carlo simulations (Vielzeuf et al. 2021).

Fig. 13 shows the measured profiles using the DES voids. As
anticipated, we detect a negative convergence signal within
the void radius (R/Rv < 1) and a surrounding ring (1 <
R/Rv < 3) of positive convergence signal (due to compen-
sating mass around voids). We note that different mass map
versions show consistent signals (within the quoted uncertain-
ties). While these void lensing results remain open to much
further quantitative work, there is certainly clear detection of
correlations between underdensities of galaxies and matter;
this will motivate further studies using DES Y3. We finally
remark that the typical convergence signal associated with lo-
cal underdensities can be affected by the void definition and
selection. We explore alternative void samples extracted from
DES Y3 data in Appendix B.
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Figure 14. The line-of-sight density of redMaGiC galaxies aligned

with a significant “vole” in the KS mass map. At low redshifts, we
find evidence for an extended system of underdensities.

6.3.3 Line-of-sight underdensities

Posing a slightly different question, we also examine the dis-
tribution of galaxies in a line-of-sight aligned with the most
negative fluctuations in the DES Y3 mass maps. We call these
voids in lensing maps or voles (see e.g. Davies et al. 2018).
We use a slightly modified version of the 2D void finder al-
gorithm to identify them in the DES mass maps. We apply a
Gaussian smoothing of 2 deg in order to intentionally select
relatively deep and extended voles.

Following the previous DES Year 1 (Y1) analyses (Chang
et al. 2018), the redMaGiC galaxy position catalogue is pro-
jected into two-dimensional slices of 100 h−1 Mpc along the
line-of-sight. This thickness corresponds to the approximate
photo-z errors of the redMaGiC galaxies that allows the ro-
bust identification of voids (see Sánchez et al. 2017, for de-
tails). At redshifts 0.1 < z < 0.7, galaxy density contrasts
are measured in 15 tomographic slices aligned with voles.
Galaxies are counted within an aperture of 2 deg of the
void centre, which approximately corresponds to the full an-
gular size of voles. The measured density contrasts at the
different redshifts are used to reconstruct the radial den-
sity profile aligned with the given vole. Fig. 14 shows the
line-of-sight galaxy density aligned with a significant vole at
(RA,Dec) ≈ (41.2◦,−12.2◦) in the KS map.

We find an extended underdensity that is consistent with a
super-void with radius Rv ≈ 250 h−1 Mpc (assuming sim-
ple Gaussian void profiles as in Finelli et al. 2016). This
super-void, similar to the biggest underdensity found in the
preceding DES Y1 analysis (Chang et al. 2018), will have
smaller-scale substructures that are inaccessible using red-
MaGiC photometric redshift data. Nevertheless, such a super-
void is comparable to the largest known underdensities in the
local Universe, and these objects are of great interest in cos-
mology (see e.g. Shimakawa et al. 2021). Their integrated
Sachs-Wolfe imprint has already been studied using DES Y3
data to probe dark energy (for details see Kovács et al. 2019).

7 SUMMARY

In this work we constructed weak lensing convergence maps
(‘mass maps’) from the DES Y3 data set using four recon-
struction methods. The first method considered is the direct
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inversion of the shear field, also known as the Kaiser-Squires
method, followed by a smoothing of small angular scales. The
second method uses a prior on the B-modes of the map,
imposing that the reconstructed convergence field must be
purely an E-mode map (null B-mode prior); this method also
includes smoothing at small scales. The third method, the
Wiener filter, uses a Gaussian prior distribution for the un-
derlying convergence field. Lastly, the Glimpse method im-
plements a sparsity prior in wavelet (starlet) space, which can
be interpreted as a physical model where the matter field is
composed of a superposition of spherically symmetric haloes.

All methods are implemented on the sphere to accommo-
date the large sky coverage of the DES Y3 footprint. We
compared the different methods using simulations that are
closely matched to the DES Y3 data. We quantified the per-
formance of the methods at the map level using a number
of different summary statistics: the Pearson coefficient with
the ‘true’ simulated convergence map, the root-mean-square
error (RMSE) of the residual maps, the power spectra of the
mass maps and residual maps, and the 1-point distribution
function (PDF) of the mass maps.

The tests performed suggested that using our physically-
motivated priors to recover the convergence field from a noisy
realisation of the shear field generally improves some aspects
of the reconstruction. In particular, null B-mode, Wiener,
and Glimpse delivered larger values of the Pearson coefficient
and smaller values of the RMSE compared to the standard
KS method, indicating that their use of physically-motivated
informative priors significantly improve the accuracy of the
reconstruction. We furthermore showed that a null B-mode
prior mitigates the troublesome effects of masks and missing
data. We also note how the choice of the prior can make the
comparison of certain statistics with theoretical predictions
non-trivial when taking the maximum a posteriori result as
a point estimate κ̂, rather than evaluating the full posterior
distribution p(κ). Even if the effect of the prior cannot be
easily modelled for a given theoretical summary statistic for
cosmological inference, a forward modelling framework can
be implemented that compares observed and simulated sum-
mary statistics.

We have presented the official DES Y3 mass maps, ob-
tained with the four different methods, and assessed their
robustness against a number of systematic error maps repre-
senting catalogue properties and observing conditions. This
recovered mass map, of which the dominant mass contribu-
tion is dark matter, covers the largest sky fraction of any
galaxy weak lensing map of the late Universe.

We emphasize that the choice of the particular mass map
method depends on the goals and details of the science appli-
cation. Science applications of these DES Y3 mass maps are
expected in future work.
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Medioambientales y Tecnológicas-Madrid, the University of
Chicago, University College London, the DES-Brazil Consor-
tium, the University of Edinburgh, the Eidgenössische Tech-
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APPENDIX B: ALTERNATIVE SAMPLES OF VOIDS

We considered alternative catalogues of voids to test how the
mass map imprints may depend on the void definition and
selection.
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Figure B1. Top panel: Different mass map imprints of different

types of voids. Bottom panel: Differences in signals measured from
different mass map reconstructions, relative to the KS results and

errors (shaded ranges are 1σ and 2σ around the KS results).

VIDE2 (Sutter et al. 2015) is a watershed void finder based
on ZOBOV (Neyrinck 2008) that has been widely employed
for various void studies (see e.g. Hamaus et al. 2020, and
references therein). It has already been successfully used to
study voids in the DES Y1 data (Pollina et al. 2019; Fang
et al. 2019).
VIDE’s default centre is the volume-weighted barycentre,

which does not generally coincide with the density mini-
mum inside the void due to non-spherical void geometry. In-
stead, the barycentre preserves information about the void
boundary. Therefore, a different kind of imprint signal is ex-
pected when correlated with convergence maps, with more
pronounced positive rings rather than negative centres (for
a comprehensive study on the κ signal associated with voids
see Cautun et al. 2016). In the DES Y3 redMaGiC data,
VIDE detected 12, 841 voids. We then halved this catalogue
using the compensation of voids to further increase and iso-
late the expected signal from the boundary zone, expecting
to see an enhanced positive convergence κ imprint from these
over-compensated voids.

We are also interested in detecting the most pronounced
negative κ signals associated with a specific subclass of large
and deep voids that are under -compensated. As a third op-
tion, we thus used the public3 void finder algorithm REVOLVER

2 https://bitbucket.org/cosmicvoids/
3 https://github.com/seshnadathur/REVOLVER/
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(Nadathur et al. 2018, 2019), also based on the ZOBOV algo-
rithm.

A proxy for the gravitational potential (and thus for the
convergence field) at the positions of voids can be defined as

λv ≡ δg
(

Reff

1 h−1Mpc

)1.2

, (B1)

using the average galaxy density contrast δg = 1
V

∫
V
δg d3x

and the effective spherical radius, Reff =
(

3
4π
V
)1/3

, where
the volume V is the total volume of the void (for further de-
tails see Nadathur & Crittenden 2016; Nadathur et al. 2017).
Raghunathan et al. (2020) showed that different values of the
λv parameter indicate different (CMB) lensing imprints, in-
cluding signals with either positive or negative sign, aligned
with the void centre4. Following this, we keep only 7, 782 of
the most under-compensated voids defined by the lowest λv
values. Leaving more detailed analyses for future work, we
note that a subclass of voids with high λv values would also
correspond to over-compensated voids such as our VIDE sam-
ple.

Fig. B1 shows the measured profiles of our REVOLVER, VIDE,
and 2D void analyses given the uncertainties. As anticipated
based on the differences in the nature of the voids we selected,
we detected qualitatively different signals in each case:

• the VIDE voids show a relative depression in convergence
at the void centre compared to the pronounced peak at the
void boundary, matching our expectations.
• the REVOLVER voids we selected are associated with

strong negative κ imprints that in fact extend far beyond
the void radius, indicating surrounding voids on average.
• 2D voids combine the advantages of the other finders.

They excel in marking the actual radius of voids in the mass
map profiles, with reduced central and wall amplitudes.

We thus report that all three void types we consider show
consistent signals when mass maps are varied for a given void
sample. We leave more detailed analysis for future work.

4 REVOLVER voids may also be defined using barycentres.
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