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Hawking evaporation of black holes in the early Universe is expected to copiously produce all
kinds of particles, regardless of their charges under the Standard Model gauge group. For this
reason, any fundamental particle, known or otherwise, could be produced during the black hole
lifetime. This certainly includes dark matter (DM) particles. This paper improves upon previous
calculations of DM production from primordial black holes (PBH) by consistently including the
greybody factors, and by meticulously tracking a system of coupled Boltzmann equations. We show
that the initial PBH densities required to produce the observed relic abundance depend strongly on
the DM spin, varying in about ∼ 2 orders of magnitude between a spin-2 and a scalar DM in the
case of non-rotating PBHs. For Kerr PBHs, we have found that the expected enhancement in the
production of bosons reduces the initial fraction needed to explain the measurements. We further
consider indirect production of DM by assuming the existence of additional and unstable degrees
of freedom emitted by the evaporation, which later decay into the DM. For a minimal setup where
there is only one heavy particle, we find that the final relic abundance can be increased by at most
a factor of ∼ 4 for a scalar heavy state and a Schwarzschild PBH, or by a factor of ∼ 4.3 for a spin-2
particle in the case of a Kerr PBH. �

I. INTRODUCTION

The entire catalogue of experimental evidence for dark
matter (DM) comes only from its gravitational effects.
Despite this, the particle physics community pins many
of its hopes on discovering a DM candidate that has
additional interactions with the Standard Model (SM).
The three main reasons for this are simple: many well-
motivated extensions of the SM include DM candidates
with such interactions; there are plausible mechanisms
that require interactions that provide the correct DM
abundance, and importantly, many such mechanisms are
testable by experiments. However, the possibility re-
mains that DM only interacts with the SM gravitation-
ally. If this were the case, the production of DM in the
early Universe still requires an explanation. One such
explanation is the focus of this paper, namely that some
population of primordial black holes (PBHs) were abun-
dant and energetic enough to evaporate and produce the
relic dark matter we observe today. Notably, such a sce-
nario relies upon particle production via Hawking radi-
ation [1, 2], a phenomenon that does not rely on the
existence of additional and unobserved interactions. In-
stead, it arises due to the ambiguity of the definition of
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the vacuum state in curved spacetime. The disruption of
the spacetime resulting from the collapse of some matter
generates a thermal flux of particles. Crucially, a black
hole (BH) will emanate all existing degrees of freedom
in nature, without regard to their interactions, and thus
constitutes a compelling source of a purely gravitation-
ally interacting DM.

One of the earliest probes of the Universe’s history
comes from the cosmic microwave background (CMB) [3,
4]. Perhaps the most profound lesson from the CMB is
that the observable Universe is remarkably homogeneous.
The current scientific consensus is that this is achieved by
some early period of cosmic inflation, which also provides
the seeds for small matter perturbations that eventually
form galaxies. The true model of inflation is far from
determined and many of which predict the existence of
PBHs. This topic has surged in popularity recently be-
cause of gravitational wave measurements of solar mass
black hole binaries. It has been argued that PBHs them-
selves constitute DM, where their masses are constrained
by a large and varied set of experimental searches [5, 6].
The minimum value for the PBH mass is set by the re-
quirement that they have not evaporated already, which
is set by Hawking radiation, MPBH ≥ 5× 1014 g [7].

Even without the requirement that PBHs constitute
DM, Big Bang Nucleosynthesis (BBN) provides serious
restrictions on how many PBHs existed in the early Uni-
verse for masses 109 g ≤ MPBH ≤ 1014 g [7–9], below
which PBHs have evaporated before BBN. A lower limit
on the PBH mass comes from constraints on inflation; the
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Hubble scale during inflation has an upper bound from
CMB [10], which in turn imposes the smallest possible
mass to be MPBH & 0.1 g [7]. This window keeps alive
the possibility that PBHs dominated the early Universe
and played an important role in its evolution. The con-
sequences of this has been well studied since the discov-
ery of the Hawking radiation [11], and span many differ-
ent and important aspects, for instance, the generation
of Dark Radiation [12–18], matter-antimatter asymme-
try production [19–27], and the implications for the pro-
duction of DM through evaporation [13, 16, 17, 20, 28–
40]. Generally, DM particles produced in this way can
be very light. However, if they are too light, such DM
particles are expected to be relativistic and their free-
streaming length will be constrained by observations re-
garding structure formation [16, 17, 41, 42].

This is the first paper of a two-part series, where we
return to the calculation of the DM emission from PBH
evaporation to improve existing treatments. We do so
by ameliorating the analysis in two different aspects:
solving, in detail, the momentum-averaged Boltzmann
equations and including consistently the greybody fac-
tors, quantities essential for an accurate description of
the Hawking evaporation. The code we use for this pur-
pose has been made publicly available 1. In addition, we
also provide a semi-analytic solution that is consistent
with our numerical analysis. Furthermore, we address
the possibility of having baroque Dark Sectors, consis-
tent with a large number of degrees of freedom. Since
PBH evaporation would produce significant quantities
of particles belonging to such sector, one could imagine
that, in the scenario, all but one particles are unstable,
the generation of the stable DM would be enhanced by
such indirect production. In this paper, we assume that
this Dark Sector is disconnected from the SM, avoiding
thermal production mechanisms such as Freeze-In (FI) or
Freeze-Out (FO). In the companion paper [43], we will
consider the situation where there are interactions with
the SM sector. We use the infrastructure of ULYSSES
[44], a publicly available python package that has been
typically used to solve Boltzmann equations associated
with leptogenesis, to solve the relevant Friedmann and
Boltzmann equations.

The paper is organized as follows. First, we describe
the emission properties of non-rotating (Schwarzschild)
and rotating (Kerr) Black Holes in Sec. II. In each case,
we consider the mass and angular momentum loss rate
from the BH, the rate of particle emission, and, when
possible, the total number of emitted particles. These
characteristics will be crucial for the analysis in the sub-
sequent section. Also, we consider the phase-space dis-
tribution of emitted particles, which will be helpful to
address free-streaming constraints on DM. In Sec. III,
we first establish the Friedmann and Boltzmann equa-
tions that we solve in the presence of evaporating PBHs.

1 https://github.com/earlyuniverse/ulysses �

Then, we describe our results for the cases in which the
PBHs — both for Schwarzschild and Kerr — are the only
source of DM, and when there is an extended Dark Sec-
tor, which decays into one stable particle, the DM. We
then focus on the next-to-minimal case which consists
of a dark sector containing only DM together with one
heavy metastable state. Finally, we make our conclud-
ing remarks in Sec. IV. We have included two appen-
dices: App. A provides useful formulae related to the BH
evaporation properties and derive some specific quanti-
ties used in the main text, and App. B, which contains
the decay width of scalars, vectors and massive tensors
into a fermion-antifermion pair. We use natural units
where ~ = c = kB = 1 throughout this manuscript.

II. BLACK HOLE EVAPORATION

Black holes were initially thought to be eternal and
were expected to increase their mass by accreating ad-
ditional matter or even other black holes. Nevertheless,
when the BH quantum properties were inspected, it was
shown that they also emit particles with a thermal spec-
trum related to BH surface gravity [1, 2], making the
BHs lose mass and angular momentum in the process.
Hence, the properties of the emitted particles depend
only on the specific characteristics of the BH, which, ac-
cording to the no-hair conjecture, are its mass, angular
momentum, and charge. We focus here on two distinct
cases, Schwarzschild (non-rotating) and Kerr (rotating)
PBHs. Next, we discuss the emission properties and the
BH evaporation rates for each case separately.

A. Schwarzschild Black Holes

Schwarzschild BHs correspond to the simplest scenario,
where the BHs are solely described by their mass, MBH.
As Hawking demonstrated in his seminal papers [1, 2],
the emitted particles from the evaporation process have
a thermal spectrum with temperature related to the mass
as (G the gravitational constant)

TBH =
1

8πGMBH
∼ 1.06 GeV

(
1013 g

MBH

)
. (1)

The emission rate of any particle species i of mass µi, spin
si, and number of degrees of freedom gi from the evapo-
ration of a BH, within time dt and momentum [p, p+ dp]
interval, is given by

d2Ni
dp dt

=
gi

2π2

σsi(MBH, µi, p)

exp [Ei(p)/TBH]− (−1)2si

p3

Ei(p)
, (2)

where Ei(p) =
√
µ2
i + p2, and σsi stands for the absorp-

tion cross-section. From this emission rate, we will be
able to obtain the time evolution of the BH mass and the
phase-space distribution of the different particles evapo-
rated. The absorption cross-section σsi – or the related

https://github.com/earlyuniverse/ulysses
https://github.com/earlyuniverse/ulysses
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Fig. 1. Ratio of the greybody factors to the geometric optics
limit for massless particles and different spins, si = 0 (eme-
rald), si = 1/2 (purple), si = 1 (orange), si = 2 (light blue),
as function of E/TBH.

greybody factor, Γsi ≡ σsip
2/π – is a crucial charac-

teristic of the Hawking emission rate as it describes the
possible back-scattering of particles due to the gravita-
tional or centrifugal potentials [1, 2, 45, 46]. We note
that in the literature this factor has been partially in-
cluded or not at all. Here, we include these factors as con-
sistently as possible, given the results in the literature.
For instance, we incorporate the the absorption cross-
section for massive fermions emitted from Schwarzschild
BHs, obtained in Refs. [47, 48]. For massive bosons,
we will only include the cross-section obtained by as-
suming a massless field [45]. Since particle emission is
only possible when Ei ≥ µi, while the correction to the
greybody factors due to the finite mass is not large for
such values of energy [49], we do not expect a signifi-
cant effect due to such an approximation. For values
GMBHp � 1, and independently of the particle’s spin,
the greybody factors tend to the geometrical-optics limit,
σsi(E,µ)|GO = 27πG2M2

BH [45, 46, 49, 50]. Hence, it is
convenient to define the ratio of the full greybody factors
to the geometrical-optics limit [51]

ψsi(E,µ) ≡ σsi(E,µ)

27πG2M2
BH

. (3)

In Fig. 1 we present the reduced greybody factors,
ψsi(E,µ), for the case of massless particles and differ-
ent spins, si = 0 (emerald), si = 1/2 (purple), si = 1
(orange), si = 2 (light blue), as function of E/TBH. The
oscillations present in such quantities are related to the
different contributions of the partial waves, each having
a different value of the total angular momentum quan-
tum number. Moreover, we observe that the low energy
contributions are suppressed from higher particle spin
values. This crucial characteristic will play an important
role in the accurate determination of the relic abundance.

BHs lose their mass over time because of the evapora-
tion process. The reduction in mass can be obtained by
summing Eq. (2) over the different species and integrat-
ing over the phase space, to obtain [52, 53]

dMBH

dt
≡
∑
i

dMBH

dt

∣∣∣∣
i

= −
∑
i

∫ ∞
0

Ei
d2Ni
dpdt

dp ,

= −ε(MBH)
M4
p

M2
BH

, (4)

where Mp = G−1/2 denotes the Planck mass. Here, we
have defined ε(MBH) as the evaporation function which
is dependent on the BH instantaneous mass,

ε(MBH) ≡
∑
i

giεi(zi), (5)

with the functions εi(zi) given by

εi(zi) =
27

8192π5

∫ ∞
zi

ψsi(x, zi)(x
2 − z2

i )

exp(x)− (−1)2si
x dx , (6)

where the integration is performed over the dimension-
less parameter x = Ei/TBH, and zi = µi/TBH. The
spin-dependent expressions of εi(zi) for massless parti-
cles, in the geometrical-optics limit, and a fitted form
obtained after integrating over the full greybody factors
are explicitly given in the App. A. In Fig. 2 we present
the different contributions to the evaporation function for
particles with different spins, together with the results in
the geometrical-optics limit as function of zi. As we ob-
serve in this figure, the geometrical-optics limits closely
resembles the expected evaporation function for scalars
where for bosons with non-zero spin, the approximated
forms overestimate the mass loss rate, while for fermions
there is a underestimation when zi & 4.

Let us determine the momentum-integrated emission
rate, ΓBH→i, and the total number of emitted particles
per BH, Ni. Integrating the Hawking rate, Eq. (2), over
the momentum, we obtain

ΓBH→i ≡
∫

dp
d2Ni
dp dt

,

=
27gi

1024π4

1

GMBH
Ψi(zi) ,

∼ 9.802× 1029gi

(
105 g

MBH

)(
Ψi(zi)

0.897

)
s−1 , (7)

where

Ψi(zi) ≡
∫ ∞
zi

ψsi(x, zi)(x
2 − z2

i )

exp(x)− (−1)2si
dx .

In the massless case µi = 0, Ψ simply takes a numerical
value which depends on the particle’s spin [51]

Ψi(0) =


2.45 s = 0

0.897 s = 1/2

0.273 s = 1

0.026 s = 2

. (8)
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Fig. 2. Evaporation function, GO-limit refers to the geometric
optics limit.

We provide useful analytic expressions for Ψi(zi) in
App. A. The total number of emitted particles of the
species i during the BH existence is simply computed by
integrating the total rate over time,

Ni =

∫ τ

0

dtΓi(MBH)

= ηi(z
in
i )

gi
g?(T in

BH)

(
M in

BH

Mp

)2

, (9)

where τ is the BH lifetime, and

ηi(z
in
i ) =

27

1024π4

g?(T
in
BH)(

zin
i

)2 ∫ zini

0

Ψi(zi)∑
j gjεj(mjzi)

zi dzi ,

(10)

with zin
i = µi/T

in
BH the ratio of the particle’s mass to the

initial BH temperature, and mj ≡ µj/µi the ratio of each
existing particle mass to the mass of the species i. The
derivation of ηi(z

in
i ) is presented in App. A. Differently

from what has been previously done in the literature,
we have not assumed any relation between the particle
mass and the BH temperature. Instead, Ni is general:
the Boltzmann suppression present when TBH < µi is
automatically included in it. Let us compare the total
number of emitted particles including the greybody fac-
tors to the geometric optics limit, RN = Ni|w / Ni|w.o.
for a particle with µi � T in

BH we have

RN =


0.84 si = 0

0.61 si = 1/2

0.28 si = 1

0.02 si = 2

, (11)

we therefore observe that by not including correctly the
greybody factors, there is a significant overestimation of
the number of produced particles by a BH.

B. Kerr Black Holes

Another possibility is that BHs initially had some non-
zero angular momentum. Such rotating BHs, also known
as Kerr BHs, could have acquired their angular momenta
via some specific mechanisms, such as mergers [54–56].
The BH temperature for the Kerr scenario is modified
due to the presence of the angular momentum,

TBH =
1

4πGMBH

√
1− a2

?

1 +
√

1− a2
?

, (12)

where the dimensionless parameter a? is related to J ,
the BH angular momentum, as a? = JM2

p/M
2. Such

parameter can have values a? ∈ [0, 1], so that for the
case of close-to-maximally rotating BHs, the temperature
tends to be zero.

The spectra of emitted particles have an additional
dependence on the BH angular momentum,

d2Ni
dpdt

=
gi

2π2

∑
l=si

l∑
m=−l

d2Nilm
dpdt

, (13)

with

d2Nilm
dpdt

=
σlmsi (MBH, p, a?)

exp [(Ei −mΩ)/TBH]− (−1)2si

p3

Ei
, (14)

where Ω = (a?/2GMBH)(1/(1+
√

1− a2
?)) is the angular

velocity of the horizon and l,m the total and axial angu-
lar momentum quantum numbers, respectively. From the
emission rate in Eq. (13) it is clear that the absorption
cross-section also depends on a?. In what follows we will
use the procedure established in Refs. [57–59] in order
to compute the cross-sections σlmsi appearing in Eq. (14)
in the case of scalar, fermion, and vector particles in the
Kerr scenario2. For the spin-2 case [61] we use the grey-
body factors from BlackHawk as a numerical input when
using Eq. (14). Interestingly, the emission of higher-spin
particles is enhanced for BHs with a non-zero angular mo-
mentum. Thus, we could expect an enhanced emission
of spin-2 DM particles, such that it would be possible to
increase the relic density. This will be explored in more
detail in the next section.

Similarly to the mass depletion in the Schwarzschild
case, for Kerr black holes the angular momentum de-
creases in time because of particle emission. The equa-
tion for the angular momentum is obtained by integrat-
ing the rate multiplied by the axial angular momentum
number in Eq. (14) [45],

dJ

dt
= −

∑
i

∫ ∞
0

∑
lm

m
d2Nilm

dpdt
dp ,

= −a?
M2
p

MBH
γ(MBH, a?) , (15)

2 For consistency, we have checked that our numerical results are
similar to those contained in the code BlackHawk [60].
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with γ(MBH, a?) =
∑
i γi(MBH, a?) the angular momen-

tum evaporation function. Substituting the definition of
a? in Eq. (14), one finds the evolution equations as func-
tion of time for both mass and spin,

dMBH

dt
= −ε(MBH, a?)

M4
p

M2
BH

, (16a)

da?
dt

= −a?[γ(MBH, a?)− 2ε(MBH, a?)]
M4
p

M3
BH

. (16b)

The functions, γi(MBH, a?) and εi(MBH, a?), for the dif-
ferent spins can be parametrized in a similar fashion as
in the Schwarzschild case,

εi(zi, a?) =
27

8192π5

∫ ∞
zi

∑
lm

ψlmsi (x, a?)(x
2 − z2

i )x dx

exp(x′/2f(a?))− (−1)2si
,

(17a)

γi(zi, a?) =
27

1024π4

∫ ∞
zi

∑
lm

mψlmsi (x, a?)(x
2 − z2

i ) dx

exp(x′/2f(a?))− (−1)2si
,

(17b)

where now x = 8πGMBHEi, zi = 8πGMBHµi, x
′ = x −

mΩ′, with Ω′ = 8πGMBHΩ, and

f(a?) =

√
1− a2

?

1 +
√

1− a2
?

.

The previous definitions were chosen in order to have a
smooth transition to the Schwarzschild case when a? →
0. We also have derived fitted forms for these factors
from explicit integration of the greybody factors in the
Kerr case, see App. A. We parametrize the emission rate
for spinning BHs similarly to the Schwarzschild case,

ΓBH→i(MBH, a?) =
27gi

1024π4

1

GMBH
Ψi(zi, a?), (18)

where, analogously, we have

Ψi(zi, a?) ≡
∫ ∞
zi

∑
lm

ψlmsi (x, a?)(x
2 − z2

i )

exp(x′/2f(a?))− (−1)2si
dx .

(19)

Obtaining a closed form for the total number of particles
in the Kerr case is not straightforward. It is not possible
to take as an independent variable the BH mass, as done
in the Schwarzschild case since the angular momentum
also changes with time.

Finally, note that in the limit of an initial a? = 0, one
readily recovers the Schwarzschild functions. Thus, in
our simulations, we solve the Eq. (16) in the cosmological
context and impose a? = 0 as an initial condition when
analyzing the specific scenario of Schwarzschild BHs.

C. Phase-space Distribution of Evaporated
Particles

The phase-space distribution of particles emitted from
BHs has a significant impact on the evolution of the Uni-
verse. For the simple setup explored in this study, the

mean free path of DM is the quantity of most consequence
since this limits the formation of small-scale structures.

The mean free path of the emitted particles strongly
depends on the evolution of their respective phase-space
distributions. In the usual FO and FI cases, such dis-
tributions are dictated by the Boltzmann distributions
already present in the thermal bath. In the presence
of BH evaporation, such phase-space distributions may
be significantly distorted. Indeed, when they evapo-
rate, BHs produce particles with a typical momentum
〈p(t)〉 ∼ TBH(t). Because TBH is an increasing function
of time when BHs evaporate, the momentum of the par-
ticles they produce through evaporation is directly re-
lated to the dynamics of the Hawking evaporation. For
a particle of mass µi, this typically leads to two major
production regimes:

• µi . T in
BH: most of the particles produced via evap-

oration are relativistic, as they carry a momentum
p & T in

BH.

• µi & T in
BH: the production is statistically sup-

pressed until the BH temperature increases above
the particle mass. Therefore, most of the produc-
tion occurs when TBH ∼ µi producing a population
of non-relativistic evaporated products.

Given the expression of the evaporation rate per unit
of time and momentum expressed in Eq. (2), we can
derive the phase-space distribution of the different par-
ticles produced through BHs evaporation. In Ref. [41]
such a distribution was derived in the geometrical-optics
limit in the case where the DM mass, mDM, verifies
mDM � TBH. We go beyond the geometrical-optics limit
and solve those phase-space distributions using our ex-
pressions for the greybody factors by simply integrating
Eq. (2) over time 3

dNi,si
dp

=

∫ tev

ti

d2Ni,si
dpdt

dt . (20)

Extending the results of Ref. [41] to the massive DM
case, we can compare our results to the geometrical-
optics limit of such a formula

dNi,si
dp

=
15giM

2
p

8π5g?BH

p

(p2 + µ2
i )

2
fsi

(√
p2 + µ2

i

T in
BH

)
, (21)

where the function fsi is an integral that can be com-

3 In principle, taking into account the expansion of the Universe
during the evaporation process may slightly alter this result.
However, it was shown in Ref. [41] that such an effect is neg-
ligible.
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Fig. 3. Phase-space distribution of dark matter particles produced via BH evaporation, in the two cases where TBH = 10mDM and
TBH = mDM/10. See the text for a detailed description of the different curves.

puted analytically

fsi(x) ≡
∫ x

0

y4dy

exp(y)− (−1)2si
,

=
1

5εi
[120 (Li5 [εi]− Li5 [εie

x])

+ 20x
(
x2Li2 [εie

x]− 3xLi3 [εie
x] + 6Li4 [εie

x]
)

− x4 (x− 5 log [1− ex/εi])
]
,

(22)

with εi = (−1)2si . In Fig. 3 we depict the phase-space
distribution of a fermionic DM particle produced by evap-
oration in two representative cases where mDM � TBH

(left panel) and mDM � TBH (right panel). We indi-
cate in violet the phase-space distribution of DM particles
that we obtain using the full greybody factors in Eq. (2).
As expected, such a distribution is peaked around the BH
temperature, similarly to what was obtained in Ref. [41].
We compare our results with the distribution of Eq. (21)
obtained in the geometrical-optics limit and find that our
distribution is slightly shifted towards larger values of the
momenta. Such a shift is related to the suppression of
the low momenta present in the greybody factors. We
also indicate (dashed green line) the corresponding Boltz-
mann distribution evaluated at the temperature TBH as
well as the value of the typical momentum of evaporated
particles (grey dashed line). In the right panel of Fig. 3
one can see that the DM phase-space distribution instead
peaks at p ∼ mDM, since BHs mainly produce DM parti-
cles after their temperature rises above mDM. Again we
can notice a significant shift between our findings and the
geometrical-optics limit obtained using the prescription
of Ref. [41]. Finally, the authors of Ref. [41] evaluated
the Boltzmann distribution at ∼ 3TBH to make the dis-
tribution peaks match. We can see that such a prescrip-
tion must be modified to match a Boltzmann distribu-

tion with the full distribution we obtained because of the
aforementioned shift towards larger momenta.

The most important constraint that the purely grav-
itational production via Hawking evaporation is subject
to corresponds to the warm DM bound. From our dis-
cussion above, we have found that the emitted particles
could have a large average momenta depending on their
masses. In such a case, the redshift resulting from the
expansion of the Universe might not be large enough to
make the DM non-relativistic at the moment of structure
formation, hence contradicting observations. Following
previous treatments [16, 17, 41], we compute the average
DM velocity today v0 from the expected average momen-
tum,

v0 =
aev

a0

〈pi〉
mDM

, (23)

with aev(a0) the scale factors at the evaporation (today).
We will impose that such a velocity should be smaller
than the maximum value allowed from Lyman-α con-
straints, assuming all DM coming from PBH evaporation,
to have a sufficiently cold DM [41, 62–64].

The average momentum of an emitted particle will be
computed for spinning BHs in a simple and general man-
ner. Reversing the integration order, that is, integrating
the Hawking rate first over the momentum and using the
definitions of the evaporation functions, Eq. (16), and the
momentum integrated Hawking rates, Eq. (18), and then
integrating over time, we have

〈pi〉 =

∫
dt εi(zi, a?)M

−2
BH∫

dtΓBH→i(MBH, a?)
. (24)

This complementary approach will be used in our numer-
ical procedure to enforce the warm DM constrain in our
results.
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III. PRODUCTION OF DARK MATTER VIA
PRIMORDIAL BLACK HOLE EVAPORATION

Several mechanisms lead to the formation of PBHs in
the early Universe after inflation [7, 12, 65]. For simplic-
ity, we assume that a population of PBHs was formed
with a monochromatic mass spectrum. Moreover, we
consider that the initial PBH mass is proportional to the
particle horizon mass at the moment of formation in a
radiation-dominated era [12]

M in
BH =

4π

3
γ
ρi
H3
i

, (25)

where γ is a factor related to the gravitational collapse,
assumed here to be equal to (1/

√
3)3 ≈ 0.2. The initial

PBH population is characterized by the initial fraction of
the PBH energy density, ρin

PBH, with respect to the total
energy density ρin, which can be expressed through the
parameter β ≡ ρin

PBH/ρ
in, or, more commonly, using the

definition

β′ ≡ γ1/2

(
g?(Tin)

106.75

)−1/4
ρin

PBH

ρin
, (26)

where Tin is the plasma temperature at the time of the
PBH formation, and the additional factors are included
as the initial PBH fraction always appears corrected by
them [12]. Since the PBH energy density scales as a−3,
it is possible to have a PBH-dominated era depending
on the initial value of β′. Such a possibility will play an
important role when we consider the effects of the evapo-
ration on the DM production. Furthermore, for the case
of Kerr PBHs, we assume a monochromatic angular mo-
mentum distribution, similarly to the mass, such that all
BHs had the same initial value of the angular momentum
(see, e.g. [66, 67]).

Therefore, the early Universe will be comprised of
three different energy density components, the PBH pop-
ulation plus radiation related to the SM and, possibly,
a Dark Sector (DS). The Hubble parameter, therefore,
should take into account these three elementary contri-
butions,

3H2M2
p

8π
= ρSM + ρDS + ρPBH . (27)

By means of Hawking evaporation, PBHs will not only
change the evolution of the Universe but also emit a large
number of particles, regardless of their possible interac-
tions. The set of produced particles will affect the Uni-
verse’s energy budget and, as we have mentioned before,
could lead to the generation of the observed DM.

The capacity of PBHs to produce DM particles when
they evaporate strongly depends on two factors: (i)
whether the temperature of the black holes is smaller or
larger than the DM mass, and (ii) whether PBHs evap-
orate in a matter or radiation dominated era [13, 16, 17,
34–36, 38, 39]. In order to track effectively the number

of DM particles produced by a PBH population in the
early Universe, we must specify how the phase-space dis-
tribution of such states changes over time. We define for
the species i4

gi
p2

2π2

∂fi
∂t

∣∣∣∣
BH

(t, p) = nBH
d2Ni
dpdt

, (28)

where nBH is the PBH number density. Hence, it is pos-
sible to write a Boltzmann equation for such a species in
a FLRW Universe,

∂fi
∂t
−Hp∂fi

∂p
= C[fi] +

∂fi
∂t

∣∣∣∣
BH

, (29)

where we have included possible interactions via a colli-
sion term C[fi]. In the following, however, we assume
that the DM does not interact with the SM thermal
plasma, so that such a collision term will be absent. We
can obtain the usual equation for number densities after
integrating over the phase space,

ṅi + 3Hni = gi

∫
∂fi
∂t

∣∣∣∣
BH

p2dp

2π2
,

= nBH ΓBH→i(MBH, a?) . (30)

The Friedmann equations for the ρPBH, ρSM PBH and
SM radiation energy densities, respectively, are given by

ρ̇SM + 4HρSM = − 1

MBH

dMBH

dt

∣∣∣∣
SM

ρPBH , (31a)

ρ̇PBH + 3HρPBH =
1

MBH

dMBH

dt
ρPBH , (31b)

where the energy produced by the evaporation depends
on the mass loss rate since

dρev

dt
=
∑
i

∫ ∞
0

Ei
∂fi
∂t

∣∣∣∣
BH

p2dp

2π2
= −ρPBH

MBH

dMBH

dt
,

(32)

where we used that ρPBH = MBHnBH. The set of Fried-
mann equations includes two different effects related to
the presence of a PBH population. First, PBHs behave
as matter, ρPBH ∝ a−3, enabling the possibility of early
matter domination, as mentioned above. Second, the
evaporation produces SM particles that reheat the Uni-
verse. Thus, to determine the DM generation consis-
tently, we solve the system of equations, Eq. (31), to-
gether with the mass and angular momentum PBH loss
rates, Eq. (16), and an equation for the DM number den-
sity in the lines of Eq. (30). The solution is found using

4 We include in the definition the factor of p2/(2π2) because the in-
tegration of the Hawking rate over momentum and time directly
gives the total number of emitted particles.
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Fig. 4. Solutions of the Friedmann-Boltzmann equations for mDM = 0.1 GeV, β′ = 10−7 and M in
BH = 106 g Schwarzschild (left) and

Kerr (right) PBHs. We present ρia
4 as function of mDM/T for the SM radiation (blue), PBH (black), and DM (green) energy densities.

In each case, we record the final relic abundance.

the ULYSSES python package [44], which allows for a rapid
determination of the resulting DM relic abundance, in-
cluding the PBH evaporation. Some words are in order
about the numerical procedure. In general, it is not pos-
sible to näıvely apply a differential equation solver to the
full system of equations, especially when the DM mass is
much larger than the initial PBH temperature because of
the stiffness present in the mass loss rate. Such stiffness
is a consequence of the explosive nature of the particle
emission in the final stages of the BH lifetime. Start-
ing with a relatively large PBH mass, M in

BH � 1 g, it is
not possible to reach Mp, a value which we aim to at-
tain when we solve the equations, with direct use of a
numerical solver. Instead, we use a zoom-in procedure:
We iteratively solve the Boltzmann equation on smaller
and smaller time scales until the PBH mass reaches the
point where Mp. We have checked that the solutions are
stable and correctly account for the case when the parti-
cle emission only occurs during the final moments of the
BH existence.

Once our coupled equations have reached a stable
point, where the Universe is radiation dominated and
there is no longer any production of DM, we can use the
temperature at which the evaporation occurs, Tev and en-
tropy conservation to obtain today’s dark matter density
parameter (T0 is the present temperature),

ΩDM =
1

ρ0
crit

g?s(T0)T 3
0

g?s(Tev)T 3
ev

ρsim
DM. (33)

We present in Fig 4 prototypical solutions of the
Friedmann-Boltzmann equations for mDM = 0.1 GeV,
β′ = 10−7 and M in

BH = 106 g Schwarzschild (left) and
Kerr (right) PBHs. The time evolution of ρia

4 is dis-
played for the SM, PBH and DM energy densities. The
value of the relic abundance is also shown. We observe in
both cases, PBHs modify the evolution of the Universe

and generate DM. After a radiation-dominated phase,
the PBH density, in this case, leads to an early matter
dominated era, which ends when the PBHs evaporate.
During the final states of the evaporation, a large en-
tropy injection into the SM takes place, while DM pro-
duction is accelerated. Such entropy injection is modified
if the PBHs had a non-zero a?. We will return to these
solutions in more detail in the next subsections.

Similarly to our semi-analytic expression in Eq. (9),
for the total number of DM particles produced per
Schwarzchild BH, NDM, we can obtain the same param-
eter,

ΩDM =
1

ρ0
crit

g?s(T0)T 3
0

g?s(Tev)T 3
ev

neva
BHNDMmDM , (34)

where nev
BH is the BH number density at the evaporation,

which for a monochromatic mass spectrum can be re-
lated to the initial number density nin

BH by nev
BH(aev)3 =

nin
BH(ain)3 and thus

ΩDM =
1

ρ0
crit

gs?(T0)T 3
0

gs?(Tev)T 3
ev

(
ain

aev

)3
ρin

BH

M in
BH

NDMmDM . (35)

In general, it is difficult to get a good approximation for
all the above values at evaporation (see, however, [43]).
Nevertheless, in the case where the populations of PBHs
remain a negligible component of the Universe’s energy
density, entropy conservation can be assumed, leading to
the simpler form of the relic density

ΩDM =
1

ρ0
crit

g?S(T0)T 3
0

g?s(Tin)T 3
in

ρin
BH

M in
BH

NDMmDM , (36)

which is fully calculable using Eq. (9) and the initial con-
ditions, Eq. (25) - (26), leading to
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ΩDMh
2 =

π2

30

(
45

16π3

)1/4(
g?S(T0)T 3

0

ρ0
crith

−2

)(
Mp

M in
BH

)3/2

β′NDMmDM

' 1.595
( γ

0.2

)1/2
(
g?(T

in
BH)

106.75

)−1/4(
1 g

M in
BH

)3/2 ( mDM

1 GeV

)
βNDM . (37)

Where we apply this method, we find agreement with the
fully numerical method to the level below 1%. In the case
where PBHs play a much greater role in the cosmological
evolution, we use the approximations in [43] and obtain
values that agree up to some O(1) multiplicative factor.
This gives us a high degree of confidence in the accuracy
of our calculation.

Next, we describe our results regarding the DM pro-
duction from Schwarzschild and Kerr PBHs, and then
we analyze the effects of having a baroque dark sector
composed of a large number of particles, whose lightest
particle is stable and thus constitutes the perfect candi-
date to be the DM present in the Universe.

A. Direct Production

In the case where PBHs are the only DM production
mechanism, the values of β and M in

BH leading to the cor-
rect relic abundance are indicated in Fig. 5 for various
values of the DM mass. For any of those masses, a point
above the corresponding coloured contours leads to an
overproduction of DM (Ωh2 > 0.11) while DM is under-
produced in points below the coloured contour.

In the limit where M in
BH → 0, the Hawking tempera-

ture T in
BH ∝ (M in

BH)−1 is always larger than the DM mass.
Therefore PBHs produce DM particles during the entire
evaporation process. In that limit, the relic density of
DM particles produced from of evaporation is linearly re-
lated to the fraction of PBHs β. A too-large value of this
fraction leads to an overabundance of DM, which sets an
upper bound on β. For larger PBH masses, T in

BH might
become smaller than the DM mass while PBHs still evap-
orate during a radiation-dominated era (this is typically
the case for DM masses above 109 GeV). In that case,
the larger M in

BH, the fewer DM particles are being pro-
duced during evaporation, which explains why the relic
density contours go up after crossing the T in

BH = mDM

line in Fig. 5. For even larger M in
BH, PBHs dominate the

universe energy density before they evaporate and re-
heat the SM bath at a temperature Tev. This is the case
if their energy fraction β at the time of PBH formation
T = Tin is larger than βc ≡ Tev/Tin. In that case, the relic
abundance of DM particles does not depend on the PBH
fraction anymore but rather on the PBH mass, which
explains why the contours become vertical past the line
β = βc. Interestingly, on the right of those vertical lines,
PBHs can significantly reheat the Universe, and there-
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Fig. 5. PBH energy fraction β as a function of the PBH
mass leading to the observed relic abundance Ωh2 = 0.11
for different values of the DM mass (in GeV). The dashed
contours stand for analytical estimations derived in previous
works in the geometrical-optic limit, whereas the plain lines
were derived in this work, including the full greybody factors.
We assume the DM to be a fermion.

fore modify the evolution of the SM thermal bath while
not overproducing DM particles. Note that in most of
the previous works, the contours depicted in Fig. 5 were
derived analytically, ignoring the greybody factors [36],
which we indicate with dashed lines. Our studies used
the evaporation rates, including the full greybody fac-
tors, leading to significantly shifted constraints towards
larger PBH masses (plain coloured lines), assuming the
DM to be fermionic. Since the Hawking rate departs
from being a full blackbody spectrum because of the
absorption probabilities, the number of emitted parti-
cles is larger than expected in the approximated purely-
Planckian form. Thus, we observe that smaller values of
β are required to give the correct relic abundance.

Yet another effect of including the greybody factors
correctly is that the relic abundance depends on the spin
of the DM particle. In the top panel of Fig. 6, we show
such dependence for several values of the DM mass and
for spin si = 0, 1/2, 1, 2. For lighter DM masses relative
to the initial BH mass, T in

BH & mDM, we observe that
larger values of β are required to produce the correct Ωh2
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Fig. 6. Similar to Figure 5 but now showing only the results
from the full numerical evaluation of the coupled BEs. We
show the results for four different intrinsic spins of the DM.
Upper panel assumes all PBHs are Schwarzchild, a? = 0.
Lower panel assumes all PBHs are Kerr and approaching
the maximal angular momentum, a? = 0.99. Parameters that
do not fulfil structure formation constraints are indicated by
making the line color pale.

for larger spins. This is a direct result of the suppression
of the number of emitted particles for higher spins due
to the greybody factors, see Eq. (8) and Fig. 1. On the
other hand, when T in

BH . mDM, the cutoff induced by the
non-zero mass affects especially the scalar case, such that
the number of emitted particles is reduced in comparison
to the case where the PBH temperature is higher than
the DM mass. Hence, the required value of β necessary to
obtain the observed Ωh2 is larger and becomes similar to
the values needed in the case of a Vector DM. As specified
in the previous section, we have applied the warm dark
matter constraint in the same figure. We indicate where
the DM would violate the cold dark matter condition by
making the line colors pale. From this, we observe that

for light masses, mDM . 10 GeV for M in
BH & 104 g, the

DM particles emitted from the evaporation are too hot,
thus in tension with the observations. This is in agree-
ment with the results from previous works [16, 36, 41].
The warm dark matter constraint becomes less relevant
for heavier masses, and for mDM & 100 GeV, the full
parameter space would obey such a limit.

B. Effect of the BH spin

As mentioned in Section II B, Kerr PBHs could have a
unique impact on the DM generation given the peculiar
features present in such a case. Specifically, the enhanced
emission of spin-2 particles can compensate for the large
initial fractions required to account for all the DM. In
Fig. 6, bottom panel, we present the energy fraction β
as a function of the initial PBH mass for the Kerr case,
assuming a value of a? = 0.99. Interestingly, we observe
that, when T in

BH & mDM is valid in all the parameter
space, the values of β that give the correct relic abun-
dance coincide for scalars, fermions and vectors. Such
agreement is related to the increase of high-spin emission
reflected in the greybody factors. Moreover, the initial
PBH fraction that gives the correct relic abundance for
spin-2 DM is reduced by ∼ 2 orders of magnitude with
respect to the Schwarzschild case. For the case where
T in

BH . mDM, a similar behavior to the non-rotating case
is present; the emission cutoff due to the DM mass di-
minishes the overall particle production, specifically for
scalars and fermions. Nevertheless, for tensor DM, there
is an interesting effect when T in

BH . mDM. Even though
one would näıvely expect a large Boltzmann suppres-
sion in this case, the enhanced particle production due
to superradiance plays a crucial role here. Superradi-
ance allows for the emission of particles with larger ener-
gies (and masses) than BH temperature [68]. In Fig. 6,
this amplification is responsible for the structure observ-
able for mDM = 107 GeV (1015 GeV) for BH masses of
M in

BH ∼ 1 − 10 g (108 − 109 g). Such an effect is also
present for vectors and scalars —fermions do not present
superradiance [59]— although much less conspicuously.
Finally, regarding the warm DM constraint, we observe
that the BH spin increases the parameter space that is ex-
cluded by such a limit in comparison to the non-rotating
case, as noticed in the literature [17]. Still, we have
demonstrated that the DM production from Kerr BHs
has many compelling features not encountered before.

C. Indirect Production: Presence of additional
dark sector particles

The DM could be part of a much larger dark sector,
containing a large quantity of particles. Such a baroque
scenario should not be inconceivable from what we have
learnt about the SM sector. Indeed, supersymmetric
(SUSY) models constitute the perfect example of UV
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complete scenarios that are expected to contain many ad-
ditional degrees of freedom [30]. Let us assume that the
DM particle belongs to an extended sector that does not
interact with the SM. Moreover, for simplicity, let us con-
sider that just one particle is stable, just like the lightest
superpartner in SUSY with some R-parity. Suppose that
there are i copies of X particles, where X = {S, F, V,G}
indicates whether the particles are scalars, fermions, vec-
tors or tensors, respectively. The total number of final
DM particles produced via PBH evaporation N tot

DM will
be the sum of all emitted particles

N tot
DM = NDM +

∑
i

∑
X

nXi→DMNXi , (38)

being nXi→DM the number of DM particles resulting from
the decay of Xi, such that nXi→DM ≥ 2. Following our
previous analytical estimation of the final relic abun-
dance, we can examine the enhancement of Ωh2 with
respect to the case where there is just the DM particles,

ΩDMh
2
∣∣
DM+Xi

ΩDMh2|DM

=
g?S(Tev)

g?S(T tev)

(
Tevaev

T teva
t
ev

)3 N tot
DM

NDM
, (39)

where T tev, a
t
ev are the Universe temperature and scale

factor at evaporation in the extended dark sector case.
From this, we observe that the effect of having additional
dark sector particles is twofold. First, the increase of DM
particles evidently enlarges the final relic density. Sec-
ond, since the emission of the additional particles affects
the BH lifetime, the Universe properties when the PBHs
evaporate are changed, and thus Ωh2.

Let us be more specific and consider the situation in
which the dark sector is only composed by the DM par-
ticle and a heavier state X, assuming for simplicity one
decay channel, X → DM + DM, such that nX→DM = 2.
In order to be consistent in our treatment, we solve the
same set of Eqs. (31), plus the following equations for
the number density of X and DM including the exchange
terms

ṅDM + 3HnDM = nBH ΓBH→DM + 2 〈ΓX→DM〉ev nX ,
(40a)

ṅX + 3HnX = −〈ΓX→DM〉ev nX + nBH ΓBH→X ,
(40b)

with the thermally averaged decay width of X given by

〈ΓX→DM〉ev = ΓX→DM

〈
mX

EX

〉
ev

, (41)

where “ev” indicates that the average is taken with re-
spect to the BH temperature, and ΓX→DM the decay
width of X in vacuum5 (for further details, see the com-
panion paper [43]).

5 Clearly, the decay width depends on the particle nature of X,
that is, on whether it is a scalar, vector or massive tensor. We
provide the specific decay widths assumed here in the App. B.
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Fig. 7. Relic abundance as a function of the mass of an ad-
ditional X heavy state decaying into DM for different as-
sumed values of the spin of such particle, scalar (emerald),
vector (light blue), and massive tensor (orange). We assume
M in

BH = 106 g,mDM = 105 GeV, and β′ = 10−17.75. The
horizontal dashed line indicates the observed value of Ωh2.

In Fig. 7, we present Ωh2 for a Fermionic DM as a func-
tion of the mass of X. We show the result for different
types ofX, scalar (emerald), vector (light blue), and mas-
sive tensor (orange), for mDM = 105 GeV, β′ = 10−17.75,
and M in

BH = 106 g. Without accounting for greybody
factors, one could expect that Ωh2 should increase by a
factor of 3 since the X would decay into two DM par-
ticles. However, the more accurate calculation leads to
enhancements of ∼ 3.7, ∼ 1.9 and ∼ 1.3 for a scalar, vec-
tor or tensor X respectively. Once more, we are seeing
the greybody factors affect the emission of higher spin
particles more significantly, reducing the contribution of
X to the total. Inspecting the same figure, we note that
the expected suppression of emission when mX & T in

BH.
Such difference is independent of the particle’s spin.

Interestingly, once there is a large enough separation
of scales between X and DM, the warm DM bounds need
to be considered once more. Unlike previously, we now
can have a mix of cold and warm DM from Hawking
emission and dark sector decay respectively. According
to Ref. [64] when the fraction of warm/cold DM is less
than ∼ 0.2, constraints from structure formation do not
apply. Despite this, even when the parent dark sector
particles do not contribute much, such as the X = G,
Schwarzschild PBHs case, the fraction of DM particles
which could be warm is sufficiently large ∼ 0.3. This has
implications for the coexistence of dark sectors that con-
tain a dark matter candidate as its lightest member and
PBHs. The detailed calculation of how these constraints
implicate both the existence of PBHs and baroque dark
sectors is left to future work.

When the PBH had an initial non-zero angular mo-
mentum, we find that the spin of X plays a crucial role
in the final Ωh2. We present the relic abundance as a
function of mX in Fig. 8 for three different values of
a? = {0, 0.5, 0.99999} corresponding to full, dashed and
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Fig. 8. Relic abundance as a function of the mass of an ad-
ditional heavy vector X decaying into DM for different as-
sumed values of the PBH spin parameter, a? = 0. (full),
a? = 0.5 (dashed), and a? = 0.99999 (dotted). We assume
M in

BH = 106 g,mDM = 105 GeV, and β′ = 10−17.75. The
horizontal dashed line indicates the observed value of Ωh2.

dotted lines, respectively, assuming the heavier state to
be a vector and considering the same parameters as in
Fig. 7. We find two different effects at play here; when
the particle X is kinematically accessible by the evapo-
ration, the indirect DM production is largely enhanced
because of the PBH spin. Meanwhile, the relic den-
sity is decreased when mX & T in

BH in comparison to the
Schwarzschild case since Kerr PBHs inject much more en-
tropy to the early Universe due to the amplified produc-
tion of SM boson states. From such effects, we have that
the increase in the final relic density is ∼ {1.9, 2.0, 2.2} for
a? = {0, 0.5, 0.99999} with reference to the Schwarzschild
value without any additional state, respectively. Such an
augmentation is more stringent if the X particle has a
spin of 2, reaching a value of ∼ 4.3 for a? = 0.99999.
Thus, one can see how having a rich dark sector at high
masses can quickly overclose the Universe even if there is
a tiny number of PBHs in the early Universe.

IV. CONCLUSIONS

Black holes are one of the most fascinating objects pre-
dicted by General Relativity. Initially thought to be ev-
erlasting, we have learnt that they instead evaporate by
emitting a thermal flux of particles, losing simultaneously
their mass and angular momentum. Such evaporation in
the early Universe could have critical consequences on
our understanding of how the Universe came to be what
we observe. In particular, since the Hawking radiation is
democratic in nature, i. e., BHs emit all existing degrees
of freedom in nature, the observed relic abundance could
be the result of the evaporation of PBHs, even in the case
that the DM only interacts gravitationally.

In this paper, we have addressed thoroughly dis-

tinct effects that impact the DM production by PBHs
in the purely gravitationally interacting scenario. We
have solved the system of Friedmann - Boltzmann equa-
tions, and investigated systematically the distinct fea-
tures present in this scenario for both Schwarzschild and
Kerr PBHs. Especially, after including consistently the
greybody factors in the description, we have demon-
strated how the DM relic abundance can depend on the
particle’s spin, in such a way that the initial PBH frac-
tion necessary to obtain the observed values is ∼ 2 orders
of magnitude larger for massive tensors than for scalar
DM. Besides, by correctly including the mass cutoff due
to Boltzmann suppression, we have identified the modi-
fications of the required fractions when the initial PBH
temperature is smaller than the DM mass. In such a case,
the emission only occurs in the last stages of the BH life-
time. Regarding the warm DM bounds that affect this
scenario, we have computed the average momenta of the
emitted particles, finding it to be larger than estimated
before because of the energy dependence present in the
greybody factors. Light DM masses are thus in tension
with large structure measurements, similarly to the pre-
vious results present in the literature. We have also illus-
trated the properties of DM production in the case that
PBHs had an initial non-zero angular momentum. The
enhancement of the emission expected for bosons, par-
ticularly for spin-2 particles, reduces the initial fractions
needed to generate the observed DM. Interestingly, we
have identified the regions in the parameter space where
superradiance, not Hawking radiation, plays a significant
role in the particle emission.

Finally, we have analysed the impact of having a large
dark sector containing a unique stable particle, the DM
candidate. For such models, PBHs would also emit the
additional unstable particles of the dark sector during its
evaporation, will would produce an additional surplus of
DM particles. Such indirect production alters not only
the number of DM particles during the PBH evaporation
but also the PBH lifetime and impacts the Universe’s
evolution via entropy injection. We scrutinized a mini-
mal scenario where there exist just one additional heavier
particle that decays into the DM. In this case, we found
that the increase on the relic abundance can be as large
as a factor ∼ 4 in the case that the heavy particle is a
scalar. For other types of spins, the factor is smaller.
This dependence on the spins is simply understood as
the effect due to the greybody factors. In this regard, we
also investigated the indirect mechanisms for Kerr PBHs,
finding, as expected, an enhancement by a factor of ∼ 4.3
for the tensor case when the PBHs initially had a close-
to-maximal angular momentum. Assuredly, an extended
dark sector can lead to a rich phenomenology. Moreover,
if we assume the existence of interactions with the SM,
there could be significant modifications to the results pre-
sented here. Such a treatment is left for the second part
of this series.
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Appendix A: Analytic derivation of PBH emission
properties

1. Schwarzschild case

Here we go through the analytic derivation of the emis-
sion rates and total number of particles of Schwarzschild
BHs including greybody factors. The Hawking spectrum,
for a given particle species, i is parametrized as

d2Ni
dE dt

=
27giG

2M2
BH

2π

ψsi(E,µi)(E
2 − µ2

i )

exp(E/TBH)− (−1)2si
, (A1)

where gi is the internal d.o.f, si is the spin and ψsi(E,µi)
is the absorption cross section normalized to the geomet-
ric optics limit, and G and MBH are the gravitational
constant and the mass of the BH respectively. Intro-
ducing the dimensionless parameters x ≡ E/TBH and
zi = µi/TBH, the total emission rate per particle species
is

ΓBH→i =
27gs

1024π4

1

GMBH

∫ ∞
zi

ψsi(x
2 − z2

i )

exp(x)− (−1)2si
dx︸ ︷︷ ︸

Ψi(zi)

,

(A2)
where for now we simply take the integral result unspec-
ified as Ψi(zi). An assumption that is often made is that
ψ(x, z) = 1, that is, take the greybody factors equal to
the geometrical-optics limit, which allows one to perform
the integral analytically,

Ψi(z) = 2εi
[
zLi2(εie

−z) + Li3(εie
−z)
]
, (A3)

being Lin the polylog functions of order n, and εi =
(−1)2si . We then have

ΓBH→i =
27gs

512π4

εi
GMBH

[
zLi2(εie

−z) + Li3(εie
−z)
]
.

(A4)

Therefore, under this assumption and taking µi = 0

ΓBH→i =
27gs
32π3

ζ(3)

{
1 for Bosons.

3/2 for Fermions
; (A5)

this allows one to make a comparison between the cal-
culation with the full greybody factors in the massless
limit.

We can carry out a similar procedure for the evapora-
tion function εi(zi) per particle species, defined by

εi(zi) ≡ −
M2

BH

M4
p

dMBH

dt
,

=
27gi

8192π5

∫ ∞
zi

ψsi(x
2 − z2)

exp(x)− (−1)2si
x dx , (A6)

where we now have defined the function εi(zi) in a similar
fashion to Ψi(z). Its fairly straightforward to obtain the
massless geometric optics limit for εi(0),

εi(0) =
27gi

8192π5

{
π4

15 for Bosons
7π4

120 for Fermions ,
(A7)

so

dM

dt
= −27

4

1

30720π

M4
p

M2
g?(TBH), (A8)

in agreement with Ref. [41].
To find the total number of emitted particle, we need

to integrate over the lifetime, τ of the BH.

Ni =

∫ τ

0

dt
dNi
dt

, (A9)

where we have chosen the time the BHs are formed to be
t = tin = 0. Using the mass loss rate eq.(4) we can make
a change of variables

Ni =
27gs

1024π4
G

∫ M in
BH

0

Ψi(z)

ε(M)
M dM , (A10)

where ε ≡ ∑
i gsiε(MBH). For z = 0, and taking the

Geometric Optics limits,

Ψi(0) = 2ζ(3), ε(M) =
27

4

1

30720π
g?(T ), (A11)

one recovers the results from Refs. [36, 41]

Ni =
120ζ(3)

π3

gs
g?(T in

BH)

(
M in

BH

Mp

)2

. (A12)

To keep the greybody factors in the equation we can
rewrite ε(MBH) as

ε(MBH) =
∑
j

gsiεj

(
µj
TBH

)
=
∑
j

gsjεj

 µj
µi︸︷︷︸
mi

µi
TBH

 .

(A13)
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Writing ε(zi) =
∑
j gsjεj(mjzi) and using that zi =

8πGMµi, we obtain

Ni = η(zin
i )

gs
g?(T in

BH)

(
M in

BH

Mp

)2

, (A14)

where

η(zin
i ) =

27

1024π4

1(
zin
i

)2 g?(T in
BH)

∫ zin

0

Ψ(z)∑
i gjεj(mjz)

z dz .

(A15)
In order to obtain a semi-analytic approximation all

functions, Ψi(z) and εi(z) have been fitted to a gener-

alized logistic form

As
{

1− (1 + exp{−Bs log10(z) + Cs})−νs
}
, (A16)

where the parameters {As, Bs, Cs, νs} depend on the spin
of the particle. We give such parameters in Tab. I

2. Kerr case

For initially rotating BHs we can perform a similar
analysis. The Hawking rate is modified because of the
presence of the non-zero angular momentum,

d2Ni
dEidt

=
27giG

2M2
BH

2π

∑
l=si

l∑
m=−l

ψlmsi (MBH, p, a?)(E
2
i − µ2

i )

exp [(Ei −mΩ)/TBH]− (−1)2si
, (A17)

being ψlmsi (MBH, p, a?) the greybody factor dependent associated to the partial wave with quantum numbers l,m, and

normalized to 27π2G2M2
BH. The total emission rate, obtained after integration over the energy, is

ΓBH→i =
27gi

1024π4

1

GMBH
Ψi(zi, a?) , (A18)

being

Ψi(zi, a?) =

∫ ∞
zi

∑
lm

ψlmsi (x, a?)(x
2 − z2

i )

exp
[
(x(1 +

√
1− a2

?)− 4πma?)/2
√

1− a2
?

]
− (−1)2si

dx , (A19)

where x = Ei/T
S
BH and zi = µi/T

S
BH, being TSBH = (8πGMBH)−1 the temperature for Schwarzschild BHs. After

considering the greybody factors for each spin type, and integrating numerically, we have performed a fit to Ψi(zi, a?)
in the form

As(a?)
{

1− (1 + exp{Bs(a?) log10(zi/8π) + Cs(a?)})−νs(a?)
}
, (A20)

where now As(a?), Bs(a?), Cs(a?), νs(a?) are functions of
a?, and are fitted according to the functions,

log10As(a?) =
αs5a

2
?

(a2
? − 1.025)2

+
4∑
j=0

αsja
j
?, (A21a)

Bs(a?) =
βs5a

2
?

(a2
? − 1.025)2

+
4∑
j=0

βsja
j
?, (A21b)

log10 Cs(a?) =
ηs5a

2
?

(a2
? − 1.025)2

+
4∑
j=0

ηsja
j
?, (A21c)

log10 νs(a?) =
δs5a

2
?

(a2
? − 1.025)2

+
4∑
j=0

δsja
j
? . (A21d)

The fitting parameters {αsj , βsj , ηsj , δsj}, j = 1, . . . , 5 for
each spin are given in Tables II-V. The mass εi(zi, a?)
and angular momentum γi(zi, a?) evaporation functions
per spin defined by

εi(zi, a?) ≡ −
M2

BH

M4
p

dMBH

dt
, (A22a)

γi(zi, a?) ≡ −
1

a?

MBH

M2
p

dJ

dt
, (A22b)

being J the BH angular momentum. These evaporation
functions are parametrized as
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TABLE I. Fitting parameters for our analytical form, Eq. (A16), in the Schwarzschild case.

Ψi εs
As Bs Cs νs As Bs Cs νs

Scalar 2.457 7.50218 2.9437 0.4208 7.61 × 10−5 7.79884 3.80742 0.4885
Fermion 0.897 12.3573 8.7436 0.3045 4.12 × 10−5 13.0496 9.91178 0.3292
Vector 0.2736 13.465 9.8134 0.3049 1.68 × 10−5 14.0361 10.7138 0.3072

Graviton 0.0259 22.325 21.232 0.1207 1.93 × 10−6 21.5094 20.5135 0.1734

Ψ ε γ
α0 3.89166 −4.11848 −4.04521
α1 −0.03924 −0.41827 −0.25175
α2 0.59957 2.58436 2.31410
α3 −2.30988 −5.76425 −3.47358
α4 1.55282 4.01628 2.20081
α5 0.00023 0.00008 0.00007

(a) As(a?)

Ψ ε γ
β0 0.90067 0.86256 1.14795
β1 −0.28757 1.06174 −0.18821
β2 2.06242 −6.40438 0.95797
β3 −6.0310 10.38130 −2.36396
β4 4.34910 −5.12991 1.16129
β5 0.00020 0.00011 0.00014

(b) Bs(a?)

Ψ ε γ
η0 7.68412 7.02688 8.02772
η1 −1.19450 2.99615 0.80777
η2 3.42557 −25.1091 −10.13620
η3 −19.2999 31.0490 3.33735
η4 11.6408 −14.56991 −0.49068
η5 −0.00076 −0.00145 0.00141

(c) Cs(a?)

Ψ ε γ
δ0 −0.43895 −0.28079 −0.55216
δ1 −0.57066 −1.87129 0.47187
δ2 2.32570 11.5739 −2.55669
δ3 −0.98160 −20.6905 5.12681
δ4 −0.97489 11.1745 −2.65038
δ5 0.00035 −0.00024 −0.00022

(d) νs(a?)

TABLE II. Fitting parameters of our parametrized from Eqs. (A20), (A21) for scalars.

εi(zi, a?) =
27

8192π5

∫ ∞
zi

∑
lm

ψlmsi (x, a?)(x
2 − z2

i )

exp
[
(x(1 +

√
1− a2

?)− 4πma?)/2
√

1− a2
?

]
− (−1)2si

x dx , (A23a)

γi(zi, a?) =
27

1024π4

∫ ∞
zi

∑
lm

mψlmsi (x, a?)(x
2 − z2

i ) dx

exp
[
(x(1 +

√
1− a2

?)− 4πma?)/2
√

1− a2
?

]
− (−1)2si

, (A23b)

with x and zi defined as before. Similar to the particle
emission rate, we fit these evaporation parameters ac-
cording to a general logistic form, Eq. (A20), where the
parameters are also given in Tables II-V.

Appendix B: Decay Widths

In this appendix we quote the decay widths of scalars,
vectors and massive tensors into a fermion-antifermion
par, used in the subsection III C. For X having a mass
mX and a coupling gD with the fermions χ, we have

ΓSX→DM =
mX

8π
g2
D

(
1− 4m2

DM

m2
X

) 3
2

, (B1)

for X being a scalar. In the case that X is a massive
vector, we have

ΓVX→DM =
mX

12π
g2
D

(
1 +

2m2
DM

m2
X

)(
1− 4m2

DM

m2
X

) 1
2

,

(B2)

and, finally, for a massive spin-2 particle [69–71]

ΓGX→DM =
mX

160π
g2
D

(
1 +

8

3

m2
DM

m2
X

)(
1− 4m2

DM

m2
X

) 3
2

.

(B3)
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