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We present a validation of the Dark Energy Survey Year 3 (DES Y3) 3× 2-point analysis choices
by testing them on Buzzard v2.0, a new suite of cosmological simulations that is tailored for
the testing and validation of combined galaxy clustering and weak lensing analyses. We show
that the Buzzard v2.0 simulations accurately reproduce many important aspects of the DES Y3
data, including photometric redshift and magnitude distributions, and the relevant set of two-point
clustering and weak lensing statistics. We then show that our model for the 3× 2-point data vector
is accurate enough to recover the true cosmology in simulated surveys assuming the true redshift
distributions for our source and lens samples, demonstrating robustness to uncertainties in the
modeling of the non-linear matter power spectrum, non-linear galaxy bias and higher-order lensing
corrections. Additionally, we demonstrate for the first time that our photometric redshift calibration
methodology, including information from photometry, spectroscopy, clustering cross-correlations and
galaxy–galaxy lensing ratios, is accurate enough to recover the true cosmology in simulated surveys
in the presence of realistic photometric redshift uncertainties.
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I. INTRODUCTION

Having effectively exhausted the information encoded
in the linear modes probed by the Cosmic Microwave
Background (CMB), cosmologists have lately turned to
wide-field galaxy surveys as their preferred tool for study-
ing dark matter and dark energy. These galaxy surveys,
which probe the distribution of matter in the low-redshift
universe, encode a great deal of cosmological information,
but their complex observational and modeling systemat-
ics pose significant challenges to unbiased inference.

Recently, combinations of galaxy clustering and weak
lensing have been realized as powerful mechanisms for
extracting cosmological information from photometric
galaxy surveys such as the Dark Energy Survey 1 (DES),
Kilo Degree Survey 2 (KiDS), and Hyper Suprime Cam
3 (HSC). In particular, the combination of shear–shear
(cosmic shear, ξ±(θ)), galaxy position–galaxy position
(galaxy clustering, w(θ)) and tangential shear–galaxy po-
sition (galaxy–galaxy lensing, γt(θ)) two-point functions
into a 3 × 2-point analysis has proven powerful, in part
because of its ability to break degeneracies between nui-
sance parameters and cosmological parameters [1, 33].
The resultant increase in constraining power comes at a
cost though: great care must be taken to ensure that all
of the components that feed into the 3× 2-point analysis
are robustly determined, lest the inferred cosmological
constraints be biased.

While some analysis validation can be undertaken an-
alytically [43], or using the data itself [77], validation
against realistic cosmological simulations is an essential
component of modern galaxy survey cosmology analyses
[49, 57, 65, 78]. In this work, we validate three main com-
ponents of the 3×2-point analysis being performed on the
first three years of DES data (DES Y3): the two-point
function measurement pipeline, photometric redshift cal-
ibration methodology and the likelihood and modeling
framework used to obtain cosmological constraints from
two-point functions and redshift distributions.

The first challenge that must be overcome in 3 × 2-
point analyses is the accurate measurement of the cosmic
shear, galaxy–galaxy lensing and galaxy angular cluster-
ing statistics that make up the 3 × 2-point data vector.
The measurement of galaxy ellipticities is especially im-
portant for weak lensing analyses, and dedicated image
simulations that test for and constrain biases that ap-
pear in this process are an essential ingredient for mod-
ern weak lensing analyses [24, 28, 40, 50, 52, 69]. In
this work, we focus on ensuring that our two-point mea-
surement pipelines deliver unbiased correlation functions
in the absence of these shear systematics. Mitigating
angular systematics imprinted on galaxy clustering and
galaxy–galaxy lensing statistics by survey and foreground

1 https://www.darkenergysurvey.org/
2 http://kids.strw.leidenuniv.nl/
3 https://hsc.mtk.nao.ac.jp/ssp/

inhomogeneities is also important, and while we do im-
print DES depth variations on our simulations that lead
to systematics of this kind, the DES Y3 methodology
for removing such systematics is thoroughly investigated
independently in [23, 63, 64].

The next key component required for accurate cos-
mological inference is a characterization of the source
and lens galaxy sample redshift distributions. The ro-
bust calibration of source redshift distributions is a chal-
lenge shared by all weak lensing surveys [36, 56, 80]. A
critical component of such a calibration is correctly ac-
counting for incompleteness of the spectroscopic galaxy
catalogs that form the foundation of all photometric red-
shift estimation. Previous versions of the simulations pre-
sented in this work have been used to study these effects
[31], but here we assume that we have complete, albeit
realistically sized, spectroscopic redshift catalogs, upon
which we build our photometric redshift estimations. We
proceed to test the three separate components of the
DES Y3 photometric redshift calibration: photometric
redshift estimation using self-organizing maps (SOMPZ
and 3sDir), clustering redshifts (WZ), and the ratios of
galaxy–galaxy lensing signals (shear ratios). These three
components are thoroughly validated in Amon et al.
[4], Gatti, Giannini et al. [27], Myles, Alarcon et al.
[56], Sánchez, Prat et al. [70], Sánchez, Raveri et al. [71].
In this work we present further tests showing that the
combination of these three methods is self-consistent and
unbiased in our simulations, and for the first time show
that the source redshift distributions calibrated using
these methods deliver unbiased cosmological constraints
in simulations.

The challenge of lens galaxy photometric redshift esti-
mation is also formidable. The lens sample that we use in
this work, redMaGiC , is a sample of luminous red galax-
ies selected to be constant in comoving number density
as a function of redshift. As they are a bright subset
of galaxies, photometric redshift estimation is relatively
straight-forward compared to that for source galaxy, but
nonetheless must be thoroughly validated. In the DES
Y3 data, clustering redshifts are again used for this task,
and this methodology is tested using the simulations pre-
sented here in Cawthon et al. [12]. The redMaGiC red-
shift estimation is further validated in this work, where
we show that use of redMaGiC photometric redshift dis-
tributions does not bias our cosmological inference. We
note that after un-blinding the DES Y3 redMaGiC anal-
ysis, the fiducial DES Y3 analysis was shifted to use a
different lens galaxy sample, called the maglim sample
[61, 62]. Validation of that analysis, including the use of
one of the simulations, described in this work is presented
in Porredon et al. [61].

With robust two-point function and redshift distribu-
tion measurements in hand, one remaining challenge is
to accurately predict the dependence of the 3 × 2-point
data vector on the cosmological parameters of interest.
Weak lensing is particularly sensitive to non-linearities
induced by gravitational collapse during the process of
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large-scale structure formation, and so validation of the
assumed matter power spectrum model is a particularly
important aspect of 3 × 2-point analyses. The N -body
simulations used in this work were run with different set-
tings and resolutions to those used in the Halofit model
for the matter power spectrum that the DES Y3 3 × 2-
point analysis employs, and thus provide an independent
validation of this modeling alongside that presented in
Krause et al. [44]. The ray-tracing algorithm that we
employ [7] allows us to incorporate higher-order lensing
effects such as magnification, angular deflection, and re-
duced shear in the two-point functions that we measure in
our simulations, validating the approximations of these
effects that are made in our modeling framework that
are also validated in Elvin-Poole et al. [22], Krause et al.
[44], Prat et al. [63].

Robust marginalization over astrophysical nuisance
parameters such as galaxy bias, redshift-space distortions
(RSD), galaxy intrinsic alignments, and baryonic effects
on the matter distribution is another important challenge
when interpreting the measurements made in 3× 2-point
analyses. As the models used for these effects in the DES
Y3 3×2-point analysis are largely perturbative in nature,
it is essential to validate them against fully non-linear
solutions for these physical processes as implemented in
cosmological simulations. In this work, we focus on test-
ing our models for galaxy bias and RSD, while Krause
et al. [44] and Secco, Samuroff et al. [72] test our models
for intrinsic alignments and baryonic effects. These tests
complement those performed in Pandey et al. [58], fur-
ther validating the bias modeling choices that are used
in the analysis of the DES Y3 data in Pandey et al. [59]
and the accompanying 2 × 2-point analyses. In particu-
lar, we show here that the scale cuts used for our analy-
ses are robust to non-linearities beyond those assumed in
our model, by showing that the cosmological constraints
obtained from the measurements on our simulations are
unbiased at high significance.

Our presentation will be organized as follows. In sec-
tion II we describe the Buzzard v2.0 simulations, which
represent a significant upgrade over the simulations used
in DES Year 1 analyses. In section III we describe how
3×2-point measurements are made and how redshift dis-
tributions are estimated in our simulated analyses. In
section IV A we describe the model used to obtain cosmo-
logical constraints from the DES Y3 3×2-point measure-
ments that we wish to test on these simulations. In sec-
tion V we present the results of our simulated analyses,
including varying levels of realism. Finally, in section VI
we summarize our work and conclude by discussing fu-
ture directions for improvement.

II. BUZZARD V2.0 SIMULATIONS

In this work, we make use of a suite of 18 N -body simu-
lations that are designed to reproduce the lens and source
samples used in the DES Y3 3× 2-point analysis. These

are a new version of the Buzzard simulations [20], im-
plementing a number of improvements over those used in
analyses of the first year of DES data (DES Y1). In this
section we briefly summarize the pertinent details from
DeRose et al. [20], and outline the main improvements,
relegating a more detailed description of these changes
to App. A-C. The main improvements of the simula-
tions presented in this work over those used in DES Y1
analyses are

1. Improved color-dependent clustering, based on a
conditional abundance matching model.

2. Explicit matching of red-sequence color distribu-
tions to the DES data.

3. More realistic photometric errors enabled by the
Balrog [24] image simulation framework.

Each Buzzard simulation is constructed from three in-
dependent N -body simulations, with sizes of 1.053, 2.63,
and 4.03 h−3Gpc3 and particle loads of 14003, 20483,
and 20483 respectively. All simulations were run using
the L-Gadget2 code [76], and initialized with indepen-
dent seeds at z = 50 using 2nd-order Lagrangian pertur-
bation theory as implemented in 2LPTIC [14] and linear
power spectra computed with CAMB [47], assuming a
flat ΛCDM cosmology with Ωm = 0.286, Ωb = 0.046,
h = 0.7, ns = 0.96, and σ8 = 0.82. A single set
of these simulations is sufficient to generate a unique
lightcone with an area of 10, 413 square degrees out to
z = 2.35. For further details regarding simulation spec-
ifications and validation of relevant observables see Sec-
tions 3.1 and 3.2 in DeRose et al. [20].

Galaxies are included in these lightcones using the
Addgals algorithm [84], which imbues each galaxy with
a position, velocity, size, ellipticity, and spectral energy
distribution. Functionally, the algorithm for producing
our source and lens galaxy samples proceeds as follows:

1. Assign galaxy positions, velocities and absolute
magnitudes.

2. Assign galaxy SEDs.

3. Assign intrinsic galaxy sizes and ellipticities.

4. Perform ray-tracing and lensing of the galaxy cat-
alog.

5. Generate survey-specific photometry and elliptici-
ties.

6. Select source and lens galaxy samples.

Step 1 is unchanged from previous versions of the
Buzzard simulations, and is fully explained in Wechsler
et al. [84]. We generate a list of galaxy absolute magni-
tudes by integrating a luminosity function that has been
fit to a variety of spectroscopic data sets. Additionally,
we have optimized the luminosity function in order to
match observed galaxy counts as a function of magnitude
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in the DES Y3 data, using an algorithm analogous to that
used in DES Y1, described in Appendix E.1 of DeRose
et al. [20]. Galaxies from this list are assigned phase-
space coordinates using a model for P (δ|Mr, z) that is
tuned to a subhalo abundance matching (SHAM) model,
where P (δ|Mr, z) is the probability that a galaxy in the
simulation with an absolute magnitude Mr is found in
an overdensity δ. In practice δ is defined as the inverse
of the radius enclosing a 3×1013 h−1M�. In halo masses
around and below this mass, Addgals tends to be slightly
less accurate as described in Wechsler et al. [84].

One of the main galaxy samples used for DES cos-
mological constraints is the redMaGiC sample, which is
designed to have robust photometric redshifts made pos-
sible by preferentially selecting bright red galaxies whose
redshift distributions have been shown to be accurately
and precisely characterized [11, 12, 66]. In order to bet-
ter model this sample, we have made significant improve-
ments to the color-dependent clustering model with re-
spect to previous versions of these simulations. In par-
ticular we adopt a conditional abundance matching al-
gorithm that assigns SEDs from the SDSS Main Galaxy
Sample (SDSS MGS) with redder rest frame g − r col-
ors to galaxies that are closer to dark matter halos with
masses greater than M200b ∼ 1013 h−1M�. A more de-
tailed description of this algorithm can be found in App.
A as well as in Wechsler et al. [84] and DeRose et al. [19].

Following this procedure, we compute broad-band
magnitudes by integrating each SED over DES ugrizY
and VISTA JHK band-passes. This procedure leads to
color distributions that well approximate those observed
in the DES Y3 data. In particular, color distributions
for Buzzard and the DES Y3 deep field data are com-
pared in fig. 1, where we have binned the deep field data
in redshift using the most precise redshift estimate avail-
able for each galaxy. Agreement is excellent except for
in u − g, where there are known deficiencies in the SED
templates used in our simulations [20].

In DeRose et al. [20] we showed that the galaxy red
sequence, e.g. P (r − i|z) for red galaxies, in the DES
Y1 Buzzard simulations was significantly narrower than
that found in the DES Y1 data. This led to over-
optimistic photometric redshift uncertainties for red-
sequence galaxies such as the redMaGiC sample, as the
uncertainty in these photometric redshift estimates is
directly proportional to the width of the red-sequence.
Additionally, at high redshifts, galaxies in the DES Y1
Buzzard simulations were significantly redder than those
found in the data, leading to a deficit of bright, red galax-
ies. In order to remedy these issues, we explicitly force
the mean and width of the red-sequence to match that
found in the data. The agreement between the Buzzard
v2.0 simulations and the DES Y3 data in this respect
is shown in fig. 2. The algorithm for performing this
matching is described in App. B.

Once SEDs have been assigned and magnitudes gener-
ated in each DES band-pass, we assign galaxy half-light
radii and intrinsic ellipticities as a function of observed

i-band magnitude as described in App. E3 in DeRose
et al. [20]. After this step we have a catalog of galaxies
with true positions, velocities, SEDs, DES magnitudes
sizes, and ellipticities.

Before applying any survey-specific masking or pho-
tometric errors to our simulations, we compute weak-
lensing quantities by ray-tracing through our simulations
with the Calclens code [7] using the same configuration
as described in DeRose et al. [20]. We then compute
deflection, rotation, shear, and magnification for each
galaxy from the lensing distortion tensor at the position
of that galaxy. These quantities are then used to deflect
the angular positions, rotate and shear the intrinsic el-
lipticities, and magnify the sizes and magnitudes of each
galaxy.

After lensing has been performed, the simulations are
rotated into the DES Y3 footprint, and masked using the
DES Y3 redMaGiC mask. We are able to cut two DES
Y3 footprints per 10, 000 square degree lightcone, each
with an area of 4143.17 square degrees.

In addition to these improvements, we have imple-
mented a more realistic model for photometric errors in
order to provide a better testing ground for the photo-
metric redshift methodologies employed in the DES Y3
3×2-point analysis. Along with the Gaussian photomet-
ric errors that we produce using the model described in
Appendix E.4 of DeRose et al. [20], we produce indepen-
dent realizations of photometric errors by making use
of the photometric error distributions measured by the
Balrog image simulation framework [24, 77]. Balrog in-
jects low-noise images of galaxies observed in the DES
deep fields [30] into wide-field images and remeasures
their photometry. This allows for estimates of detec-
tion efficiency and photometric errors as a function of
the nearly noiseless deep-field galaxy properties. These
relationships are precisely what are required in order to
apply photometric errors to our simulations. For each
simulated galaxy, we find a Balrog injected galaxy that
is closest in riz bands and apply the magnitude offsets
between the true Balrog injected photometry and the
measured wide-field detection. For a detailed description
of this algorithm, see App. C. At this point we have
galaxy catalogs with lensed positions, velocities, SEDs,
sizes, ellipticities, and ugrizY JHK magnitudes with re-
alistic noise from which we can select DES-like galaxy
samples.

III. MEASUREMENT OF THE 3× 2-POINT
DATA VECTOR

The 3 × 2-point data vector consists of the combina-
tion of galaxy ellipticity and galaxy density auto corre-
lations, the cross correlation between galaxy density and
galaxy ellipticities, and the associated source and lens
galaxy redshift distributions. In our simulations we have
kept as close as possible to the measurement pipelines
used in the DES Y3 data, with the main exception being
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0.1 < z < 0.6 u− g 0.6 < z < 1.1 1.1 < z < 1.5

g − r

r − i

p(
c)

i− z

z − J

J −H

0 2

H −K

0 2
c

0 2

Buzzard

DES Y3

FIG. 1. Comparison of ugrizJHK color distributions as a
function of redshift between Buzzard (blue) and the DES Y3
redshift sample (black). Different rows depict color distribu-
tions for different band combinations (listed in left column),
while different columns show different redshift bins. Agree-
ment is good, except for in the u-band and at redshifts z > 1,
where the SED templates used in Buzzard are poorly con-
strained by data [8].

that our simulated source catalog does not have inverse
variance weights or Metacalibration shear responses
[73, 77]. We have also opted to measure all shear correla-
tion functions without shape noise in order to maximize
the constraining power afforded us by this suite of simu-
lations. Appendix D describes how we select source and
lens galaxy catalogs from the Buzzard simulations and
Appendix E describes the estimators used to construct
the two-point functions that make up the 3 × 2-point
data vector.

In figs. 4 and 5 we compare the mean 3× 2-point data
vector from the Buzzard simulations to the 3 × 2-point
data vector measured from the DES Y3 data, finding
agreement at the 10 − 20% level for nearly all scales
and redshift bins. The first redshift bin in w(θ) is the
major exception; here the Buzzard simulations disagree
with the DES Y3 measurements by a factor of approx-
imately 1.5 on large scales. This bin contains the in-
trinsically faintest lens galaxies in our sample, so it is
possible that this is a sign of a breakdown in our color-
dependent galaxy clustering model at fainter magnitudes
than the samples used to constrain the model parameters
in DeRose et al. [19]. It is also interesting to note that
the Buzzard predictions for γt(θ) in this lens bin match
the data quite well. In light of the observed 12% discrep-
ancy between the bias inferred from γt(θ) and w(θ) in
the DES Y3 redMaGiC sample [21], the fact that Buzzard
agrees with the DES Y3 redMaGiC γt(θ) measurement in
the first lens bin implies that we should see a 24% dis-
crepancy in w(θ) on large scales under the assumption of

0.5

1.0

1.5

〈c
〉

g − r

DES Y3

Buzzard v2.0

r − i i− z

0 1
0.0

0.2

0.4

σ
(c

)

0 1
zλ

0 1

FIG. 2. Comparison of red-sequence colors between Buzzard
and DES Y3 as measured by redMaPPer. (Top) Mean red-
sequence color as a function of redshift for the DES Y3 data
(black) compared to the Buzzard simulations (blue). The
largest differences occur at high redshift in g − r, where the
mean color is poorly constrained in the data. (Bottom) Scat-
ter in red-sequence colors as a function of redshift for the DES
Y3 data and Buzzard.

LCDM and linear bias, which is approximately what is
observed.

We also see that there is a deficit of power in the
Buzzard measurements on small scales in γt(θ) for bin
combinations that include the first lens bin. This deficit
is likely a result of resolution effects in our N -body simu-
lations on one-halo scales, as these measurements probe
the smallest physical scales shown in these figures due
to the non-local nature of γt(θ). We note that for ξ±(θ)
there are no large deviations from our simulation mea-
surements on scales smaller than the DES Y3 scale cuts,
as one might expect from baryonic effects on the mat-
ter power spectrum, which have been shown to affect the
matter power spectrum at the 10 − 30% level [81].

In order to confront our two-point function measure-
ments with theoretical predictions, we require estimates
of the redshift distributions of our source and lens galax-
ies for each tomographic bin. We have made validation of
these algorithms on the simulations presented here a fo-
cus for the DES Y3 3×2-point analysis. Each component
of our redshift estimation framework including photo-
metric redshift estimation and tomographic binning with
SOMPZ [10, 56], redshift distribution uncertainty propaga-
tion with 3sDir [56, 71], and complementary redshift dis-
tribution information from clustering cross-correlations
[12, 27] and galaxy–galaxy lensing ratios [70], has been
tested extensively on the Buzzard simulations. Here we
briefly summarize how redshift distributions are obtained
from our simulations, relegating a more extensive discus-
sion to appendix F and the papers where each individual
redshift estimation component are validated and applied
to the DES Y3 data set.
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Our lens galaxy photometric redshift estimation is rel-
atively unchanged from that used in DES Y1. We briefly
describe it here, and refer the reader to Rozo et al. [66],
Cawthon et al. [12] and Rodŕıguez-Monroy et al. [64] for
more details. As the redMaGiC sample is a set of bright
galaxies for which we have abundant spectroscopy, we
place significant confidence in the redMaGiC in the pho-
tometric redshift estimates provided by the algorithm
itself, p(zredMaGiC). These are obtained by constructing
a red-sequence spectral template from a combination of
spectroscopy and galaxy cluster members. In our simu-
lations, we assume that we have a sparse, but unbiased
spectroscopic training set of similar size to that used in
the data. We bin lens galaxies into five tomographic bins
with edges, {0.15, 0.35, 0.5, 0.65, 0.8, 0.9}, using the mean
of p(zredMaGiC). To estimate the n(z) for each tomographic
bin, we stack four Monte-Carlo samples drawn from the
p(zredMaGiC) for each galaxy.

Source galaxy tomographic binning and mean redshift
distribution estimation is performed by a self-organizing-
map-based algorithm called SOMPZ. SOMPZ leverages infor-
mation from many-band photometry taken in small deep
fields in the DES Y3 footprint in combination with secure
spectroscopic and multi-band photometric redshifts from
PAU+COSMOS [3] to estimate the redshift distributions
of wide field weak lensing source galaxies, accounting for
selection and noise biases using the Balrog image simu-
lation framework. All of these pieces of information are
included in our Buzzard simulations, with the simplify-
ing assumption that the redshift catalog that is used by
SOMPZ is sparse but unbiased. We use 3sDir to generate
samples of n(z) for each source tomographic bin, propa-
gating sample variance and shot noise errors. Clustering
cross correlations between lens and source galaxies are
then used to select 1000 n(z) samples, and the distribu-
tion of the means of these samples is used as a prior for
the analyses presented in section V D.

The top row of fig. 3 compares the source and lens
redshift distributions measured from a single realization
of the Buzzard simulations to those measured in the
DES Y3 data. The agreement between the source red-
shift distributions in Buzzard and the DES Y3 data is
quite good; the mean redshifts of each tomographic bin
in Buzzard are [0.326, 0.511, 0.744, 0.871] compared with
[0.382, 0.563, 0.759, 0.913] in the Y3 data. The high- and
low-redshift tails are also captured well in the simula-
tions, except in the last source bin where there is a tail
to high redshift in the DES Y3 data that is not as ex-
tended in the Buzzard simulations. This discrepancy is
consistent with the observation that colors in Buzzard
approximate DES data more poorly at z > 1, as seen
in fig. 1. A key component necessary for obtaining this
level of agreement in redshift distributions was the im-
plementation of a more realistic photometric error model,
described in appendix C. The agreement between the lens
redshift distributions in our simulations and those found
in the data is near perfect. Tuning of the red-sequence
color model using the algorithm described in section II

and appendix B was necessary in order to obtain this
level of agreement.

IV. 3× 2-POINT LIKELIHOOD

In this section we describe the theoretical model that
that we employ in the simulated analysis of the Buzzard
v2.0 3× 2-point measurements.

A. Theoretical Model

Here we provide an overview of the model that we will
use to describe the 3×2-point measurements and refer the
reader to Amon et al. [4], Elvin-Poole et al. [22], Krause
et al. [44], Pandey et al. [59], Prat et al. [63], Secco et al.
[72] for complete technical specifications of the model.

1. Field-level description

There are two main fields that we must accurately de-
scribe in order to model 3 × 2-point measurements: the
scalar projected galaxy overdensity field measured in a
tomographic bin i at position n̂, δiobs(n̂), and the spin-
two galaxy shape field in tomographic bin j at position
n̂, γjα(n̂).

We account for three contributions to the galaxy over-
density field:

δiobs(n̂) =

∫
dχW i

δ (χ) δ(3D)
g (n̂χ, χ)︸ ︷︷ ︸

δiD(n̂)

+δiRSD(n̂) + δiµ(n̂) ,

(1)
where χ is the comoving distance, and W i

δ = ni(z) dz/dχ
the normalized radial window function for galaxies in to-
mographic bin i. The first term in this sum, δiD(n̂), is
the projection of the three-dimensional density contrast,

δ
(3D)
g , and the following two terms are contributions from

redshift-space distortions (RSD) and magnification, re-
spectively.

The configuration-space three-dimensional density
contrast can be perturbatively expanded in terms of op-
erators that satisfy the symmetries of general relativity.
We account for the following dependencies in this work:

δ3D
g ∼ f(δm,∇i∇jΦ,∇ivj) ∼ f (1)(δm) + f (2)(δ2

m, s
2)

+ f (3)(δ3
m, δms

2, ψ, st) , (2)

where δm, Φ. and v are the three-dimensional matter
density contrast, potential and velocity fields, and ψ, s2

and t are the scalar quantities constructed from contrac-
tions of the shear and velocity divergences ∇i∇jΦ and
∇ivj [55]. On the right hand side of eq. (2) we have orga-
nized these fields by the order at which they contribute
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FIG. 3. Top: Comparison of source (left) and lens (right) redshift distributions in Buzzard (dashed) to DES Y3 data (solid). The
mean redshifts of the source tomographic bins are [0.326, 0.511, 0.744, 0.871] in Buzzard compared with [0.382, 0.563, 0.759, 0.913]
in the Y3 data. We have matched the effective source number density and shape noise in Buzzardto that found in the DES Y3
Metacalibration sample [28]. In combination with the close match in mean redshifts of each tomographic bin, this means that
the total signal to noise of our lensing measurements in Buzzard should be approximately the same as that found in the DES
Y3 data. Bottom: Comparison between true (solid) and photometric (dashed) redshift distributions in Buzzard for sources
(left) and lenses (right). The differences between true and photometric redshift distributions illustrated here are shown to be
negligible for the simulated analyses presented in this work in section V D.

to the galaxy density contrast, where all arguments of the
function f i contribute at i-th order, respectively. If we
remain agnostic to the absolute magnitude of the contri-
bution from these fields to the total galaxy density con-
trast, and treat them to one-loop order in perturbation
theory, then we must introduce four bias coefficients per
lens bin: b1, b2, b3nl and bs2 [55, 68]. The parameters
b1 and b2 describe the dependence of the galaxy density
contrast on the matter density contrast and its square,
b3nl governs the dependence of all third order fields that
contribute at one-loop, and bs2 dictates the dependence
on s2. Pandey et al. [58] showed that for the accuracy of
DES Y3, it is sufficient to leave only b1 and b2 entirely

free, and to relate b3nl and bs2 to b1 through the so-called
Lagrangian co-evolution relations [54]:

bs2 = (−4/7)× (b1 − 1) (3)

b3nl = b1 − 1 . (4)

Additionally, we multiply b1 by the fully non-linear mat-
ter density contrast, whose power spectrum is modeled
using halofit [75, 79]. In Sec. V we explore a fiducial
model that assumes only linear bias, as well as a higher-
order bias model that leaves bi1 and bi2 free per lens bin,
where the superscript enumerates the lens redshift bin
that each coefficient contributes to.
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FIG. 4. Comparison of γt(θ) and w(θ) between Buzzard (lines) and the measurements from the Y3 data using the redMaGiC

lens sample (points), with error bars given by the fiducial Y3 covariance matrix. Shaded regions indicate the angular scale cuts
applied in the fiducial 3× 2-point analysis. Rows alternate between showing the measured signals and the fractional difference
between data and simulations. Numbers in each panel label the bin combinations shown, with the numbers in the γt(θ) panels
representing the lens-source bin pair, and numbers in w(θ) panels denoting the lens bins alone. The intent of this comparison
is to gauge how well the galaxy clustering and lensing properties in Buzzard match those observed in the data, with the caveat
that disagreement may arise due to differences in cosmology, and source and lens galaxy redshift distributions. Agreement in
w(θ) is generally better than for γt(θ) especially for the 2nd–5th lens bins, which may be a result of slightly different source
redshift distributions between the simulations and data, especially where there is significant overlap between source and lens
redshift distributions. We also observe a marked deficit of power on small scales in γt(θ) for the first lens bin at smaller scales
than those used in the analysis, part of which is likely due to resolution effects in Buzzard. The excellent match between γt(θ)
on larger scales in the first lens bin is interesting in light of the large discrepancy in the amplitude of w(θ) between the DES Y3
data and Buzzard for this lens bin. DES Collaboration [21] demonstrates that under the assumption of LCDM the redMaGiC

w(θ) and γt(θ) imply bias values that differ by 12%, so this may play some role in the discrepancies seen between the Buzzard

and DES Y3 w(θ) measurements in the first lens bin.

RSD contributes to this projected field through the ap-
parent bulk motion of galaxies across redshift bins due
to the large-scale coherent infall of galaxies towards each
other [39]. As our redshift bins are broad, this effect

can be treated at linear order, and thus depends only
on the linear matter density field, and the Hubble pa-
rameter, H(z). As such, inclusion of RSD contributes
no additional free parameters to our model. During the



10

0

2

10
4
θξ

+
(θ

) 1,1

101 102

θ [arcmin]

−0.5

0.0

0.5

101 102

θ [arcmin]

0

2

10
4
θξ
−

(θ
)1,1

−0.5

0.0

0.5

0

2

10
4
θξ

+
(θ

) 1,2

−0.5

0.0

0.5

101 102

θ [arcmin]

0

2

10
4
θξ
−

(θ
)1,2

−0.5

0.0

0.5
0

2

10
4
θξ

+
(θ

) 1,3

−0.5

0.0

0.5

101 102

θ [arcmin]

0

2

10
4
θξ
−

(θ
)1,3

−0.5

0.0

0.5

0.0

2.5

10
4
θξ

+
(θ

) 1,4

−0.5

0.0

0.5

101 102

θ [arcmin]

0.0

2.5

10
4
θξ
−

(θ
)1,4

101 102

θ [arcmin]

−0.5

0.0

0.5

2,2

2,22,3

2,3

2,4

2,4

101 102

θ [arcmin]

3,3

3,3

3,4

3,4

101 102

θ [arcmin]

4,4

4,4

101 102

θ [arcmin]

FIG. 5. Comparison of ξ±(θ) between Buzzard and the DES Y3 data. As in fig. 4, rows alternate between ξ±(θ) and the
fractional difference between simulations and data, while the numbers in each panel denote which source bin pairs are plotted.
The intent of this comparison is to show that the cosmic shear measurements from our simulations largely agree with those in
the DES Y3 data, so that analyses performed on the simulations can be trusted to have similar constraining power to those
perfomed on the DES Y3 data. The residuals shown here are largely scale independent, which is likely a representation of the
imperfect match in source redshift distributions between our simulations and data, along with a small difference in the best fit
cosmology from the ξ±(θ) analysis in the DES Y3 data and that used in the Buzzard simulations.

preparation of this work, a bug in the implementation of
RSD in the Buzzard simulations was identified. As our
analysis was quite advanced, we opted to correct for this
by adjusting our model to account for it, rather than cor-
recting our simulations. Additional details are contained
in appendix H.

The magnification contribution to δiobs is sourced by
gravitational lensing of galaxies by matter along the line-
of-sight and contributes to the density both in a purely
geometric manner by increasing/decreasing the apparent
surface area around dense/underdense lines of sight, and
by modulating the galaxy selection function through the
(de)magnification of galaxy magnitudes and sizes around
(under)dense lines of sight. The first of these effects de-
pends only on the underlying cosmological model and
matter power spectrum, but the second depends on the
number density of the galaxy sample in question as a
function of flux and size. To account for this dependence
we introduce the proportionality constant Ci and write

the magnification term as

δiµ(n̂) = Ciκi(n̂) , (5)

where Ci = 2[αi(m)−1] and α is the slope of the intrinsic
magnitude–size distribution, nintr(m):

α = 2.5
d

dm
[log nintr(m)]. (6)

We have also introduced the tomographic convergence
field

κi(n̂) =

∫
dχW i

κ(χ)δm (n̂χ, χ) (7)

where δm is the 3D matter density contrast, and the to-
mographic lensing efficiency

W i
κ(χ) =

3ΩmH
2
0

2

∫ χH

χ

dχ′ni(χ′)
χ

a(χ)

χ′ − χ
χ′

. (8)
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It is important to note that we assume constant galaxy
bias, magnification, and enclosed mass (see Sec. G) pa-
rameters in each lens bin. The validity of this assumption
is tested in our simulated analyses.

We can write the galaxy shape field as

γjα(n̂) = γjG,α(n̂) + εjI,α(n̂) + εj0,α(n̂) , (9)

where γjG,α is the contribution sourced by the gravita-
tional field, i.e. the gravitational lensing signal, and the
latter two terms are sourced by the intrinsic shapes of
galaxies, where we have decomposed this contribution
into a spatially coherent alignment with the large-scale
matter distribution εjI,α(n̂) and a stochastic contribution

εj0,α(n̂) which will only contribute to the noise in our cor-
relation function measurements.

In order to model the spatially coherent ”intrinsic
alignment” (IA) term, εjI,α(n̂), we first construct a three-

dimensional shape field γ̄IA
ij using the tidal alignment and

tidal torquing (TATT) model as follows [72]:

γ̄IA
ij = A1sij +A1δδsij +A2sikskj + · · · , (10)

where sij is the traceless tidal field tensor. This three
dimensional field must then be projected to obtain the
two-dimensional field described in eq. (9), which is then
used to compute angular correlation functions.

We let the coefficients in Eq. 10 evolve as a power law
in redshift:

A1(z) = −a1C̄1
ρcritΩm

D(z)

(
1 + z

1 + z0

)η1
, (11)

A2(z) = 5a2C̄1
ρcritΩm

D2(z)

(
1 + z

1 + z0

)η2
, (12)

C̄1 is a normalisation constant, by convention fixed at a
value C̄1 = 5×10−14M�h−2Mpc2, obtained from Super-
COSMOS (see Brown et al. 9). The parameter z0 is a
pivot redshift, which we fix to the value 0.62, ρcrit is the
critical density, and D(z) is the linear growth function.

We then relate A1δ to A1 via

A1δ = bTAA1, (13)

where bTA can be interpreted as the source galaxy bias,
although we have allowed it to assume a broader prior
than would be physically possible if it were a galaxy
bias parameter in order to give this term more flexibil-
ity in our intrinsic alignment (IA) model. In total, we
have five IA parameters: three amplitude parameters in
a1, a2, bTA, and two parameters governing their redshift
evolution, α1 and α2. This three-dimensional field can
be projected into the two-dimensional shape field that is
observed.

Note that we include modeling of IAs in our simulated
analyses solely for sake of comparison with the expected

constraining power of the analyses being performed on
the data. No IA signal is included in the Buzzard simu-
lations. Marginalizing over the full IA model significantly
impacts the constraining power of cosmic shear analyses,
but it’s impact on 3×2-point is much less severe [21, 72].
Nevertheless, we have verified that none of the results
presented here change in a qualitative way when we do
not marginalize over IAs.

2. Angular Two-point Statistics

We are not interested in these fields themselves,
but rather in their angular two-point auto- and cross-
correlations. In general, an angular two-point function
ξijAB(θ), where i and j are tomographic bin indices, and
A and B specify the fields being correlated, can be related
to its corresponding angular power spectrum CijAB(`) via
the relation

ξijAB(θ) =
∑
`

2`+ 1

4π
CijAB(`)dmn(θ) (14)

where dmn is the Wigner D-matrix, and m = n = 0 for
w(θ), m = 0, n = 2 for γt and m = 2, n = ±2 for ξ±.

We compute bin-averaged predictions for these two-
point functions by computing dmn(θ) averaged over the
width of the angular bin as described in Krause et al. [44].
The angular power spectra are in turn computed by pro-
jecting three-dimensional power spectra PAB along the
line of sight weighted by the relevant projection kernels.
For ξ± and γt we use the Limber approximation [48]

CijAB(`) =

∫
dχ
W i
A(χ)W j

B(χ)

χ2
PAB

(
k =

`+ 0.5

χ
, z(χ)

)
,

(15)

but for w(θ), the accuracy of the DES Y3 data demands
that we compute the full non-Limber projection integral
on large scales as described in Fang et al. [25], Krause
et al. [44]. Our simulations do not assume the Limber ap-
proximation for w(θ), but our ray-tracing algorithm does
implicitly assume it and thus the γt(θ) and ξ±(θ) mea-
surements in our simulations also use the Limber approx-
imation. Additionally, whereever the non-linear matter
power spectrum appears in our analysis, we use the re-
calibrated Halofit model [75], as described in Takahashi
et al. [79].

We also wish to mitigate the non-local nature of the
galaxy–galaxy lensing signal, as γt(θ) at a fixed value of
θ is sensitive to the total mass enclosed at all angles less
than θ. There are a number of similar methods that aim
to remove the sensitivity of γt(θ) to this enclosed mass
[5, 49, 60], but we opt to analytically marginalize over a
single parameter in each lens bin in order to account for
this:

γijt (θ) = γijt,model(θ) +
Cij
θ2

, (16)
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where

Cij = Bi

∫
dzldzsn

i(zl)n
j(zs)Σ

−1
crit(zl, zs)D

−2
A (zl) (17)

≡ Biβij (18)

where Bi is a free parameter describing the mass enclosed
within the minimum scale used in the γt(θ) part of our
data vector per lens bin, Σcrit is the critical surface mass
density, and DA(zl) is the angular diameter distance to
zl. Notably, we have made the assumption that this en-
closed mass does not evolve significantly over the width
of our lens redshift bin, an assumption that is implicitly
tested in this work.

Instead of sampling over these additional enclosed
mass parameters, analytically marginalize over them by
adding an extra component to our covariance matrix as
described in appendix G.

B. Scale cuts

We have determined a set of scale cuts such that our
fiducial linear bias modeling choices detailed above are
sufficient to deliver unbiased cosmological constraints in
a series of simulated analyses on noiseless data vectors.
When making choices about whether a particular anal-
ysis assumption is acceptable for the constraining power
afforded us by the DES Y3 data, we have set a criterion
that the assumption under consideration must result in
no greater than a 0.3σ bias in the two-dimensional spaces
of S8−Ωm and w−Ωm for ΛCDM and wCDM analyses
respectively. Formally, our criterion can be expressed as:

P (Ŝ8, Ω̂m|dfid) > 0.235 , (19)

where (Ŝ8, Ω̂m) = E[P (S8,Ωm|dcont)] for the ΛCDM case
and likewise for w − Ωm for the wCDM case. Procedu-
rally, this test is performed as follows. We generate a
data vector, dcont by breaking a set of assumptions that
are made in our fiducial analysis. We then analyze dcont

using the fiducial model where those assumptions hold,
producing the posterior P (S8,Ωm|dcont). We then gen-
erate a data vector, dfid, using the same cosmology as
that assumed when generating dcont, but now making
the assumptions that were previously broken. We ana-
lyze this with the same model, giving us the posterior
P (S8,Ωm|dfid). Our scale cut criterion, Eq. 19, then re-
quires that E[P (S8,Ωm|dcont)] must fall within the 0.3σ
(P > 0.235) confidence region of P (S8,Ωm|dfid).

The contaminated data vector that we use, dcont,
breaks our matter power spectrum and linear bias as-
sumptions. Instead of our fiducial assumptions, we use
a model for the non-linear matter power spectrum that
takes into account baryonic effects as measured in the
OWLS AGN simulation [82]. OWLs AGN possesses feed-
back effects that are more significant than many more re-
cent hydrodynamic simulations, but are still within the
realm of possibility. Additionally, we contaminate with

the non-linear bias model described in Sec IV A, and bias
coefficients as described in Pandey et al. [59].

We have determined that scale cuts on ξ±(θ) that yield
a χ2 difference between our contaminated and fiducial
models for ξ±(θ) of 0.5 are sufficient to pass Eq. 19.
For γt(θ) and w(θ), we make angular scale cuts that cor-
respond to 6h−1Mpc and 8h−1Mpc (or 4h−1Mpc for
both γt(θ) and w(θ) when testing non-linear bias mod-
eling) respectively at the low edge of the redshift range
for each lens bin. This procedure, along with a number
of additional stress tests of our fiducial model, including
tests of different matter power spectra, higher-order lens-
ing effects, and a more complex IA redshift scaling, are
discussed further in Krause et al. [44].

V. VALIDATION OF THE DES Y3 3× 2-POINT
ANALYSIS

We now proceed to investigate whether the models de-
scribed in Sec. IV are sufficient to recover unbiased con-
straints on cosmological parameters in our simulations.
We investigate four different analysis configurations:

A. Fixed cosmology;

B. Linear bias, true redshift distributions;

C. Non-linear bias, true redshift distributions; and

D. Linear bias, calibrated photo-z distributions.

The results of these tests are described in the following
subsections. The parameters that we leave free for each
of these configurations are listed with their priors in Ta-
ble I. We also list the part of the data vector that each
parameter contributes to, i.e. ξ±(θ), w(θ), or γt(θ).

The simulations presented in this work contain com-
plexities beyond the assumptions made in our fiducial
model, including

1. beyond one-loop galaxy bias, including stochastic-
ity;

2. redshift evolution of galaxy bias within each lens
bin;

3. redshift evolution of enclosed mass parameter, Bi,
within each lens bin;

4. source galaxy clustering;

5. reduced shear;

6. source galaxy magnification;

7. multiple lens plane deflection (“beyond Born” ap-
proximation);

8. anisotropic source and lens n(z); and

9. non-Gaussian distributed data vectors.
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For all posterior parameter distributions presented in
this paper, we make use of the PolyChord nested sam-
pler [29] with the same settings used in DES Collabo-
ration [21], which have been shown to yield converged
posteriors and evidences. All fits are done on data vec-
tors with the fiducial scale cuts described in Section
IV B unless explicitly stated otherwise. We make use of
the cosmosis4 likelihood and sampling framework [85],
which is one of two essentially interchangeable implemen-
tations of the model described in section IV A, along with
CosmoLike[42]. cosmosismakes use of the CAMB Boltz-
mann solver Howlett et al. [37], Lewis et al. [47].

We make use of the covariance matrix appropriate for
a single survey realization even though we are fitting to
the mean of 18 simulations. This is because we wish
to keep as close to the actual analysis that will be per-
formed on the DES Y3 data as possible. Analyzing each
of the 18 simulations independently with this covariance
matrix and taking the product of their posteriors would
have yielded the closest approximation to the analyses
performed on the DES Y3 data, but doing so would have
proven extremely computationally expensive. Instead,
we have opted to run analyses on the mean data vector
from all 18 simulations, but use a covariance matrix ap-
propriate for a single realization. This is in the spirit of
the rest of the simulated analyses used to validate the
DES Y3 cosmological constraints.

Because of this choice, we are susceptible to the same
parameter projection effects in marginalized posteriors
as those discussed in Krause et al. [44]. These parameter
projection effects are a consequence of correlations be-
tween cosmological parameters, and poorly constrained
nuisance parameters, such that when the nuisance pa-
rameters are marginalized over they impart a bias in the
marginalized posterior mean of a parameter of interest.
We emphasize that these effects are not a systematic er-
ror, in the sense that they decrease in size as the con-
straining power of an analysis increases. For a concrete
example of parameter projection effects, see the discus-
sion in section V B.

As such, we always compare posteriors obtained from
our Buzzard simulated data vectors with posteriors ob-
tained by running the same analysis on a synthetic data
vector generated by cosmosis assuming the Buzzard cos-
mology, true redshift distributions, and best-fit nuisance
parameters from analysis configuration A1 or A2 depend-
ing on whether the analysis under consideration uses a
linear or non-linear bias model. We will often refer to the
cosmosis simulated data vector as an uncontaminated
data vector, as it is produced from the same model that
is being used to perform the analysis. When comparing
the posteriors obtained from the Buzzard simulated data
vector to those obtained from the uncontaminated data
vector, we can disentangle the parameter biases resulting

4 https://bitbucket.org/joezuntz/cosmosis/

from parameter projection effects that will be present in
both marginalized posteriors from parameter biases re-
sulting from unmodeled systematics in Buzzard which
will only be present in the Buzzard posteriors.

In order to illustrate the increased constraining power
available to us through the use of the mean measure-
ment from 18 simulations, we show 1/

√
18σ and 2/

√
18σ

confidence intervals when plotting constraints run on the
Buzzard data vectors. These roughly correspond to the
1σ and 2σ confidence intervals that we would obtain, had
we performed analyses using the single Y3 covariance
scaled by the inverse of the number of simulations. In
fact, these sets of confidence intervals are identical in the
limit of flat priors, which we use for the majority of our
parameters. If our inference framework worked perfectly,
we would expect the mean of the posteriors derived from
18 simulations to match the mean of the posteriors from
the uncontaminated analysis at a level defined by these
tighter confidence regions, even though the uncertainties
from a Y3–sized data set are a factor of

√
18 larger.

Because we have a finite number of simulations, we
need to apply a slightly different criterion than Eq. 19 in
order to validate our analysis assumptions. In particular,
considering the data vector generated by taking the mean
over all of our simulations as dcont in Eq. 19, we note that
the quantity E[P (S8,Ωm|dcont)] now has an uncertainty
associated with it due to the noise that remains in dcont

even after averaging over 18 simulations. We wish to take
this uncertainty into account when determining whether
an analysis passes or fails our criterion. In order to do
this, we can generalize Eq. 19 to:

PTE ≡ 1−
∫
P (S8,Ωm|dfid)>0.235

P (S8,Ωm|dcont; Σ/N)dθ

≈ 1−
∫
P (S8,Ωm|dfid)>0.235

P (S8,Ωm|dcont; Σ)Ndθ ,

(20)

where Σ is the covariance for a single Y3 Buzzard realiza-
tion and N is the number of simulation realizations (18).
The proportionality in the second line holds in the limit
that the prior in the two-dimensional space of S8−Ωm is
flat over the region where P (S8,Ωm|dfid) > 0.235. This
quantity is the probability that the analysis performed
on the mean buzzard data vector, dcont, results in a pa-
rameter bias that is more than 0.3σ, i.e. a probability to
exceed (PTE) 0.3σ cosmological parameter bias.

Values for these probabilities are quoted in table III
and these constitute the main result of this paper. In
particular, we find that in all cases the probability for
any analysis to exceed a 0.3σ(1σ) bias is less than 62%
(2%) for ΛCDM and 58% (1%) in wCDM. In the follow-
ing sub-sections, we break these results down by analysis
configuration.

We supplement these values by calculating the mean
two-dimensional offsets in Ωm−S8 and S8−w in table IV
for ΛCDM and wCDM, respectively. These mean biases
are more easily interpretable, but we caution that these
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are less robust than the PTE values, as the mean poste-
rior values for the Buzzard chains have non-negligible un-
certainty of approximately 1/

√
18σ due to residual noise

in the mean Buzzard data vector. That uncertainty is
an upper bound on the actual uncertainty on these num-
bers, since our measurements do not include shape noise,
while our covariance matrix does.

A. Fixed cosmology

Before we obtain cosmological constraints from our
simulated measurements, we first wish to demonstrate
that our models for galaxy bias and lens magnification
provide good fits to our measurements when the cosmol-
ogy in our model is fixed to the true cosmology of our
simulations. Additionally, we fix all photometric redshift
and shear calibration parameters and use the measured
true source and lens redshift distributions to make our
model predictions. We set all IA parameters to zero as
our simulations contain no IA contribution. We refer to
this as analysis configuration A.

Within this configuration, we consider two variants:
one using a linear bias model, and one using our full
non-linear bias model described in section IV A, which
we refer to as configuration A1 and A2, respectively. A1
assumes one linear bias coefficient bi1 and one magnifica-
tion coefficient Ci for each lens bin. Analysis configura-
tion A2 also fits for one second order bias parameter per
lens bin, bi2. In this configuration we also sample over the
enclosed-mass parameters, Bi, described in section IV A,
rather than analytically marginalizing over them in order
to aid in presentation of our results. Analytic marginal-
ization results in the same best-fit likelihood values as
sampling over the enclosed-mass parameters, but inter-
preting model residuals in a visual format is made much
easier if we can obtain best-fit values for these parame-
ters. The priors that we assume on our bias, magnifica-
tion, and enclosed-mass parameters are listed in table I.

The best-fit models for configuration A1 and A2 are
shown in figs. 6 and 7, and the error bars are obtained
from the covariance of a single Y3 simulation, which is
what is used to fit these models. The prediction for ξ±(θ)
has no free parameters in this configuration, and we find
a chi-squared of 1.4 for 207 data points. The differences
on large scales in ξ±(θ) are likely caused by a combination
of source galaxy clustering and source galaxy magnifica-
tion [44, 72]. On scales below the scale cuts used in this
analysis, the observed differences are likely sourced by
ray-tracing resolution effects [20]. For analysis configu-
ration A1 and A2, the predictions for w(θ) and γt(θ) have
15 and 20 free parameters respectively with 53 and 232
data points for w(θ) and γt(θ) for A1, and 68 and 272
data points for w(θ) and γt(θ) for the rmin = 4h−1Mpc
scale cuts used for the A2 analysis. A1 results in a chi-
squared of 4.5 and 9.1 for w(θ) and γt(θ), while A2 results
in chi-squared values for w(θ) and γt(θ) of 7.2 and 8.4.
The fact that the reduced chi-squared values for w(θ) and

γt(θ) are larger than for ξ±(θ) is expected, as w(θ) and
γt(θ) have an additional contribution from shot-noise in
the lens galaxy sample, which is not present in ξ±(θ). In
all cases, the residuals are significantly smaller than the
expected errors on our Y3 measurements. In the follow-
ing sections, we investigate the effect of these residuals
on cosmological parameter constraints, where we have
formal requirements on acceptable parameter biases. We
have also checked that the values for the magnification
coefficients obtained in these analyses are consistent with
the expected values, as further explored in Elvin-Poole,
MacCrann et al. [22]. These results are summarized in
table II.

B. Linear Bias

We proceed to analyze our simulations assuming the
true measured redshift distributions with analysis config-
uration B. Configuration B samples over ΛCDM cosmo-
logical parameters, linear galaxy bias, and the TATT IA
model while fixing nuisance parameters related to photo-
metric redshift uncertainty and weak-lensing shear cali-
bration. We also fix the parameters describing lens mag-
nification to the values obtained for the Buzzard simula-
tions in Elvin-Poole, MacCrann et al. [22].

The results of this analysis are summarized in the top
row of panels in fig. 8 and fig. 9, where we display poste-
riors obtained from analyses of ξ±(θ), w(θ) + γt(θ), and
ξ±(θ)+w(θ)+γt(θ) in the three different sub-figures for a
ΛCDM and wCDM analysis respectively. The solid con-
tours in these figures are obtained by running analyses on
dcont, i.e. the mean Buzzard data vector, and the inner
and outer contours represent the 1/

√
18σ and 2/

√
18σ

confidence regions using a covariance matrix appropriate
for a single simulation realization. We emphasize that
these confidence regions are equivalent to the 1σ and 2σ
confidence regions we would have obtained using a co-
variance appropriate for the mean of 18 simulations in
the limit of flat priors.

The dashed contours in each panel are constraints ob-
tained by running on an uncontaminated data vector as-
suming the covariance of a single Y3 simulation, and so
approximately represent the uncertainties on S8, Ωm, and
w that we would expect from the Y3 data in the absence
of photometric redshift and shear calibration systemat-
ics. The PTE values obtained by plugging these posteri-
ors into Eq. 20 are summarized in the first two columns
of table III. All three analyses pass the criterion in Eq.
20. We also quote biases in the mean Ωm−S8 and w−Ωm
posteriors for the ΛCDM and wCDM analyses with re-
spect to the black uncontaminated posteriors in table IV.
We find that all data combinations result in mean poste-
rior biases that are less than 0.3σ.

In wCDM, we see that the uncontaminated black-
dashed posteriors are biased with respect to the truth for
2× 2-point and 3 × 2-point analyses. This is a so-called
projection effect that results from degeneracies between
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TABLE I. Parameters and priors

Parameter Prior Data-vector Analysis Configuration
Cosmology

Ωm flat (0.1, 0.9) ξ±(θ), w(θ), γt(θ) B,C,D
As flat (5× 10−10, 5× 10−9) ξ±(θ), w(θ), γt(θ) B,C,D
ns flat (0.87, 1.07) ξ±(θ), w(θ), γt(θ) B,C,D
Ωb flat (0.03, 0.07) ξ±(θ), w(θ), γt(θ) B,C,D
h flat (0.55, 0.91) ξ±(θ), w(θ), γt(θ) B,C,D

Lens Galaxy Bias
bi1(i = 1, 5)a flat (0, 3.0) w(θ), γt(θ) A1/2,B,C,D
bi2(i = 1, 5)b flat (−5, 5) w(θ), γt(θ) A2,C

Intrinsic Alignment
a1 flat (−5, 5) ξ±(θ), γt(θ) B, C, D
a2 flat (−5, 5) ξ±(θ), γt(θ) B, C, D
α1 flat (−5, 5) ξ±(θ), γt(θ) B, C, D
α2 flat (−5, 5) ξ±(θ), γt(θ) B, C, D
bta flat (0, 2) ξ±(θ), γt(θ) B, C, D

Magnification
αi
mag flat(−4, 4) γt(θ), w(θ) A1/2

Point Mass
Bi flat(−50, 50) γt(θ) A1/2c

Lens photo-z
∆z1l Gauss (0.000, 0.004) w(θ), γt(θ) D
∆z2l Gauss (0.000, 0.003) w(θ), γt(θ) D
∆z3l Gauss (0.000, 0.003) w(θ), γt(θ) D
∆z4l Gauss (0.000, 0.005) w(θ), γt(θ) D
∆z5l Gauss (0.000, 0.01) w(θ), γt(θ) D
σz5l Gauss (1.000, 0.054) w(θ), γt(θ) D

Source photo-z
∆z1s Gauss (0.000, 0.018) ξ±(θ), γt(θ) D
∆z2s Gauss (0.000, 0.013) ξ±(θ), γt(θ) D
∆z3s Gauss (0.000, 0.006) ξ±(θ), γt(θ) D
∆z4s Gauss (0.000, 0.013) ξ±(θ), γt(θ) D

Shear calibration
mi(i = 1, 4) Gauss (0.0, 0.015) ξ±(θ), γt(θ) D

a Analysis setup C samples over bi1σ8
b Analysis setup C samples over bi2σ

2
8

c Marginalized over analytically in B/C/D

TABLE II. Best-fit configuration A1/2 χ2/data vector dimensionality (NDV)/number of free parameters (Nparam)

A1 χ2 A1 NDV A1 Nparam A2 χ2 A2 NDV A2 Nparam

ξ±(θ) 1.4 207 0 – –
w(θ) 4.5 53 15 7.2 68 20
γt(θ) 9.1 232 15 8.4 272 20

TABLE III. Probability to Exceed (PTE) 0.3/1σ Cosmological Parameter Bias. PTE values less than 1% are indicated as
<0.01.

ΛCDM B wCDM B ΛCDM C wCDM C ΛCDM D wCDM D
ξ±(θ) 0.43/<0.01 0.19/<0.01 – – 0.14/<0.01 0.24/<0.01

w(θ),γt(θ) 0.25/<0.01 0.35/<0.01 0.20/<0.01 0.26/<0.01 0.08/<0.01 0.05/<0.01
ξ±(θ),w(θ),γt(θ) 0.61/0.02 0.49/<0.01 0.35/<0.01 0.58/0.01 0.15/<0.01 0.12/<0.01
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TABLE IV. Mean Ωm − S8 / w − S8 Parameter Bias

ΛCDM B wCDM B ΛCDM C wCDM C ΛCDM D wCDM D
ξ±(θ) 0.19σ 0.04σ – – 0.07σ 0.15σ

w(θ),γt(θ) 0.13σ 0.14σ 0.05σ 0.11σ 0.01σ 0.01σ
ξ±(θ),w(θ),γt(θ) 0.23σ 0.18σ 0.09σ 0.21σ 0.07σ 0.05σ
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FIG. 6. Comparison of our fiducial ξ±(θ) model prediction (lines) at the true Buzzard cosmology to the mean measurement
from our simulations without shape noise (points). Rows alternate between the signals themselves, and fractional deviations
between models and simulations, and the grey regions are our fiducial scale cuts. We find χ2 = 0.78 for ξ+ and χ2 = 0.59 for ξ−.
The differences on large scales are likely caused by a combination of source galaxy clustering and source galaxy magnification
[44, 72]. On scales below the scale cuts used in this analysis, the observed differences are likely sourced by ray-tracing resolution
effects [20].

our nuisance parameters and cosmological parameters,
particularly w and S8. In configuration B, poorly con-
strained non-linear IA parameters in our TATT model
couple with S8 and w, such that when we marginalize
over these IA parameters differences in posterior volume
sourced by correlations between IA parameters and S8

and w lead to apparent biases. It is for this reason that
it is important to quote offsets with respect to the un-
contaminated posteriors, rather than the true parameter
values in our simulations, lest we neglect the impact of
these projection effects. The direction and size of these
projection effects depends sensitively on the mean nui-
sance and cosmological parameter values assumed when

generating our data vectors, as they are entirely a func-
tion of the parameter volume that is projected over to ob-
tain marginalized posteriors. As such, it is also important
that our data vector that is used to obtain uncontami-
nated posteriors is generated with nuisance parameters
that match those found in the Buzzard simulations.

If our forward model exactly matched the Buzzard
measurements at the true Buzzard cosmology, then the
projection effects in the contaminated and uncontami-
nated posteriors would match, as the posteriors would
then agree perfectly and thus projection effects would
be identical. Because we do not have an analytic for-
ward model that exactly describes the Buzzard measure-
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FIG. 7. Same as Fig. 6, but for γt(θ) and w(θ). Best-fit configuration A1 (linear bias, blue) and A2 (non-linear bias, yellow)
models fixed to the true Buzzard cosmology are compared to the mean Buzzard data vector without shape noise. Rows
alternate between the signals themselves, and fractional deviations between models and simulations. For configuration A1 we
find χ2 = 4.5 for γt(θ) and χ2 = 9.1 for w(θ) for our fiducial scale cuts, shown as light gray shaded regions. For A2 we find
χ2 = 7.2 for γt(θ) and χ2 = 8.4 for w(θ) using rmin = 4h−1Mpc scale cuts, depicted by the dark grey shaded regions.

ments, this sets a limit on the precision with which we
can perform the tests presented in this work because dif-
ferences in projection effects in combination with biases
in our model can then source marginalized posterior off-
sets. This is particularly true in the limit where param-
eter projection effects are large, as the PTE values and
parameter offsets that we quote depend on the nuisance
parameter values assumed in our uncontaminated data
vectors.

While these effects are counter-intuitive and and limit
our ability to interpret posteriors at the precision of frac-
tions of 1σ, we can take solace in the fact that they are
not a systematic bias, as the size of these effects will

shrink proportionally to the constraining power of the
data.

C. Non-linear Bias

In configuration C we add non-linear bias to the model
used in configuration B. In particular, we use the non-
linear bias model described in Sec. IV A, and sample
over σ8b

i
1 and σ2

8b
i
2 rather than the bare bias parameters

in order to mitigate parameter projection effects as dis-
cussed in [59]. We again assume the true measured red-
shift distributions and fix nuisance parameters related to
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FIG. 8. Constraints on S8 and Ωm from 1×2- (left), 2×2- (middle), and 3×2- (right) point analyses on the mean data vector
from the full suite of simulations. (Top) Constraints marginalizing over only cosmology, linear bias, and IAs, assuming the
true source and lens redshift distributions. Posteriors obtained using the mean Buzzard data vector are shown as solid lines,
while dashed contours use a data vector generated at the true cosmology of the simulations with the best-fit linear bias model
from analysis configuration A1, i.e., the blue line in Fig. 7. The shaded Buzzard contours are the 1/

√
18 and 2/

√
18 confidence

regions, while the dashed contours represent the 0.3 and 1 σ confidence regions for a single simulation realization. The cross-
hairs represent the true Buzzard cosmology and the the difference between the dashed contours and these is a product of
parameter projection effects. (Middle) Same as top row, but posteriors are obtained using analysis configuration C (non-linear
bias), where the uncontaminated data vector is the best fit non-linear bias model from analysis configuration A2, i.e., the yellow
line in Fig. 7. (Bottom) Same as top and middle rows, but using analysis configuration D, i.e., using calibrated photometric
redshift distributions to make our model predictions, and marginalizing over source and lens photometric redshift uncertainties.
This isolates the effect of photometric redshift biases on our analysis. Dashed contours are the same as the solid contours in
the top row, but scaled to represent the constraining power of a single Y3 simulation. In all cases, the probability to exceed a
parameter bias of more than 0.3σ is less than 60%, as summarized in table III and table IV.

photometric redshift uncertainty and weak lensing shear
calibration. In this case, we relax our angular scale cuts
so that they correspond to rmin = 4h−1Mpc at the low
edge of each lens redshift bin for w(θ) and γt(θ), as mo-
tivated by Pandey et al. [58].

The results of this analysis are shown in the middle
rows of fig. 8 and fig. 9 for ΛCDM and wCDM respec-
tively. The posteriors here are analogous to those pro-

duced using analysis configuration B. The PTE values
obtained by plugging these posteriors into Eq. 20 are
summarized in the third and fourth columns of table III.
Biases in the mean Ωm − S8 and w − Ωm posteriors for
the ΛCDM and wCDM analyses with respect to the black
uncontaminated posteriors are quoted in table IV. There
is a moderate decrease in Ωm − S8 parameter bias for
the full 3 × 2-point analysis in this configuration com-
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FIG. 9. Same as Fig. 8, but for a wCDM parameter space, showing constraints on Ωm and w. In all cases, the probability to
exceed a parameter bias of more than 0.3σ is less than 59%, as summarized in Tab. III. The wCDM constraints in the presence
of non-linear bias as shown for configuration C (middle row) are impacted by parameter projection effects, as discussed further
in section V C. The inclusion of shear ratios improves the constraining power of ξ±(θ) alone in configuration D (bottom left)
with respect to configuration B, mostly by partially breaking degeneracies with intrinsic alignment parameters, even though
configuration D also marginalizes over additional nuisance parameters.

pared with the constraints obtained using configuration
B, but the shift that we observe is approximately the
same size as that expected from the tests performed in
Pandey et al. [59], ∼ 0.2σ, that were originally used to
determine the scale cuts that we are further testing here.

In wCDM, we see that the PTE values and w − Ωm
parameter biases increase with respect to those found
in configuration B. This is likely a result of a mismatch
in projection effects occurring in our Buzzard analysis
and our uncontaminated analysis. The first piece of ev-
idence for this is that we see the opposite effect, i.e.,
a decrease in PTE and parameter biases in our config-
uration C ΛCDM analyses where projection effects are
less important. Furthermore, we see no evidence that
our non-linear bias model is a worse fit for the relaxed
scale cuts used in analysis C than our linear bias model

is when using our fiducial scale cuts. This is evidenced
by the very small change in reduced chi-squared values
between configuration A1 and A2, as described in sec-
tion V A. Finally, the maximum likelihood w value for
the configuration C Buzzard 3 × 2-point analysis is −1,
indicating that there are indeed large projection effects
in this analysis, as this maximum likelihood value is sig-
nificantly offset from the mean of the w posterior in the
middle right panel of fig. 9. In light of this, we caution
against over-interpretation of the larger PTE and param-
eter bias values for these wCDM constraints. This issue
further emphasizes the importance of quoting parameter
constraints where the effects of parameter projection ef-
fects are minimized, as has been a focus for the DES Y3
analyses.
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D. Calibrated photometric redshifts

Finally, we test whether our photometric redshift
marginalization methodology is sufficient to recover un-
biased cosmological constraints on our simulations in the
presence of realistic photometric redshift uncertainties.
The methodology for obtaining the calibrated photomet-
ric redshift distributions that we employ in this analysis
is described in detail in appendix F, as well as in Buchs,
Davis et al. [10], Cawthon et al. [12], Gatti, Giannini
et al. [27], Myles, Alarcon et al. [56], Sánchez, Prat et al.
[70], Sánchez, Raveri et al. [71]. In summary, we use
lens redshift distributions as estimated by the redMaGiC
algorithm, and samples of our source redshift distribu-
tions generated by the 3sDir algorithm [56, 71] using
the SOMPZ redshift distribution estimates, weighted by
the likelihood of those samples given the cross-correlation
of our source galaxies with redMaGiC and spectroscopic
galaxies.

We have made a significant simplifying assumption in
our simulations: that we have we have sparse but unbi-
ased spectroscopic redshift calibration samples for both
redMaGiC and our source photo-z estimation methodol-
ogy. This is not assumed in the Y3 analysis on data,
where we have added additional uncertainty in order to
encapsulate possible biases in these calibration samples.

The lens photo-z uncertainties are incorporated by
shifting the means of the fiducial lens n(z) estimates,
an approximation that has been shown to be sufficient
for the redMaGiC lens sample in Rodŕıguez-Monroy et al.
[64]. We also marginalize over a re-scaling of the width of
n(z) for the highest redshift lens bin, as was determined
necessary in Cawthon et al. [12]. The source redshift dis-
tributions have significantly more uncertainty than our
lens redshift distributions, and so we have developed
methodology that enables us to explicitly marginalize
over samples of this redshift distribution that encapsu-
late complexity that is more significant than shifts in the
means of our redshift distributions. Cordero et al. [13]
has shown that this additional uncertainty is negligible
for our DES Y3 analysis, and that marginalizing over
shifts in the means of our source redshift distributions
is sufficient both in the Buzzard simulations and in the
DES Y3 data. As such, for this analysis we marginalize
over a Gaussian prior on these mean shift parameters.
Priors on all photometric redshift related parameters are
listed in table I. In particular, we assume values for these
priors based on preliminary characterizations of these ef-
fects in the DES Y3 data, although we note that the size
of these priors contributes negligibly to the size of our
posteriors, as IA- and bias-related nuisance parameters
are our dominant systematics.

Additional information on our redshift distributions as
well as IA parameters is gained through the inclusion
of small-scale shear-ratio measurements at the likelihood
level, as described in appendix F 4 and Sánchez et al.
[70]. We also marginalize over multiplicative shear bi-
ases in this analysis configuration, with uncertainties de-

termined by a preliminary estimate of these on our Y3
data [51]. These multiplicative biases have no discernible
impact on our posteriors due to their very small uncer-
tainties.

Results of this analysis are summarized in the bot-
tom rows of figs. 8 and 9, where now we compare the
posteriors obtained using analysis configuration D (solid)
with those obtained with configuration B (dashed). The
dashed contours are now approximately the 0.3σ and 1σ
constraining power of a single Y3 analysis. We choose to
compare configuration D to configuration B rather than
an uncontaminated analysis because we wish to isolate
parameter biases that are sourced by photometric red-
shift (mis)estimation. We see that in all cases the shifts
in posteriors are negligible, indicating that our photomet-
ric redshift calibration methodology has been successful
in encapsulating the photo-z biases contained in our sim-
ulations. PTE values and parameter biases for analysis
configuration D are listed in table III and table IV.

VI. SUMMARY AND CONCLUSIONS

We have presented the Buzzard v2.0 simulations, a
suite of 18 synthetic DES Y3 galaxy catalogs tailored for
the validation of combined clustering and lensing anal-
yses. We have used these simulations to test the ro-
bustness of a number of choices made in the DES Y3
3× 2-point analysis, showing in particular that:

1. Our model can fit the measurements from our sim-
ulations at the simulations’ true cosmology.

2. Using the true redshift distributions in our simu-
lations and sampling over cosmology, linear bias,
and intrinsic alignments, we can recover the true
cosmology of our simulations using cosmic shear
alone, 2× 2-point and 3× 2-point analyses.

3. Using the true redshift distributions in our sim-
ulations and sampling over cosmology, non-linear
bias, and intrinsic alignments, we can recover the
true cosmology of our simulations, using 2×2-point
and 3× 2-point analyses.

4. We are able to recover unbiased cosmological con-
straints when assuming calibrated photometric red-
shift distributions, making use of the full calibra-
tion methodology applied to the Y3 data.

In Sec. II we describe the new suite of Buzzard sim-
ulations used in this work and elsewhere in our DES Y3
analyses, highlighting the improvements that have been
made over the simulations used in DES Y1. In particular,
we demonstrate improved agreement between color and
magnitude distributions for our source and lens galaxy
samples in figs. 1, 2 and 10.

In Sec. III we describe how we measure our 3 × 2-
point data vectors, including the photometric redshift
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calibration methodology that was applied to the simu-
lations. We present comparisons between redshift dis-
tributions for source and lens galaxies (fig. 3) and the
3×2-point measurements (figs. 4 and 5), showing signifi-
cant improvements in the level of agreement from similar
comparisons in DES Y1. We also highlight the four-step
calibration that is applied to the source photometric red-
shift distributions in our simulations: SOM based photo-
metric redshift estimation via SOMPZ and 3sDir, cluster-
ing redshifts, and shear ratios. We have kept as close to
the procedure employed in the DES Y3 data as possible,
and we note the important aspects of these algorithms
that were validated using the Buzzard simulations that
are presented in greater detail in Alarcon, Sánchez et al.
[3], Cawthon et al. [12], Gatti, Giannini et al. [27], Myles,
Alarcon et al. [56], Sánchez, Prat et al. [70], Sánchez,
Raveri et al. [71].

In Sec. IV A we describe the models applied to the
simulations, and in Sec. V we show that these models
produce constraints on S8, Ωm and w that are biased
at < 0.3σ (1σ) with a probability of at least 38%(98%)
in ΛCDM and 42%(99%) in wCDM, while accounting
for residual noise in the measurements from our simu-
lations. These results are summarized in table III and
figs. 8 and 9. Mean two-dimensional parameter biases
are less than 0.3σ for all analysis configurations and are
summarized in table IV. These results demonstrate that
our 3×2-point analysis is robust to the assumptions made
regarding bias modeling, non-linearities in the matter dis-
tribution, higher-order lensing effects, non-Gaussianity
of the likelihood function, and approximations made in
photometric redshift estimation in a realistic simulated
analysis setting.

We note that the probabilities quoted above would
asymptote to either zero or one in the limit of infinite
simulations, which suggests the question: why we have
not made an effort to generate more simulations in order
to more precisely determine our systematic biases? The
reason for this choice is partially pragmatic, as generat-
ing these simulations requires significant computational
and human time. An equally important reason is that
the analyses presented in this work suffer from system-
atic errors that contribute non-negligible uncertainty to
these probabilities.

One such systematic, namely interpretation of poste-
rior probability distributions in the presence of projection
effects, has already been discussed and argued to be im-
portant for many of the analyses presented here. Signifi-
cant effort has been made to minimize projection effects
in these analyses. For example, where ever possible we
have reduced the complexity of our models by removing
additional parameters that are not required at the preci-
sion of our data. Although these projection effects limit
the interpretability of our posteriors at the fraction of
1σ level, we reiterate that they are not a systematic bias
in the traditional sense, as the size of these effects will
decrease proportionally to the constraining power of our
analyses.

In addition to systematics intrinsic to our posterior
distributions, systematics in our simulations are also im-
portant. It is necessary to make simplifying assumptions
when generating large suites of simulations as we have
done here, and ruling out the contribution of these as-
sumptions to the parameter offsets in this analysis is a
time intensive task. Efforts to systematize these tasks
[53] are extremely important to the continued ability to
perform analysis validation tests such as those presented
in this work.

A number of important effects have been left out
of these simulations, including shear calibration bi-
ases, spectroscopic incompleteness in photo-z calibra-
tion, more realistic survey inhomogeneity, galaxy intrin-
sic alignments, and baryonic effects on the matter distri-
bution. The treatment of these effects is thoroughly vali-
dated elsewhere for our DES Y3 3×2-point analysis, but
work is ongoing to incorporate many of these into future
versions of these simulations. With significant invest-
ment, we anticipate that improvements in the method-
ologies used to generate these simulations will continue
to meet the validation needs of upcoming joint clustering
and lensing analyses.
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Appendix A: Color-dependent clustering

We impart a color-dependent clustering signal to our
simulations in a two-step manner. First, SEDs are as-
signed to each simulated galaxy by finding a galaxy in
the SDSS Main Galaxy Sample (SDSS MGS) with a close
match in Mr, and assigning its SED to the simulated
galaxy, preferentially choosing blue SEDs over red ones

proportional to fred(z)
fred(z=0) , where fred(z) is the fraction of

red galaxies found at redshift z as described in Appendix
E.2 in DeRose et al. [20]. Each SED is represented in our
simulations by a set of 5 kcorrect templates [8].

Once each galaxy has an SED, we perform a condi-
tional abundance matching procedure. In particular, for
every galaxy we compute Rh, the distance to the nearest
halo above a mass cut of Mh,cut. We then shuffle SEDs
between galaxies in order to enforce the relation

P (< g − r|Mr) = P (< Rh|Mr), (A1)

where g−r is the rest frame g−r color of each galaxy. In
practice, we introduce an extra parameter in this model
to allow for a non-unity correlation, r between Rh and
g − r, as described in Eqs. 12-13 in DeRose et al. [19].
We use the best-fit values of r and Mh,cut from DeRose
et al. [19], where this model is fit to SDSS MGS redshift
space clustering measurements. This procedure makes
use of conditional abundance matching algorithms im-
plemented in Hearin et al. [32].

Appendix B: Red-sequence color model

We match the mean and scatter of the red-sequence
in our simulations to that observed in DES Y3 data by
applying the following algorithm:

for galaxy g with redshift z and absolute magnitude Mr

do
if g − r > 0.095− 0.035Mr then

for band b ∈ {r, i, z} do
Add mean offset, 〈∆cb(z)〉, to magnitude mb

Add noise with variance ∆σb(z)
2 to mb

Here, 〈∆cb(z)〉 and ∆σ2
b are the mean offset in in red-

sequence color and difference between scatter in the red-
sequence as a function of z between the DES Y3 data,
and the unaltered version of these simulations. Since
there are four photometric bands in DES, but only three
unique colors, we can assign the mean differences in g−r,
r − i, and i − z to r, i, and z without loss of generality.
When adding additional noise to the magnitudes in our
simulations, we must account for the fact that noise in a
band b contributes to two colors X−b and b−Y , where X
and Y are adjacent bands to b. Thus, in order to match
the width of P (X − b|z) and P (b − Y |z) we must take
∆σb(z)2 = σ(X − b|z)2 − σ(b − Y |z)2. This procedure
leads to very good matches to the mean and scatter of
the red sequence observed in DES Y3 as shown in Fig.
2.

Appendix C: Photometric error model

We make use of the relationship between true pho-
tometry and noisy wide-field photometry as measured
by Balrog to add photometric noise to our simulations.
The algorithm for doing so is as follows:
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1: for each simulated galaxy g do
2: Find galaxy g′ in DES Y3 deep fields by matching mg

3: Randomly choose a wide-field injection ĝ′ of g′

4: if ĝ′ was not detected then
5: Set all of g’s observed magnitudes to 99
6: else
7: Compute error in the wide-field magnitudes ∆mg′

8: Add ∆mg′ to true simulated magnitudes mg

where mg are riz magnitudes of the simulated galaxy g,
and ∆mg′ is the difference between the true injected riz
magnitudes from g′ and the magnitudes measured from
the wide-field injection ĝ′. In this way, we reproduce
the relation p(∆mg|mg) measured in the DES Y3 data
exactly.

Appendix D: DES Y3 Source and Lens Galaxy
Sample Selection

In this work we focus on reproducing the properties
of the Metacalibration source galaxy sample [28] and
redMaGiC lens galaxy sample [64] in order to mimic the
fiducial DES Y3 3 × 2-point analysis. The redMaGiC
galaxy sample is selected using wide-field griz photome-
try, and so we are able to apply the same selection algo-
rithm described in Rozo et al. [66] and Rodŕıguez-Monroy
et al. [64] to our simulated galaxy catalogs. In particular,
we select two different redMaGiC catalogs, that we refer
to as the HighDens and HighLum samples.

The first of these has the highest number density, and
is used for the first three lens bins of our 3 × 2-point
data vector. The second is lower number density but
can be selected out to z < 0.9, and so is used for our two
higher redshift lens bins. Applying this procedure results
in magnitude and photometric redshift distributions that
are nearly identical to those found in the DES Y3 data,
as shown in the right panels of figs. 3 and 10.

Selecting a source galaxy sample that matches the
properties of the DES Y3 Metacalibration sample is
more challenging. This is partially due to the fact that
this sample pushes up against the detection limit of the
wide-field survey and so includes implicit selection on
many properties such as surface brightness, morphol-
ogy, proximity to bright objects, and observing condi-
tions that are not modeled in our simulations. This
is also a fainter sample than redMaGiC in general and
so involves galaxies in our simulations that are more
sparsely observed in the spectroscopic samples that we
use to inform our simulated galaxy samples. Given
these limitations, we focus on constructing a simulated
source sample that matches the effective number den-
sity, shape noise, and redshift distributions of the DES
Y3 Metacalibration sample, as these are the properties
that largely govern the cosmological constraining power
of the cosmic shear and galaxy–galaxy lensing measure-
ments that we wish to analyse.

In order to do this we apply two cuts to our simulated

galaxy sample motivated by cuts that are performed to
construct the DES Y3 Metacalibration sample:

1. 10 < fi/σ(fi) < 1000, and

2. reff/rpsf > x1/(1 + x2z) + x3.

One of the main cuts that influences the number den-
sity of the Y3 Metacalibration sample is a cut on signal-
to-noise ratio (SNR), 10 < SNR < 1000. The first cut
above approximates this SNR cut, where we compute
SNR as SNR = fi/σ(fi) and fi is the noisy simulated
i-band flux and σ(fi) is the error in that flux, computed
as described in App. C. Applying only this cut results
in a sample with an over-abundance of galaxies, so we
apply an additional cut on galaxy size, motivated by the
cut in the ratio of galaxy size to PSF size applied to the
Y3 data. Here we approximate the Gaussian size used
in the Y3 data with the simulated half-light radius reff

where reff =
√
r2
50 + r2

psf is the PSF convolved galaxy

half-light radius, r50, and the PSF size, rpsf , is taken
from the DES Y3 maps of PSF size at the position of
the simulated galaxy. The xi are free parameters in this
cut that we fit to the total response and inverse vari-
ance weighted number density of a preliminary version
of the DES Y 3 Metacalibration catalog, neff = 5.9.
This fit yields a number density in our simulations of
neff = 5.84. Before measuring correlation functions with
this source catalog, we also explicitly match the effective
shape noise, σe = [0.247, 0.266, 0.263, 0.314], in the four
tomographic bins used. This procedure leads to good
matches to the magnitude and redshift distributions ob-
served in the DES Y3 Metacalibration sample as shown
in figs. 3 and 10. The photometric redshift estimation
methodology for the simulated source sample is discussed
at more length in Sec. F and Myles et al. [56].

Appendix E: Two-point function estimation

To compute the galaxy angular auto-correlation func-
tion for a single tomographic bin, w(θ), we use the
Landy–Szalay estimator [46]

ŵ(θ) =
DD − 2DR+RR

RR

=
∑
ab

wawb
NL(NL − 1)

− 2
∑
aR

wa
NLNR

+
∑
RR

1

NR(NR − 1)
.

The first sum runs over pairs of lens galaxies separated
by an angle θmin < θ < θmax, where θmin and θmax are
the edges of the angular bin, wa/b are the systematic
weights associated with galaxies a and b and NL is the
total number of lens galaxies in the tomographic bin un-
der consideration. The lens weights are determined using
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FIG. 10. Comparison of magnitude distributions for sources
(left) and redMaGiC lenses (right) between Buzzard (dashed)
and the DES Y3 data (solid). Different colors represent dif-
ferent photometric bands, where we compare riz for sources
and griz for lenses, because these are the bands that are used
for each respective selection. Overall agreement is good, with
fractional differences between Buzzard and the DES Y3 data
not exceeding 20%.

the same algorithm described in [64]. The second and
third sums run over lens–random and random–random
pairs in the same angular bin, and NR is the total num-
ber of randoms. We always take this to be NR = 20NL,
as opposed to the NR = 40NL used in the measurements
on the data. We work with the mean measurement from
many simulations, so extra noise resulting from the use
of fewer randoms per lens galaxy is offset by this fact
and allows us to save a significant amount of computing
time when measuring angular clustering in the Buzzard
simulations.

Following the choices made in the DES Y3 data, we bin
the redMaGiC sample into five distinct redshift bins, with
edges z = {0.15, 0.35, 0.5, 0.65, 0.8, 0.9}. Galaxies are di-
vided between these bins using the mean of the redMaGiC
photometric redshift PDF, zmean,redMaGiC . For the first
three bins, we use the redMaGiC HighDens sample; the
two highest redshift bins use the redMaGiC HighLum sam-
ple.

Our estimator for tangential shear around lens galaxies
includes boost factors and random point subtraction as
follows:

γ̂t(θ) = γ̂t, no boosts(θ)B(θ)− γ̂t, rand (E1)

=
Nr
Nl

∑
LS wL εt,LS(θ)

Nrs
−
∑
RS εt,RS(θ)

Nrs
, (E2)

where in Eq. E1 we have written the estimator in terms
of the uncorrected tangential shear estimator γ̂t, no boosts,
the boost factor B(θ), and the estimator for tangential
shear around random points γ̂t, rand. We further expand
this in Eq. E2, where Nr is the number of randoms,

Nl =
∑
wL is the effective number of lenses given by the

sum over the lens weights for all lens galaxies wl, εt,LS
is the tangential shear of a source-lens pair, εt,RS is the
tangential shear of a source-random pair, and Nrs is the
number of random-source pairs. This expression is a sim-
plified version of that shown in Prat et al. [63], where we
have set all Metacalibration responses, as well as source
and random weights to 1. We measure γt for each of four
source galaxy tomographic bins, as described in Sec. F,
around the five tomographic lens galaxy bins, resulting
in a total of 20 unique cross-correlation measurements.

The estimator of the shear–shear correlation func-
tions can be written in terms of the measured radial,
εx, and tangential, εt, components of ellipticities defined
per galaxy pair along the line of separation between the
galaxies:

ξ̂±(θ) = 〈εtεt ± ε×ε×〉(θ) . (E3)

This is determined by averaging over all galaxy pairs
(a, b) separated by an angle θ as

ξ̂±(θ) =

∑
ab[εt,aεt,b ± ε×,aε×,b]

Npair
, (E4)

where Npair is the number of galaxy pairs separated by
an angle θ. This is again a simplified version of the
expression used in the measurements on the DES Y3
data, as we do not use Metacalibration responses or
inverse variance weights in our simulations. We measure
all 10 unique auto- and cross-correlations of the four to-
mographic source galaxy bins.

In all cases, correlation functions are measured in 20
logarithmically spaced bins between 2.5 and 250 arcmin,
and the mean angle of the bin is reported as the pair-
count averaged separation within that bin. We describe
our redshift binning algorithms for our source and lens
galaxy samples in the following sub-section.

Appendix F: Photometric Redshift Calibration

Compared with our source galaxy photometric redshift
estimation algorithm, our lens galaxy photometric red-
shift estimation is relatively unchanged from that used in
DES Y1. We briefly describe it here, and refer the reader
to Rozo et al. [66], Cawthon et al. [12] and Rodŕıguez-
Monroy et al. [64] for more details. As the redMaGiC
sample is a set of bright galaxies with abundant spec-
troscopy, we place significant confidence in the redMaGiC
photometric redshift estimates provided by the algorithm
itself, p(zredMaGiC). These are obtained by constructing
a red-sequence spectral template from a combination of
spectroscopy and galaxy cluster members. In our simu-
lations, we assume that we have a sparse but unbiased
spectroscopic training set of similar size to that used in
the data. We bin lens galaxies into five tomographic bins
with edges, {0.15, 0.35, 0.5, 0.65, 0.8, 0.9}, using the mean
of p(zredMaGiC). To estimate the n(z) for each tomographic
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bin, we stack four Monte-Carlo samples drawn from the
p(zredMaGiC) for each galaxy.

We now describe how the source galaxy photometric
redshift calibration is performed in our simulations, high-
lighting important similarities and differences to what is
done in the data. As this methodology is new to DES
Y3, much of it was developed and tested against the sim-
ulations presented here. The calibration methodology,
excluding calibration internal to the 3 × 2-point, is bro-
ken into four distinct steps described in the following four
sections. These individual steps are described in signifi-
cantly greater detail in Buchs et al. [10], Myles et al. [56],
Alarcon et al. [3], Sánchez et al. [71], Gatti et al. [27] and
Sánchez et al. [70].

1. SOMPZ

We aim to determine the redshift distribution n(z) of
the source galaxy sample, proportional to the probabil-
ity, p(z), that a galaxy in that sample is at redshift z.
We estimate n(z) by re-weighting the redshift distribu-
tion of a sample with known redshift information in a
suitable way. In the DES Y3 data, this re-weighting is
performed in two steps using three different galaxy sam-
ples: a sample of wide-field galaxies that form our weak-
lensing source sample (the weak-lensing source sample),
a set of galaxies with deep, many-band photometry (the
deep-field sample), and a sample with deep, many-band
photometry as well as securely determined redshifts (the
redshift sample).

First, we characterize the redshift distributions of low
noise galaxy detections from our deep-field photometry
where we have additional photometric information in
the form of near-infrared photometric measurements in
yJHK from the Ultra Vista survey. We discretize the
ugrizY JHK color space spanned by this deep-field sam-
ple using a self-organizing map (SOM) [41]. We then
estimate the redshift distribution, p(z|c) in each cell, c,
of the so-called deep SOM by stacking redshift estimates
from our redshift sample. This sample is a combination of
spectroscopic surveys and COSMOS+PAU galaxies with
photometric redshifts [3, 45]. In our simulations we con-
struct analogs of these deep-field photometric catalogs
by selecting patches of a single Buzzard simulation with
the same area as the deep-field catalogs in the DES Y3
data. We apply a constant level of photometric noise to
these catalogs, derived from the median depth in each
deep field and construct the deep SOM from this pho-
tometry. In order to estimate p(z|c) we assume that we
have a redshift sample that is free of selection biases and
is the same size as the redshift sample used to estimate
p(z|c) in the DES Y3 data.

Analogously, we construct a wide-field SOM using our
entire wide-field galaxy catalog, labeling cells in this
SOM as ĉ. We wish to estimate p(z|~m) where ~m is a
vector of wide-field magnitudes, or in the same SOM lan-
guage, p(z|ĉ), where ĉ is the SOM cell, or phenotype, that

~m is placed in. This process is complicated by the fact
that the wide-field sample has significantly larger pho-
tometric uncertainties than the deep-field sample, and is
not supplemented by the near-IR photometry. As such,
we must connect the magnitudes that we measure for our
wide-field sample to those measured in our deep fields. In
the data this is performed by injecting deep-field galaxies
into wide-field observations with Balrog allowing for the
estimation of p(c|ĉ), i.e., the probability that a wide-field
galaxy that is placed in the wide-field SOM cell ĉ would
be placed in the deep-field SOM cell c, had it been ob-
served in the deep fields rather than the wide field. In
our simulations, we can estimate p(c|ĉ), by determining
which deep SOM cell c each wide-field galaxy in cell ĉ
falls into. This relation is determined using the same
number of galaxies in our simulations as we have Balrog
injections in DES Y3 data.

Once galaxies have been assigned to cells ĉ based on
their photometric information, we construct tomographic
bins and assign each cell to a bin. For our fiducial redshift
distributions, we construct these bins according to the
following procedure:

1. To construct a set of n tomographic bins b̂, begin
with an arbitrary set of n+ 1 bin edge values ej .

2. Assign each galaxy in the redshift sample to the

tomographic bin b̂ that contains the median of its
p(z) (or its spectroscopic redshift z, if it has one).
This yields a set of Nspec,(ĉ,b̂) galaxies satisfying the

dual condition of membership in a wide SOM cell ĉ

and a tomographic bin b̂. This can be written as a
sum over Balrog realisations i of redshift galaxies:

Nspec,(ĉ,b̂) =
∑
i

δĉ,ĉiδb̂,b̂i (F1)

3. Assign each wide cell ĉ to the bin b̂ to which a
majority of its constituent redshift sample galaxies
are assigned:

b̂ = {ĉ|argmaxb̂Nspec,(ĉ,b̂)} (F2)

4. Adjust the edge values ej such that the numbers

of galaxies in each tomographic bin b̂ are approx-
imately equal and repeat the procedure from step
(ii) with the final edges ej .

After completing this procedure, our final bin edges are
z =[0.0, 0.358, 0.631, 0.872, 2.0] for the Y3 weak lensing
source catalog. Due to slight differences in the Y3 source
galaxy catalogue and the simulated Buzzard equivalent,
the bin edges in the equivalent Buzzard catalogue are
z =[0.0, 0.346, 0.628, 0.832, 2.0].

Finally, we combine all these pieces of information to-

gether into the redshift distribution for each bin b̂:
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p(z|b̂, ŝ) ≈
∑
ĉ∈b̂

∑
c

p(z|c, b̂, ŝ)p(c|ĉ, ŝ)p(ĉ|ŝ) (F3)

2. 3sDir

Once we have the SOMPZ formalism in place, we can
estimate the redshift distribution of a tomographic bin
using Equation F3. An alternative way of writing that
equation, highlighting which sample is used to inform
each term, is

p(z|b̂, ŝ) ≈
∑
ĉ∈b̂

∑
c

p(z|c)︸ ︷︷ ︸
Redshift

p(c)︸︷︷︸
Deep

p(c, ĉ)

p(c)p(ĉ)︸ ︷︷ ︸
Balrog

p(ĉ)︸︷︷︸
Wide

, (F4)

where the b̂, ŝ selections are implicit in the RHS terms.
One of the main uncertainties on our estimate of n(z)
comes from the sample variance and shot noise present
in the deep and redshift samples, which inform the prob-
abilities p(z|c) and p(c). We denote the joint probabil-
ity of redshift and color informed by the deep and red-
shift galaxy samples as a set of coefficients {fzc}, with
0 ≤ fzc ≤ 1 and

∑
zc fzc = 1, where z represents a red-

shift bin, and c a deep SOM color cell.
We implement the 3sDir method, an approximate

model that produces samples of {fzc} given the ob-
served number counts of redshift and color from the deep
and redshift samples including the uncertainty from shot
noise and sample variance [56]. This method was de-
veloped and validated first in simulations [71], but for a
non-tomographic sample with a different selection than
the DES Y3 source sample, where all galaxies in the deep
fields had redshift information, and without a transfer
function to re-weight the colors in the deep field. Here, we
test this method with simulations tailored to the DES Y3
samples, using an extended version of 3sDir described in
Myles et al. [56]. For each sample of the coefficients {fzc}
we can compute a sample of the redshift distribution in
each tomographic bin, propagating the uncertainty to the
full shape of the n(z).

To test the performance of the 3sDir method we per-
form a similar test to what was used to validate the
SOMPZ algorithm, using the 300 Buzzard realizations
of the deep fields. In each realization, we draw 104 sam-
ples of the coefficients {f izc; i = 1, . . . , 104} using 3sDir
and the measured number counts of redshift and color in
this realization. From it, we estimate the mean redshift
of each f iz sample, z̄i =

∑
z zf

i
z, and its average value

z̄3sDir ≡ 〈z̄i〉 in each Buzzard realization. We also com-
pute the z̄SOMPZ value of the single n(z) from SOMPZ
in each realization, which we obtain by fixing the proba-
bilities to the number counts. We are able to verify that
the expected value of the mean redshift across the 300
realizations agrees between 3sDir and SOMPZ. We also
find the pull distribution between individual z̄ samples

from 3sDir and the fiducial SOMPZ z̄ to be very close
to a Gaussian with zero mean and unit variance.

Note that we are changing how we parameterize the
uncertainty: instead of fixing the n(z) and modeling the
uncertainty with a shift to the distribution, we are mod-
eling the uncertainty in p(z, c) observed in the deep fields,
and fully propagating it to an uncertainty on the shape of
the n(z). Therefore, it is particularly important to show
that no significant biases are introduced to the mean red-
shift, which is the n(z)’s leading-order statistic affect-
ing the cosmological constraints of cosmic shear analysis.
We have verified this point using the Buzzard simula-
tions; here we can marginalize over the effects of sample
variance by producing multiple versions of the DES deep
fields in different lines of sight. For a more detailed pre-
sentation of these results, we refer the reader to Myles
et al. [56].

3. Clustering redshifts

We use clustering redshift methods to further constrain
the n(z) samples produced by 3sDIR. Clustering redshift
methods exploit the 3D overlap between a target sample
(the weak lensing sample) and a reference sample with
accurate redshift estimates to infer the n(z) of the former.
Clustering redshift methods have been used in the past
both to provide independent estimates of the n(z) or to
calibrate the mean of the redshift distributions obtained
from photometric estimates [6, 11, 15, 16, 34, 35, 38, 83].

We fully describe the DES Y3 clustering methodol-
ogy for the source sample in [27]. We make use of
two reference samples: red, luminous redMaGiC galaxies
with high quality photo-z estimates [64, 67] and spec-
troscopic galaxies from the BOSS and eBOSS surveys
[2, 17, 18, 74]. The two samples complement each other:
the former has a higher number density and covers the
full DES Y3 footprint but it has a limited redshift cover-
age and it comes with a small uncertainty related to the
redMaGiC photo-z estimates. The latter is a spectro-
scopic sample and spans a larger redshift interval, allow-
ing us to calibrate redshift distributions at higher red-
shift, but has a lower number density and only ∼ 700
sq. degrees of overlap with the DES Y3 footprint. Both
samples have been reproduced in the simulations, and
the BOSS and eBOSS selections are described in Gatti
et al. [27].

For DES Y3, we explored two different approaches to
using clustering redshift information. The first approach
computes the mean redshift each tomographic bin in or-
der to compare these estimates with the mean redshifts
of the 3sDIR n(z) samples. The mean redshift is only es-
timated in a limited redshift interval covered by the ref-
erence samples, excluding the tail of the distributions to
mitigate the effect of magnification. This first approach
is only used to cross-check the n(z) from the 3sDIR.

The second method includes the clustering redshift in-
formation in a likelihood analysis, joint with sample vari-
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ance and shot noise from the 3sDIR method, that re-
turns samples of probable redshift distributions, while
marginalizing over a flexible model of the redshift evolu-
tion of source galaxy clustering bias, the dominant sys-
tematic in such clustering redshift studies. The second
method generates an ensemble of redshift distributions
used in the DES Y3 cosmological analysis [56], and it
is shown to vastly improve the accuracy of the shape of
n(z) derived from photometric data alone. Both meth-
ods have been tested in simulations and proved unbiased
within uncertainties prior to application to data [27].

4. Shear ratio

In the DES Y3 cosmological analysis, we use the ratios
of small-scale galaxy–galaxy lensing measurements shar-
ing the same lens redshift bin and two different source
tomographic bins to constrain redshift uncertainties and
other systematics or nuisance parameters of our model.
We briefly summarize this probe, and direct the reader
to detailed description in Sánchez et al. [70] for more
information and robustness tests.

Lensing ratios or shear ratios have the advantage that,
if the lens galaxies are tightly binned in redshift, they are
mostly geometrical and can be modeled in the small, non-
linear scale regime where we are not able to accurately
model the original tangential shear quantity. Lensing
ratios at small scales are therefore able to provide very
valuable independent information that otherwise would
be discarded. These shear-ratio measurements have been
used before, especially as a test of the source redshift
distributions, but this is the first time they are fully in-
tegrated as an additional probe within the 3 × 2-point
project. This permits us to use the entire constraining
power of the lensing ratios, not only exploiting the de-
pendency on the redshift distributions.

The shear-ratio data vector consists of nine numbers,
each one corresponding to the scale-averaged lensing ra-
tio for a given lens and two source bins. In this work, we
use three lens redshift bins and four source redshift bins.
Note that the DES Y3 3 × 2-point project uses five lens
bins, but we choose to discard the two highest redshift
bins to construct lensing ratios both because they do not
increase the S/N substantially and because the impact of
lens magnification is much stronger for the highest red-
shift lens bins, and we prefer not to be dominated by lens
magnification even though it is included in the modeling.
From these redshift bins, given that we construct ratios
of tangential shear measurements with a given fixed lens
bin and two different source bins for each lens bin we can
construct three independent ratios to make a total set of
9 independent ratios. Regarding the angular scales, we
measure the lensing ratios in the same angular binning
used for the 3 × 2-point analysis and then we apply the
scale cuts as detailed in Table 2 of Sánchez et al. [70].
Summarizing, we discard the scales already used in the
3× 2-point analysis for the galaxy–galaxy lensing probe

and scales where the IA model is not applicable for the
ratio combinations that have significant overlap between
source and lens galaxy redshift distributions, as these are
most affected by IA.

This data vector is used in a separate lensing ratio like-
lihood, assumed to be Gaussian. The covariance for this
data vector comes from the propagation of the theoreti-
cal galaxy–galaxy lensing covariance and is independent
of the 3 × 2-point covariance, as detailed and validated
in Sánchez et al. [70]. The constraints on the mean red-
shifts of each source tomographic bin from this likelihood
are used as an independent validation of the SOMPZ and
WZ estimates of these values. Furthermore, we combine
this shear-ratio likelihood with the 3× 2-point likelihood
described below to self-consistently constrain source red-
shift distributions, as well as other parameters, such as
shear multiplicative biases and intrinsic alignments. The
Buzzard simulations were used to validate a number of
assumptions made when using shear-ratio data, as de-
scribed in Sánchez et al. [70], and we further validate
the use of this information in this work showing that its
combination with all other redshift information leads to
unbiased cosmological constraints in our Buzzard simu-
lated analyses.

Appendix G: Covariance Matrix

We model the statistical uncertainties of the two-point
function measurements considered in this paper as a mul-
tivariate Gaussian distribution. Our model of the discon-
nected four-point function part of the covariance matrix
of that distribution (also known as the Gaussian part
of the covariance) is described in Friedrich et al. [26] and
includes analytic treatment of bin averaging and sky cur-
vature. The connected four-point function part of the co-
variance matrix and the contribution from super-sample
covariance are modelled as described in Krause & Eifler
[42].

In Friedrich et al. [26] we demonstrate the robustness
of our analysis with respect to the details of our covari-
ance model and show that deviations from the Gaussian
likelihood assumption are negligible in our analysis setup.
In that paper, we identify approximations in our treat-
ment of survey geometry to be the main source of inac-
curacy in the covariance model. When considering the
full 3×2-point data vector, this leads to an underestima-
tion of our uncertainties in key cosmological parameters
by about 3− 4% and on average it also increases the χ2

between measurements and the corresponding maximum
likelihood models by about 4%.

We analytically marginalize over all enclosed mass pa-
rameters, which is possible under our assumptions of
a Gaussian likelihood and a Gaussian prior for these
parameters, characterized by a width of σBi . We use
very broad priors on these parameters, as motivated by
Pandey et al. [59]. This would make our covariance nu-
merically unstable to invert. In order to circumvent this,
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we use the Shermann–Morrison formula to analytically
marginalize over Bi directly in the inverse covariance ma-
trix, N−1, via:

N−1 = C−1U(I + UTC−1U)−1UTC−1 , (G1)

where C−1 is the inverse covariance matrix without the
enclosed mass contribution, I is the identity matrix, and
U is an Nd ×Nlens with ith column given by σBi~ti and

tia =

{
0 if lens redshift bin for element a is not i

βijθa otherwise

(G2)
where a is the data vector index, j is the source galaxy
bin, and θa is the angular separation associated with the
ath element of the data vector. We take σBi = 10000 for
all i.

We generate the covariance used for all of the analyses
in this work using true Buzzard cosmology, source and
lens number densities, shape noise values, and redshift
distributions.

Appendix H: Redshift-space distortions in Buzzard

In the process of preparing this paper for publication,
an error in our implementation of redshift space distor-

tions was discovered. Specifically, the proper motions of
galaxies were included in their observed redshifts as

zobs = zcos +
vLOS

c
(H1)

instead of using the correct expression

zobs = zcos + (1 + z)
vLOS

c
(H2)

where zcos is the pure cosmological redshift, and vLOS

is the line-of-sight velocity. This error impacts the effect
of redshift-space distortions on w(θ) and γt(θ) measure-
ments. As our analysis was nearly completed when we
discovered this error, we opted to correct for this effect in
our model for RSD rather than change our simulations.
This is accomplished by rescaling the linear growth rate
that is used in the Kaiser model for RSD by a factor of
(1 + z), i.e. f → f

(1+z) .

The impact of this error on the analyses presented in
this work is negligible: not accounting for this error in-
creases the chi-squared for the analyses presented in sec-
tion V A by 2.1 for w(θ) and the impact on all posteriors
presented in this work is virtually unnoticeable.
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