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The choice of optimal event variables is crucial for achieving the maximal sensitivity of experimen-
tal analyses. Over time, physicists have derived suitable kinematic variables for many typical event
topologies in collider physics. Here we introduce a deep learning technique to design good event
variables, which are sensitive over a wide range of values for the unknown model parameters. We
demonstrate that the neural networks trained with our technique on some simple event topologies
are able to reproduce standard event variables like invariant mass, transverse mass, and strans-
verse mass. The method is automatable, completely general, and can be used to derive sensitive,
previously unknown, event variables for other, more complex event topologies.

Introduction. Data in collider physics is very high-
dimensional, which brings a number of challenges for
the analysis, encapsulated in “the curse of dimensional-
ity” [1]. Mapping the raw data to reconstructed objects
involves initial dimensionality reduction in several stages,
including track reconstruction, calorimeter clustering, jet
reconstruction, etc. Subsequently, the kinematics of the
reconstructed objects is used to define suitable analysis
variables, adapted to the specific channel and targeted
event topology. Each such step is essentially a human-
engineered feature-extraction process from complicated
data to a handful of physically meaningful quantities.
While some information loss is unavoidable, physics prin-
ciples and symmetries help keep it to a minimum.

In this letter, we shall focus on the last stage of this
dimensionality reduction chain, namely, the optimal con-
struction of kinematic variables, which is essential to ex-
pedite the discovery of new physics and/or to improve the
precision of parameter measurements. By now, the ex-
perimentalist’s toolbox contains a large number of kine-
matic variables, which have been thoroughly tested in
analyses with real data (see [2–5] for reviews). The latest
important addition to this set are the so-called “singu-
larity variables” [6–10], which are applicable to missing
energy events — the harbingers of dark matter produc-
tion at colliders. In the machine learning era, a myriad of
algorithms have been invented or adopted to tackle var-
ious tasks that arise in the analysis of collider data, e.g.,
signal–background discrimination (see [11] for a contin-
uously updated complete review of the literature). Un-
der the hood, the machines trained in these techniques
could learn to construct useful features from the low-level
event description, because they are relevant to the task

at hand. But it is difficult to interpret what exactly the
machines have learned in the process [12, 13]. Further-
more, it is rarely studied whether the human-engineered
features are indeed the best event variables for certain
purposes, and whether machines can outperform theo-
rists at constructing event variables.

These two issues, explainability and optimality, are
precisely the two questions which we shall address in this
letter. We shall introduce a new technique for training
neural networks to directly output useful features or event
variables (which offer sensitivity over a range of unknown
parameter values). This allows for explainability of the
machine’s output by comparison against known features
in the data. At the same time, it is important to verify
that the variables obtained using our technique are in-
deed the optimal choice, and we will test this by directly
comparing them against the human-engineered variables
that are known to be optimal for their respective event
topologies. Once we have validated our training proce-
dure in this way, we could extend it to more complex
event topologies and derive novel kinematic variables in
interesting and difficult scenarios.

Understanding how and what a neural network (NN)
learns is a difficult task. Here we shall consider relatively
simple physics examples that are nevertheless highly non-
trivial from a machine learning point of view: (1) visi-
ble two-body decay (to two visible daughter particles);
(2) semi-invisible two-body decay (to one visible and one
invisible daughter particle); (3) semi-invisible two-body
decays of pair-produced particles. It is known that the
relevant variables in those situations are the invariant
mass m, the transverse mass mT [14, 15] and the strans-
verse mass mT2 [16], respectively. We will demonstrate
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that in each case, the NN can be trained to learn the cor-
responding physics variable in the reduced latent space.
The method can be readily generalized to more complex
cases to derive deep-learned, next-generation event vari-
ables.

Methodology. Let X represent the high-dimensional
input features from a collision event, e.g., the 4-momenta
of the reconstructed physics objects. Let V (X) be a low-
dimensional event variable constructed from X. In this
work, we shall model the function V using a neural net-
work, where for notational convenience, the dependence
of V on the architecture and weights of the network will
not be explicitly indicated. We imagine that V retains
the relevant physics information and will be the center-
piece of an experimental study of a theory model with a
set of unknown parameters Θ. The goal is to train the NN
encoding the function V to be “useful” over a wide range
of values for Θ. For this purpose, we will need to train
with events generated from a range of Θ values. Note
that this is a departure from the traditional approach in
particle physics, where training is done for specific study
points with fixed values of Θ. In addition, we will have to
quantify the usefulness of a given event variable V (X),
as explained in the remainder of this section.

Intuition from Information Theory. Each event X carries
some information about the underlying model parameter
values from which it was produced. Some of this infor-
mation could be lost when reducing the dimensionality of
the data from dX ≡ dim(X) to dV ≡ dim(V ), as a conse-
quence of the data processing inequality [17]. Good event
variables minimize this information loss, and efficiently
retain the information about the underlying parameter
values Θ [18, 19]. This is precisely why the invariant mass
m, the transverse mass mT and the stransverse mass mT2

have been widely used in particle physics for mass param-
eter measurements and for new physics searches.

The mutual information of V and Θ is given by

I(V ; Θ) ≡
∫
V

dv

∫
Ω

dθ p(V,Θ)(v, θ) ln

[
p(V,Θ)(v, θ)

pV (v) pΘ(θ)

]
, (1)

where pV and pΘ are the probability distribution func-
tions of V and Θ, respectively, and p(V,Θ) is their joint
distribution. V and Ω are the domains of V and Θ, re-
spectively. One can think of pΘ as the prior distribution
of Θ.[25] The distributions p(V,Θ) and pV can then be de-
rived from pΘ and the conditional distribution pV |Θ(v|θ).

The mutual information I(V ; Θ) quantifies the amount
of information contained in V about Θ. Therefore, a
good event variable V should have relatively high values
of I(V ; Θ). From Eq. (1), one can see that I(V ; Θ) is
nothing but the Kullback–Leibler (KL) divergence from
(a) the factorized distribution pV ⊗ pΘ to (b) the joint
distribution p(V,Θ). The KL divergence, in turn, is a
measure of how distinguishable the two distributions (a)

and (b) are.
These observations lead to the following strategy

schematically outlined in FIG. 1: train the event variable
network so that the distributions pV ⊗ pΘ and p(V,Θ) are
highly distinguishable. An auxiliary classifier network
can then be used for evaluating the distinguishability of
the two distributions. The basic blueprint of our training
technique will be described next.

Training Data Generation. In order to generate the
training data, we start with the two distributions pΘ and
pX|Θ. The specific choice of a prior distribution pΘ is not
crucial — as long as it allows to sample θ over a suffi-
ciently wide range (the one in which we want the event
variable V to be sensitive) any function will do, and one
is further free to impose theoretical prejudice like fine
tuning, etc.
pX|Θ is the distribution of the event X conditional on

Θ. General purpose event generators can be used to sam-
ple from this distribution. The overall distribution of X,
namely pX , is given by

pX(x) =

∫
Ω

dθ pΘ(θ) pX|Θ(x|θ). (2)

Our training data consists of two classes, whose gen-
eration is illustrated in the left (green) block of FIG. 1.
Each training data point is given by a 2-tuple (X,Θ)
along with the class label ytarget ∈ {0, 1} of the data
point. Under class 0, X and Θ are independent of each
other and their joint distribution is given by pX ⊗ pΘ.
This is accomplished by simply replacing the true value
of Θ used to generate X with a fake one for the data-
points in class 0. Under class 1, the joint distribution of
(X,Θ) is given by

p(X,Θ)(x, θ) = pX|Θ(x|θ) pΘ(θ). (3)

Event Variable Training. As shown in the right (blue)
block FIG. 1, we then set up a composite network for
classifying the data points (X,Θ) into the two classes.
The composite network consists of two parts. First, an
event variable network (EVN) takes the high-dimensional
collider event information X as input and returns a low-
dimensional V (X) as output. As indicated, this network
parameterizes the artificial event variable function V (X),
which is precisely what we are interested in training. The
output layer of the EVN network does not use an activa-
tion function (or, equivalently, uses the identity activa-
tion). Since dV � dX , the main task of the EVN network
is to perform the needed dimensionality reduction. How-
ever, to ensure that this retains the maximal amount of
information, we introduce an auxiliary classifier network
which takes the event variable V (X) and the parame-
ters Θ as input and returns a one-dimensional output,
y(V,Θ) ∈ [0, 1]. Note that the input received by the aux-
iliary network is distributed as pV ⊗ pΘ under class 0,
and as p(V,Θ) under class 1.
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FIG. 1. A schematic diagram of the training strategy for the artificial event variable V . The left (green) and right (blue) blocks
depict the generation of training data and the composite neural network layout, respectively.

The information bottleneck [18] V (X) created by the
EVN module is optimized by simply training the com-
posite network as a classifier for the input data (X,Θ),
using the class labels ytarget as the supervisory signal.

Experiments. The EVN module in the network archi-
tecture from FIG. 1 reduces the original dX -dimensional
features to a dV -dimensional subspace of event variables,
which by construction are guaranteed to be highly sensi-
tive to the theory model parameters Θ, but without any
explicit dependence on them. Such variables have been
greatly valued in collider phenomenology, and a signif-
icant number have been proposed and used in experi-
mental analyses. As a proof of principle, we shall now
demonstrate how our approach is able to reproduce the
known kinematic variables in a few simple but non-trivial
examples. Here we shall only consider one variable at a
time, i.e., dV = 1, postponing the case of dV > 1 to
future work [20].

Example 1: Fully visible two-body decay. First we con-
sider the fully visible decay of a parent particle A into
two massless visible daughter particles, A→ b c. The pa-
rameter Θ in this example is the mass mA of the mother
particle A. The event X is specified by the 4-momenta
of the daughter particles pb and pc, leading to dX = 8.

The prior pΘ is chosen to sample mA uniformly in the
range [100, 500] GeV. For each sampled value of mA, we
generate an event as follows. A generic boost for the
parent particle A is obtained by isotropically picking the
direction for its momentum and uniformly sampling its
lab frame energy in the range [mA, 1500 GeV]. Subse-
quently, A is decayed on-shell into two massless parti-
cles (isotropically in its own rest frame), so that the in-
put data consists of the lab-frame final state 4-momenta
{pb, pc} ≡ {Eb, ~pb, Ec, ~pc}.

All the neural networks used in this work were imple-
mented in TensorFlow [21]. For the event variable net-

work, we used a sequential fully connected architecture
with 5 hidden layers. The hidden layers, in order, have
128, 64, 64, 64, and 32 nodes, all of them using ReLU as
the activation function. The output layer has one node
with no activation function. The classifier network is a
fully connected network with 3 hidden layers (16 nodes
each, ReLU activation). The output layer has one node
with sigmoid activation. These two networks were com-
bined as shown in the right (blue) block of FIG. 1 and
trained with 2.5 million events total (50–50 split between
classes 0 and 1), out of which 20% was set aside for val-
idation. The network was trained for 20 epochs with a
mini-batch size of 50, using the Adam optimizer and the
binary crossentropy loss function.

For the event topology considered in this example, it is
known that the event variable most sensitive to the value
of mA is the invariant mass of the daughter particles

mbc =
√

(Eb + Ec)2 − (~pb + ~pc)2 , (4)

as well as any variable that is in one-to-one correspon-
dence with it. In order to test whether our artificial
event variable V learned by the NN correlates with mbc,
we show a heatmap of the joint distribution of (V,mbc)
in the upper-left panel of FIG. 2. Here, and in what
follows, the heatmap is generated using a separate test
dataset with 105 events. In the plot we also show two
nonparametric correlation coefficients, namely Kendall’s
τ coefficient [22] and Spearman’s rank correlation coef-
ficients rs [23]. A value of ±1 for them would indicate
one-to-one correspondence. Our results depict an almost
perfect correspondence between V and mbc. Here, and
in what follows, we append an overall minus sign to V if
needed, to make the correlations positive and the plots
in FIG. 2 intuitive.

In practice, the artificial variable can be used to com-
pare the data against templates simulated for different
values of Θ. To illustrate this usage, in the lower-left
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FIG. 2. Top row: correlation plots between the artificial variable V and a relevant human-engineered variable for each of the
three examples considered in the text (mbc, mT and mT2 from left to right). Bottom row: unit-normalized distributions of the
corresponding artificial variable V for different mass inputs.

panel of FIG. 2 we show unit-normalized distributions of
the deep-learned variable V for several different values of
mA = {200, 280, 320, 400} GeV. It is seen that the distri-
butions are highly sensitive to the parameter choice mA

and, if needed, V can be calibrated so that the peak lo-
cation directly corresponds to mA. The observed spread
around the peak values in the histogram, as well as the
less than perfect correspondence between V and mbc, are
due to limitations in the NN architecture and training.

Example 2: Semi-visible two body decay. Next we con-
sider the semi-visible two-body decay of a particle A into
a massless visible particle b and a possibly massive in-
visible particle C, A → bC, where A is singly produced
(with zero transverse momentum). The parameter Θ is
two-dimensional: (mA,mC). The event X is specified by
the 4-momentum pb = {Eb, ~pbT , pbz} of b and the missing
transverse momentum, leading to dX = 6.

We generate (mA,mC) by uniformly sampling
(mA, δm) in the region defined by 100 GeV ≤ mA ≤
500 GeV and 0 ≤ δm ≤ mA, where δm ≡ (mA −
mC)2/mA. This choice of prior ensures that the rele-
vant mass difference parameter in this event topology
µ ≡ (m2

A −m2
C)/mA is adequately sampled in the range

[0, 500] GeV. For the given value of mA, we generate an
event as follows. The parent particle A is boosted along
the beam axis ±z (with equal probability) to an energy

chosen uniformly in the range [mA, 1500 GeV]. The par-
ticle A is decayed on-shell into b and C, isotropically in
its own rest frame. The details of network architectures
and training are the same as in Example 1.

The relevant variable for this event topology is the
transverse mass mT , which in our setup is given by

mT (m̃C) ≡ pbT +
√
p2
bT + m̃2

C , (5)

where the choice of mass ansatz m̃C for the mass of
the invisible particle C does not affect the rank order-
ing of the events. For concreteness in what follows we
shall use m̃C = 0. The corresponding heatmap of the
joint distribution (V,mT ) and unit-normalized distribu-
tions of the variable V for several choices of mA =
{200, 280, 320, 400} GeV and mC = 100 GeV are shown
in the middle panels of FIG. 2. Once again, we observe an
almost perfect correlation between V and mT , and a high
sensitivity of the V distributions to the input masses.

Example 3: Symmetric semi-visible two body decays. Fi-
nally, we consider the exclusive production at a hadron
collider of two equal-mass parent particles A1 and A2

which decay semi-visibly as A1A2 → (b1 C1) (b2 C2). The
parameter Θ is given by (mA,mC), and the event X is
described by the 4-momemta of b1 and b2, and the miss-
ing transverse momentum, leading to dX = 10.
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The masses (mA,mC) are generated as in Example 2.
In order to avoid fine turning the network to the de-
tails of a particular collider, we uniformly sampled the
invariant mass mA1A2

of the A1A2 system in the range
[2mA, 1500 GeV] and the lab-frame energy of the A1A2

system in the range [mA1A2
, 2500 GeV]. The direction

of the system was chosen to be along ±z with equal
probability. The direction of A1 is chosen isotropically
in the rest frame of the A1A2 system. A1 and A2 are
both decayed on-shell, isotropically in their respective
rest frames. The details of network architectures and
training are the same as in Example 1.

The straightforward generalization of the idea of the
transverse mass to the considered event topology leads
to the stransverse mass variable mT2(m̃C) [16]. In the
upper-right panel of FIG. 2 we show a heatmap of the
joint distribution of (V,mT2(0)), which reveals reason-
ably good, but not perfect correlation, implying that the
artificial event variable encapsulates information beyond
mT2. This could have been expected for the following two
reasons: 1) unlike the previous two examples of singular
variables with sharp features in their distributions, mT2

does not belong to the class of singular variables [10]; 2)
mT2 only uses a subset of the available kinematic infor-
mation, namely the transverse momentum components.
In contrast, the artificial kinematic variable can use all
of the available information, and in a more optimal way.
The lower-right panel of FIG. 2 displays unit-normalized
distributions of the artificial variable for several choices
of mA and fixed mC = 100 GeV, again demonstrating
the sensitivity of V to the mass spectrum.

Discussion and outlook. We proposed a new deep
learning technique pictorially summarized in FIG. 1
which allows the construction of event variables from a
set of training data produced from a given event topol-
ogy. The novel component is the simultaneous training
for varying parameters Θ which allows the algorithm to
capture the underlying phase space structure irrespec-
tive of the benchmark study point. This is the first
such method for constructing event variables with neural
networks and can be applied to other, more challenging
event topologies in particle physics and beyond. In fu-
ture applications of the method one could enlarge the
dimensionality of the latent space to dV > 1 and sup-
plement the training data with additional features like
tagging and timing information, etc. By manipulating
the specifics of the generation of the training data, one
can control what underlying physics effects are available
for the machine to learn from, and what physical param-
eters the machine-learned variable will be sensitive to.
Our method opens the door to new investigations on in-
tepretability and explainability by incorporating modern
representation learning approaches like contrastive learn-
ing [24].

Code and Data Availability. The code and data

that support the findings of this study are openly
available at the following URL: https://gitlab.com/

prasanthcakewalk/code-and-data-availability/

under the directory named arXiv 2105.xxxxx.
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