
Physics and Computing Performance of the Exa.TrkX
TrackML Pipeline

Xiangyang Ju1, Daniel Murnane1, Paolo Calafiura1,∗, Nicholas Choma1, Sean Conlon1,
Steve Farrell1, Yaoyuan Xu1, Maria Spiropulu2, Jean-Roch Vlimant2, Adam Aurisano3,
Jeremy Hewes3, Giuseppe Cerati4, Lindsey Gray4, Thomas Klijnsma4, Jim Kowalkowski4,
Markus Atkinson5, Mark Neubauer5, Gage DeZoort6, Savannah Thais6, Aditi Chauhan7, Alex
Schuy7, Shih-Chieh Hsu7, Alex Ballow8, and Alina Lazar8

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2California Institute of Technology, Pasadena, CA USA
3University of Cincinnati, Cincinnati, OH USA
4Fermi National Accelerator Laboratory, Batavia, IL USA
5University of Illinois at Urbana-Champaign, Urbana, IL, USA
6Princeton University, Princeton, NJ, USA
7University of Washington, Seattle, WA, USA
8Youngstown State University, Youngstown, OH, USA

Abstract. The Exa.TrkX project has applied geometric learning concepts such
as metric learning and graph neural networks to HEP particle tracking. The
Exa.TrkX tracking pipeline clusters detector measurements to form track can-
didates and filters them. The pipeline, originally developed using the TrackML
dataset (a simulation of an LHC-like tracking detector), has been demon-
strated on various detectors, including the DUNE LArTPC and the CMS High-
Granularity Calorimeter. This paper documents new developments needed to
study the physics and computing performance of the Exa.TrkX pipeline on the
full TrackML dataset, a first step towards validating the pipeline using ATLAS
and CMS data. The pipeline achieves tracking efficiency and purity similar
to production tracking algorithms. Crucially for future HEP applications, the
pipeline benefits significantly from GPU acceleration, and its computational re-
quirements scale close to linearly with the number of particles in the event.

1 Introduction

Charged particle tracking plays an essential role in High-Energy Physics (HEP), including
particle identification and kinematics, vertex finding, lepton reconstruction, and flavor jet
tagging. At the core of particle tracking there is a pattern recognition algorithm that must
associate a list of 2D or 3D position measurements from a tracking detector (known as hits
or spacepoints in literature) to a list of particle track candidates (tracks).

The number of particle track candidates varies significantly from one experiment setup
to another. For example, in a High-Luminosity LHC (HL-LHC) [1] collision event, due to
the pile-up of multiple proton-proton collision per bunch crossing, there are typically 5,000
tracks and 100,000 spacepoints, about 50 % of which are associated to particles of interest.
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Figure 1. A simulated HL-LHC collision event (top) as seen by the TrackML tracking detector [2]. The
detector schematic (bottom) shows the top half of the detector projected on the r-z plane. The z-axis is
along the beam direction.

A typical HEP offline tracking algorithm [3–5] has four stages: spacepoint formation,
track seeding, track following, and track fitting. The spacepoint formation stage combines
the detector readout cell raw data in clusters from which the spacepoint 3D coordinates, and
their uncertainties, are determined. Track seeding combines spacepoints in doublet or triplet
seeds. Each seed provides an initial track direction, origin, and possibly a curvature, with
associated uncertainties. The track following stage adds more spacepoints to the seed by
looking for matching spacepoints along the extrapolated trajectory. Finally a track fitting
stage, which may be combined with the track following, fits a trajectory through the track
spacepoints to assess the track quality and measure the particle’s physical and kinematic
properties (charge, momentum, origin, etc). To avoid biasing physics results, each stage of
the algorithm must have high efficiency, meaning it must identify e.g. >90% of the charged
particles within a fiducial region (e.g. pT > 1 GeV, η < 4) as track candidates. Track seeding
and track filtering must also have high purity, meaning that e.g. >60% of the track seeds and
track candidates must correspond to charged particles. High purity allows to keep the number
of track candidates, and the associated computational costs, under control.

Online tracking algorithms may use different pattern recognition algorithms (including
Hough transforms [6, 7], cellular automata [8, 9]) to create and filter track seeds and candi-



dates, but share the same high efficiency requirements. Online application also have stringent
computing requirements (e.g. latency O(10) µs for LHC triggers).

The computational cost of current tracking algorithms grows worse than linearly with
beam intensity and detector occupancy, as demonstrated in Figure 2. This is due to the com-
binatorial increase in the number of track seeds and spacepoints to match as the density of
detector measurements increases. Given the order-of-magnitude increase expected for beam
intensity at HL-LHC, charged particle pattern recognition algorithms might well limit the
discovery potential of HL-LHC experiments.
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Figure 2. Reconstruction wall time per event as a function of the average number of interactions per
bunch crossing 〈 µ 〉. Left: ATLAS Run 2 Inner Detector reconstruction with default configurations [10].
Right: CMS time spent in tracking sequence for 2016 tracking, 2017 tracking with conventional seed-
ing, and 2017 tracking with Cellular Automaton (CA) seeding [11].

Over the last two decades, tracking computational challenges arising from the increased
number of combinations have been addressed by tightening fiducial regions for charged parti-
cles, developing highly optimized tracking algorithms [4, 5], and even optimizing the geom-
etry of tracking detectors. These optimizations brought order-of-magnitude gains in tracking
computational performance with limited impact on physics. While these efforts continue [12],
it is unlikely that another order of magnitude can be gained through incremental optimization
without impacting physics performance. Furthermore, given the computational complexity
and iterative nature of current track following and filtering algorithms, it is challenging to run
them efficiently on data parallel architectures like GPUs.

The TrackML challenge [2] jump-started the exploration of deep learning pattern recog-
nition methods applied to HEP tracking. The HEP.TrkX pilot project [13] proposed the use
of graph networks to filter track doublet and triplet seeds [14]. Building on that work, the
Exa.TrkX project [15] has demonstrated the applicability of the Geometric Deep Learning
(GDL) [16] – specifically metric learning and Graph Neural Networks (GNN) – to particle
tracking [17]. GDL is concerned with learning representations of data that have complex
geometrical relationships and no natural ordering, like detector spacepoints. GDL models are
computationally regular, naturally parallel and therefore well-suited to run on accelerators.

This work describes new developments that enabled the first study of the computing and
physics performance of the Exa.TrkX pipeline on the entire TrackML detector at HL-LHC
design luminosity, a step towards the validation of the pipeline on ATLAS and CMS data.



2 Related work

Early on, the Hep.TrkX pilot project attempted to assign and regress track parameters to
single spacepoints using image processing models. Subsequent attempts at estimating track
parameters using image processing and recurrent networks showed promising results [18] in a
simplified environment. A similar realization of the method is reported in [19] where a model
processing image from successive pixel detector layers is used to produce tracklets, seeds to
classical pattern recognition. The method yields superior seeding efficiency for tracks within
jets in dense environments. The concept of using LSTM [20] to supplement the Kalman Filter
method for track following developed by HEP.TrkX [14, 18, 21] was later found in one of
the promising solutions of the accuracy phase [22] of the TrackML challenge. The task of
particle tracking was addressed with a hit-to-track assignment method using gated recurrent
unit [23] (GRU), producing promising result in sparse environments [21]. This approach was
constrained computationally due to the use of recurrent models.

Ref. [24] applies the track finding approach developed in [25] to the whole detector by
exploiting a new data-driven graph construction method and large model support in Tensor-
flow [26]. Ref. [27] applies a similar GNN model to the task of particle-flow reconstruction.
The model has a classification objective, followed by a partial regression of generator-level
particle candidate kinematics. The method performs at least as well as a classical particle-
flow algorithm in HL-LHC-like collision conditions. As part of the Exa.TrkX project, graph
networks are used for LArTPC track reconstruction [28]. Ref. [29] explores the opportunity
to implement Exa.TrkX-inspired graph networks on FPGAs. Starting from the input stage
of the Exa.TrkX pipeline, Ref. [30] studies the impact of pixel cluster shape information
on track seeding performance. In Ref. [31], metric learning is used to improve the purity
in spacepoints buckets formed using similarity hashing. With the advent of quantum com-
puter of increasing size came the development of quantum machine learning techniques, also
applied in particle physics [32]. In particular, inspired by the use of GNN for charged par-
ticle tracking of the Exa.TrkX team, quantum graph networks have been tested on the same
problem [33–35].

3 Methodology

3.1 Input Data

This study is based on the TrackML dataset that uses a Montecarlo simulation of top quark
pair production from proton-proton collisions at the HL-LHC. To simulate the effect of event
pileup and produce realistic detector occupancy, a Poisson random number (with µ = 200) of
QCD "minimum bias" events are overlaid on top of the tt̄ collisions.

The TrackML detector is a set of concentric cylindrical layers of pixelated sensors (the
barrell) complemented by a set of circular disks (the endcaps) to ensure nearly 4π coverage in
solid angle, as pictured in Figure 1. Figure 3 shows the spatial distribution of the spacepoints
of a typical event. One notable feature of this dataset is the inclusion of “noise” spacepoints,
added as a proxy for various low-momentum particle interactions and detector effects which
would otherwise require more expensive and detailed simulations.

3.2 The Exa.TrkX TrackML Pipeline

This paper updates the methodology in Ref. [17, 25] to a fully-learned end-to-end pipeline,
where both graph construction and graph classification are trained. This section describes the



Figure 3. A typical event distribution of spacepoints projected on the x-z plane, parallel to the beam
direction (left), and the x-y plane, orthogonal to the beam direction (right).

Figure 4. Stages of the TrackML track formation pipeline.

pipeline (represented schematically in Figure 4) used to obtain the results in § 4. Details of
the model design and parameter choices are discussed in § 5.

First, the dataset is processed into a format suitable for model training. This includes
calculating directional information and summary statistics from the charge deposited in each
spacepoint. These values are appended to the cylindrical co-ordinates of each spacepoint to
form an input feature vector to the pipeline. To apply a graph neural network to this set of
data, it is necessary to arrange them into a graph. One can apply various geometric heuristics
to define which spacepoints are likely to be connected by an edge (i.e. belong to the same
track), but a useful technique is to train a model on the geometry of connected tracks. Thus,
our second stage is to train an Embedding Network – a multi-layer perceptron (MLP) which
embeds each spacepoint into an N-dimensional latent space. The graph is constructed by
connecting neighboring spacepoints within a radius rembedding, in the latent space. We train
this embedding with a pairwise hinge loss, to encourage spacepoints that belong to the same
track to be close in the embedded space, according to the Euclidean metric. This allows for
a highly efficient edge construction, since we do not rely on any heuristics of the detector
geometry that may lead to missed edges.

The edge selection at this stage is close to 100% efficient but O(1)% pure, with a graph
size of O(105) nodes and O(107) edges (the purity-efficiency trade-off can be tuned with the
choice of rembedding). Before running training or inference on the memory-intensive GNN, we
filter these edges down with another MLP. The input to this third stage is the concatenated
features on either side of each edge. That is, the Filter Network is a binary classifier applied



to the set of edges. Constraining efficiency to remain high (above 96%) leads to much sparser
graphs, of O(106) edges.

The fourth stage of the pipeline is the training and inference of the graph neural net-
work. The results presented in this work are predominantly obtained from the Interaction
Network architecture, first proposed in Ref. [36]. This varietal of GNN includes hidden fea-
tures on both nodes and edges, which are propagated around the graph (called “message
passing”) with consecutive concatenations along edges and aggregations of messages at re-
ceiving nodes. In the final layer of the network, a binary classification is obtained for each
edge as true or fake, and trained on a cross-entropy loss.

The final stage of the TrackML pipeline involves task-specific post-processing. If our
goal is track formation, we can place a threshold on edge scores produced by the GNN and
partition the graph into connected components. If our goal is track seeding, we can directly
sample the classified edges for high likelihood combinations of connected triplets, or convert
the entire graph to a triplet graph and train this on a second GNN to classify the triplets. A
triplet graph is formed by taking all edges in the original (doublet) graph and assigning them
as nodes in the new triplet graph. The nodes in this triplet graph are connected if they share a
hit in the doublet graph. Applying a GNN to this structure produces highly pure sets of seeds
as shown in Ref. [17].

Many of these techniques are common to other applications being explored in the
Exa.TrkX collaboration. In particular, the pattern of nearest-neighbor graph-building and
GNN edge classification has shown its potential for neutrino experiments [28] and CMS
High Granularity Calorimeter [25]. Indeed, these applications build on the TrackML pipeline
and extend it, for example by adding the particle type as an edge feature.

4 Results

4.1 Tracking Performance of the TrackML pipeline

4.1.1 Tracking Efficiency and Purity

The performance of a tracking pipeline is mainly characterized by tracking efficiency and
purity. For efficiency calculations, only charged particles that satisfy |η| < 4.0 and pT >
100 MeV are considered. These selected particles, Nparticles(selected), are hereafter referred
to as particles.

The overall tracking efficiency, known as physics efficiency, is defined as the fraction of
particles that are matched to at least one reconstructed track. A particle is considered to be
matched to a reconstructed track when 1) the majority of spacepoints in the reconstructed
track belong to the same true track, and 2) the majority of spacepoints in the matched true
particle track are found in the reconstructed track1.

To measure the efficiency of the tracking pipeline itself, we also define the technical
efficiency as the fraction of reconstructable particles that are matched to at least one recon-
structed track. Reconstructable particles have a trajectory that leaves at least five spacepoints
in the detector. Tracking purity is defined as the fraction of reconstructed tracks that match a
selected particle2.

1This nomenclature and the associated definitions broadly follow [2, 37].
2HEP tracking literature often quotes fake rate = 1 − purity



Physics Efficiency =
Nparticles(selected, matched)

Nparticles(selected)
(1)

Technical Efficiency =
Nparticles(selected, reconstructable, matched)

Nparticles(selected, reconstructable)
(2)

Purity =
Ntracks(selected,matched)

Ntracks(selected)
(3)

Averaged over 50 testing events from the TrackML dataset, the physics efficiency for
particles with pT > 500 MeV is 88.7 ± 0.3% and the technical efficiency is 97.6 ± 0.3%.
Without any fiducial pT cut, the physics efficiency becomes 67.2 ± 0.1% and the technical
efficiency 91.3 ± 0.2%. The tracking purity is 58.3 ± 0.6%. Using the TrackML challenge
scoring system, we obtained a score of 0.901 ± 0.004. The errors quoted are statistical only.

Figure 5 shows the pT distribution of particles as well as the tracking efficiency as a func-
tion of particle pT. The physics efficiency for particles with pT of [100, 300] MeV is 43%,
therefore, is not displayed in the plot. The physics efficiency for particles with pT > 700 MeV
is above 88%. The technical efficiency is 82% for particles with pT of [100, 300] MeV, and in-
creases to above 97% for particles with pT > 700 MeV. Figure 5 also shows the η distribution
of particles with pT > 500 MeV as well as the tracking efficiency as a function of the particle
η. The physics efficiency is higher in the barrel region of the detector (volumes 8,13,17 in
Figure 1), while the technical efficiency is almost flat across the η range. In Figure 5 the pT
and η of the matched truth particle were used, rather than the pT and η of the reconstructed
track. We leave a study of track quality and detector resolution effects for future work.

4.1.2 Systematic Studies

Before using a tracking algorithm in production, it is necessary to measure its sensitivity to
systematic effects, including pile-up, noise and digitization errors, and uncertainties in the
measurement of detector properties (alignment, rotation, magnetic field map, etc.).

Measuring precisely the impact of pile-up collisions on tracking performance is beyond
the scope of this work, but we can estimate pile-up’s impact on the pipeline tracking per-
formance by plotting efficiency and purity as a function of the number of spacepoints in the
detector. Figure 6 shows that the effect of the increased detector occupancy is a smooth, and
relatively small performance degradation.

The impact of noise spacepoints can be estimated using the TrackML dataset by studying
the inference performance of the tracking pipeline, trained without any noise spacepoints, as
a function of the fraction of noise spacepoints (up to a maximum of 20% of the total). Table 1
shows the technical tracking efficiency and purity for different noise levels. The efficiency
decreases by ' 1.6% and the purity by ' 5.4% when 20% of noise spacepoints are presented.
The loss of efficiency happens primarily for particles with pT < 500 MeV (Figure 7).

Detector misalignment effects are approximated by shifting by up to 1 mm the x-axis of
all spacepoints in the inner-most TrackML barrel detector layer or the four innermost layers
(volume 8 in Figure 1). In both cases, the impact on the tracking efficiency is less than
0.1%. However, studying in depth misalignments, and other detector effects, requires access
to experiment detailed detector simulation data. We leave these studies as future work to be
performed in collaboration with each experiment.
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Figure 5. Top row: selected, reconstructable, and matched particles (left) and tracking efficiency (right)
as a function of pT for particles with |η| < 4. Bottom row: selected, reconstructable, and matched
particles (left) and tracking efficiency (right) as a function of η for pT > 0.5 GeV. The definition of
“selected”, “reconstructable”, and “matched” can be found in § 4.1.1

4.2 Distributed Training Performance

It takes about 1.5 days to train the Exa.TrkX pipeline on one Nvidia A100 GPU for one set
of hyper-parameters. It is therefore desirable to use distributed training to parallelize model
training and hyper-parameter optimization (HPO). This study relied on data parallel train-
ing [38] implemented using Horovod [39] and Tensorflow’s tf.distributed framework [40].
Horovod supports distributed training across multiple nodes, while tf.distributed allows to
use the same code across CPUs, TPUs, and GPUs.

For this study, the TrackML pipeline is trained on up to 64 Nvidia V100 GPUs across
eight NERSC Cori-GPU computing nodes. Using the Horovod framework (Figure 8), train-
ing time is reduced from 22 minutes, with 1 GPU, to 0.5 minutes with 64 GPUs3. The strong
scaling efficiency4 is about 90% with 2 GPUs and 75% with 8 GPUs. This deviation from
ideal scaling is due to the model setup time and data movement costs.

3All measurements in this section were taken training on spacepoints from the barrel region of the TrackML
detector. For comparison, training with spacepoints from the whole detector takes '70 minutes per epoch on one
Nvidia A100 GPU

4defined as t1/(N × tN ) ∗ 100% where tN is the time to train on a fixed total number of events across N GPUs.
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Figure 6. Mean and standard deviation of the technical efficiency (left) and purity (right) as a function
of the total number of spacepoints in an event.

Noise Efficiency Purity
0 91.5 59.3

4% 91.5 59.3
8% 91.1 58.0

12% 90.9 56.8
16% 92.2 54.8
20% 89.9 53.9

Table 1. Technical efficiency and
purity for different noise fractions
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Figure 7. Relative technical efficiency as a
function of pT. Each curve shows the ratio of
eff(noise = N%)/eff(noise = 0).

Figure 8 also shows the scaling behaviour of the tf.distributed implementation. Since
tf.distributed requires all input data to be of the same size, we have to pad all input graphs to a
fixed size. This essentially doubles the time needed to train one epoch, that increases from 22
minutes for dynamic input graph sizes to 41 minutes for constant graph sizes. Leaving aside
this fixed overhead, tf.distributed appears to scale better than Horovod, achieving ' 85%
strong scaling efficiency with 8 GPUs.

4.3 Inference performance on CPU and GPU

It is crucial to characterize the computational cost of the end-to-end learned tracking algo-
rithm. Our algorithm is optimized for running inference so that the whole inference pipeline
can be run in GPUs with the help of Pytorch, TensorFlow, and cuGraph. The execution
time for the inference pipeline has been measured on two hardware platforms: Nvidia V100
GPUs with 16 GB on-board memory, and Intel Xeon 6148s (Skylake) CPUs with 40 cores



1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs 64 GPUs
0

5

10

15

20

Av
er

ag
e 

tim
e 

fo
r o

ne
 e

po
ch

 [m
in

]
22.0

12.4

6.7

3.6

1.9
1.0 0.5

Data distributed training for GNN

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs 32 GPUs 64 GPUs

65

70

75

80

85

90

95

100

St
ro

ng
 S

ca
lin

g 
Ef

fic
ie

nc
y

Scalability of data distributed trainining

1 GPU Unpadded 1 GPU 2 GPUs 4 GPUs 8 GPUs
0

5

10

15

20

25

30

35

40

Av
er

ag
e 

tim
e 

fo
r o

ne
 e

po
ch

 [m
in

]

22.0

40.8

22.1

11.1

5.9

Data distributed training for GNN

1 GPU 2 GPUs 4 GPUs 8 GPUs
86

88

90

92

94

96

98

100
St

ro
ng

 S
ca

lin
g 

Ef
fic

ie
nc

y

Scalability of data distributed trainining

Figure 8. Time per training epoch (left) and Strong scaling efficiency (right) for GNN’s distributed
training. The top row refers to the Horovod implementation, the bottom row to the tf.distributed one.
The first bin in the bottom left diagram refers to the serial case, in which the input graph is not padded.

and 192 GB memory per node. The inputs to the filtering step do not fit into the GPU mem-
ory. Therefore, edge filtering for one event is executed in mini-batches with a fixed batch
size of 800k edges. Typically, the inputs to the filtering from one event are split into seven
batches, leading to additional computational cost for moving data from host to GPU. The
peak GPU memory consumption is about 15.7 GB as obtained from the Nvidia profiling tool.

Averaging over 500 events, it takes 2.2 ± 0.3 wall-clock seconds per event (as mea-
sured by measured by the python module time) to run the inference pipeline on the GPU
and 202 ± 35 seconds to run it on a single CPU core. This total execution time includes
every step of the calculation, and in particular the time needed to move data from host to
GPU. Table 2 breaks down the wall-clock time for the most significant steps of the pipeline.
For these step-by-step measurements, we force the pipeline to execute serially by calling
torch.cuda.synchronize after each step. The results show how the graph creation and
filtering steps are the biggest targets for further optimization.

In addition, Figure 9 shows how the total inference time depends almost linearly on the
number of spacepoints in the event for both CPUs and GPUs. The step-like dispersion in the
GPU case is due to the splitting of the inputs to the filtering step into mini-baches. A step-like
jump indicates one more mini-batch is added.



Wall time [s] on Wall time [s] on
Xeon 6148s Nvidia V100
single core synchronous

Data Loading 0.0049 ± 0.0153 0.0023 ± 0.0003
Embedding 3.02 ± 0.39 0.024 ± 0.003
Build Edge 66 ± 13 0.76 ± 0.10
Filtering 99 ± 19 1.57 ± 0.34
GNN 27 ± 2 0.45 ± 0.06
Labeling 3.23 ± 0.34 0.08 ± 0.01
Total (sync) 202 ± 35 3.3 ± 0.5

Table 2. Average inference time for synchronous execution of the TrackML pipeline benchmarked on
CPUs and GPUs. The total inference time comprises all the steps including ones not listed in the table.
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Figure 9. Total inference time as a function of number of spacepoints in each event for CPUs (left) and
GPUs (right).

Many optimizations were introduced to the pipeline in order to achieve these GPU tim-
ings, which before optimization took over 20 seconds per event. These improvements in-
clude porting all data processing to the GPU-accelerated CuPy library [41], writing custom
sparse operations for graph processing (e.g. doublet-to-triplet conversion [42], graph in-
tersection methods), using FAISS [43] for large-k NN graph construction, and performing
track labelling with CuGraph on GPU [44]. These improvements are specific to the infer-
ence pipeline; training optimizations will be discussed in the following section, and ongoing
developments in § 6.

5 Discussion

The performance given above is the result of experimentation across various feature sets,
architectures, model configurations and hyperparameters. It has also been necessary to over-
come a variety of training hurdles in terms of memory and computational availability. We
describe here training and inference details that should allow a reader to reproduce these
results on the provided codebase.



5.1 Feature Set

The input dataset includes both spatial co-ordinates and highly granular pixel cluster informa-
tion. Graph construction (the second pipeline step in Figure 4, that includes learned embed-
ded space model and edge filter model) appears to benefit significantly from the cluster shape
information, approximately doubling the purity for a held fixed high efficiency. The summary
cluster shape statistics include the number of channels and the total charge deposited, as well
as local and global representations of the cluster as a high-level feature vector. Details about
the calculation of this feature vector as well as a thorough exploration of the effect of cluster
shape information on seeding performance are provided in Ref. [30]. Cluster shape informa-
tion does not appear to improve the performance of the GNN, and in fact seems to degrade
it. This suggests that the width of the GNN hidden layers is not great enough to capture the
functional relationship of cluster information between nodes. Scaling to a width that properly
explores this question would require more memory than available on the Nvidia V100 GPUs
used for this study.

Depending on the final goal of the pipeline, further features can be included in the loss
calculation in order to bias the model towards desired regions. For example, if our aim is to
maximize the TrackML score (described in Ref. [2]) — a weighting function si that places
more importance on a spacepoint i from a longer and higher pT track, and in the first and last
sets of detector layers – we can weight-up true edges by this function, normalized to have a
mean of weight = 1. To measure the performance of models trained to this goal, we introduce
a weighted purity measure. Weighted purity is defined as a function the TrackML weights wi j

and the truth yi j ∈ {0, 1} of each edge connecting spacepoint i and spacepoint j,

purweighted =

∑
i j w jiyi j∑

i j wi j
, wi j =

 1
2 (si + s j), if yi j = 1
1, if yi j = 0

(4)

We see significant improvements in this metric when validating on the weighted model:
the Embedding Network improves from a weighted purity of 1.7% ± 0.2% to 2.0% ± 0.3%,
while the Filter Network improves from a weighted purity of 8.4% ± 0.6% to 11.7% ± 1.0%.
Given this weighting, the model learns to prioritize higher pT and longer tracks, while disre-
garding less informative tracks. Using this bias, we can achieve the same TrackML score with
a constructed graph size reduced by approximately 25%. Using this technique to improve the
TrackML score is an ongoing work.

5.2 Graph Construction

Having chosen a feature set, to train the learned embedding space we use a training paradigm
commonly referred to as a Siamese Network [45], where a particular spacepoint - called the
source - is run through an MLP, here 6 layers each with 512 hidden channels, hyperbolic
tan activations, and layer normalization. The final layer of the MLP takes the features to an
8-dimensional latent space. A different, comparison spacepoint - called the target - is also
run through this same Embedding Network, and the L2 norm distance d in the latent space
between the source and target enters a comparative hinge loss

Lhinge =

dp, if yi j = 1
max(0, 1 − dp), if yi j = 0

(5)

where p is a hyperparameter that we choose to be 2.



If the source i and target j spacepoints share an edge in the event’s truth graph 5, we
designate them as neighbours with yi j = 1, otherwise they are designated yi j = 0. In this way,
the hinge loss draws together truth graph neighbors and repels non-neighbors.

Training performance of the Embedding Network is highly dependent on choice of
source-target example pairs. In early epochs, it is enough to choose random pairs. How-
ever, at some point, many random pairs will contribute no gradient to the loss, as they will be
separated by a distance greater than the margin. At that point, it is useful to implement hard
negative mining [46]. We run a GPU-optimised k-nearest-neighbor (KNN) algorithm 6 to
mine examples around each source vector, within the hinge margin d = 1. The computational
overhead of the KNN step is significantly offset by the examples mined which all contribute
to the loss.

A similar technique is used in the Filter Network, where the vast majority of the edges
produced from the graph construction in the embedded space are easy to classify as fake.
This is already a highly imbalanced dataset, with around 98.5% of edges fake. Again, within
several epochs, the Filter Network is able to classify many of these as fake, so we balance
each batch with all true edges, the same number of hard negatives (i.e. negatives the filter is
unsure of) and the same number of easy negatives (to maintain performance on these edges).
The Filter Network is a MLP that takes the 24-feature concatenated edge features and feeds
forward through 3 layers of 1024 hidden channels, to a binary cross-entropy loss function.

5.3 GNN Edge Classification

In choosing the best GNN architecture, memory usage remains a significant constraint. The
Interaction Network (IN) [36] presented in these results does appear to marginally attain the
best performance against Attention Graph Neural Networks (AGNN) [14, 48] – the other
class of GNN considered for the pipeline. However, both of these networks require gradients
to be retained in memory for every graph edge. Indeed, this anisotropic treatment of edges
(i.e. a node is able to receive the messages of each of its neighbors in a non-uniform way) is
what allows these two architectures to be so expressive. Depending on hardware availability,
we have found two solutions to the memory constraint. Access to next-generation Nvidia
A100 GPUs allowed an IN to be trained with 8 steps of message passing, aggregating edge
features at each node, and each node and concatenated edge features passing through two-
layer MLPs of [128, 64] hidden features and ReLU activations [49]. Choice of aggregation
function should be permutation invariant. In this work, we take it to be a summation.

For lower-memory GPUs, such as the Nvidia V100, we attained similar performance
training the AGNN architecture, with [64, 64, 64]-channel MLPs applied to each edge and
node. Adding residuals [50] across the 8 message passing steps greatly improved perfor-
mance in this case. To fit full-event training on a single V100, it was necessary to employ
various techniques, such as mixed precision training and gradient checkpointing. The latter
stores only the input of each layer, not the gradients. On the backward pass, gradients are re-
calculated on the fly, allowing for a 4x reduction in memory usage for an 8-iteration GNN.
Another technique explored is to split the events piecemeal and train on each piece as a stan-
dalone batch. There is a noticeable impact on performance due to messages being interrupted
at the graph edges. In future work, we will present ongoing efforts to parallelise these graph
pieces across multiple GPUs, retaining the high performance that full-event training allows.

5one can also designate yi j = 1 for source and target in the same track, rather than immediate neighbors in the
track. This does lead to similar performance in later stages of the pipeline, but the more lax concept of truth leads to
graphs around three times more dense than the strict track neighbor definition.

6We use two high-performance libraries, FAISS [43] and Pytorch3D [47], depending on number of nearest neigh-
bors k. Fastest performance is obtained with FAISS for k > 35, Pytorch3D for k <= 35.



5.4 Physics-inspired data augmentation

Preliminary work on using coordinate transforms to augment the training data has been ex-
plored with varying degrees of success. In this study, focused on track seeding, only the
innermost detector layers (volumes 7-9 in Figure 1) were used.

One promising approach is to make a copy of each graph in the training set that has been
reflected across the phi-axis [51]. The phi reflection creates the charge conjugate graph and
helps to balance any asymmetry between positive and negatively charged particles within the
training set. This performance boost comes at the cost of doubling the training time.

A second promising trick is to use a Hough Transform [6, 7] on the graph to create edge
features. Using the Hough parameters as edge features boosts efficiency by ' 2% and purity
by ' 1%. A further efficiency boost of ' 3% (and ' 2% to purity) comes from using the
Hough accumulator to extract an edge weight. This edge weight effectively pools information
from every node, and therefore comes at a large computational cost (filling the accumulator
in Hough space). On the other hand, the Hough parameters can be computed quickly from
the two nodes that define the edge.

6 Conclusion and Future Work

This works shows how a machine learning tracking pipeline based on geometric learning can
achieve state-of-the-art computing performance on commercial GPUs. Crucially the comput-
ing performance scales linearly with the number of spacepoints, showing great promise for
the next generation of HEP experiments.

Within the simplifying assumptions of the TrackML dataset, we have shown how the
Exa.TrkX pipeline could meet the tracking performance requirements of current collider ex-
periments. Preliminary studies suggest that this performance should be robust against sys-
tematic effects like detector noise, misalignment, and pile-up.

Much remains to be done to validate these promising results in the "real world." To this
end, the Exa.TrkX project is collaborating with physicists from ATLAS [52], CMS [53],
DUNE [54], ICARUS [55], and MuonE [56].

The goal is to adapt the Exa.TrkX pipeline to each experiment’s needs and simulated
datasets, measure its performance and robustness against systematic effects according to the
experiment metrics. For example, it is crucial for HL-LHC experiments to study the perfor-
mance of tracking algorithms in dense environments, like high-pT jets. Given the interest in
long-lived particle observation at the HL-LHC, it will also be important to study the perfor-
mance of the Exa.TrkX pipeline for tracks coming from a displaced vertex7.

On the computational side, there are several optimization opportunities that need to be ex-
plored systematically including mixed precision training, multi-GPU training and inference
with graph data parallelisation (that is, one event spread across multiple GPUs) [57]; locality
sensitive hashing to speed-up KNN/graph construction stage [58], model quantization, oper-
ator fusion and other improvements with TensorRT [59], clustering of final node embeddings
rather than hard connected components method with GravNet-style architectures [60].

The distributed training results presented in this work are promising but still preliminary.
To fully exploit the capabilities of upcoming HPC systems and to further reduce training
time while potentially pushing further on model size, it will be beneficial to perform further
studies on large scale training of GNNs for track reconstruction. Given the size of the input
graphs, this problem may be amenable to training techniques which parallelise the processing
of input graphs across multiple GPUs in training.

7it may be worth noticing that in LArTPC applications [28] all tracks come from a displaced vertex.



Finally, it will be interesting to measure the computing performance of (parts of) the
Exa.TrkX pipeline on domain-specific accelerators like Google TPU [61] and GraphCore
IPU [62], comparing power consumption, latency and throughput with "traditional" GPUs.

7 Software availability

A growing number of groups are currently studying the application of graph networks to HEP
reconstruction (see [63] for a recent review). Some of these works [24, 27–31, 33–35] have
strong connections with the Exa.TrkX project. To promote collaboration and reproducibility,
the Exa.TrkX software is available from the HEP Software Foundation’s Trigger and Re-
construction GitHub8. A pipeline of re-usable modules is implemented within the Pytorch
Lightning system, which allows for uncluttered and simple model definitions. As each stage
of the pipeline is dependent, logging utilities are integrated that allow a specific combination
of stages and hyperparameters to be trackable and reproducible. Extensive documentation is
provided to help track reconstruction groups start exploring geometric learning. The roadmap
for this repository includes adding performance metrics to the codebase; a taxonomy of model
features; and short tutorials in each of the available applications.
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