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This work and its companion paper, Amon et al. (2021), present cosmic shear measurements and cosmological
constraints from over 100 million source galaxies in the Dark Energy Survey (DES) Year 3 data. We constrain
the lensing amplitude parameter 𝑆8 ≡ 𝜎8

√︁
Ωm/0.3 at the 3% level in ΛCDM: 𝑆8 = 0.759+0.025

−0.023 (68% CL).
Our constraint is at the 2% level when using angular scale cuts that are optimized for the ΛCDM analysis:
𝑆8 = 0.772+0.018

−0.017 (68% CL). With cosmic shear alone, we find no statistically significant constraint on the dark
energy equation-of-state parameter at our present statistical power. We carry out our analysis blind, and compare
our measurement with constraints from two other contemporary weak lensing experiments: the Kilo-Degree
Survey (KiDS) and Hyper-Suprime Camera Subaru Strategic Program (HSC). We additionally quantify the
agreement between our data and external constraints from the Cosmic Microwave Background (CMB). Our DES
Y3 result under the assumption of ΛCDM is found to be in statistical agreement with Planck 2018, although
favors a lower 𝑆8 than the CMB-inferred value by 2.3𝜎 (a 𝑝-value of 0.02). This paper explores the robustness
of these cosmic shear results to modeling of intrinsic alignments, the matter power spectrum and baryonic
physics. We additionally explore the statistical preference of our data for intrinsic alignment models of different
complexity. The fiducial cosmic shear model is tested using synthetic data, and we report no biases greater than
0.3𝜎 in the plane of 𝑆8 ×Ωm caused by uncertainties in the theoretical models.

I. INTRODUCTION

Discoveries and advances in modern cosmology have re-
sulted in a remarkably simple standard cosmological model,
known as ΛCDM. The model is specified by a spatially flat
universe, governed by the general theory of relativity, which
contains baryonic matter, dark matter, and a dark energy com-
ponent that causes the expansion of the Universe to accelerate.
Although remarkably simple, it appears to be sufficient to de-
scribe a great many observations, including the stability of
cold disk galaxies, flat galaxy rotation curves, observations of
strong gravitational lensing in clusters, the acceleration of the
expansion of the Universe as inferred by type Ia supernovae
(SNe Ia), and the pattern of temperature fluctuations in the
Cosmic Microwave Background (CMB). Yet despite all this,
ΛCDM is fundamentally mysterious in the sense that the phys-
ical nature of its two main components, dark matter and dark
energy, is still completely unknown.

The success of ΛCDM has, however, been shaken in recent
years by new experimental results. We have seen tentative
hints that the model might fail to simultaneously describe the
late- (low redshift) and early-time (high redshift) Universe. To
take one prominent example, constraints on the local expan-
sion parameter 𝐻0 obtained from the local distance ladder and
SNe Ia appear to be in tension with those inferred by the CMB
(Planck Collaboration 2020b) at a statistically significant level
(Riess et al. 2021), with varying levels of significance being
reported by different probes (Alam et al. 2021, Freedman et al.

∗ secco@uchicago.edu
† s.samuroff@northeastern.edu

2019). In a separate but analogous tension, the value of the
𝑆8 ≡ 𝜎8 (Ωm/0.3)1/2 parameter — the amplitude of mass fluc-
tuations 𝜎8 scaled by the square root of matter density Ωm —
differs when inferred via cosmological lensing (Asgari et al.
2021, Hikage et al. 2019, Troxel et al. 2018) from the value ob-
tained using Planck (assuming ΛCDM; Planck Collaboration
2020b) at the level of 2 − 3𝜎. Other probes of the late Uni-
verse, in particular spectroscopic galaxy clustering (Tröster
et al. 2020), redshift-space distortions (Alam et al. 2021) and
the abundance of galaxy clusters (Dark Energy Survey Col-
laboration 2020, Mantz et al. 2015), also all tend to prefer
relatively low values of 𝑆8. Although the evidence is by no
means definitive, we are perhaps beginning to see hints of new
physics, and so stress-testing ΛCDM with new measurements
is extremely important.

Cosmic shear, or cosmological weak lensing (the two-point
correlation function of gravitational shear), is one of the most
informative of the the low redshift probes. It has two main
advantages, as a means to infer the properties of the large scale
Universe (Bartelmann & Schneider 2001, Frieman et al. 2008,
Hu & Jain 2004, Huterer 2002). First, the signal is insensitive
to galaxy bias, which is a significant source of uncertainty in
cosmological analyses based on galaxy clustering and galaxy-
galaxy lensing. Second, weak lensing is sensitive both to the
geometry of the Universe through the lensing kernel (which
is a function of 𝐻0 and ratios of angular diameter distances),
and also to the growth of structure and its evolution in redshift.
Since geometry and structure growth are tightly related to the
evolution of dark energy and its equation-of-state parameter
𝑤, this sensitivity carries over to the cosmic shear signal.

Cosmic shear was first measured over twenty years ago,
roughly simultaneously by a number of groups (Bacon et al.

mailto:secco@uchicago.edu
mailto:s.samuroff@northeastern.edu


4

2000, Kaiser et al. 2000, Van Waerbeke et al. 2000, Wittman
et al. 2000). Although too noisy to constrain cosmological pa-
rameters, these observations represented the first steps towards
fulfilling the potential pointed out by theoretical studies years
earlier (Hu 1999, Jain & Seljak 1997, Miralda-Escude 1991).
The intervening two decades have seen steady improvements in
signal-to-noise and cosmological constraining power, as new
ground- and space-based lensing data sets have become avail-
able (Asgari et al. 2017, Asgari et al. 2021, Benjamin et al.
2007, Brown et al. 2003, Erben et al. 2013, Fu et al. 2008,
Hamana et al. 2003, Hamana et al. 2020, Hetterscheidt et al.
2007, Heymans et al. 2005, Hikage et al. 2019, Hoekstra et al.
2002, Huff et al. 2014a,b, Jarvis et al. 2003, 2006, Jee et al.
2013, 2016, Kilbinger et al. 2013, Kitching et al. 2014, Leau-
thaud et al. 2007, Lin et al. 2012, Massey et al. 2007a, Miller
et al. 2013, Refregier et al. 2002, Rhodes et al. 2004, Schrab-
back et al. 2010, Yoon et al. 2019). As the volume and quality
of lensing data have improved, so too have the methods used
to study it, with the development of an array of sophisticated
statistical and theoretical tools. There has, for example, been
a coherent effort to test and improve shape measurement al-
gorithms using increasingly complex image simulations (Bri-
dle et al. 2010, Heymans et al. 2006, Kitching et al. 2012,
Mandelbaum et al. 2014, Massey et al. 2007b). Methods for
estimating the distribution of source galaxies along the line of
sight have also gradually evolved to become highly sophisti-
cated, incorporating various sources of information (Gatti &
Vielzeuf et al., 2018; Prat & Baxter et al., 2019; Buchs, Davis
et al. 2019; Alarcon et al. 2020, Sánchez & Bernstein 2019,
Wright et al. 2020).

Alongside the Dark Energy Survey (DES)1, the major lens-
ing surveys of the current generation are the Kilo-Degree Sur-
vey (KiDS; de Jong et al. 2013)2 and the Hyper-Suprime Cam-
era Subaru Strategic Program (HSC; Aihara et al. 2018)3. We
show the approximate, nominal footprints of these surveys in
Fig. 1. Each of these three collaborations have, in recent years,
released cosmic shear analyses analogous to the one presented
in this paper. Lensing analyses based on HSC data were car-
ried out over a footprint of 136.9 deg2 split into six fields (red
patches in Fig. 1; Mandelbaum et al. 2018a); they presented
consistent cosmology results using two types of statistics: real
space correlation functions (Hamana et al. 2020) and harmonic
space power spectra (Hikage et al. 2019). More recently, the
KiDS collaboration released results based on approximately
1000 deg2 of data (blue patches in Fig. 1; Giblin et al. 2021),
and presented an analysis of band-power spectra, correlation
functions and the complete orthogonal sets of E-/B-mode in-
tegrals (COSEBIs Asgari et al. 2021). They further combined
their cosmic shear results with external spectroscopic data
from BOSS (Alam et al. 2015) to obtain a 3×2pt constraint
(Heymans et al. 2021), which is internally consistent with
their cosmic shear results, but differs from Planck in the full
parameter space by ∼ 2𝜎.

1 https://www.darkenergysurvey.org/
2 http://kids.strw.leidenuniv.nl/DR4/index.php
3 https://www.naoj.org/Projects/HSC

The trend observed in earlier cosmic shear studies is that the
amplitude of the cosmic shear signal (tied to the amplitude of
matter fluctuations through the 𝑆8 parameter) is lower than that
extrapolated from the CMB. In order to demonstrate whether
this discrepancy is physical and significant, we must have a
high degree of confidence in our modeling of the data and
its possible systematic errors. Among the most significant of
these sources of systematic error are intrinsic alignments (IAs),
or astrophysically sourced correlations of galaxy shapes, which
mimic cosmic shear. Given how difficult it is to disentangle IAs
from lensing, the most common approach is to forward-model
their effect, assuming a model for the IA power spectrum with
a number of free parameters. Depending on the galaxy sample,
however, IA model insufficiency can easily translate into a bias
in cosmological parameters (Blazek et al. 2019, Krause et al.
2016). In addition to IAs, effects such as nonlinear growth and
the impact of baryons on the large-scale distribution of dark
matter can alter the matter power spectrum in a significant
way, and so bias the inferred lensing amplitude if neglected
(DeRose et al. 2019b, Huang et al. 2021, Martinelli et al.
2021, Schneider et al. 2019, Yoon & Jee 2021). Although
it is clear that these effects are scale-dependent, finding the
angular scales where our modeling is sufficient is by no means
straightforward. This paper describes the choices made in
modeling and scale cuts, and validates that the potential biases
on cosmological parameters are smaller than the statistical
uncertainties.

Our companion paper (Amon et al. 2021) presents a de-
tailed investigation of observational errors that can similarly
bias cosmological inference. Undiagnosed biases in the shear
measurement process, for example, can lead one to incorrectly
infer the lensing amplitude. Likewise, errors in the estima-
tion of galaxy redshift distributions 𝑛(𝑧) can subtly alter the
interpretation of the lensing measurement, both in terms of
cosmology and of IAs. Amon et al. (2021) demonstrate that
these measurement systematic errors are well controlled in the
Y3 cosmic shear analysis. We note that the main cosmological
constraints presented in both papers are identical.

The cosmic shear analysis presented in this paper, and in
Amon et al. (2021), is part of a series of Year 3 cosmological
results from large-scale structure produced by the Dark Energy
Survey Collaboration. This work relies on many companion
papers that validate the data, catalogs and theoretical methods;
those papers, as well as this one, feed into the main “3 × 2pt”
constraints, which combine cosmic shear with galaxy-galaxy
lensing and galaxy clustering inΛCDM and 𝑤CDM (Dark En-
ergy Survey Collaboration 2021a), as well as extended cosmo-
logical parameter spaces (Dark Energy Survey Collaboration
2021b). These include:

• The construction and validation of the Gold catalog of
objects in DES Y3 is described in Sevilla-Noarbe et al.
(2020).

• The Point-Spread Function (PSF) modeling algorithm
and its validation tests are described in Jarvis et al.
(2021).

https://www.darkenergysurvey.org/
http://kids.strw.leidenuniv.nl/DR4/index.php
https://www.naoj.org/Projects/HSC
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• A suite of image simulations, used to test the shape mea-
surement pipeline and ultimately determine the shear
calibration uncertainties is described in MacCrann et al.
(2020).

• The Metacalibration shape catalog, and the tests that
validate its science-readiness, are described in Gatti,
Sheldon et al. (2021). This paper also discusses the
(first layer) catalog-level blinding implemented in Y3.

• The characterization of the source redshift distribution,
and the related systematic and statistical uncertainties,
are detailed in five papers. Namely, Myles, Alarcon
et al. (2020) and Buchs, Davis et al. (2019) present the
baseline methodology for estimating wide-field redshift
distributions using Self-Organizing Maps; Gatti, Gian-
nini et al. (2020) outline an alternative method using
cross correlations with spectroscopic galaxies; Sánchez,
Prat et al. (2021) presents a complementary likelihood
using small scale galaxy-galaxy lensing, improving con-
straints on redshifts and IA; finally Cordero, Harrison
et al. (2021) validates our fiducial error parameterization
using a more complete alternative based on distribution
realizations. In addition to this, Hartley, Choi et al.
(2020) and Everett et al. (2020) respectively describe
the DES deep fields and the Balrog image simulations,
both of which are crucial in testing and implementing
the Y3 redshift methodology.

• The data covariance matrix is described in Friedrich
et al. (2020). This paper also presents various validation
tests based on DES Y3 simulations, and demonstrates
its suitability for likelihood analyses.

• The numerical metrics used to assess tension between
our DES results and external data sets are described in
Lemos et al. (2020). That work considers a number of
alternatives, and sets out the methodology used in this
paper and Dark Energy Survey Collaboration (2021a).

• The simultaneous blinding of the multiple DES Y3
probes at the two-point correlation function level is de-
scribed in Muir et al. (2020);

• DeRose et al. (2021a) presents a set of cosmological
simulations which are used as an end-to-end validation
of our analysis framework on mock 𝑁-body data.

• Finally, tests of the theoretical and numerical methods,
as well as modeling assumptions for all 3× 2pt analyses
are described in Krause et al. (2021).

This paper is organized as follows: Sec. II describes the
DES Y3 data, and the catalog construction and calibration.
Sec. III describes the two-point measurements upon which
our results are based, as well as the covariance estimation
and blinding scheme. In Sec. IV, we describe the theoreti-
cal modeling of the cosmic shear two-point data vector. We
demonstrate our model is robust to various forms of systematic

error, using simulated data, in Sec. V. Our baseline results and
an exploration of the IA model complexity present in our data
are then presented in Sec. VI. In Sec. VII we present a series
of reanalyses, using slightly different modeling choices, in or-
der to verify the robustness of our findings. The consistency of
DES Y3 cosmic shear data with external probes such as other
weak lensing surveys and the CMB is examined in Sec. VIII.
Finally, Sec. IX summarizes our findings and discusses their
significance in the context of the field.

II. DES Y3 DATA & SAMPLE SELECTION

This section briefly describes the DES Y3 data, and defines
the galaxy samples used in this paper. We also discuss a num-
ber of related topics, including calibrating selection biases.

A. Data Collection & the Gold Selection

DES has now completed its six-year campaign, covering
a footprint of around 5000 deg2 to a depth of 𝑟 ∼ 24.4. The
DES data were collected using the 570 megapixel Dark Energy
Camera (DECam; Flaugher et al. (2015)), at the Blanco tele-
scope at the Cerro Tololo Inter-American Observatory (CTIO),
Chile, using five photometric filters 𝑔𝑟𝑖𝑧𝑌 , which cover a re-
gion of the optical and near infrared spectrum between 0.40
and 1.06 𝜇m. DES SV, Y1 and Y3 cover sequentially larger
fractions of the full Y6 footprint, with Y3, the data set used in
this analysis, encompassing 4143 deg2 after masking, with the
“Wide Survey” footprint covered with 4 overlapping images
in each band (compared with the final survey depth of ∼ 8).
The images undergo a series of reduction and pre-processing
steps, including background subtraction (Bernstein et al. 2018,
Eckert et al. 2020, Morganson et al. 2018), and masking out
cosmic rays, satellite trails and bright stars. Object detection
is performed on the 𝑟𝑖𝑧 coadd images using Source Extractor
(Bertin & Arnouts 1996). For the detected galaxies, derived
photometric measurements are generated using Multi-Object
Fitting (MOF; Drlica-Wagner et al. 2018) to mitigate blending.
The final Y3 selection with baseline masking is referred to as
the Gold catalog, and is described in detail in Sevilla-Noarbe
et al. (2020).

B. Shape Catalog & Image Simulations

The DES Y3 shape catalog is created using the Metacal-
ibration algorithm (Huff & Mandelbaum 2017, Sheldon &
Huff 2017). The basic shape measurement entails fitting a
single elliptical Gaussian to each detected galaxy. The fit is
repeated on artificially sheared copies of the given galaxy, in
order to construct a shear response matrix 𝑅𝛾 via a numeri-
cal derivative; a selection response 𝑅𝑆 is also computed in a
similar way. These multiplicative responses are the essence
of Metacalibration. After quality cuts, the Y3 Metacal-
ibration catalog contains over 100 million galaxies, with a
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FIG. 1. The approximate footprints of Stage-III dark energy experiments: Dark Energy Survey Year 3 (DES Y3; green), Kilo-Degree Survey
(KiDS-1000; blue) and first-year Hyper Suprime-Cam Subaru Strategic Program (HSC; red). The left and right panels show orthographic
projections of the northern and southern sky respectively. The parallels and meridians show declination and right ascension. The different
survey areas not only affect the final analysis choices, but also reflect the individual science strategies and the complementarity of Stage-III
surveys.

mean redshift of 𝑧 = 0.63 and a weighted number density4

𝑛eff = 5.59 arcmin−2; for discussion of the cuts and why they
are necessary, see Gatti, Sheldon et al. (2021).

Although Metacalibration greatly reduces the biases in-
herent to shear estimation, the process is not perfect. We must
still rely on image simulations for validation and for deriving
priors on the residual biases (predominantly due to blending,
and its impact on the redshift distribution). These simulations,
and the conclusions we draw from them for Y3, are discussed
in MacCrann et al. (2020). In addition to tests using simula-
tions, the catalogs are subject to a number of null tests, applied
directly to the data. Using both pseudo-𝐶ℓs and COSEBIs
(Schneider et al. 2010), we find no evidence for non-zero B-
modes in Y3.

C. Photometric Redshift Calibration

We estimate and calibrate the redshift distributions of our
source sample with a combination of three different methods.
Our base methodology is known as Self-Organizing Map 𝑝(𝑧)
(SOMPZ; Myles, Alarcon et al. 2020). The most important
aspect of this methodology is that knowledge from precise red-
shifts (from spectroscopic samples) and higher-quality photo-
metric data (from DES deep fields Hartley, Choi et al. 2020)

4 The effective number density here is as defined by Heymans et al. (2012).
The equivalent value using Chang et al. (2013)’s definition is 5.32 arcmin−2

(see Gatti, Sheldon et al. 2021 for details.)

informs the bulk of the DES observations (the wide fields), es-
sentially acting as a Bayesian prior. The connection between
the deep and wide field data is determined empirically using an
image simulation framework known as Balrog (Everett et al.
2020).

Additionally, clustering redshifts (WZ; Gatti, Giannini et al.
2020) employ cross-correlations of galaxy densities to improve
redshift constraints, and shear ratios (Sánchez, Prat et al. 2021)
help to constrain redshifts (and also intrinsic alignment pa-
rameters), utilizing galaxy-shear correlation functions at small
scales. While SOMPZ and WZ are applied upstream to gen-
erate and select 𝑛(𝑧) estimates, the shear-ratio information, on
the other hand, is incorporated at the point of evaluation of
cosmological likelihoods (see Sec. IV F). Details of each of
these methods in the context of Y3 can be found in Myles,
Alarcon et al. (2020), and robustness tests of redshift distri-
butions in the context of cosmic shear are presented in Amon
et al. (2021).

III. COSMIC SHEAR MEASUREMENT

In this section we present the measured real-space cosmic
shear two-point correlations (𝜉± (𝜃), see Eq. 11), which form
the basis of our results and are shown in Fig. 2. Defining the
signal-to-noise of our measurement as

S/N ≡ 𝜉data
± (𝜃)𝑇 C−1𝜉model

± (𝜃)√︃
𝜉model
± (𝜃)𝑇 C−1𝜉model

± (𝜃)
, (1)
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where C is the data covariance matrix, the S/N of the cosmic
shear detection in DES Y3 after scale cuts is 27. For the fiducial
ΛCDM model, our chi-square at the maximum posterior is
𝜒2 = 237.7, with 222 effective degrees-of-freedom (d.o.f.),
which gives us a 𝑝−value of 0.22 (see Sec. VI A). We define
these quantities in more detail in Sec. IV.

A. Tomography

We define a set of four broad redshift bins for our source sam-
ple in the nominal range 0 < 𝑧 < 3, with actual number den-
sities being fairly small above 𝑧 & 1.5. These are constructed
by iteratively adjusting the redshift bin edges, such that they
each yield approximately the same number of source galaxies.
The Y3 SOMPZ methodology (see Section II C) makes use
of Balrog, which artificially inserts COSMOS galaxies into
DES images. The artificial galaxies are assigned to cells in
both the wide- and deep-field Self-Organizing Maps (SOMs),
which allows one to map between the two, and so assign DES
wide-field galaxies to bins (see Myles, Alarcon et al. 2020,
Sec. 4.3).

The redshift distributions computed in this way, which feed
into our modeling in the next section, are shown in Fig. 3. The
galaxy number densities are 1.476, 1.479, 1.484 and 1.461 per
square arcminute respectively in these four redshift bins.

B. Two-Point Estimator & Measurement

The spin-2 shear field can be expressed in terms of a real and
an imaginary component, 𝛾 = 𝛾1 + 𝑖𝛾2. There are two possible
shear two-point functions that preserve parity invariance, and
a “natural” convention for them is: 𝜉+ ≡ 〈𝛾𝛾∗〉 and 𝜉− ≡
〈𝛾𝛾〉 (Schneider & Lombardi 2003), where the angle brackets
denote averaging over galaxy pairs. In terms of tangential (𝑡)
and cross (×) components defined along the line that connects
each pair of galaxies 𝑎, 𝑏, we have:

𝜉± =
〈
𝛾𝑡 ,𝑎𝛾𝑡 ,𝑏

〉
𝑎𝑏

±
〈
𝛾×,𝑎𝛾×,𝑏

〉
𝑎𝑏

. (2)

In practice we do not have direct access to the shear field,
but rather estimate it via per-galaxy ellipticities (although see
Bernstein et al. 2016 for an alternative approach). Correlating
galaxies in a pair of redshift bins (𝑖, 𝑗) we define,

𝜉
𝑖 𝑗
± (𝜃) =

∑
𝑎𝑏

𝑤𝑎𝑤𝑏

(
𝑒𝑖𝑡 ,𝑎 𝑒

𝑗

𝑡 ,𝑏
± 𝑒𝑖×,𝑎 𝑒

𝑗

×,𝑏

)
∑
𝑎𝑏

𝑤𝑎𝑤𝑏𝑅𝑎𝑅𝑏 ,
(3)

with inverse variance weighting 𝑤5 (unlike in Y1, where such
weighting was not included) and response factors 𝑅 that ac-
count for shear and selection biases (see Gatti, Sheldon et al.

5 Although referred to as such, the catalog weights only approximate inverse
variance weighting. See Gatti, Sheldon et al. (2021), Sec 4.3 for details.

2021 for details), and where the sums run over pairs of galax-
ies 𝑎, 𝑏, for which the angular separation falls within the range
|𝜽 − Δ𝜽 | and |𝜽 + Δ𝜽 |. Both 𝜉+ and 𝜉− are measured using
twenty log-spaced 𝜃 bins between 2.5 and 250 arcminutes,
with 𝑖, 𝑗 ∈ (1, 2, 3, 4). As discussed later, not all of the twenty
angular bins are utilized in our likelihood analysis. We also
assume the response matrix is diagonal and that the selection
part is scale independent. The ellipticities that enter Eq. (3)
are corrected for residual mean shear, such that 𝑒𝑖

𝑘
≡ 𝑒𝑖

𝑘
−〈𝑒𝑘〉𝑖

for components 𝑘 ∈ (1, 2) and redshift bin 𝑖, again following
the Y1 methodology (Troxel et al. 2018). We show the re-
sulting two-point functions, which are measured using using
TreeCorr6 (Jarvis et al. 2004), in Fig. 2, alongside best fitting
theory predictions.

C. Data Covariance Matrix

We model the statistical uncertainties in our combined mea-
surements of 𝜉± as a multivariate Gaussian distribution. The
disconnected 4-point function part of the covariance matrix
of that data vector (the Gaussian covariance part) is described
in Friedrich et al. 2020 and includes analytic treatment of bin
averaging and sky curvature. We also verify in that paper that
expected fluctuations in Δ𝜒2 between the measurement and
our maximum posterior model do not significantly impact on
our estimates of cosmological parameters. Our modeling of
the connected 4-point function part of the covariance matrix
and the contribution from super-sample covariance uses the
public CosmoCov7 (Fang et al. 2020) code, which is based on
the CosmoLike framework (Krause & Eifler 2017).

We use the RMS per-component shape dispersion 𝜎𝑒 and
effective number densities 𝑛eff specified in Table 1 of Amon
et al. 2021 to calculate the shape-noise contribution to the co-
variance, and additionally account for survey geometry effects.
We follow previous cosmic shear analyses in using a covari-
ance matrix that assumes a baseline cosmology (see Hikage
et al. 2019 for a different approach). That is, we assume a fidu-
cial set of input parameters for the initial covariance matrix and
run cosmological chains using this first guess. The covariance
is then recomputed at the best fit from this first iteration, and
the final chains are run. We find this update to have negligible
effects on the cosmic shear constraints presented in this paper.

D. Blinding

We implement a three-stage blinding strategy, performing
transformations to the catalog, data vector, and parameters
in order to obscure the cosmological results of the analysis.
By disconnecting the people carrying out the analysis from
the impact their various choices are having on the eventual
cosmological results, the aim is to avoid unconscious biases,

6 https://github.com/rmjarvis/TreeCorr
7 https://github.com/CosmoLike/CosmoCov

https://github.com/rmjarvis/TreeCorr
https://github.com/CosmoLike/CosmoCov
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either towards or away from previous results in the literature.
Although the approaches differ somewhat, all of the major
cosmic shear collaborations have adopted a similar philoso-
phy regarding the necessity of blinding (Asgari et al. 2021,
Dark Energy Survey Collaboration 2016, Hikage et al. 2019,
Hildebrandt et al. 2020, Troxel et al. 2018).

The first level of blinding follows a similar method to that
used in Y1 (Zuntz et al. 2018), and is discussed in Gatti, Shel-
don et al. (2021) (their Sec. 2.3). In short, the process involves
a transformation of the shear catalog, where galaxy shapes are
scaled by a random multiplicative factor. The second level is a
transformation of the data vector using the method described
in Muir et al. (2020). We compute model predictions at two
sets of input parameters: an arbitrary reference cosmology
𝚯ref and a shifted cosmology 𝚯ref + Δ𝚯, where Δ𝚯 is drawn
randomly in 𝑤CDM parameter space. The difference between
these model predictions is then applied to the measured 𝜉±
data vector prior to its analysis. The final stage of blinding
is at the parameter level, and entails obscuring the axes of
contour plots (effectively equivalent to shifting contours ran-
domly in parameter space, preserving constraining power but
making external consistency testing impossible). A detailed
checklist of the tests that must be fulfilled before each stage of
blinding can be removed can be found in Dark Energy Survey
Collaboration (2021a).

From a modeling perspective, passing the tests we describe
in Sec. V and the further tests on synthetic data described
in DeRose et al. (2021a) and Krause et al. (2021) fulfills our
unblinding requirements. A set of internal consistency tests for
cosmic shear must also be passed and are described in Amon
et al. (2021).

IV. FIDUCIAL MODEL AND ANALYSIS CHOICES

A predictive physical model for cosmic shear has a num-
ber of requirements; first, any systematic deviations or effects
omitted from the model must be comfortably subdominant to
uncertainties on the data; and second, the implementation must
be numerically stable at all points within the prior volume. We
also aim for redundancy, and implement the full pipeline in two
independent codes: CosmoSIS8 (Zuntz et al. 2015) and Cos-
moLike (Krause & Eifler 2017), which are verified to be in
agreement to within a negligible Δ𝜒2 (Krause et al. 2021).

In this section, we outline our baseline model for 𝜉
𝑖 𝑗
± (𝜃)

and discuss how it meets the above criteria. We subsequently
show the cosmological constraints from these analysis choices
in Sec. VI. To test the robustness of this baseline model, we
later relax its main approximations and assumptions and show
variations of analysis choices in Sec. VII.

8 https://bitbucket.org/joezuntz/cosmosis

A. Sampling and Parameter Inference

For all parameter inference presented in this paper, we as-
sume the likelihood of the data given the model 𝑀 with pa-
rameters p to be a multivariate Gaussian:

lnL(D̂|p, 𝑀) = −1
2
𝜒2 + const., (4)

𝜒2 =

(
D̂ − T𝑀 (p)

)𝑇
C−1

(
D̂ − T𝑀 (p)

)
(5)

where C is the data covariance matrix and T𝑀 (p) is the theory
prediction vector for a data vector D̂, a concatenated version of
all elements of the tomographic cosmic shear data (with length
𝑁𝐷 = 𝑁𝜃𝑁z (𝑁z + 1), where 𝑁𝜃 is the number of angular bins
included in each correlation function after scale cuts (𝑁𝜃 varies
depending on the redshift bins, and equals 20 before cuts) and
𝑁z = 4 is the number of broad redshift bins). Since we are
incorporating shear ratios at the inference level (see Sec. IV F),
the final likelihood used in our analyses is the sum of two parts,
lnL = lnL2pt + lnLSR, which are assumed to be independent
(Sánchez, Prat et al. 2021).

As we aim to perform a Bayesian analysis, the a posteriori
knowledge of the parameters given the observed data, denoted
by P(p|D̂, 𝑀), depends not only on the likelihood but also on
prior Π(p|𝑀). These pieces are related via Bayes’ theorem:

P(p|D̂, 𝑀) = L(D̂|p, 𝑀)Π (p|𝑀)
𝑃(D̂|𝑀)

, (6)

where 𝑃(D̂|𝑀) is the so-called evidence of the data. Sampling
of the posterior is carried out using Polychord (Handley et al.
2015; with 500 live points and tolerance 0.01). These settings
have been tested to demonstrate the accuracy of the posteriors
and Bayesian evidence estimates. Although sampling gives a
rather noisy estimate of the best-fit point in the full parameter
space, the Maximum a Posteriori (MAP) quoted in Sec. VI A,
we verify that standard Polychord outputs, in practice, offer
a reasonable estimate of that point when compared to a MAP
optimizer9. Throughout this paper, we report parameter con-
straints using the MAP value and 1D marginalized summary
statistics in the form:

Parameter = 1D mean+upper 34% bound
−lower 34% bound (MAP value).

The ratio of evidences is a well-defined quantity for model-
testing within a single data set to indicate a preference for one
modeling choice (𝑀1, with parameters p1) over another (𝑀2,
p2):

𝑅𝑀1/𝑀2 =
𝑃(D̂|𝑀1)
𝑃(D̂|𝑀2)

=

∫
𝑑pL(D̂|p1, 𝑀1)𝑃(p1 |𝑀1)∫
𝑑pL(D̂|p2, 𝑀2)𝑃(p2 |𝑀2)

. (7)

9 We run the MaxLike sampler in Posterior mode for this test (https:
//bitbucket.org/joezuntz/cosmosis/wiki/samplers/maxlike)

https://bitbucket.org/joezuntz/cosmosis
https://bitbucket.org/joezuntz/cosmosis/wiki/samplers/maxlike
https://bitbucket.org/joezuntz/cosmosis/wiki/samplers/maxlike
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FIG. 2. Cosmic shear two-point correlation measurements from DES Y3. We show here 𝜉+ and 𝜉− (black data points, upper left and lower right
halves respectively), with the different panels showing different combinations of redshift bins; in all cases the error bars come from our fiducial
analytic covariance matrix. The lighter grey bands represent scales removed from our fiducial analysis, while the darker are the equivalent for
the ΛCDM Optimized analysis. Also shown are the best-fit theory curve in ΛCDM (solid green) and the intrinsic alignment contributions to
the signal: GI (dashed yellow), II (dot-dashed red) and GI+II (solid blue). For clarity, we multiply the IA contributions by a factor of 10, and
in most bins the total IA signal is ∼ 1% of GG+GI+II. The detection significance of the cosmic shear signal after fiducial scale cuts is 27. The
𝜒2 per effective d.o.f of the ΛCDM model is 237.7/222 = 1.07 (a 𝑝-value of 0.22).

The evidence ratio has the advantage of naturally penalizing
models of excessive parameter space volume, but needs to
be interpreted using e.g. the Jeffreys scale (Jeffreys 1935),
which somewhat arbitrarily differentiates between “strong”
and “weak” model preferences. Our main use of evidence
ratios is to help assessing model preference in the context of
IA complexity in Sec. VI C 2.

B. Modeling Cosmic Shear

The two-point cosmic shear correlations 𝜉𝑖 𝑗± (𝜃) are related
to the nonlinear matter power spectrum (and thus to the growth
and evolution of structure). The key quantity that dictates how
much a galaxy on a particular line of sight is distorted, is known
as the convergence 𝜅. That is, the weighted mass overdensity 𝛿,

integrated along the line-of-sight to the distance of the source
𝜒s:

𝜅 (𝜃) =
∫ 𝜒s

0
𝑑𝜒𝑊 (𝜒)𝛿(𝜃, 𝜒). (8)

The weight for a particular lens plane, quantified below in
Eq. (10), is sensitive to the relative distances of the source
and the lens; it is via this geometrical term that cosmic shear
probes the expansion history of the Universe. Fitting all the
auto- and cross-redshift bin correlations simultaneously sig-
nificantly improves the cosmological constraining power (Hu
1999), both because it helps to untangle the signal at different
epochs, and because it (partially) breaks the degeneracy with
intrinsic alignments (see also Sec. IV D).

Under the Limber approximation (Limber 1953, LoVerde
& Afshordi 2008), the 2D convergence power spectrum in
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tomographic bins 𝑖 and 𝑗 , 𝐶
𝑖 𝑗
𝜅 (ℓ) is related to the full 3D

matter power spectrum as:

𝐶
𝑖 𝑗
𝜅 (ℓ) =

∫ 𝜒 (𝑧max)

0
𝑑𝜒

𝑊 𝑖 (𝜒)𝑊 𝑗 (𝜒)
𝜒2 𝑃𝛿

(
ℓ + 1/2

𝜒
, 𝑧(𝜒)

)
,

(9)
where 𝑃𝛿 is the nonlinear matter power spectrum and the
lensing efficiency kernels are given by

𝑊 𝑖 (𝜒) =
3𝐻2

0Ωm

2𝑐2
𝜒

𝑎(𝜒)

∫ 𝜒H

𝜒

𝑑𝜒′ 𝑛𝑖 (𝑧(𝜒′)) 𝑑𝑧

𝑑𝜒′
𝜒′ − 𝜒

𝜒′ .

(10)
The source galaxy redshift distribution 𝑛𝑖 (𝑧) here is normal-
ized to unity. Clearly, the amplitude of 𝐶𝜅 responds directly
to 𝜎2

8 , and to Ωm via the power spectrum, and to Ωmℎ
2 via

the lensing kernel, which gives rise to a characteristic banana-
shaped degeneracy in𝜎8×Ωm. The combination of parameters
most strongly constrained by cosmic shear is a derived param-
eter, commonly referred to as 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5.

By decomposing 𝜅 into E- and B-mode components (Crit-
tenden et al. 2002, Schneider et al. 2002) and in a full-sky
formalism, one can express the angular two point shear corre-
lations as:

𝜉
𝑖 𝑗
± (𝜃) =

∑︁
ℓ

2ℓ + 1
2𝜋ℓ2 (ℓ + 1)2

[
𝐺+

ℓ,2 (cos 𝜃) ± 𝐺−
ℓ,2 (cos 𝜃)

]
×
[
𝐶
𝑖 𝑗

𝐸𝐸
(ℓ) ± 𝐶

𝑖 𝑗

𝐵𝐵
(ℓ)

]
, (11)

where the functions 𝐺±
ℓ
(𝑥) are computed from Legendre poly-

nomials 𝑃ℓ (𝑥) and averaged over angular bins (see Krause
et al. (2021) Eqs. 19 and 20). It is also worth bearing in
mind that, in practice, the angular spectra in Eq. (11) are not
in fact pure cosmological convergence spectra 𝐶𝜅 , but rather
shear spectra 𝐶𝛾 , which include contributions from intrinsic
alignments (see Sec. IV D), and additional higher order terms
are explored later.

Since the lensing kernel in Eq. (10) acts as a redshift filter,
which modulates sensitivity to 𝑃𝛿 in Eq. (9), it is informa-
tive to show its redshift dependence; we do so in the lower
panel of Fig. 3, for the fiducial Y3 redshift distributions. As
shown there, the DES Y3 cosmic shear signal is sensitive to a
relatively broad range, with kernels peaking between approxi-
mately 𝑧 = 0.1 and 𝑧 = 0.5.

Similarly, the polynomials in Eq. (11) mix together a range
of physical distances into any given angular scale. We can elu-
cidate this by writing 𝜉

𝑖 𝑗
± as an integral over ln 𝑘 (e.g. Tegmark

& Zaldarriaga 2002) to obtain :

𝜉
𝑖 𝑗
± (𝜃) =

∫ +∞

−∞
d ln 𝑘 P(𝑘) (12)

where

P(𝑘) = 𝑘

2𝜋

∑︁
ℓ

[
𝐺+

ℓ,2 (cos 𝜃) ± 𝐺−
ℓ,2 (cos 𝜃)

]
×𝑊 𝑖 (𝜒)𝑊 𝑗 (𝜒)𝑃𝛿 (𝑘, 𝑧(𝜒)), (13)

with 𝜒 = (ℓ + 1/2)/𝑘 . We show d ln 𝜉± (𝜃)/d ln 𝑘 =

P(𝑘)/𝜉± (𝜃) for representative 𝜃 scales in Fig. 4. This shows
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FIG. 3. The estimated redshift distributions and lensing kernels for
the fiducial source galaxy sample used in this work. Most of the
sensitivity of the DES Y3 cosmic shear signal to large scale structure
is in the range between 𝑧 = 0.1 and 𝑧 = 0.5, where individual kernels
peak. Each distribution is independently normalized over the redshift
range 𝑧 = 0 − 3. The total effective number density (Heymans et al.
2012) of sources is 𝑛eff = 5.59 galaxies per square arcminute and is
divided almost equally into the 4 redshift bins.

the sensitivity of our cosmic shear signal at a given angular
scale to modes of the matter power spectrum. Our scale cuts,
defined in Sec. IV G, eventually remove most of the sensitivity
to 𝑘 > 1 ℎMpc−1.

The remainder of this Sec. motivates the ingredients intro-
duced in Eq. (9) to (11) such as the non-linear power spectrum
prescription and the set of scales for which the signal is not
significantly contaminated by unmodeled physics.

C. Nonlinear Power Spectrum

On the largest of physical scales, growth is linear and well
described by a purely linear matter power spectrum 𝑃lin

𝛿
(𝑘).

To evaluate 𝑃lin
𝛿

we use the Boltzmann code CAMB10 (Lewis
et al. 2000), as implemented in CosmoSIS. On smaller scales,
however, this is not true, and one also needs a model for non-
linear growth. Our fiducial model for the non-linear matter
power spectrum 𝑃𝛿 (𝑘) is theHaloFit functional prescription
(Smith et al. 2003, Takahashi et al. 2012). We have made scale
cuts to remove the parts of the data vector affected by baryonic
effects, as described in Sec. IV G; this largely removes the sen-
sitivity to wavenumbers 𝑘 > 1 ℎMpc−1. For 𝑘 < 1 ℎMpc−1,
Takahashi et al. (2012) reports an uncertainty on the HaloFit
model of 5%. In Krause et al. (2021) we demonstrate, by
substituting HaloFit for HMCode11 (Mead et al. 2015), the
Euclid Emulator (Euclid Collaboration 2019), or the Mira-
Titan Emulator (Lawrence et al. 2017) that for cosmic shear
alone we are insensitive to this choice. In the context of the Y3

10 http://camb.info
11 https://github.com/alexander-mead/HMcode

 http://camb.info
https://github.com/alexander-mead/HMcode
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FIG. 4. Window functions of 𝜉+ (solid curves) and 𝜉− (dashed curves)
over 𝑘-wavenumbers of the matter power spectrum at representative
angular separations. Notice that our smallest angular scales (after
cuts) in 𝜉+ and 𝜉− are around 2.5 arcminutes and 30 arcminutes
respectively, which means that only a relatively small contribution to
the full signal comes from wavenumbers above 𝑘 ∼ 1 ℎ/Mpc.

3 × 2pt analysis, the distinction between these three models is
more nuanced, and we refer the reader to Krause et al. (2021)
for a full justification of the use of HaloFit.

D. Intrinsic Alignments

Galaxies are not idealized tracers of the underlying matter
field, but rather astrophysical bodies, which are subject to
local interactions. To account for this added complexity, the
observed shape of a galaxy can be decomposed into two parts,
the shear induced by gravitational lensing (G) and the intrinsic
shape (I) induced by the local environment: 𝛾 = 𝛾G+𝛾I. In this
section, we consider only the correlated intrinsic component,
and not the intrinsic “shape noise”, which contributes to the
covariance but not the signal.

The term intrinsic alignments covers two contributions from
environmental interactions: (a) intrinsic shape - intrinsic shape
correlations between galaxies that are physically close to each
other, and (b) shear-intrinsic correlations between galaxies on

neighbouring lines of sight. Known as II and GI contribu-
tions respectively, and contributing on similar angular scales
to the cosmological lensing signal, these terms constitute a
significant systematic in weak lensing analyses. Including IA
contributions, the observed E-mode angular power spectrum
is written

𝐶
𝑖 𝑗

𝛾,EE (ℓ) = 𝐶
𝑖 𝑗

GG (ℓ) + 𝐶
𝑖 𝑗

GI (ℓ) + 𝐶
𝑖 𝑗

IG (ℓ) + 𝐶
𝑖 𝑗

II,EE (ℓ). (14)

Nonlinear models of IA, as discussed below, can also produce
a non-zero B-mode power spectrum:

𝐶
𝑖 𝑗

𝛾,BB (ℓ) = 𝐶
𝑖 𝑗

II,BB (ℓ). (15)

Assuming the Limber approximation as before, the two IA
𝐶 (ℓ)s are given by:

𝐶
𝑖 𝑗

GI (ℓ) =
∫ 𝜒H

0
𝑑𝜒

𝑊 𝑖 (𝜒)𝑛 𝑗 (𝜒)
𝜒2 𝑃GI

(
ℓ + 1/2

𝜒
, 𝑧(𝜒)

)
, (16)

and

𝐶
𝑖 𝑗

II (ℓ) =
∫ 𝜒H

0
𝑑𝜒

𝑛𝑖 (𝜒)𝑛 𝑗 (𝜒)
𝜒2 𝑃II

(
ℓ + 1/2

𝜒
, 𝑧(𝜒)

)
, (17)

These expressions are generic, and are valid regardless of
which model is used to predict 𝑃GI and 𝑃II (see the following
subsections).

1. IA and the tidal field

It is typically assumed that the correlated component of
galaxy shapes is determined by the large-scale cosmological
tidal field. The simplest relationship, which should dominate
on large scales and for central galaxies, involves the “tidal
alignment” of galaxy shapes, producing a linear dependence
(Catelan et al. 2001, Hirata & Seljak 2004). In this case, one
can relate the intrinsic shape component to the gravitational
potential at the assumed time of galaxy formation 𝜙∗:

(𝛾I
1, 𝛾

I
2) = 𝐴1 (𝑧)

(
𝜕2

𝜕𝑥2 − 𝜕2

𝜕𝑦2 , 2
𝜕2

𝜕𝑥𝜕𝑦

)
𝜙∗, (18)

where the proportionality factor 𝐴1 (𝑧) captures the response
of intrinsic shape to the tidal field. More complex alignment
processes, including “tidal torquing,” relevant for determin-
ing the angular momentum of spiral galaxies, are captured
in a nonlinear perturbative framework, which we refer to as
“TATT” (Tidal Alignment and Tidal Torquing; Blazek et al.
2019). In this more general model, we use nonlinear cos-
mological perturbation theory to express the intrinsic galaxy
shape field, measured at the location of source galaxies (Blazek
et al. 2015), as an expansion in the matter density field 𝛿 and
tidal field 𝑠𝑖 𝑗 :

�̄�IA
𝑖 𝑗 = 𝐴1𝑠𝑖 𝑗 + 𝐴1𝛿𝛿𝑠𝑖 𝑗 + 𝐴2

∑︁
𝑘

𝑠𝑖𝑘 𝑠𝑘 𝑗 + · · · , (19)
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where 𝑠𝑖 𝑗 is the gravitational tidal field, which at any given
position x is a 3 × 3 tensor (see Catelan & Porciani 2001 for a
formal definition).

Although the terms in the model can be associated with
physical mechanisms, they can also be viewed as effective
contributions to intrinsic shape correlations from small-scale
physics. See also Schmitz et al. (2018), Tugendhat & Schäfer
(2018), Vlah et al. (2020) for further discussion of the per-
turbative approach and Fortuna et al. (2021) for a halo model
treatment of IA.

2. Model implementation: NLA and TATT

Within the TATT framework, three parameters capture the
relevant responses to the large-scale tidal fields (see Blazek
et al. 2019 for more details): 𝐴1, 𝐴2, and 𝐴1𝛿 , corresponding
respectively to a linear response to the tidal field (tidal align-
ment), a quadratic response (tidal torquing), and a response to
the product of the density and tidal fields. To date, the most
frequently used intrinsic alignment model in the literature is
known as the Nonlinear Alignment Model (NLA; Bridle &
King 2007, Hirata et al. 2007), an empirically-based modifi-
cation of the Linear Alignment (LA) model of Catelan et al.
(2001) and Hirata & Seljak (2004), in which the fully nonlinear
tidal field is used to calculate the tidal alignment term. Within
the “TATT” framework, the NLA model corresponds to only
𝐴1 being non-zero in Eq. 19. The GI and II power spectra then
have the same shape as the nonlinear matter power spectrum,
but are modulated by 𝐴1 (𝑧):

𝑃GI (𝑘, 𝑧) = 𝐴1 (𝑧)𝑃𝛿 (𝑘, 𝑧), 𝑃II (𝑘, 𝑧) = 𝐴2
1 (𝑧)𝑃𝛿 (𝑘, 𝑧).

(20)
Note that the nonlinear power spectrum and the IA amplitudes
are functions of redshift. In the following, the 𝑧 dependence
of the IA amplitudes and various 𝑘 dependent terms is left
implicit. More generally, in the TATT model, the GI and II
power spectra are constructed with the relevant correlations of
tidal and density fields:

𝑃GI (𝑘) =𝐴1𝑃𝛿 (𝑘) + 𝐴1𝛿𝑃0 |0𝐸 (𝑘) + 𝐴2𝑃0 |𝐸2 (𝑘) , (21)

𝑃II,EE (𝑘) =𝐴2
1𝑃𝛿 (𝑘) + 2𝐴1𝐴1𝛿𝑃0 |0𝐸 (𝑘) + 𝐴2

1𝛿𝑃0𝐸 |0𝐸 (𝑘)
+ 𝐴2

2𝑃𝐸2 |𝐸2 (𝑘) + 2𝐴1𝐴2𝑃0 |𝐸2 (𝑘) (22)
+ 2𝐴1𝛿𝐴2𝑃0𝐸 |𝐸2 (𝑘) ,

𝑃II,BB (𝑘) =𝐴2
1𝛿𝑃0𝐵 |0𝐵 (𝑘) + 𝐴2

2𝑃𝐵2 |𝐵2 (𝑘) + 2𝐴1𝛿𝐴2𝑃0𝐵 |𝐵2 (𝑘) .
(23)

In this work, these 𝑘-dependent terms are evaluated using
FAST-PT (Fang et al. 2017, McEwen et al. 2016), as im-
plemented in CosmoSIS. The model, including the full ex-
pressions for these power spectra is set out in some depth
in Blazek et al. (2019) (see their Eqs. 37–39 and appendix
A), and we refer the reader to that paper for technical details.
The 𝑘-dependent contributions are modulated by the redshift-
dependent amplitudes 𝐴1, 𝐴2, and 𝐴1𝛿 . We define the first
two with the following convention:

𝐴1 (𝑧) = −𝑎1�̄�1
𝜌critΩm

𝐷 (𝑧)

(
1 + 𝑧

1 + 𝑧0

) 𝜂1

, (24)

𝐴2 (𝑧) = 5𝑎2�̄�1
𝜌critΩm

𝐷2 (𝑧)

(
1 + 𝑧

1 + 𝑧0

) 𝜂2

, (25)

where 𝐷 (𝑧) is the linear growth factor, 𝜌crit is the critical den-
sity and �̄�1 is a normalisation constant, by convention fixed at
�̄�1 = 5 × 10−14𝑀�ℎ−2Mpc2, obtained from SuperCOSMOS
(see Brown et al. 2002). The leading factor of 5 in Eq. (25)
is included to account for the difference in the windowed vari-
ance produced by the TA and TT power spectra. With this
factor included, the TA and TT contributions to 𝑃II at 𝑧 = 0,
averaged over this window, should be roughly equal if 𝑎1 = 𝑎2,
aiding in the interpretation of the best fitting values. Note that
this is a matter of convention only, and does not affect our
final cosmological results. The denominator 𝑧0 is a pivot red-
shift, which we fix to the value 0.6212. The dimensionless
amplitudes (𝑎1, 𝑎2) and power law indices (𝜂1, 𝜂2) are free
parameters in this model.

As mentioned above, the model also includes the 𝐴1𝛿 con-
tribution, corresponding to the product of the density and tidal
fields. This term was originally motivated by the modulation
of the IA signal due to the galaxy density weighting (i.e. the
fact that the shape field is preferentially sampled in overdense
regions Blazek et al. 2015). In this case, within the TATT
model, we have

𝐴1𝛿 = 𝑏TA𝐴1, (26)

where 𝑏TA is the linear bias of source galaxies contributing
to the tidal alignment signal. In our baseline analysis, rather
than fixing 𝑏TA to this bias value, we sample over it with a
wide prior, allowing the 𝐴1𝛿 contribution to capture a broader
range of nonlinear alignment contributions. We note that this
is a departure from previous studies to have used this model
(Blazek et al. 2019, Samuroff et al. 2019, Troxel et al. 2018),
all of which held 𝑏TA = 1 fixed. The motivation for this change
is set out in Sec. V. As can be seen from Eq. (21) - (23), in
the limit 𝑎2, 𝑏TA → 0, the TATT model reduces to the NLA
model. It is thus useful to think of NLA as a sub-space of the
more complete TATT model, rather than a distinct, alternative
model. Given the sensitivity of IAs to the details of the galaxy
selection, and in the absence of informative priors, we choose
to marginalize over all five IA parameters (𝑎1, 𝑎2, 𝜂1, 𝜂2, 𝑏TA),
governing the amplitude and redshift dependence of the IA
terms, with wide flat priors (see Sec. IV H). While a redshift
evolution in the form of a power law, captured by the index 𝜂𝑖 , is
a common assumption, the 𝐴𝑖 (𝑧) coefficients could, in theory,
have a more complicated redshift dependence. We seek to test
the impact of this assumption by rerunning our analysis with

12 The value was chosen in DES Y1 to be approximately equal to the mean
source redshift. We choose to maintain that value to allow for an easier
comparison of the IA amplitudes with those results.
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a more flexible parameterization, whereby the IA amplitude
𝐴1,𝑖 in each redshift bin is allowed to vary independently. The
results of this exercise can be found in Sec. VII B.

It is finally worth remarking that the TATT model predicts
a non-zero B-mode power spectrum 𝑃II,𝐵𝐵. This extra signal
component is incorporated into our modeling, and propagated
into 𝜉± via Eq. (11). 𝑃II,𝐵𝐵 is expected to be small since the
testing carried out in Gatti, Sheldon et al. 2021 points to no
statistically significant detection of B-modes in the DES Y3
shape catalog.

A visual representation of the II and GI signals, as predicted
at the best-fitting point in parameter space from our fiducial
analysis, can be found in Fig. 2.

E. Modeling Nuisance Parameters: Shear Bias & photo-𝑧
Error

In addition to the parameters associated with the cosmologi-
cal and IA models, there are a number of additional parameters
included in our fiducial analysis, which are intended to absorb
known sources of uncertainty. First of all, we follow the major-
ity of previous cosmic shear analyses, and parameterize errors
in the redshift distributions as uniform shifts in their mean,
which transform the assumed distribution in a given bin 𝑖 as:

𝑛𝑖 (𝑧) → 𝑛𝑖 (𝑧 − Δ𝑧𝑖). (27)

This leaves us with four nuisance parameters (Δ𝑧1−4), which
are marginalized with informative priors (see Sec. IV H).
This simple marginalization scheme was validated with a more
complete method, known as HyperRank Cordero, Harrison
et al. (2021), which uses a large ensemble of possible red-
shift distributions (typically of order 1000) generated using
the SOMPZ pipeline (Myles, Alarcon et al. 2020). The ba-
sic aim of this method is to capture the range of plausible
variations in the full shape of the distributions (not only their
mean), and also the correlations between bins. Although in
our particular setup the simpler parameterization was found to
be sufficient, the tests in Cordero, Harrison et al. (2021) and
Amon et al. (2021) show the crucial validation of that choice.

Another important source of uncertainty is the shape cali-
bration process, and particularly its response to blending Mac-
Crann et al. (2020). The common way of describing such
effects (Heymans et al. 2006, Huterer et al. 2006) is a simple
rescaling of the two-point function model prediction

𝜉
𝑖 𝑗
± → (1 + 𝑚𝑖) (𝑖 + 𝑚 𝑗 ) × 𝜉

𝑖 𝑗
± , (28)

where again the indices 𝑖, 𝑗 indicate redshift bins, and 𝑚 is
assumed to be redshift and scale independent within each bin.
This is our fiducial parameterization. As explained in Sec.
II C, this approach is an approximation to the more complete
methodology set out in MacCrann et al. (2020) (see in particu-
lar their Sec. 6.5), which incorporates the redshift-dependent
impact of blending on the source redshift distributions. Nev-
ertheless, an extensive series of tests indicate that Eq. (28) is
sufficient for the statistical power of DES Y3 (see Amon et al.
2021, MacCrann et al. 2020).

F. Incorporating Shear Ratios

In the DES Y3 analysis, we also incorporate small-scale
shear ratios (SR) at the likelihood evaluation level. This likeli-
hood is included in all our present constraints unless explicitly
noted otherwise. This concept and its DES application is out-
lined in more detail by Sánchez, Prat et al. (2021). Essentially,
SR is an additional lensing-based data vector with 9 data points
made up of measured galaxy-galaxy lensing ratios. It is nearly
independent of cosmology and galaxy bias, but responds to
(and thus constrains) redshift distributions and intrinsic align-
ments. Note that this particular analysis feature is different
from Y1 and most current cosmic shear results, a detail that
should be kept in mind in any comparison of our findings with
previous results.

We use SR on small scales that are not used in the 3 × 2pt
likelihood (< 6 Mpc/ℎ), where uncertainties are dominated
by galaxy shape noise, such that the likelihood can be treated
as independent of that from the 𝜉± (and indeed the full 3×2pt)
data. On these scales the SR measurement is only very weakly
dependent on the matter power spectrum, and so immune to
uncertainties in modeling 𝑃𝛿 on small scales (Sánchez, Prat
et al. 2021). In this work, we only employ SR as obtained from
the fiducial MagLim lens sample Porredon et al. (2021b), and
marginalize over its required nuisance parameters. These are
a free (linear) galaxy bias coefficient per lens bin (which are
unconstrained by cosmic shear and have no impact on the final
posteriors), as well as lens redshift parameters (three shift Δ𝑧𝑙
and three width parameters 𝛿𝑧 ; see Porredon et al. 2021a),
on which we have relatively tight priors. The main impact
of including SR is an improvement in constraints on IAs and
redshift nuisance parameters. Through internal degeneracies,
this translates into significantly improved constraints on 𝑆8, of
around 30% in our fiducial analysis setting. Further discussion
can be found in Sánchez, Prat et al. (2021) (Sec. 6 and Fig. 10)
and Amon et al. (2021) (Sec. X and Fig. 11). In particular,
those papers also assess the impact of utilizing redMaGiC, an
alternative DES Y3 lens sample (Cawthon et al. 2020, Pandey
et al. 2021, Rozo et al. 2016), in order to obtain the shear ratios.

G. Angular Scale Cuts

1. Baryons

The impact of baryons on the matter power spectrum on cos-
mological scales is a source of considerable uncertainty (van
Daalen et al. 2014, Harnois-Déraps et al. 2015, Semboloni
et al. 2013). While feedback processes from active galactic
nuclei (AGN) and supernovae heat up the halo environment
and tend to suppress matter clustering, metal enrichment can
offer cooling channels that in fact increase power on small
scales. These effects also depend on redshift and galaxy evo-
lution (Semboloni et al. 2011).

As a fiducial strategy for mitigating the uncertainties coming
from baryonic physics, we employ a gravity-only matter power
spectrum (CAMB + HaloFit) as described in Sec. IV C, and
remove angular scales from the data vector which are signif-
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𝜉+(−) are, at their smallest, around 15% (20%) of the signal, so the maximum contamination shown here O(1 ∼ 5%) is still significantly below
the sensitivity of our data. We also find that none of these forms of contamination project translate into a bias in cosmological parameters
at Y3 precision, despite appearing coherent in some redshift bins. Eagle (black dashed), Horizon-AGN (solid blue), MassiveBlack-II
(solid yellow) and OWLS-AGN (solid green) represent scenarios for baryonic physics, and obtained from the power spectra of hydrodynamic
simulations, while Euclid Emulator (dot-dashed red) modifies the non-linear gravity-only power spectrum. Higher Order Corrections (dashed
purple) is the theoretical impact of reduced shear and source magnification.
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icantly affected by feedback processes. We have additionally
verified with synthetic data that marginalizing over baryonic
halo model parameters with conservative priors does not lead
to an actual gain in the 𝑆8 × Ωm sub-space. Specifically, we
use HMcode (Mead et al. 2015) and free both the halo con-
centration amplitude 𝐴 with a flat prior [1.0, 7.5] and the
bloating parameter 𝜂0 with a flat prior [0.4, 1.0]. These priors
were chosen such that all baryonic scenarios tested in Mead
et al. (2015) would be encapsulated by the allowed halo model
modification. We find, with these fairly conservative priors,
that attempting to model progressively smaller scales in syn-
thetic data vectors results in tighter constraints on the baryon
nuisance parameters 𝐴 and 𝜂0, while leaving the constraining
power on 𝑆8 ×Ωm approximately unchanged.

2. Determining scale cuts

We define scale cuts based on the Δ𝜒2 between noiseless
synthetic cosmic shear data vectors, generated with and with-
out a baryonic “contamination”, according to Eq. (5). For
the baryonic data vector, we use the OWLS (van Daalen et al.
2011, Schaye et al. 2010) matter power spectrum. The AGN-
feedback implementation in this suite of simulations represents
one of the most extreme scenarios in the literature, and thus
characterizes the most conservative case for the baryonic con-
tamination we expect our analysis to be safe against.

To determine scale cuts for the cosmic shear two-point func-
tions 𝜉𝑖 𝑗± , we evenly distribute the Δ𝜒2 threshold among tomo-
graphic bins, and limit each of the shear two-point angular
functions:(

𝜉
𝑖 𝑗

±,baryon − 𝜉
𝑖 𝑗

±,base

) t
C−1

sub

(
𝜉
𝑖 𝑗

±,baryon − 𝜉
𝑖 𝑗

±,base

)
<

Δ𝜒2
threshold
𝑁

(29)
where 𝑁 = 20 is the number of cross-correlations between four
tomographic redshift bins in the two shear correlations 𝜉±. The
C−1

sub sub-matrix of the inverse covariance matrix corresponds
to the specific tomographic bin. For each element of 𝜉𝑖 𝑗± , we
find the minimum angular separation that satisfies Eq. (29)
and exclude data points at smaller separations.

For a given threshold, we run two chains using the fidu-
cial pipeline: one on a baseline (systematics-free) synthetic
data vector and one on a contaminated synthetic data vector
which includes the modification of the OWLS-AGN matter
power spectrum. Our most important criterion for selecting a
threshold is that the peaks of the baseline and contaminated
posteriors in the 2-D parameter subspace of 𝑆8 × Ωm must be
separated by less than 0.3𝜎. We make this analysis addition-
ally conservative by fixing redshift and shear uncertainties and
the neutrino mass. It is also worth noting that scale cuts for
the cosmic shear correlations 𝜉

𝑖 𝑗
± are determined in tandem

with the 2 × 2pt and 3 × 2pt analyses. That means a candi-
date cut passing the < 0.3𝜎 threshold for cosmic shear is then
combined with cuts from the analogous 2 × 2pt analysis, and
the finally selected scale cuts for cosmic shear and 2 × 2pt
are those which also satisfy 3 × 2pt < 0.3𝜎. In practice, this
procedure ensures that the full DES Y3 analysis is optimized,

as opposed to each probe alone being optimally constraining
(although see the discussion in Sec. IV G 3).

After an iterative procedure, we finally select the scale cuts
that lead to a threshold of Δ𝜒2 < 0.5 for cosmic shear system-
atics. These cuts are shown in grey bands in Figures 2 and
5, and roughly correspond to bounds that are, at the smallest,
𝜃min,+ = 2.4 and 𝜃min,− = 30 arcmin in 𝜉+ and 𝜉− respectively,
but differ significantly between redshift bin pairs. The large-
scale limit of the data vector is 250 arcmin, chosen to match
the DES Y1 analysis (Troxel et al. 2018). After cuts, we are
left with 166 and 61 angular bins in 𝜉+ and 𝜉−, or a total of
227 data points.

Fig. 5 demonstrates that, by making our data immune to
the feedback impact of OWLS-AGN, we are also safely ex-
cluding parts of the data vector that are affected by systematic
uncertainty due to the matter power spectrum modeling (Eu-
clid Emulator; Euclid Collaboration 2019), baryonic feedback
(MassiveBlack-II, Horizon-AGN and Eagle; respectively
Dubois et al. 2014, Khandai et al. 2015, Schaye et al. 2014)
and higher order shear corrections including reduced shear
and source magnification (Sec. V A 2 and Krause et al. 2021).
See Sec. V for more details. It is important to note that error
bars on 𝜉+ and 𝜉− are, at their smallest, around 15% and 20%
of the signal, so the deviations seen in Fig. 5 are well be-
low the sensitivity of our data. We refer the reader to Krause
et al. (2021) for an exploration of different baryonic power
spectra, and in particular other extreme feedback cases such as
Illustris (Vogelsberger et al. 2014).

3. ΛCDM Optimized scale cuts

As discussed above, our fiducial choice of scale cuts, by con-
struction, optimizes the joint 3 × 2pt analysis of Dark Energy
Survey Collaboration (2021a), which includes not just cosmic
shear, but also galaxy clustering and galaxy-lensing. Those
scale cut tests were also required to pass the same tolerance
threshold in both ΛCDM and 𝑤CDM, making the exercise
even more stringent. The end result is that the fiducial scale
cuts used for Y3 cosmic shear (both in this work and in Amon
et al. 2021) are more conservative than strictly necessary for
the baseline cosmic shear-only ΛCDM analysis. For this rea-
son we repeat a subset of our analyses with an alternative set
of relaxed scale cuts, designed to maximize the constraining
power in cosmic shear and 3×2pt ΛCDM alone (referred to as
the “ΛCDM Optimized" analysis, disregarding 2 × 2pt-alone
and 𝑤CDM). These optimized cuts increase the total number
of data points from 227 to 273 (184 𝜉+ and 89 𝜉−). We discuss
the improvement in constraining power that comes from this
choice in Sec. VI. While the gain in angular scales is not uni-
form across redshift bins, the minimum scale is reduced by a
factor of 20−70% for different bin pairs. We show the ΛCDM
optimized scale cuts as darker grey bands on Fig. 5 (compared
to the lighter grey bands which correspond to the fiducial scale
cuts and eliminate more data points on small scales).
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H. Choice of Priors

The priors on cosmological and nuisance parameters are
summarized in Table I. Our choice of cosmological priors is
relatively conservative, in order to ensure that the posterior
distributions can span any point in parameter space we believe
to be reasonable. Although the argument can be made for
imposing more informative priors on our less well constrained
parameters (primarily Ωb and ℎ) based on external data (e.g.
Planck), we choose not to do so here. The main reasoning
here is that we want to maintain the statistical independence
of the DES Y3 cosmic shear data, to avoid double-counting
information when combining our results with external data
sets.

In contrast, we do impose informative priors on the measure-
ment systematics (i.e. shear bias and photo-𝑧 error), which are
derived from image simulations (MacCrann et al. 2020; Gatti,
Sheldon et al. 2021) and tests using Buzzard (Myles, Alarcon
et al. 2020; Buchs, Davis et al. 2019). More details on how
these priors were chosen, and the dominant uncertainties can
be found in those papers. It is worth bearing in mind that,
while cosmic shear has only limited potential to self-calibrate
photo-𝑧 errors (Samuroff et al. 2017), the combination with
galaxy clustering and galaxy-galaxy lensing breaks parame-
ter degeneracies; in the current study we are prior dominated
in these systematics parameters, but in the 3 × 2pt case this
is significantly less true (Dark Energy Survey Collaboration
2021a).

We choose uninformative priors on all of the five IA parame-
ters, motivated by the relative lack of constraints reported in the
literature for the TATT model (with the exception of Samuroff
et al. 2019). Since IAs are highly sensitive to the composition
of the galaxy population, as well as physical characteristics
like redshift and luminosity, deriving appropriate priors is a
complicated matter. We consider whether these IA parameters
are detected by the data in Sec. VI C.

It is finally worth remarking that marginalizing posterior
distributions from a high-dimensional parameter space down
to 1D is prone to projection effects that can significantly dis-
place the full-dimensional best-fit from the mean (or peak) of
the 1D parameter distributions. The magnitude of these effects
can be non-trivially affected by the choice of priors, particu-
larly on the parameters that are not well constrained by cosmic
shear data alone. We again refer the reader to Krause et al.
(2021), where tests of these effects using the priors given in
Table I can be found.

V. MODEL ROBUSTNESS TESTS ON SYNTHETIC DATA

We now test the assumptions of the model set out in the
previous section using contaminated mock data. The idea is
that we generate data with astrophysical effects that are not
contained in the model, and seek to quantify the level of bias
they can cause to parameters of interest. These tests fall into
two different categories, both involving synthetically generated
𝜉±: noiseless analytic data (which is produced using the theory
pipeline), and simulated data (measured using mock catalogs

Parameter Prior

Cosmological Parameters
Ωm U[0.1, 0.9]
𝐴s U[0.5, 5.0] × 10−9

Ωb U[0.03, 0.07]
𝑛s U[0.87, 1.07]
ℎ U[0.55, 0.91]

Ω𝜈ℎ
2 U[0.6, 6.44] × 10−3

𝑤 U[−2,−0.333]
Calibration Parameters

𝑚1 N(−0.0063, 0.0091)
𝑚2 N(−0.0198, 0.0078)
𝑚3 N(−0.0241, 0.0076)
𝑚4 N(−0.0369, 0.0076)
Δ𝑧1 N(0.0, 0.018)
Δ𝑧2 N(0.0, 0.015)
Δ𝑧3 N(0.0, 0.011)
Δ𝑧4 N(0.0, 0.017)

Intrinsic Alignment Parameters
𝑎1 U[−5, 5]
𝑎2 U[−5, 5]
𝜂1 U[−5, 5]
𝜂2 U[−5, 5]
𝑏TA U[0, 2]

Shear Ratio Parameters
Δ𝑧lens

1 N(−0.009, 0.007)
Δ𝑧lens

2 N(−0.035, 0.011)
Δ𝑧lens

3 N(−0.005, 0.006)
𝛿lens
𝑧,1 N(0.975, 0.062)

𝛿lens
𝑧,2 N(1.306, 0.093)

𝛿lens
𝑧,3 N(0.870, 0.054)

𝑏1−3
𝑔 U[0.8, 3]

TABLE I: A summary of the priors used in the fiducial Y3
analysis. The top seven rows are cosmological parameters,
while those in the lower sections are nuisance parameters
cooresponding to astrophysics and data calibration. We fix
𝑤 = −1 when analyzing ΛCDM. Priors are either uniform

(U) or normally-distributed, N(𝜇, 𝜎).
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from N-body simulations). Chronologically, all of the tests
described in this Section were performed before unblinding.

A. Analytically generated data

We analyze these data with the fiducial model, priors and
analysis choices (including scale cuts), to verify that the in-
ferred cosmological constraints are biased by less than 0.3𝜎
in the 𝑆8 × Ωm plane. Fig. 5 shows the systematic contribu-
tions to the contaminated data vectors for a number of the tests
described below.

1. Nonlinear matter power spectrum

By construction, the scale cuts defined in Sec. IV G are
conservative and mitigate most of the impact of small-scale
modeling uncertainties in the 3-dimensional gravity-only mat-
ter power spectrum. To show that these uncertainties are neg-
ligible, we generate a synthetic cosmic shear data vector us-
ing the gravity-only Euclid Emulator (Euclid Collaboration
2019). Though it can be used at a relatively restricted range
of cosmologies, the emulator is the most accurate method for
estimating the nonlinear 𝑃𝛿 (𝑘) currently available to the com-
munity. The deviation between this data vector and the fiducial
prediction is shown in Fig. 5 (dot-dashed red), and is at most
∼ 1 percent on the scales included in our analysis. We ver-
ify that the bias in cosmological parameters when analysing
these mock data with the fiducial ΛCDM model is below 0.3𝜎
(Krause et al. 2021).

In addition to the test of the nonlinear growth model, we also
generate synthetic data vectors using matter power spectra de-
rived from the Horizon-AGN, Eagle and MassiveBlack-II
hydrodynamic simulations (Fig. 5, Dubois et al. 2016, Khandai
et al. 2015, Schaye et al. 2015). The 𝑃𝛿 obtained from
these simulations contain the imprint of baryonic feedback
processes. Although these effects are notoriously difficult to
model, the simulations are useful as a measure of the range of
uncertainty in the baryonic contributions. That is, if we can
demonstrate insensitivity to a range of (at least semi-) realistic
scenarios, then that offers some reassurance that our cosmo-
logical results are unaffected. We confirm that the resulting
biases are significantly smaller than 0.3𝜎 (Krause et al. 2021).
At some level this result is expected, since our fiducial scale
cuts are constructed based on the OWLS-AGN model, which
is a relatively extreme feedback scenario. It does, however,
demonstrate that our scale cut prescription is generally con-
servative, and is not fine-tuned to the specific redshift or scale
dependence of OWLS-AGN.

2. Higher-order shear contributions

We also verify that the effects of reduced shear, source
sample magnification and source clustering do not affect the
cosmic shear constraints significantly. These generally enter
as higher-order corrections. For the case of reduced shear

and source magnification, the correction to the convergence
angular power spectrum has the form (Dodelson et al. 2006,
Schmidt et al. 2009, Shapiro 2009):

Δ𝐶
𝑖 𝑗
𝜅 (ℓ) =

2(1 + 𝐶𝑖
𝑠)
∫

𝑑2ℓ1

(2𝜋)2 cos 2𝜙ℓ1𝐵
𝑖 𝑗
𝜅 ( ®ℓ1, ®ℓ − ®ℓ1,−®ℓ) (30)

where 𝐵
𝑖 𝑗
𝜅 is the convergence bispectrum, 𝐶𝑖

𝑠 is a magnifi-
cation coefficient related to the slopes of the flux and size
distributions (Schmidt et al. 2009) and 𝜙ℓ1 is the angle be-
tween modes ®ℓ and ®ℓ1. We show in Fig. 5 this contribution
to the shear power spectrum for the source magnification co-
efficients 𝐶1...4

𝑠 = (−1.17,−0.64,−0.55, 0.80) as measured by
Elvin-Poole et al. (2021) in each redshift bin. We note that
the theoretical modeling of non-linear scales in the matter bis-
pectrum is a dominant source of uncertainty in the calculated
correction (see for instance Lazanu et al. (2016)). In par-
ticular, we utilize the non-linear (Halofit) power spectrum
in the tree-level bispectrum description, but future analyses
will possibly benefit from improved approaches, such as Bi-
Halofit (Takahashi et al. 2020). Still, the largest potential
biases as seen in Fig. 5 are < 5%, smaller than our error bars
(& 15%). We also find, like Prat et al. (2021) demonstrate
for galaxy-galaxy lensing, that the reduced shear contribution
to cosmic shear as computed perturbativelly overestimates the
impact of that correction when compared to measurements of
reduced shear on buzzard simulations. The leading sources
of higher-order corrections and their contribution for DES Y3
are computed in more detail in Krause et al. (2021). Their
results confirm that these effects are negligible in terms of pa-
rameter constraints, and provide a guide for future DES and
next generation analyses.

3. Intrinsic Alignments

Prior to unblinding of the real data, we carried out a series
of tests designed to verify the robustness and sufficiency of our
fiducial choice of intrinsic alignment model. Our expectation
is to find, using synthetic data, a set of model choices that
prevent biases coming from an incorrect characterization of
IA. To this end, we generate two simulated data vectors: one
including full TATT contributions with input parameters given
by the mean posterior IA constraints from the Y1 3 × 2pt
analysis of Samuroff et al. 2019 (𝑎1 = 0.7, 𝑎2 = −1.36, 𝜂1 =

−1.7, 𝜂2 = −2.5, 𝑏TA = 1), and an another with the NLA
subset of those parameters (𝑎1 = 0.7, 𝜂1 = −1.7, 𝑎2 = 0, 𝑏TA =

0). Our results can be summarized as:

• Fitting the NLA data vector with either the NLA or
TATT model results in no significant biases. Projection
effects in the 1D 𝑆8 posterior are negligible in both
cases. The more complex model weakens the constraint
by increasing the 𝑆8 error bar by 14%. See Appendix
C for a discussion of this on real data, where we find a
somewhat similar loss in constraining power.
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• Likewise, and as expected, fitting the TATT data vec-
tor using TATT recovers the input cosmology and IA
parameters.

• Fitting the TATT data vector with the simpler NLA
model results in significant residual bias in 𝜎8, 𝑆8 and
Ωm. We also see artificially tightened constraints in this
case, as the posteriors on some parameters begin to hit
the prior edges, and a significantly degraded best-fit 𝜒2.

The findings above are summarized in Fig.6, and a more de-
tailed discussion of these tests, and what they reveal about the
systematic error budget, can be found in Appendices B and
C. The configuration which presented significant biases (NLA
modeling of TATT synthetic data) should be considered as
a sufficiency test of the simpler IA model, which NLA fails
to meet at the synthetic data level. This means that, given
our expectation from the DES Y1 results of Samuroff et al.
(2019), and given our deliberate choice of relying solely on
synthetically generated data to make a model selection at the
blinded analysis stage, our findings provide a strong argument
for adopting TATT as our fiducial choice. In summary, pre-
vious results on DES Y1 data do not allow us to rule out
alignments at the level present in the simulated TATT data
vector used in these tests, and we thus choose TATT as our
fiducial model. We explore in Sec. VI C 2 whether this pre-
unblinding expectation of the inadequacy of NLA to fit our
data is actually realized and what level of IA complexity our
data seems to point to. Foreshadowing that discussion, post-
unblinding we find NLA to be compatible with DES Y3 data,
and that our results for 𝑆8 are robust to the choice of the IA
model.

Our fiducial setup makes the explicit assumption that the
redshift evolution of IAs in DES Y3 can be adequately de-
scribed by a power law (Eq. 24 and 25). To test this par-
ticular analysis choice, we produce synthetic data using the
recipe set out in (Krause et al. 2016; see their Sec. 4.1). In
brief, we assume a particular luminosity scaling for the linear
alignment strength 𝛽1, which is combined with a measured
luminosity function from the Deep Extragalactic Evolution-
ary Probe2 (DEEP2; Faber et al. 2007) spectroscopic survey,
and the measured red fraction 𝑓red (𝑧), to predict an IA signal
with a non-trivial redshift dependence. Both the redshift and
luminosity evolution of red and red+blue galaxies are thus ex-
trapolated (not measured) down to the limiting magnitude over
the redshift range of the DES sample. Our baseline is to use
the best fitting 𝛽1 from Joachimi et al. (2011) and assume zero
alignments in blue galaxies. Note that while constraints on
the luminosity dependence of the 𝑎2 component of the TATT
model do exist in the literature, they are still relatively weak,
and consistent with 𝛽2 = 0; for this reason, we restrict our-
selves to the NLA case. The results are described in more
detail in Krause et al. (2021), which also includes similar tests
in the context of 2 × 2pt and 3 × 2pt analyses. With our fidu-
cial input parameters, we find biases of up to 0.5𝜎. Although
larger than our 0.3𝜎 passing requirement, it is worth bearing
in mind that this test relies on a number of assumptions and
extrapolations and is quite possibly unrealistically stringent.
Given this, and in the absence of a stronger test, we maintain
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FIG. 6. Posteriors from the analysis of synthetic data vectors with
differing input IA signals, with a known input cosmology (black
cross). Strikingly, if IAs in DES Y3 are present at the level of those
in the synthetic TATT data vector (chosen to match the DES Y1
result of Samuroff et al. (2019)), the NLA model is not sufficient
to recover the true cosmology (blue contours). We explore whether
this scenario is actually reproduced in real data in Sec. VI C 2. All
other model/data combinations recover the input cosmology to within
significantly less than 1𝜎.

our fiducial model and decide to test for the redshift scaling of
the 𝑎1 parameter a posteriori, after unblinding, in Sec. VII.

Finally, we assess whether the interaction between erro-
neous calibration of photo-𝑧s and their uncertainties and our
IA model can lead to biased estimates of cosmology. A ra-
tionale for this test is that photo-𝑧 mischaracterization can
produce amplitude shifts in cosmic shear correlations. These
shifts can potentially be degenerate with IA model parameters,
and bias their posterior distributions, which in turn can lead to
biases in cosmology as discussed, e.g., by Wright et al. (2020).
Another example is when 𝑛(𝑧) distribution tails are underesti-
mated in the data, leading to an erroneous assumption of small
overlap between redshift bins and consequently a suppressed
II contribution, which is more sensitive to this overlap than the
lensing signal is (see also Appendix C of Fortuna et al. 2021).

We seek to test our robustness to such redshift-IA interac-
tions by reanalysing the synthetic TATT data vector described
above repeatedly using alternative (incorrect) redshift distribu-
tions in the modeling. For this test, we use the fiducial analysis
setup including redshift error as parameterised by free Δ𝑧 shift
parameters. Rather than introducing analytic distortions to
the fiducial 𝑛(𝑧), we draw alternative realizations from the
ensemble generated by the SOMPZ pipeline (Myles, Alarcon
et al. 2020). This should naturally capture plausible cases of
redshift error, beyond what can be captured by a simple shift
in the mean 𝑧. We select three redshift realizations representa-
tive of a range of cases in terms of the change in the predicted
data vector (Δ𝜒2). The results are shown in more detail in
Appendix B, but in brief we find only small (< 0.3𝜎) shifts in
𝑆8 in the different scenarios. Even in the most extreme case,
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where Δ𝜒2 ∼ 14, the input IA parameters and cosmology are
accurately constrained. In summary, at the level of synthet-
ically generated data with plausible fluctuations in 𝑛(𝑧), we
do not see evidence that the relatively flexible IA model is
absorbing redshift error to a degree that could bias cosmology
or IA parameters.

B. Mock data from N-body simulations

While most model tests are performed using noiseless ana-
lytic data vectors, a subset of tests make use of mock catalogs
from N-body simulations. We employ two sets of simulations:
Buzzard (DeRose et al. 2019a) and the MICE-Grand Chal-
lenge Galaxy and Halo Light-cone catalog13 (Fosalba et al.
2015b). With Buzzard, a thorough testing of the DES Y3
measurement, photo−𝑧 and likelihood pipelines is performed
not only for cosmic shear but also for the other DES 3 × 2pt
probes (DeRose et al. 2021a). With MICE, we focus specifi-
cally on testing the IA model.

1. Buzzard v2.0

The Buzzard v2.0 simulations (Buzzard hereafter) are a
suite of 18 simulated galaxy catalogs built on𝑁-body lightcone
simulations (DeRose et al. 2019a; DeRose et al. 2021b; Wech-
sler et al. 2021). The 𝑁-body simulations are produced using
the L-Gadget2 𝑁-body code, a memory optimized version of
Gadget2 (Springel 2005). The initial conditions for the simu-
lations are generated at 𝑧 = 50 using 2LPTIC and linear power
spectra computed by CAMB at the Buzzard flat ΛCDM cos-
mology: (𝜎8, 𝑛s, ℎ,Ωm,Ωb) = (0.82, 0.96, 0.7, 0.286, 0.046).
Each simulation is run on three different and independent boxes
with sizes (1.0, 2.6 and 4.0)3 ℎ−3Gpc3 containing (1400, 2048
and 2048)3 particles respectively, and a lightcone with foot-
print area over 10,000 deg2 is produced from each of the sets.
Galaxies are included in these lightcones with properties such
as position, ellipticity and spectral energy distribution using
the Addgals algorithm, with details specified in Wechsler
et al. (2021).

Weak lensing quantities are introduced via ray-tracing
(Becker 2013), and the complete 3 × 2pt cosmology analysis
of DES Y3 is reproduced in these simulations (DeRose et al.
2021a). For the validation of cosmic shear, Buzzard pro-
vides a way to verify that several astrophysical effects ignored
in our modeling are, as expected, sub-dominant. In addition
to higher order corrections from reduced shear and source
sample magnification which are also examined in this paper,
Buzzard mocks contain source galaxy clustering, anisotropic
redshift distributions across the survey area and multiple-plane
lensing deflections. We point the reader to DeRose et al.
(2021a) for more details.

13 https://cosmohub.pic.es/home

2. Intrinsic Alignments Testing with MICE

The MICE Grand Challenge run is an 𝑁−body
gravity-only simulation with 40963 collisionless particles
with masses 2.927ℎ−1𝑀� in a 3072ℎ−1 Mpc box us-
ing a flat ΛCDM cosmology with (𝜎8, 𝑛s, ℎ,Ωm,Ωb) =

(0.8, 0.95, 0.7, 0.25, 0.044). Dark matter halos are identi-
fied as friends-of-friends groups and populated with synthetic
galaxies using a hybrid method of Halo Occupation Distri-
bution modeling and Abundance Matching (Carretero et al.
2015, Crocce et al. 2015, Fosalba et al. 2015a,b, Hoffmann
et al. 2015).

Although MICE does not account for baryonic feedback and
other hydrodynamic processes related to galaxy formation and
evolution, an intrinsic galaxy alignment signal is implemented
in the mock using a semi-analytic technique (Appendix A; see
Hoffmann et al. 2021 for a detailed overview). In brief, shapes
and orientations are assigned to galaxies based on a combina-
tion of their color and luminosity, and the spin and orientation
of the host halos. The model is conceptually similar to those
of Okumura et al. (2009) and Joachimi et al. (2013a,b), and
has been tuned to match the distribution of galaxy axis ratios
from COSMOS observations (Laigle et al. 2016, Scarlata et al.
2007) in bins of redshift, stellar mass and color. Various di-
agnostic tests have been carried out, and it has been shown to
reproduce the projected intrinsic galaxy-shape correlation 𝑤𝑔+
of luminous red galaxies in the spectroscopic BOSS LOWZ
sample (Singh & Mandelbaum 2016) as a function of lumi-
nosity (Hoffmann et al. 2021).

The MICE IA mock is particularly valuable for our purposes,
since it provides an alternative IA prediction with its own
redshift dependence, which does not assume either NLA or
TATT. At the time of writing, however, only a single realization
of the IA mock is available, and we thus we cannot apply the
more stringent criteria of DeRose et al. (2021a) for validating
the DES Y3 pipeline on simulations. For this reason, passing
the tests presented in this subsection was not an unblinding
prerequisite.

We describe in Appendix A how a source sample is cre-
ated with the MICE mock which reproduces basic DES Y3
specifications. The measurement of cosmic shear correlation
functions 𝜉± is made using TreeCorr in a similar way to on
the real Y3 data. Since the MICE catalog contains the gravita-
tional shears 𝛾1,2 (G) and the intrinsic shapes 𝜖1,2 (I), we can
estimate the GG, GI and II components separately if desired.
We thus measure two data vectors: a version which contains
the GG signal only (the “baseline”) and another version in
which G+I shears are summed together (Seitz & Schneider
1997 Eq. 3.2). In this second case, the two-point correla-
tions correspond to GG+GI+II (a “contaminated” data vector
including the noisy IA signal). With the shape noise and
effective number density of MICE galaxies per redshift bin
determined in Appendix A, we construct an analytic covari-
ance using CosmoLike (Krause & Eifler 2017), but rescale
the shape noise terms so that the figure-of-merit of the fiducial
model constraints in the 𝑆8 ×Ωm plane is similar to that of the
other simulated cosmic shear tests. We employ the fiducial
scale cuts and nuisance parameters.

https://cosmohub.pic.es/home
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With the same likelihood pipeline used in other tests, we
find that the bias (distance between posterior peaks) in the
𝑆8 × Ωm plane between the baseline and contaminated data
vectors is 0.6𝜎 for the fiducial (TATT) IA model. A similar
run, but using NLA as the model, results in a 0.3𝜎 bias between
baseline and contaminated data. Since the more flexible TATT
model should, in principle, be able to capture any IA scenario
that NLA can, we ascribe this difference to competing shifts
due to the statistical fluctuations and the simpler IA model,
which partially cancel. Furthermore, the posteriors from 𝑎1
and 𝜂1 coming from the two models are fully consistent.

One important caveat here is that we have only a single
noise realization; the size of the biases quoted for NLA and
TATT therefore cannot be decoupled from fluctuations due to
shape noise and cosmic variance. This point complicates the
interpretation of our results. That said, there is a qualitative
difference between the MICE+IA simulated data vectors and
the other synthetic 𝜉± vectors: while all other data are ana-
lytically generated using either the NLA or TATT model, the
MICE data are agnostic with respect to the analytic model
and are tuned to fit observed IA signals (albeit at significantly
lower redshifts). It is, then, reassuring that we obtain rea-
sonable IA constraints, and the cosmological parameters 𝑆8
and Ωm are not catastrophically biased. Analysis of a greater
number of MICE+IA mocks, in order to disentangle IAs from
noise and cosmic variance, is an interesting extension left for
future work, but beyond the scope of this paper.

VI. PARAMETER CONSTRAINTS

In this section we present the baseline cosmic shear con-
straints from DES Y3. Sec. VI A presents our main results
in ΛCDM, Sec. VI B shows we find no detection of the dark
energy equation of state parameter 𝑤, and Sec. VI C 2 presents
a detailed comparison of the evidence for different IA models.
A series of extended models, including parameterized devia-
tions from General Relativity, and additional neutrino species,
will be discussed in Dark Energy Survey Collaboration 2021b,
which is in preparation. A number of external data sets are
introduced in this section, details of which can be found in
Sec. VIII A. For a summary of our fiducial results, and of the
robustness tests discussed in the next section, see Table II and
Fig. 10. To facilitate comparison of constraining power, we
also show the 2D 𝑆8 −Ωm Figure of Merit (FoM), which is de-
fined as FoM ≡ det

{
C𝑆8 ,Ωm

}−1/2, where C𝑆8 ,Ωm is a sub-block
of the parameter covariance matrix.

A. ΛCDM

The posteriors from our fiducial analysis are shown in Fig. 7,
along with our ΛCDM optimized result (with scale cuts that
maximize the constraining power in ΛCDM, see Sec. IV G;
black dashed), alongside Planck 2018 TT+TE+EE+lowE (no
lensing, Planck Collaboration 2020a; yellow). As with almost
all previous lensing analyses to date, DES Y3 favors a some-
what lower 𝑆8, a pattern we discuss further in Sec. VIII B 2.

The marginalized mean 𝑆8 and Ωm values in ΛCDM are:

𝑆8 = 0.759+0.023
−0.025 (0.755) (ΛCDM)

Ωm = 0.290+0.039
−0.063 (0.293) (ΛCDM)

where uncertainties are 68% confidence intervals. These
1D constraints represent our best estimate for the uncertain-
ties within our analysis framework. It is worth bearing in
mind, however, that comparison of constraining power be-
tween different lensing surveys is complicated by differences
in the analysis choices and priors (Chang et al. 2019). Our
fiducial ΛCDM analysis has 222 effective degrees of free-
dom14. At the maximum posterior (MAP) point we obtain
𝜒2/dof = 237.7/222 = 1.07, and a corresponding 𝑝−value of
0.22.

One important question arising from Fig. 7 is the extent
to which the DES and Planck results are consistent with each
other. Given that we are considering a complex 28 dimensional
parameter space, assessing agreement purely using projected
contours can be misleading (see Lemos et al. 2020 for discus-
sion). We present a more rigorous quantitative discussion of
possible tensions with external data sets in Sec. VIII B.

Different angular scales of the cosmic shear correlation
function have slightly different sensitivities to cosmological
parameters (Jain & Seljak 1997). The degeneracy between
𝜎8 and Ωm is such that the best constrained combination is
𝑆8 = 𝜎8 (Ωm/0.3)𝛼 with 𝛼 ≈ 0.5, but we can also determine
the exponent 𝛼 directly from the data. We carry out a Prin-
cipal Component Analysis of the projected ΛCDM posteriors
to obtain the exponent value that most effectively decorrelates
𝜎8 and Ωm. We find in our fiducial ΛCDM TATT analysis
that 𝛼 = 0.586. To avoid confusion, we call the corresponding
lensing amplitude Σ8 and find:

Σ8 ≡ 𝜎8 (Ω𝑚/0.3)0.586 = 0.756+0.021
−0.021 (0.729) (ΛCDM).

Also shown in Fig. 7 (black dashed) are the results of our opti-
mized cosmic shear analysis. The details of, and justification
for, this additional analysis can be found in Sec. IV G 3, but the
key idea is to use a set of scale cuts that are tuned to maximise
the constraining power of cosmic shear alone in ΛCDM. The
result is a tighter constraint in the 𝑆8 −Ωm plane in ΛCDM:

𝑆8 = 0.772+0.018
−0.017 (0.774) (ΛCDM Optimized).

As can be seen in Fig. 7, the gain in constraining power is
asymmetric about the posterior peak, which has the effect of
shifting the mean 𝑆8 up slightly. We consider the impact of
this in terms of statistical consistency in Sec. VIII B. The extra
data points increase the number of effective degrees of freedom
to 268, giving a goodness-of-fit at the maximum posterior of
𝜒2/dof = 285.0/268 = 1.06, with a 𝑝-value of 0.22, similar
to the fiducial analysis.

14 We calculate the effective number of d.o.f. following Raveri & Hu (2019a),
as the number of data points for 𝜉± after scale cuts (227) minus the number
of effective parameters (𝑁p,eff ≈ 5), given by 𝑁p,eff ≡ 𝑁p,nom−Tr

{
C−1
Π

Cp
}
,

where 𝑁p,nom is the nominal number of free parameters and CΠ, Cp are
respectively the covariances of the prior and posterior. As 𝑁p,eff can change
with different modeling choices, we re-compute it whenever necessary.
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𝑆8 𝑆8 𝜎8 Ωm FoM𝑆8Ωm 𝜒2/dof

Fiducial ΛCDM 0.759+0.023
−0.025 0.755 0.783+0.073

−0.092 0.290+0.039
−0.063 927 237.7/222 = 1.07

ΛCDM-Optimized 0.772+0.018
−0.017 0.774 0.795+0.072

−0.076 0.289+0.036
−0.056 1362 285.0/268 = 1.06

No IAs 0.774+0.017
−0.018 0.760 0.775+0.071

−0.077 0.306+0.040
−0.061 1253 243.3/225 = 1.08

NLA 0.773+0.020
−0.021 0.773 0.791+0.070

−0.086 0.293+0.039
−0.056 1163 242.1/224 = 1.08

NLA, free 𝑎1 per 𝑧−bin 0.790+0.022
−0.020 0.783 0.834+0.075

−0.082 0.275+0.035
−0.051 1144 246.3/221 = 1.11

𝑎1 > 0 prior 0.755+0.022
−0.022 0.727 0.731+0.064

−0.085 0.327+0.046
−0.066 881 238.7/222 = 1.07

Fixed neutrino mass 0.772+0.023
−0.023 0.748 0.816+0.071

−0.094 0.275+0.040
−0.052 1063 238.3/222 = 1.07

𝑤CDM cosmology 0.735+0.023
−0.041 0.699 0.723+0.071

−0.100 0.319+0.050
−0.071 497 237.5/222 = 1.07

HMCode power spectrum 0.772+0.026
−0.027 0.791 0.793+0.088

−0.102 0.294+0.038
−0.070 827 236.8/222 = 1.06

NLA, ΛCDM-Optimized, fixed neutrino mass 0.788+0.017
−0.016 0.775 0.825+0.078

−0.79 0.279+0.036
−0.053 1501 288.1/270 = 1.07

DES Y1 0.780+0.027
−0.021 - 0.764+0.069

−0.072 0.319+0.044
−0.062 625 227/211 = 1.08

KiDS-1000 COSEBIs 0.759+0.024
−0.021 - 0.838+0.140

−0.141 0.246+0.101
−0.060 650 85.5/70.5 = 1.21

HSC Y1 𝐶ℓ 0.780+0.030
−0.033 - - 0.162+0.086

−0.044 461 45.4/53 = 0.86
HSC Y1 𝜉± 0.804+0.032

−0.029 - 0.766+0.110
−0.093 0.346+0.052

−0.100 402 162.3/167 = 0.97
Planck 2018 TT + TE + EE + lowE 0.827+0.019

−0.017 - 0.793+0.024
−0.009 0.327+0.008

−0.017 3938 -

TABLE II: A summary of cosmological constraints from DES Y3 cosmic shear. In each case in the top 9 rows, we show the
posterior mean and 68% confidence bounds on each 𝑆8 and Ωm, as well as the Maximum Posterior 𝑆8 value (denoted 𝑆8), the
2D 𝑆8 −Ωm Figure of Merit and the goodness-of-fit. These top rows also include, as a default, the shear ratio likelihood. A

visual summary of the 𝑆8 constraints can be seen in Fig. 10. Constraints from KiDS-1000 and HSC are as nominally reported
and were not re-processed under the DES Y3 priors and analysis choices, while Planck 2018 numbers have been obtained under

DES Y3 cosmology priors.
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FIG. 7. The posteriors of DES Y3 cosmic shear (green) and Planck 2018 (TT+TE+EE+lowE no lensing; yellow). The shaded green contours
are the results from our fiducial analysis, as described in Sec. IV, and constraints using scale cuts that are optimized for a ΛCDM-only analysis
are shown in dashed lines. In each case we show both 68% and 95% confidence levels.
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B. 𝑤CDM

A simple extension to ΛCDM is to free the dark energy
equation-of-state parameter (previously fixed to 𝑤 = −1). The
prior bounds on 𝑤 in Table I are chosen such that cosmic
acceleration is ensured by 𝑤 < −1/3, and “phantom” models
with −2 < 𝑤 < −1 are allowed. To assess the statistical
preference of our data for this extended model, we evaluate the
evidence ratio (see Sec. IV A) between ΛCDM and 𝑤CDM
and find

𝑅𝑤/Λ = 0.94 ± 0.22,

which, based on the Jeffreys scale, is inconclusive in terms of
preference for the model with free 𝑤. We thus find no evidence
for (or against) a departure fromΛCDM using DES Y3 cosmic
shear data alone.

While 𝑤 is unconstrained by cosmic shear data within our
priors, we can still constrain 𝑆8 in that parameter space, and
we show its marginalized value in Fig. 10. We find a shift
towards lower lensing amplitude, qualitatively implying that
this model extension would not help to provide a solution to
the differences with respect to Planck.

C. Intrinsic Alignments

In addition to the main cosmological results, it is also inter-
esting to consider what our data can tell us about IAs. Since
we see no evidence that redshift error is biasing our IA results
(see Appendix B), the IA parameters have a physical interpre-
tation, and are potentially useful for future lensing analyses.
For details about how changes in the IA model can affect the
inferred cosmology see Sec. VII B.

1. IA Model Constraints

In Fig. 8 we show the IA posteriors in both TATT and NLA,
as well as in the optimized ΛCDM analysis and NLA with a
fixed redshift evolution parameter (for the numerical values,
see Table III). Note that there are additional parameters in the
full model (redshift indices and 𝑏TA), which are only weakly
constrained and so are not shown here (see Appendix D for the
full posterior). In all model scenarios, the data favor a smaller
IA signal than DES Y1, although the values are consistent
within the uncertainties (see Samuroff et al. 2019’s Fig. 12),
resulting in a total GI+II contribution that is only at the level of
a few percent of the cosmological signal (as shown in Fig. 2).
In the fiducial TATT case, the data favor mildly negative 𝑎1,
combined with 𝑎2 > 0:

𝑎1 = −0.47+0.30
−0.52 (−0.73) (TATT ΛCDM)

𝑎2 = 1.02+1.61
−0.55 (1.88) (TATT ΛCDM).

We observe asymmetric error bars in the posteriors of 𝑎1 and
𝑎2 and also find slight evidence for a secondary peak with re-
versed signs of the parameters. This hint of bimodality in the

IA subspace can be readily understood within our model: con-
tributions to power spectra in equations (21)-(23) that scale
as 𝑎2

1, 𝑎2
2 or 𝑎1𝑎2 are insensitive to positive/negative sign

flips. This degeneracy is further enabled in our present regime,
where IA signals are small compared to the measurement er-
rors, and terms proportional to 𝑎1 and 𝑎2 partially cancel each
other when they have opposite signs. We also note that the
secondary peak is less pronounced in the optimized analysis
shown in Fig. 8, and Amon et al. (2021) shows that the addition
of the shear ratios data in our fiducial constraints has already
contributed to suppressing the bimodal feature. We thus inter-
pret this doubly-peaked posterior as an internal degeneracy of
the model that is broken as statistical power increases. Note
that forcing a prior such that 𝑎1 > 0, eliminating one of the
peaks, also leads to essentially unchanged cosmology results
(see below and in Sec. VII B).

It is worth bearing in mind that the 𝑎1 = 𝑎2 = 0 point lies
within the bounds of the 2D 1𝜎 contour, and it is plausible
that the negative best-fit 𝑎1 is simply the result of a small
true IA amplitude and noise (see also Appendix A). We also
confirm that rerunning our fiducial analysis with a prior that
forces 𝑎1 > 0 (in line with expectation from observations of
red galaxies and the theory of tidal alignment) shifts the IA
constraints, and results in a negative 𝑎2, as consistent with
our Y1 results, but does not appreciably alter the confidence
contours in the 𝑆8 − Ωm plane. If we restrict ourselves to
the simpler (two-parameter) NLA model, the data still favor
negative 𝑎1, although at lower significance (𝑎1 = −0.09+0.20

−0.13).
Again, this is lower than the Y1 results, both from cosmic
shear alone and in combination with galaxy–galaxy lensing and
galaxy clustering (𝑎3×2pt

1 = 0.49+0.15
−0.15, 𝑎1×2pt

1 = 1.03+0.45
−0.57; see

Dark Energy Survey Collaboration 2018 and Samuroff et al.
2019’s Table 5). The impact of the optimizedΛCDM analysis,
which includes extra small-scale information, is to tighten the
contours in the 𝑎1 − 𝑎2 plane (compare the shaded green and
black dashed lines in Fig. 8), and it does not qualitatively
change our conclusions here.

One detail worth noting is that all of the posteriors pre-
sented in this paper include a contribution from shear ratios.
The small-scale (∼ 2 − 6 Mpc/ℎ) galaxy–galaxy lensing in-
formation significantly improves our ability to constrain IAs
(see Fig. 10 of Sánchez, Prat et al. 2021). That said, it has
been demonstrated that the use of 𝛾𝑡 on large (instead of small)
scales for the SR likelihood does not substantially change the
favored IA scenario (Sánchez, Prat et al. 2021). It has also
been shown that removing the SR likelihood altogether results
in consistent, though broader, constraints in the 𝑎1 − 𝑎2 plane
(Amon et al. 2021).

We illustrate the redshift dependence of the inferred IA
signal in Fig. 9, which can be compared to the analogous
version from DES Y1 in Fig. 16 of Troxel et al. (2018), and
also to Fig. 7 of Dark Energy Survey Collaboration (2021a).
In IA models where we use a parametric redshift dependence
(TATT and NLA), one can derive effective amplitudes for each
redshift bin 𝑗 as 𝑎 𝑗

𝑖
= 𝑎𝑖 (1+𝑧 𝑗/1+𝑧0)𝜂𝑖 , where 𝑖 ∈ (1, 2). The

points and error bars in Fig. 9 are the mean and marginalized
68% confidence contours of these derived parameters. In all
cases the tidal alignment amplitude 𝑎1 is consistent between
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FIG. 8. Posterior parameter constraints from the fiducial ΛCDM cosmic shear analysis (TATT, green), which includes shear ratios as a fiducial
choice. The solid blue (NLA) and dot-dashed yellow (NLA without redshift evolution) contours show the results of the same cosmic shear
analysis, but using alternative (simpler) IA models. We also include our ΛCDM optimized TATT result (dashed black). As before, both 68%
and 95% confidence levels are shown. We find that different IA models lead to consistent results and similar goodness-of-fit (see Table III),
and the main difference between them is the change in constraining power.

models to ∼ 1𝜎.

2. IA Model Selection

In addition to the basic results using variations of NLA
and TATT in the IA implementation, we also perform a more
rigorous model comparison in order to determine which IA
model preferred by the data in a statistical sense. We explain
this concept in more detail below.

First, we rank order models that are subspaces of TATT by
their complexity and step up that list one at a time, usually
by including a new parameter. At each step 𝑖, we re-run a
chain to obtain the best-fit 𝜒2 and evidence of the model. We
then compute the evidence ratios (see Sec. IV A) between the
models at step 𝑖 and 𝑖 − 1, and between the model at step 𝑖 and
the fiducial TATT model. In doing this, we are in principle
able to determine at which point in the complexity “ladder”

our data stops justifying the addition of extra IA parameters.

The order of the model complexity we use is not rigorously
defined, but it follows the logic of the perturbative modeling
approach. The simplest possible case is a model with no
IA. We then consider tidal alignment (TA) less complex than
models with tidal torquing (TT), and within these categories,
models without redshift dependence are less complex. Thus,
the simplest IA model under consideration has 𝑎1 free and all
else held fixed, followed by 𝑎1 with a free power-law parameter
for redshift evolution, 𝜂1, and so on up to the (fiducial) 5-
parameter TATT (see Table III).

In order to minimize sampling noise in the estimate of the
best-fit 𝜒2, we set polychord to output 10× more samples
than its default. We verify that sampling the parameter space
with a maximum posterior finder leads to 𝜒2 values that are
insignificantly different from our best-fit (Δ𝜒2 < 1 ). We
obtain the evidences as a standard output of polychord. At
each step, we also report the constraints on the marginalized
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IA parameters and their 68% confidence intervals.
With this method, we aim to find how many of the TATT

parameters meaningfully improve the fit to the data. The
evidence ratios are especially suited for this purpose because
even though a model with an extra IA parameter might be
constrained, the Occam factor in the evidence ratios can still
penalize that model if the required prior volume is excessive
when compared to a simpler model, Eq. (7). We note that
according to our analysis choices, this procedure can only
be carried out after the data and constraints are unblinded,
and so we could not have applied the same reasoning before
unblinding (e.g. as a strategy to optimize the selection of the
fiducial IA model).

We have performed this test with SR data vectors built us-
ing both DES Y3 lens samples (redMaGiC and MagLim), as
well as without including the SR likelihood at all, in which
case all information comes from 𝜉± (𝜃) on relatively large an-
gular scales. For these three cases we find that the “no IA
model” has the highest evidence, although it is only “weakly
preferred” over the other models, based on the Jeffreys scale,
reflecting the fact that our inferred IA amplitudes are consis-
tent with zero. We find in all cases that, once the tidal torquing
term 𝑎2 is free, the evidence ratios seem to suggest a prefer-
ence for a redshift evolution. Apart from that, we find that
the different SR lens samples yield slightly different levels of
preference for the intermediate models such as NLA and NLA
without 𝑧-evolution. Our results are shown in Table III, where
stepping down line-by-line corresponds to increasing the IA
model complexity, and for ease of interpretation we show only
the case without the inclusion of the shear ratio likelihood (so
note that the IA constraints presented in the table do not exactly
match the constraints reported elsewhere in this work).

In summary, this test, as well those shown in Fig. 8, suggest
that simpler IA models are a sufficient assumption for mod-
eling the DES Y3 data. While this result is different from
those in the pre-unblinding robustness tests which led to our
choice of fiducial model (see Fig. 6), it is not inconsistent
with expectations. Our earlier simulated tests used the best-fit
TATT parameter values from the DES Y1 measurements. At
these values, the impact of higher order IA contributions was
large enough to require the full TATT model. However, the
uncertainty in these Y1 measurements was fairly large, and
they remain consistent with the overall smaller IA amplitudes
found in this Y3 analysis. Smaller amplitudes allow for a
less complex IA model, and indeed our current data appear to
marginally prefer it.

Our results are consistent with other recent results, including
Fortuna et al. (2021), Wright et al. (2020), which also suggest
low IA amplitudes. While the tests presented here provide
additional information to the community for planning future
analyses, we emphasize that further study is needed on the
underlying IA behavior of typical source galaxies and the in-
teraction with other elements on the model, including baryonic
feedback and photometric redshifts, as well as the impact of
noise. We have physical reasons to believe that higher-order IA
contributions exist at some level, and the lack of a significant
detection here does not imply that these terms can be safely
ignored at increased precision or for different source samples.
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FIG. 9. Effective IA amplitudes 𝑎1,2 as a function of redshift. Note
that the green and blue points (both labelled TATT) are the product
of the same analysis, in which 𝑎1 and 𝑎2 were varied simultaneously.
We report no clear evidence for redshift evolution in 𝑎1, and relatively
good agreement between models.

We encourage careful testing of IA model sufficiency in future
analyses to avoid cosmological biases.

VII. MODEL ROBUSTNESS TESTS ON REAL DATA

In this section we present a number of analysis permuta-
tions, with the aim of stress testing the results described in
the previous section. The tests fall naturally into a number of
groups, which are discussed in more detail in the following
paragraphs. For an overall summary, see Fig. 10.

This exercise is distinct from the tests in Sec. V; whereas
there we were seeking to validate our model implementation
prior to unblinding, we are now seeking to test the robustness
of our unblinded results to reasonable variations to the analysis
choices. Our focus here is on various aspects of the theory
modeling. For a complementary raft of internal-consistency
and data oriented tests, we refer the reader to our companion
paper (Amon et al. 2021). One can also find extensive catalog-
level tests in Gatti, Sheldon et al. (2021), which includes a null
detection of shear B-modes in the Y3 data using both COSEBIs
and pseudo-𝐶ℓs. Further tests of the PSF model and photo-𝑧
catalogs are described in other Y3 papers (Jarvis et al. 2021;
Buchs, Davis et al. 2019, Myles, Alarcon et al. 2020). Also
note that the details of the Y3 methodology, including the tests
described in this section, were chosen prior to unblinding, and
are not informed by the results described in Sec. VI A.
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IA Model (free parameters) 𝜒2/d.o.f log Evidence 𝑅 (w.r.t. TATT) 𝑅 (w.r.t. above) 𝑎1 𝜂1 𝑎2 𝜂2 𝑏TA

No IAs 240.6 / 225 3215.79 ± 0.11 9.48 ± 1.66 N/A - - - - -
NLA no 𝑧-evo. (𝑎1) 238.6 / 224 3213.89 ± 0.12 1.42 ± 0.30 0.15 ± 0.03 0.34+0.25

−0.23 - - - -
NLA (𝑎1, 𝜂1) 238.3 / 224 3214.07 ± 0.13 1.70 ± 0.36 1.19 ± 0.24 0.36+0.43

−0.36 1.66+3.26
−1.05 - - -

TA (𝑎1, 𝜂1, 𝑏TA) 238.8 / 224 3213.87 ± 0.13 1.38 ± 0.25 0.81 ± 0.14 0.27+0.35
−0.31 2.10+2.89

−0.71 - - 0.83+0.31
−0.82

No 𝑧-evo. (𝑎1, 𝑎2, 𝑏TA) 238.6 / 223 3211.81 ± 0.14 0.17 ± 0.03 0.12 ± 0.02 0.18+0.21
−0.30 - 0.10+0.55

−0.57 - 0.80+0.29
−0.78

No 𝑎2 𝑧-evo. (𝑎1, 𝜂1, 𝑎2, 𝑏TA) 238.2 / 223 3212.09 ± 0.14 0.23 ± 0.04 1.32 ± 0.26 −0.02+0.71
−0.31 2.17+2.82

−0.70 −0.27+0.59
−0.50 - 0.87+0.38

−0.83
TATT (𝑎1, 𝜂1, 𝑎2, 𝜂2, 𝑏TA) 233.1 / 222 3213.54 ± 0.13 1 4.28 ± 0.83 −0.24+0.98

−0.41 2.38+2.62
−0.61 0.63+1.93

−1.89 3.11+1.77
−0.31 0.87+0.38

−0.84

TABLE III: Marginalized constraints on IA parameters, best-fit 𝜒2 and evidence ratio 𝑅 metrics for IA models of increasing
complexity on 𝜉± (𝜃) without including the shear ratio likelihood. In each row, the evidence ratios assume TATT & the model in

the row above are in the denominator (so 𝑅 > 1 implies preference for the model defined in the corresponding row).
Marginalized constraints are defined here as the mean of posteriors and their 68% uncertainties. Empty values in the table

correspond to parameters that are fixed to zero.
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FIG. 10. A summary of marginalized 1D constraints on 𝑆8 shown in this paper. In the upper-most panel we show the main cosmological
results of this paper: the DES Y3 cosmic shear constraints using fiducial and ΛCDM Optimized scale cuts. The panel below (marked “model
variations", rows 1-7) shows a range of modified analyses, designed to test the robustness of the fiducial result, which are detailed in Sec.s VI &
VII). In the lower two panels we show equivalent constraints on 𝑆8, both from external data (rows 8-13), and DES Y1 (rows 14-15). Points and
error bars correspond to the marginal posterior mean and 68% confidence interval on 𝑆8, with the exception of KiDS & HSC (rows 11-13) for
which we report nominal headline results. Rows 1-10 are obtained using the DES Y3 fiducial analysis choices (including cosmology priors),
while external lensing and DES Y1 rows 11-15 are not re-processed to match exactly the Y3 model, prior and scale cuts.
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A. Baryonic 𝑃(𝑘) & Neutrinos

One significant source of systematic uncertainty is in the
modeling of the small- to intermediate-scale matter power
spectrum. Uncertainties at high 𝑘 arise both as a result of
nonlinear clustering, a process that is typically calibrated using
𝑁−body simulations, and baryonic physics. Although we have
verified our insensitivity to reasonable changes in baryonic and
nonlinear growth scenarios in Sec. IV G, the tests there use
noiseless synthetic data.

In order to assess the dependence of our results on our
particular choice of 𝑃𝛿 (𝑘) model, we repeat our fiducial
ΛCDM analysis, with an alternative power spectrum estima-
tor. That is, instead of HaloFit, which is our baseline choice,
we use the halo model of Mead et al. (2015), which has a
nominal accuracy of 5% at 𝑘 < 10ℎMpc−1, as assessed by
comparison with the Coyote Universe simulations. The halo
model includes baryonic effects via two additional parameters:
an amplitude 𝐵 which governs the halo concentration-mass re-
lation, and 𝜂0, which is referred to as the halo bloating factor.
We marginalize over both with wide flat priors 𝜂0 = [0.4, 1],
𝐵 = [1, 7.5]. These priors are wider than those utilized by,
e.g., Asgari et al. (2021) and are intentionally chosen that way
so we are agnostic with respect to the baryonic effects tested
in Mead et al. (2015). Another difference with respect to the
analysis of Asgari et al. (2021) is that we free both parame-
ters independently, as opposed to assuming a linear relation
between them.

The results of this exercise are shown in Fig. 10 (labelled
“HMCode 𝑃(𝑘)") and in Fig. 11. As shown there, there is
a small 0.5𝜎 shift in 𝑆8 due to this substitution. We do not,
however, interpret this as the correction of residual baryonic
physics present in the data, but rather a result of projection
effects. Indeed, we verify that the halo-model parameters
𝐵, 𝜂0 are completely unconstrained by the data within the prior
bounds; this is a consequence of our conservative scale cuts,
which are designed to remove angular scales on which baryonic
feedback processes (and so the halo-model parameters) enter.
The small shift is, therefore, simply an artifact of projecting
the high-dimensional posteriors onto the 1D plane. To support
this point, we verify that shifts in the same direction appear
when analysing a gravity-only synthetic data vector with the
same wide baryon priors. We see no significant improvement
in the goodness-of-fit of our data when employing HMcode (a
𝜒2 of 236.8 vs. our fiducial 237.7, with 2 added parameters).

In addition to the tests described above, we also repeat our
fiducial analysis with the neutrino mass density parameter
Ω𝜈ℎ

2 fixed. For this exercise, we set the sum of the neu-
trino masses,

∑
𝑚𝜈 , to the lower limit obtained by oscillation

experiments, assuming the normal (non-inverted) hierarchy, of
0.06eV (Capozzi et al. 2014, Esteban et al. 2019). We maintain
our fiducial choice of 3 degenerate neutrino species (Krause
et al. 2021). The neutrino mass parameter is not constrained
by cosmic shear alone, so the small upward shift of around
∼ 0.2𝜎 we observe in the 1D marginal 𝑆8 constraint shown
in Fig. 10 is again thought to be an effect of the projection
of the high-dimensional parameter space with a different prior
volume.
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FIG. 11. The marginal posterior distribution in the 𝑆8 × Ωm plane
for the model variations on the baryonic power spectrum (HMCode
with 2 free parameters) and neutrino mass density (fixed at minimum
mass). The results of our fiducial analysis is also shown (green). We
observe consistency between these cases and our fiducial analysis,
and do not interpret shifts as pointing to insufficiency in the analysis
(see text).

We show the 2D parameter constraints in the 𝑆8–Ωm plane
under the variations of assumptions in the baryonic power spec-
trum and the neutrino mass density in Fig. 11. We note that
despite the small differences in marginalized 𝑆8 constraints,
these analysis variations are still fully consistent with our fidu-
cial analysis.

B. Intrinsic Alignments

In this section we explore how plausible variations in our
IA modeling can propagate to cosmology. In addition to the
fiducial TATT model, we consider a number of alternatives,
which are detailed below (see also Fig. 10). The variations
cover a range of complexity scenarios, from the simplest case
of null IAs (i.e all parameters fixed to zero), through NLA and
TATT to a version with added flexibility in redshift.

In Fig. 8 we consider our baseline result (green), along-
side the equivalent using the two-parameter NLA model (blue;
Troxel et al. 2018 and Hikage et al. 2019’s fiducial choice),
and an even simpler one-parameter version with no redshift
dependence (dot-dashed yellow; Asgari et al. 2021’s fiducial
choice). Although only at the level of ∼ 0.5𝜎, we see a shift in
𝑆8 when switching between NLA and TATT, which is roughly
consistent with the findings of Samuroff et al. (2019) in DES
Y1. This shift is not accompanied by a large improvement in
the 𝜒2 per degree of freedom, but there is some preference for
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the simpler mode in terms of Bayesian evidence (see Sec. VI C
and Table III). It is also notable that the variants of NLA with
and without redshift variation give virtually identical cosmol-
ogy results, primarily because the extra 𝜂1 parameter is poorly
constrained, and relatively uncorrelated with 𝑆8. We also to
note briefly that the impact of switching IA models also slightly
rotates the best constrained direction in parameter space, with
𝛼 = 0.576 for NLA and 𝛼 = 0.586 in the fiducial TATT, when
one defines the lensing amplitude as Σ8 = 𝜎8 (Ωm/0.3)𝛼.

Given the negative 𝑎1 and hints of bimodality seen in Fig. 8,
we run a version of the Y3 cosmic shear analysis with a re-
strictive prior 𝑎1 = [0, 5].15 This results in almost no change
to the best-fit 𝑆8 (compare lines 1 and 6 in Fig. 10), although
it does tighten the error bar slightly by restricting the posterior
(row 6 of Fig. 10), which implies that the fact that our fiducial
results encompass a region of negative IA space is not driving
our cosmological constraints in a particular direction.

We also present a case with a flexible version of the NLA
model, shown in Fig. 10 (line 5, labelled “NLA, free 𝑎1 per
𝑧-bin"). The basic idea here is to test how limiting our as-
sumption of power law redshift dependence is in this context,
since we have no first-principles reason to expect IAs should
obey this particular scaling. Interestingly, adding flexibility
via extra TATT parameters, and via the ability to deviate from
a power law redshift evolution, is seen to push 𝑆8 in opposite
directions relative to the basic NLA (c.f. lines 1, 4 and 5
in Fig. 10). While we find a shift of around 1𝜎 w.r.t TATT
(0.5𝜎 w.r.t to NLA), the per-bin NLA model is significantly
disfavored. The Bayesian evidence ratios strongly favor TATT
and NLA over the per-bin NLA model (with 𝑅 = 237 ± 60
and 202 ± 49 respectively), and in the latter model we addi-
tionally see a significantly worse 𝜒2 (increased by about 10
with respect to TATT while the effective number of degrees of
freedom is decreased by 1).

Taken as a whole, the tests described above paint a consis-
tent picture. Apart from NLA per-bin, the IA modifications
we explored cause shifts no greater than ∼ 0.5𝜎 in 𝑆8, even
in the most extreme scenario where we neglect IAs entirely.
In NLA per-bin, we find a shift of 1𝜎 with respect to our
fiducial constraints, but also find that this model is disfavored
by evidence ratios and goodness-of-fit tests. We therefore do
not believe we that our IA modeling is insufficient to describe
the data and, through the IA model selection described in Sec.
VI C 2, actually have evidence that it might be simplified in
future analyses. We do find a change in constraining power
between NLA and TATT, with NLA (at fiducial scale cuts) be-
ing comparable to TATT at the ΛCDM-Optimized scale cuts.
This suggests that our uncertainty budget is dominated by the
lack of knowledge in modeling astrophysics on small cosmo-
logical scales. This is verified by our companion Amon et al.
(2021), Sec. XII.

15 Our baseline prior bounds 𝑎1 = [−5, 5] were designed to be uninformative
and avoid prior edge effects. It is, however, reasonable to expect that 𝑎1 > 0,
in the absence of systematics.

VIII. COMPARISON WITH EXTERNAL DATA

After having verified that DES-only results are robust with
respect to changes in astrophysics modeling assumptions, we
now seek to place our results in the context of the wider field
and to quantify tension with respect to subsets of external data.

A. External Data Sets

We describe a number of external data sets (see Table
VIII A), to which we will compare our results. Where ap-
propriate, we recompute the cosmological posteriors in order
to facilitate a meaningful comparison. The marginalized 𝑆8
constraints from the external data sets that meaningfully con-
strain this parameter alone are shown in the lower half of Fig.
10. The data sets we consider in this paper are largely com-
mon to those described in Dark Energy Survey Collaboration
(2018), Dark Energy Survey Collaboration (2019) and Troxel
et al. (2018), with some more recent updates. Among these, as
described in Sec. 1, the KiDS and HSC surveys are Stage-III
WL surveys like DES. The full set of surveys we consider is:

• KiDS-1000: The KiDS weak lensing data comprise
roughly 1000 square degrees and 21M galaxies (𝑛eff ∼
6.2 / arcmin2), and are described in Giblin et al. (2021).
In their latest results papers, (Asgari et al. 2021) present
cosmic shear analyses using three different statistics;
since they clearly designate their COSEBIs-based results
as their fiducial analysis, we compare with these here.
Note that we do not recompute the posteriors, but rather
compare with the published results. In particular, one
should be aware that our choice of IA model, nonlinear
power spectrum and cosmological priors all differ from
the fiducial analysis of Asgari et al. (2021).

• HSC Y1: The first year HSC lensing data are drawn
from 137 square degrees, but go significantly deeper
than either KiDS or DES, reaching 𝑛eff ∼ 22 /arcmin2.
The data are described in Mandelbaum et al. (2018a),
and are calibrated using image simulations (Mandel-
baum et al. 2018b). As in the case of KiDS, we do not
reanalyze the two-point data, instead comparing with the
published results. Since, at the time of writing, there is
no reason to prefer one over the other, we show both
the real space analysis of Hamana et al. (2020) and the
power spectrum analysis of Hikage et al. (2019) in Fig.
10. The differences between the two are thought to be
statistical, due to different Fourier mode sensitivities.
For the sake of clarity, we choose to show the latter in
the visual comparison of Fig. 13.

• eBOSS: We include spectroscopic baryon acoustic os-
cillation (BAO) measurements from eBOSS (Alam et al.
2021). The BAO likelihood is assumed to be indepen-
dent of DES, but we do recompute the posterior in our
choice of cosmological parameter space (i.e. sampling
𝐴s and Ωm, and with the sum of the neutrino masses
free).
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• Pantheon Supernovae: We also include the luminosity
distances from Type Ia supernovae from the Pantheon
sample (Scolnic et al. 2018); this data set includes 279
type Ia supernovae from the PanSTARRS Medium Deep
Survey (0.03 < 𝑧 < 0.68) and samples from SDSS,
SNLS and HST. The final Pantheon catalogue includes
1048 SNe, out to 𝑧 = 2.26.

• Planck 2018 Main: These data are the final release
from the Planck Cosmic Microwave Background (CMB)
experiment (Planck Collaboration 2020a). We incorpo-
rate the primary 𝑇𝑇 data on scales 30 < ℓ < 2508,
and also the joint temperature and polarization mea-
surements (𝑇𝑇 + 𝑇𝐸 + 𝐸𝐸 + 𝐵𝐵) at 2 < ℓ < 30. As in
previous analyses, we recompute the CMB likelihood in
our fiducial parameter space, including neutrinos.

• Planck 2018 Lensing: We also consider CMB lensing
from the Planck survey (Planck Collaboration 2020c) as
a separate data set. These data probe an intermediate
redshift 𝑧 ∼ 2, which is slightly higher than DES and
somewhat lower than CMB temperature and polariza-
tion.

B. Quantifying Tension

Assuring that the data collected by two different experi-
ments have a quantified degree of agreement is crucial when
performing a joint probes analysis. Therefore, for DES Y3,
we have presented an thorough study on the ability of different
tension metrics to identify inconsistencies amongst cosmolog-
ical parameters measured by different experiments. We used
simulated data to compute the predictions of different tension
metrics belonging to two classes: Evidence-based methods
and parameter-space methods. A robust way to quantify pos-
sible tensions is by combining those two types of metrics,
as they answer somewhat different, but yet complementary,
questions (Lemos et al. 2020).

In DES, we utilize priors that are deliberately wide and unin-
formative such that "DES-only" constraints can be obtained. In
this case, assessing tension utilizing the Bayes Ratio, a broadly
used evidence-based tension metric, can produce misleading
results since it is largely dependent on the prior volume as dis-
cussed in Handley & Lemos (2019b). To avoid this problem,
for our choice of an evidence-based metric we compute the
Bayesian Suspiciousness (Handley & Lemos 2019a) instead,
a method that corrects for the prior dependence.

Consider two independent data sets A and B. The motivation
behind Suspiciousness is that the Bayes Ratio 𝑅 can be divided
into two parts: the first one captures the prior dependence, i.e.
the probability of the data sets matching given the prior width,
which is quantified by the information ratio 𝐼 :

log 𝐼 ≡ D𝐴 + D𝐵 − D𝐴𝐵, (31)

where

D𝐷 ≡
∫

P𝐷 log
(
P𝐷

Π

)
d𝜃, (32)

is the Kullback–Leibler Divergence (Kullback & Leibler
1951), that can be understood as the amount of information
that has been gained going from the prior Π to the posterior P.
The lower index 𝐷 denotes the data set from which the poste-
rior is derived (𝐴, 𝐵, or the joint data vector 𝐴𝐵). The second
part is the so-called Bayesian Suspiciousness 𝑆, which is the
part of the Bayes Ratio left after subtracting the dependence
on the prior, leaving only on the actual differences between the
posteriors:

log 𝑆 = log 𝑅 − log 𝐼 . (33)

All the quantities required to compute the Suspiciousness
metric are provided by a single nested sampling chain, just as
the ones required to compute the Bayes Ratio are, meaning the
computational cost is the same in both cases. The necessary
tools are implemented in the python package anesthetic16

(Handley 2019).
In addition, we calculate a Monte Carlo estimate of the

probability of a parameter difference, set out in Raveri et al.
(2020), as our parameter space-based method. It relies on
the calculation of the parameter difference probability density
P(Δ𝜃) which, in the case of two uncorrelated data sets, is
simply the convolution integral:

P(Δ𝜃) =
∫
𝑉𝑝

P𝐴(𝜃)P𝐵 (𝜃 − Δ𝜃)𝑑𝜃, (34)

where 𝑉𝑝 is the prior support and P𝐴 and P𝐵 are the two
posterior distributions of parameters. The probability of an
actual shift in parameter space is obtained from the density of
parameter shifts:

Δ =

∫
P(Δ𝜃)>P(0)

P(Δ𝜃) 𝑑Δ𝜃, (35)

which is the posterior mass above the contour of constant
probability for no shift, Δ𝜃 = 0.

Usually we only have discrete representations of the poste-
rior samples and, since we are working with high dimensional
parameter spaces, the posterior samples cannot be easily in-
terpolated to a obtain a continuous function. Therefore, the
integral in Eq. (35) needs to be performed using a Monte Carlo
approach.

The idea is to compute the Kernel Density Estimate (KDE)
probability that Δ𝜃 = 0 and the same at each of the samples
from the parameter difference posterior. Then, the estimate of
the integral in Eq. (35) is given by the number of samples with
non-zero KDE probability, divided by the total number of sam-
ples. These computations are done using the tensiometer17

code.

16 https://github.com/williamjameshandley/anesthetic
17 https://github.com/mraveri/tensiometer

https://github.com/williamjameshandley/anesthetic
https://github.com/mraveri/tensiometer
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Data set Type Median Redshift Area [sq. deg] Source

DES Y3 WL 0.62 4143 This work
KiDS-1000 WL 0.54 777 Asgari et al. (2021)

HSC Y1 WL 0.81 137 Hamana et al. (2020), Hikage et al. (2019)
eBOSS BAO 0.7 6813 Alam et al. (2021)

Pantheon SNe 1.0 - Scolnic et al. (2018)
Planck Main CMB 𝑇𝑇 + 𝑇𝐸 + 𝐸𝐸+lowE 1090 full-sky Planck Collaboration (2020a)

Planck Lensing CMB Lensing 2.0 full-sky Planck Collaboration (2020c)

TABLE IV: A summary of the external data sets used in this paper. More details can be found in Sec. VIII and the references
listed.

1. Compatibility between Low-𝑧 and High-𝑧 Data

We now assess the consistency between high- and low-
redshift cosmological probes. As in Dark Energy Survey
Collaboration (2021a), we conclude that two data sets are
statistically consistent if the 𝑝-value implied by our tension
metrics is greater than 0.01. This same standard value was
utilized in our internal consistency tests in Amon et al. (2021).
In order to quote tension metrics, we first recompute the low-𝑧
(here defined as the combination BAO + SNe) and Planck 2018
posteriors with priors on cosmological parameters matched to
those of DES Y3, as defined in Table I. In addition to assess-
ing tension relative to our fiducial Y3 analysis, we also explore
whether switching to the ΛCDM-Optimized scale cuts signif-
icantly changes our findings, since the one-dimensional result
in Fig. 10 can offer hints, but not quantify the agreement
between data sets.

Fig. 12 shows the posteriors from DES as well as low-𝑧 and
Planck 2018 in ΛCDM. In the full parameter space, for DES
Y3 cosmic shear versus BAO+SNe in ΛCDM we find:

Suspiciousness: 0.5𝜎 ± 0.3𝜎 (DES vs Low-𝑧ΛCDM)
Parameter shift: 0.4𝜎 (DES vs Low-𝑧ΛCDM),

which implies 𝑝(0.5𝜎) = 0.62 > 0.01, and we conclude these
data sets are consistent. This confirms more rigorously what
is seen qualitatively in Fig. 12.

We similarly quantify the compatibility between DES Y3
cosmic shear and Planck 2018 in ΛCDM:

Suspiciousness: 2.3𝜎 ± 0.3𝜎 (DES vs Planck ΛCDM)
Parameter shift: 2.3𝜎 (DES vs Planck ΛCDM),

with a 𝑝-value 𝑝(2.3𝜎) = 0.02 > 0.01. We thus find that,
according to our tension metrics, these data sets are consistent.
We additionally explore the consistency of DES Y3 cosmic
shear with Planck 2018 in our ΛCDM-Optimized setup and
find:

Suspiciousness: 2.0𝜎 ± 0.4𝜎 (DES optim. vs Planck ΛCDM)
Parameter shift: 2.1𝜎 (DES optim. vs Planck ΛCDM),
which yields approximately 𝑝(2.0𝜎) = 0.05 > 0.01, again
implying that these data sets are consistent. That result can
be expected, at least qualitatively, by inspecting Figs. 10 and
12: while the constraint on 𝑆8 is improved in the optimized
analysis, there is also a small shift towards Planck.
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FIG. 12. DES Y3 and external data constraints from low and high red-
shift probes inΛCDM. We present our fiducial andΛCDM optimized
constraints (green and black-dashed) in comparison with Planck 2018
(TT+EE+TE+lowE, no lensing; yellow) and the combination of BAO
and type Ia SNe (SDSS BOSS and Pantheon respectively; blue). In all
cases we show both the 68% and 95% confidence limits. We find no
evidence for statistical inconsistency between DES Y3 cosmic shear
and either external data set.

2. Comparing Weak Lensing Surveys

We show our fiducial DES Y3 ΛCDM results (green
shaded), alongside those of a number of contemporary weak
lensing surveys in Fig. 13. Also shown (yellow) are the equiv-
alent constraints from most recent Planck CMB data release
(without lensing). Most notably, all the published cosmic
shear analyses (including earlier, less constraining, results that
are not shown here) favor lower 𝑆8 than Planck, to varying
degrees of significance. Although the cosmic shear surveys
are independent, both in the sense that there is limited overlap
between the catalogues (see Fig. 1), and that the measurement
and analysis pipelines are largely separate, it is remarkable that
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FIG. 13. Posterior constraints on cosmology (left panel) and intrinsic alignment parameters (right panel) from contemporary weak lensing
surveys. With the exception of Planck 2018, which is re-analyzed with DES Y3 priors, the weak lensing posterior data above are plotted as
published by each collaboration, therefore a direct, quantitative comparison is complicated due to differing parameter priors, modeling and
calibration choices. An overall qualitative agreement is seen in both panels, within approximately 1𝜎, with lensing surveys predicting similarly
low 𝑆8 and consistent 𝑎1 amplitude.

their 𝑆8 ×Ωm posteriors overlap significantly, especially given
that these weak lensing analyses are carried out blind.

That said, the naive comparison of the surveys is compli-
cated by the fact that there are significant differences in the
analysis choices underlying the published results, and unify-
ing them becomes a crucial task (Chang et al. 2019). Though
it is quite possible to compute the metrics discussed in the
previous section, interpreting them would be complicated, as
it would be difficult to determine if any apparent tension were
real, or due to differences in priors (see the discussion in Lemos
et al. 2020). A proper quantitative comparison would require
matching priors and other analysis choices, and would ideally
involve input from the different collaborations; such an exer-
cise would be in line with the recommendations of Chang et al.
2019 and is left for future work.

We can, however, compare our findings with the tension
analyses that the various collaborations choose to present. For
example, in DES Y1 cosmic shear the discrepancy relative
to Planck 2018 was assessed to be at the level of 1.0𝜎 and
0.5 ± 0.3𝜎 using the parameter shift and Suspiciousness met-
rics respectively (Lemos et al. 2020). These numbers can be
compared directly with our findings in Sec. VIII B 1. We see
that the discrepancy between cosmic shear and Planck 2018
has increased substantially in DES Y3 in comparison with
DES Y1, from 1.0𝜎 to 2.3𝜎. The latter number is, coinci-
dentally, the same difference found in the comparison between
Planck and the 3 × 2pt analysis of DES Y1 (including galaxy
clustering and galaxy-galaxy lensing).

The KiDS-1000 cosmic shear analysis of Asgari et al. (2021)

opted to quantify their agreement with Planck using the Bayes
ratio. They find “substantial" evidence for disagreement, with
the caveat that the performance of this metric is known to be
prior dependent. Though they also compute a Suspiciousness,
they do not quote an interpretable value in terms of 𝜎, due to
difficulties in computing effective dimensionalities (see their
App. B3). The approach of HSC differs slightly between
their two published analyses. Hamana et al. 2020 (their Sec
6.6) rely on a comparison of projected contours, reporting no
tension due to the apparent overlap in the 𝜎8 × Ωm plane. On
the other hand, Hikage et al. (2019) employ both the Bayes
ratio and also differences in the log-likelihood at the MAP
point in parameter space (see their Sec 6.3 and Raveri & Hu
2019b). They report no evidence for inconsistency based on
these metrics.

In the right-hand panel of Fig. 13 we also show the IA
model constraints from the various surveys. Although they
are roughly consistent (to within ∼ 1𝜎), it is worth being
careful here. In all cases but KiDS-1000, the IA model has
more flexibility than the one amplitude (an additional redshift
scaling in HSC and DES Y1, and the extra TATT parameters
in Y3), which means, for a given 𝑎1, the predicted IA signal
is not necessarily identical between the surveys. It is also
true that, unlike cosmological parameters, IAs are expected
to be dependent on both the galaxy selection and the shape
measurement method. Differences, while interesting from the
modeling perspective, are not necessarily a cause for concern.
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IX. CONCLUSIONS

This paper and its companion, Amon et al. (2021), present
together the cosmological constraints from cosmic shear with
over ∼ 100 million galaxies from Dark Energy Survey Year 3
(DES Y3) shape catalogs, which cover 4143 square degrees.
We model the cosmic shear signal in ΛCDM and constrain the
lensing amplitude with 3% precision, finding 𝑆8 = 0.759+0.023

−0.025.
Our best constraint on ΛCDM is of 𝑆8 = 0.772+0.018

−0.017, at 2%
precision, when optimizing the angular scales while still main-
taining biases under control. Our results qualitatively agree
well with previous lensing analyses based on the KiDS-1000,
DES Y1 and HSC data sets, all of which favor lower 𝑆8 than the
most recent CMB measurements. Using quantitative tension
metrics based on the full parameter space, we report a 2.3𝜎
difference between our DES Y3 results and Planck 2018 (a 𝑝-
value of 0.02), and we consider these data sets to be statistically
consistent. At our present constraining power, we do not report
a meaningful constraint on the equation-of-state parameter of
dark energy in 𝑤CDM. That is, the cosmic shear likelihood
does not significantly add information about the parameter 𝑤
beyond its prior.

Throughout this paper, we have focused on the aspects of
the DES Y3 cosmic shear analysis relating to astrophysical
modeling. The overarching philosophy that guided this work
and its conclusions can be summarized as follows. Firstly, in
a blinded fashion, we test our modeling assumptions on syn-
thetic data obtained from theory pipelines and N-body mocks,
in order to validate our fiducial analysis choices. We then ob-
tain cosmology constraints from shear data that are verified to
be internally consistent and calibrated to high confidence by
our companion paper (Amon et al. 2021). Finally, we proceed
to relax our fiducial theory assumptions and vary model pa-
rameterizations, finding that the results to be robust to these
variations, and then compare our constraints with those of
external probes. The main conclusions of this paper are:

• Informed by previous intrinsic alignment (IA) studies in
DES Y1 data, we account for IAs with a 5-parameter
model that includes tidal alignments and tidal torquing
(TATT). We present tests of this modeling assumption
on analytically generated data as well as realistic MICE
(N-body) simulations, and find that TATT is able to
capture complex IA signals, as well as that of simpler
models such as NLA (Fig. 6);

• We select angular scales conservatively to mitigate the
effect of baryonic physics, the dominant small-scale sys-
tematic for this analysis. We show that our scale cuts
suppress baryonic contamination as inferred from hy-
drodynamic simulations with varying levels of feedback
strength, and utilize a gravity-only model for the matter
power spectrum. We verify in synthetic data that resid-
ual biases due to baryons are well below 0.3𝜎 in the
Ωm × 𝑆8 plane, and that our selected scales are insen-
sitive to uncertainties in the nonlinear power spectrum
and in higher order shear contributions (Fig. 5);

• The tension metrics we use in the full parameter space

yield a 2.3𝜎 discrepancy with respect to Planck (2018),
with the leading contribution to the tension being our
lower 𝑆8. External probes at low-z (BAO+SNe), which
are sensitive to Ω𝑚, are within 0.5𝜎 under the same
metrics. We regard both these probes as statistically
consistent with DES cosmic shear. We also find quali-
tative agreement between our data and external lensing
results from HSC Y1 and KiDS-1000, all of which yield
lower nominal 𝑆8 values in comparison with Planck
2018 (Figs. 7, 12 and left panel of 13);

• We demonstrate that our posteriors on IA and cosmolog-
ical parameters are consistent within 1𝜎 as we vary the
parameterization of intrinsic alignments by simplifying
our fiducial model from TATT to NLA with free/fixed
redshift dependence. This is also true when we allow for
free 𝑎𝑖1 amplitudes on each redshift bin 𝑖. We demon-
strate that our posteriors on cosmological parameters
are stable when inference is carried out at fixed neu-
trino mass and with free baryonic feedback parameters
(Figs. 9, 10 and 11);

• We perform a detailed Bayesian evidence-based model
selection for intrinsic alignments, finding that our data
shows a weak preference for simpler (and better con-
strained) parameterizations. We additionally find that
the best-fit IA amplitudes in DES Y3 are smaller than
those in Y1. However, the two are consistent with each
other, and also with other lensing surveys, although
quantitative statements are challenging without further
studies of e.g. sample selections and model differences.
In combination with the fact that posteriors on 𝑆8 ×Ωm
from simpler IA models are consistent with our fidu-
cial choice (TATT), these findings point to less complex
parameterizations, such as NLA, being a sufficient and
unbiased description of our data (Fig. 8, Table III and
right panel of Fig. 13).

Additionally, we share a summary of the main conclusions
of our companion paper (Amon et al. 2021), demonstrated
with the same Y3 cosmic shear analysis, and point the reader
to that paper for details:

• The analysis is shown to be robust to the choice of
redshift calibration sample, either photometric of spec-
troscopic, methodology and the modeling of redshift
uncertainty, within ∼ 0.5𝜎.

• We model the impact of blending using state-of-the-
art image simulations and show that our posteriors are
stable to this correction, within 0.5𝜎.

• The analysis passes all internal consistency tests, finding
that the cosmology is stable across redshifts, angular
scales and measurement statistics.

• The impact of additive shear systematics, such as PSF
contamination and B-modes is assessed and found to be
negligible for the analysis.
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• We investigate the limiting factors of the cosmic shear
constraints and find observational systematics are sub-
dominant compared to systematics due to modeling as-
trophysical effects.

The results presented in this study show that cosmic shear
has reached the requirements of percent level precision: every
source of systematic uncertainty must be controlled to better
than a percent of the signal, since our statistical uncertainty
on the amplitude parameter 𝑆8 is three percent. When the
first detections of cosmic shear were published in 2000, it was
far from a given that this level of precision was achievable.
With the full DES survey awaiting analysis, and the much
larger surveys from Euclid and the Rubin Observatory’s LSST
starting in a few years, it is interesting to consider prospects
for further qualitative advances.

On the theoretical side, we are limited by our ability to
describe the astrophysics of small scales, in particular baryons
and IA. Baryonic physics is the driver of our scale cuts, and
we will need to rely on advances in hydrodynamic simulations,
constrained by complementary observations such as Sunyaev-
Zel’dovich (SZ) maps, otherwise the necessary cuts and/or
marginalization will cause more information to be discarded.
Conversely, we have found that intrinsic alignments are likely
to contribute less than the most conservative forecasts, but
more studies are required to extended our findings to arbitrary
galaxy samples. Parallel advances in shear estimation and
calibration and the photo−𝑧s of source galaxies are required
to keep pace with statistical errors. Beyond cosmic shear,
a suite of statistical measures that capture the non-Gaussian
information in the shear field have been developed, such as
peak statistics and three-point correlations. These will add
complementary information and also serve as cross-checks on
the robustness of the signal. We can look forward to new
cosmological tests with the application of these approaches to
DES and future surveys.

Finally, we reiterate that, while the assumption of ΛCDM
as the ultimate end-to-end model connecting the early- and
late- Universe has withstood another test, our result should
be understood within a broader context. It is still an open
puzzle that modern weak lensing surveys, independently and
in blind analyses, find a lower lensing amplitude than pre-
dicted by the CMB, and the difference between DES cosmic
shear itself with respect to Planck has increased from 1.0𝜎
in DES Y1 to 2.3𝜎 in Y3. More effort is required to quan-
tify the agreement between lensing studies, especially towards
unifying and homogenizing their analyses and exploiting their
complementarities.
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Appendix A: Construction of the MICE source catalog and
results

In this section, we discuss the construction of a mock weak
lensing source catalog with the MICE N-body simulation. Sig-
nificantly, in addition to cosmological shear, these mock cat-
alogs contain a realistic IA component, making them a good
testing ground for our modeling; this is the primary motivation
for using them here, as discussed in Sec. V B. The implemen-
tation of the IA signal into MICE is described in far more
detail in Hoffmann et al. (2021), and is summarized below.

Each MICE galaxy has a (projected) shape assigned to it:

𝛾 = 𝛾G + 𝛾𝐼 + 𝜖 . (A1)

The cosmological part of this is obtained via ray tracing (see
Fosalba et al. 2015b); 𝛾𝐼 is the coherent intrinsic component,
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which is generated via semi-analytic modeling (see below and
Hoffmann et al. 2021), and 𝜖 is random Gaussian shape noise.

For the purposes of our test, it is desirable that the overall
constraining power of the mock catalog (in terms of the figure-
of-merit in the 𝑆8 × Ωm plane) resembles that of the fiducial
source catalog; to that end, we match the constraining power
of Y3 cosmic shear by adding a shape noise component to
the covariance matrix of the hypothetical MICE survey, gen-
erated with CosmoLike. This scatter is chosen such that the
uncertainty in the shape noise dominated regime is equivalent
between MICE and metacal: Δ𝐶𝜅𝜅

metacal(ℓ) = Δ𝐶𝜅𝜅
MICE (ℓ),

with

Δ𝐶𝜅𝜅 (ℓ) ∼ 1√︁
𝑓sky

(
𝜎2
𝑒

�̄�

)
(A2)

where 𝑓sky is the observed fraction of the total sky area, �̄� is
the (effective) galaxy number density and 𝜎2

𝑒 is the variance
of the ellipticities. With �̄� and 𝑓sky fixed in both catalogs (our
MICE catalog has approximately 130M galaxies over an area
of 5191 deg2 while metacal has 100M galaxies spanning an
area of 4143 deg2), and 𝜎𝑒 = 0.261 fixed in metacal, we
adjust 𝜎𝑒,MICE so that the equality is reached, and verify that
we achieve a comparable constraining power as DES Y3 in
the 2D 𝑆8 × Ωm. The IA contribution to the MICE shears
(𝛾𝐼 ) has, additionally, an irreducible noise coming from a
randomization of galaxy orientations. This randomization is
a component of the IA modeling and has been tuned to match
observed IA correlations from the BOSS LOWZ sample (Singh
& Mandelbaum 2016).

It is also desirable that the source galaxy photometric prop-
erties in the mock also resemble those of galaxies in the fiducial
DES Y3 catalog, since IAs can depend on galaxy color and
luminosity. In summary, we verify that the distribution of
𝑟𝑖𝑧 magnitudes and color-magnitude distributions are similar
between MICE and Metacalibration. It would also be ben-
eficial if the redshift distributions 𝑛(𝑧) on the mock catalog
were closely matched to what is found in real data (Fig. 3).
Since the implementation in MICE of the SOMPZ framework
utilized in DES Y3 (Myles, Alarcon et al. 2020; Buchs, Davis
et al. 2019) is beyond the scope of this work, and since the
goal of this model test should be agnostic to the exact shape of
the redshift distributions, we utilize Directional Neighborhood
Fitting (DNF) photo-𝑧s (De Vicente et al. 2016) for our mock
𝑛(𝑧)s, as these are made available by default with the MICE
data releases. In general, we find that DNF redshift distribu-
tions are narrower and less overlapping across bins than the
fiducial DES Y3 𝑛(𝑧)s.

With the mock catalog constructed, we then apply the same
pipelines that were used for measuring the tomographic cosmic
shear data vector 𝜉𝑖 𝑗± (𝜃) and inferring cosmological parame-
ters. Where possible we mirror the model choices and nuisance
parameter marginalization used in the analysis of the real data.

We measure 2 sets of shear correlation functions from the
mock: a “MICE Baseline” data vector estimated from the IA-
free GG signal (i.e. using only the 𝛾𝐺 component of Eq.
A1), and a “MICE IA” data vector which includes the full
GG+GI+II signal, as well shape noise added at the catalog

level. Since the former captures the cosmological signal (plus
cosmic variance), it provides a useful fiducial case, relative to
which we can gauge biases. The input cosmology is known for
MICE, however the IA signal is, by construction, not exactly
mapped into a set of NLA or TATT parameters. Thus, for
a single realization of the mock, our expectations are: 1)
that the constraints on the MICE Baseline GG-only vector are
consistent with the input cosmology while at the same time
the IA parameter constraints are consistent with zero; 2) that
cosmology constraints on the full MICE IA data vector are not
excessively biased with respect to the baseline constraints.

Both our expectations are fulfilled, with MICE IA offset by
∼ 0.6𝜎 from the peak of Baseline. Our results are shown in
Fig. 14. Although this shift is larger than the 0.3𝜎 tolerance we
applied to previous tests on analytic data, it is worth bearing
in mind that the nature of the test discussed here is slightly
different. That is, we only have one realization of the noise in
the IA vector (both cosmic variance and shape noise). While
this test is valuable, in the sense that large shifts would be a
sign of significant problems in the fidelity of our model, offsets
within ∼ 1 − 2𝜎 are entirely consistent with noise.

We also run the inference pipeline on the full IA data vector
while fixing the cosmological parameters at the true MICE in-
put to isolate the IA signal. Those are the “reduced” parameter
space curves in Fig. 14. While constraints obtained this way
are artificially tight, the exercise shows that the IA parameters
measured in the reduced case are consistent within 1𝜎 with
parameters obtained while varying cosmology. Additionally,
we do find a marginal preference for a negative 𝑎1 parameter
in both cases that involve nonzero IA parameters. Although
this is likely not a physical effect, and nor in this case can it be
the result of unmodeled photo-𝑧 error, it is quite conceivable
that it is simply a result of a small but positive “true" IA signal,
combined with shape noise.

This test on MICE is aimed at verifying that our fiducial
model can recover unbiased cosmological constraints from
a data vector that includes intrinsic alignments and that is
not generated by an analytic pipeline. While we do obtain
reasonable results and the present test has the rare benefit of
including a realistic, simulated (𝑁−body with semi-analytic
model) IA signal, it is statistically weaker than a more complete
validation of DES pipelines on simulations (DeRose et al.
2021a), mainly due to the lack of independent realizations. A
complete analysis on a relatively large number of MICE mocks
is left for future work.

Appendix B: Robustness of IA to Unmodeled Redshift Error

In this Appendix we set out in more detail the tests on an-
alytic data introduced in Sec. V A 3. These tests, which are
based on noiseless analytic data, are designed to test the spe-
cific question of whether our choice of IA model behaves well
in the presence of realistic errors in the redshift distributions.
We focus here on synthetic data vectors which do not contain
real data complexity, in which case a thorough testing of red-
shift calibration is more complicated and performed by our
companion Amon et al. (2021). We use the ensemble of 6000



36

0.2 0.3 0.4

Ωm

0.0

0.5

1.0

1.5

2.0

b T
A

−4

−2

0

2

a
2

−2

−1

0

1

a
1

0.65

0.70

0.75

S
8

0.65 0.70 0.75

S8

−2 −1 0 1

a1

−4 −2 0 2

a2

0.0 0.5 1.0 1.5 2.0

bTA

Baseline (TATT)

with IAs (TATT)

with IAs (NLA)

with IAs (TATT, fixed cosmology)

FIG. 14. MICE posteriors: The baseline case (purple) includes only
the GG part of the signal (no IAs) and IA parameters are consistent
with zero. The contours labelled “with IAs" (blue, green, pink)
includes GG+GI+II, with the IA model indicated in parentheses.
Note that two IA redshift power law indices are included in the fits,
as per the fiducial Y3 model; they are not shown here as they are only
very weakly constrained, and the contours are uninformative. Dashed
pink lines are the input MICE cosmology.

SOMPZ realizations of 𝑛(𝑧)’s, described in Myles, Alarcon
et al. (2020); for each sample of the Y3 redshift distributions,
we compute a simulated cosmic shear data vector 𝜉sample

± (𝜃) at
a fixed set of input cosmological parameters. Using the data
covariance, we can then calculate the Δ𝜒2 between 𝜉

sample
± (𝜃)

and a similarly generated cosmic shear data vector, but with
the fiducial (mean) 𝑛(𝑧) as input, 𝜉mean

± (𝜃). We find that the
distribution of Δ𝜒2 obtained for the 6000 samples peaks close
to zero (Δ𝜒2 < 1.0, corresponding to small perturbations of
the data vector) and has a long tail out to more extreme cases
(Δ𝜒2 ∼ 50.0). Given our finite computing resources, we do
not run nested sampling chains on all of the 6000 scenarios,
but rather choose three of increasing severity, corresponding to
the 60th, 95th and 99th percentiles of the 𝑝(Δ𝜒2) distribution.

We next translate these Δ𝜒2 errors into cosmological bi-
ases by analysing the three 𝜉sample

± (𝜃) vectors with our fiducial
setup. Although that setup includes redshift nuisance param-
eters Δ𝑧𝑖 , it cannot explicitly account for perturbations in the
𝑛(𝑧) shape that don’t map well into the first moment of the
𝑛(𝑧) distribution. More extensive testing of this is presented
in Amon et al. (2021); Cordero, Harrison et al. (2021).

The results of this exercise are shown in Fig. 15. Each of
the unfilled contours represents a different scenario of redshift
error, and can be compared with the solid purple (which has no
redshift error). In this limited testing scenario with synthetic
data we see no large biases in the IA model parameters or

0.3 0.5

Ωm

0.8

1.6

b T
A

−3

0

η 2

−4

0η 1

−3

−1

a
2

0.8

1.6

a
1

0.78

0.84

S
8

0.8

S8

0.5 1.5

a1

−3 −1

a2

−4 0

η1

−3 0

η2

0.5 1.5

bTA

True n(z), ∆χ2 = 0.0

wrong n(z), ∆χ2 = 3.0

wrong n(z), ∆χ2 = 7.0

wrong n(z), ∆χ2 = 14

FIG. 15. Analysis of synthetic data generated with the inclusion of
unmodeled redshift errors. The purple contour shows the baseline
posterior, obtained by analysing a simulated TATT data vector with
the correct 𝑛(𝑧); the three other colours show redshift error scenarios
of varying extremity. In each case the difference in 𝜒2 induced by
the redshift error, at the input point in parameter space, is indicated
in the legend.

𝑆8, which are recovered correctly, and no hints that the TATT
model parameters are absorbing the unmodeled error.

Appendix C: Comparing NLA and TATT in DES Y3

In this appendix we explore in more detail the differences be-
tween our fiducial IA model for Y3 (TATT), and the more com-
monly used NLA model. As discussed in Sec. IV D 2, TATT
is a physically-motivated model containing NLA, such that in
some limit (𝑎2, 𝑏TA → 0), the two are the same. Amongst var-
ious other permutations, we fit both the two-parameter NLA
model and the five-parameter TATT model to the Y3 cosmic
shear data. Using the more complex IA model results in a
slight widening of the contours, as can be seen in Fig. 8, and
also a rotation in the direction of the 𝜎8 − Ωm degeneracy.
These two effects combine to produce a ∼ 17% difference in
the projected error bar on 𝑆8 between the two models. When
considering the 2D Figure of Merit in the 𝑆8 − Ωm plane, the
difference is ∼ 25%.

In addition to the difference in constraining power, NLA
and TATT result in qualitatively different predictions for the
IA signal. We illustrate this in Fig. 16, which shows the theory
IA contributions, generated using the respective best fitting
IA parameters from the two chains. Both the absolute signal,
and the contribution relative to the cosmological shear (GG)
are included in the two panels. Although the choice of model
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FIG. 16. The best fitting IA predictions, based on NLA and TATT analyses. In the two panels we show the fractional IA contributions relative
to the cosmological signal (top), and the absolute contributions (bottom). Both IA components, GI and II, are plotted separately (blue and light
purple). As before, shaded regions indicate scales discarded from the analyses.
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does not change the conclusion that IAs are subdominant in all
bins (at the level of a few percent), the shape and sign of the
IA correlations do differ somewhat. Strikingly, TATT predicts
a much stronger II signal than NLA, which is largely driven
by the tidal torque (𝑎2) part of the model. It is also worth
remarking here that although they look different, neither of
these IA scenarios has been convincingly ruled out by direct
measurements. That is, if one generates projected intrinsic
alignment correlations (see e.g. Mandelbaum et al. 2006 Sec.
3.2 for the full definition) 𝑤𝑔+ and 𝑤++ predictions, using the
IA power spectra from these fits, the results are within the
range allowed by measurements on faint blue and red galaxies
at low redshift from SDSS (Mandelbaum et al. 2006, Singh
et al. 2015).

Appendix D: Full Posterior Constraints

We show a set of 2D projections of our cosmological and IA
parameter posteriors in Fig. 17, along with their priors. We
note that 𝜎8 and 𝑆8 are derived parameters which we do not
sample over, so projections make their apparent priors non-
uniform. Many of the parameters in our analysis are either
prior dominated, or not of physical interest, and so are not
shown in the main part of the paper. They are included here

for completeness.

Appendix E: Changes After Unblinding

Three changes to our analysis happened after unblinding,
neither of them affecting significantly the DES Y3 cosmic
shear cosmological constraints, particularly 𝑆8. The first is a
planned modification to the covariance matrix: after the tests
described in Sec. V succeed and cosmology constraints are
obtained, the analytic covariance matrix is re-computed at the
best-fit (maximum posterior) parameters of the full 3 × 2pt
data, and our cosmological constraints are updated with new
nested sampling chains.

The second change involves the DES Y3 lens sample, which
only enters the cosmic shear data via lensing ratios (Sec.
IV F). We substitute the original redMaGiC sample by the
magnitude-limited Maglim sample. We point the reader to
Dark Energy Survey Collaboration (2021a) for further details
and motivation for this change.

The third change is decision for presenting the ΛCDM-
Optimized scale cuts in cosmic shear as one of the main DES
Y3 results. While fundamentally the optimized scale cuts also
lead to robust < 0.3𝜎 shifts in our simulated analysis and
therefore could have been a reasonable pre-unblinding choice
on a 𝜉±-only analysis, this was only decided after unblinding.
We report that here for transparency.
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