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We study the emergence of de Sitter space in Euclidean dynamical triangulations (EDT). Working
within the semi-classical approximation, it is possible to relate the lattice parameters entering the
simulations to the partition function of Euclidean quantum gravity. We verify that the EDT ge-
ometries behave semi-classically, and by making contact with the Hawking-Moss instanton solution
for the Euclidean partition function, we show how to extract a value of the renormalized Newton’s
constant from the simulations. This value is consistent with that of our previous determination
coming from the interaction of scalar particles. That the same universal constant appears in these
two different sectors of the theory is a strong indication that EDT provides a viable formulation of

quantum gravity.

I. INTRODUCTION

The quantization of gravity remains one of the great
outstanding problems in theoretical physics. In this work
we continue our studies of Euclidean dynamical triangu-
lations (EDT) [1-3], a lattice approach to formulating
quantum gravity. This approach attempts to make con-
tact with the asymptotic safety scenario of Weinberg [4],
where the existence of a nontrivial ultraviolet fixed point
would make the theory effectively renormalizable non-
perturbatively. The perturbative nonrenormalizability of
quantum gravity is well known [5, 6]. In order to realize
the asymptotic safety scenario, EDT would have to re-
cover classical general relativity in the appropriate limit,
and there would have to exist a continuous phase transi-
tion in the phase diagram of the lattice theory such that
a divergent correlation length would allow one to take
the continuum limit.

We briefly review here the evidence that EDT satisfies
these conditions. Ref. [7] showed that a fine tuning of
the exponent of a local measure term is needed in or-
der to recover physical results. This local measure term
was first introduced into the lattice theory some time
ago in Ref. [8], but the evidence that this term is needed
to recover semiclassical physics and to take the contin-
uum limit has been presented more recently[7]. Once the
tuning procedure is implemented, it is found that the
geometries in the simulations are consistent with being
four-dimensional, and their behavior is close to that of
Euclidean de Sitter space. There is a well-established
first order phase transition in the phase diagram [9-13].
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Adding the measure term introduces a new parameter,
thus enlarging the phase diagram and turning the first
order point into a first order line. There appears to be no
obstacle to taking the continuum limit by following this
first order line to a possible critical endpoint; ensembles
following this procedure were generated at a number of
different lattice spacings [7, 14].

The evidence for semiclassical physics seen in Ref [7] is
the following. The global Hausdorff dimension was mea-
sured using finite-volume scaling, and it was shown to
be close to four [7]. The spectral dimension, a fractal
dimension defined by a diffusion process, varies with dis-
tance scale, and it was shown to approach a value close
to four at long distances. This variation of the spectral
dimension with distance had been seen already in other
approaches [15-17]. It was also shown in Ref. [7] that
the average over geometries gives a result that is close
to that of Euclidean de Sitter space, and the quantita-
tive agreement with the classical solution gets better as
the proposed continuum limit is approached. The agree-
ment between the classical solution and the lattice data
is actually the worst at long distances, but it improves as
the lattice spacing is reduced. This might seem counter-
intuitive, since it is typically the short-distance behavior
that is modified by discretization effects, but this type of
effect on long-distance behavior is common when a sym-
metry of a theory is broken by the regulator, for example
by the finite lattice spacing in the case of lattice regular-
ization. An example of this is the Wilson fermion formu-
lation of lattice quantum chromodynamics (QCD), where
the lattice regulator breaks chiral symmetry. There a
fine-tuning is required to restore the symmetry, and even
then, at finite lattice spacing the chiral symmetry break-
ing leads to distortions of the pion sector, which contains
the lightest (and therefore longest Compton wavelength)
states of the theory. Ref. [7] argued that the analogous
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symmetry that is broken by dynamical triangulations is
continuum diffeomorphism invariance.

Calculations including matter fields (in the quenched
approximation) also provide evidence for the emergence
of semiclassical spacetimes with the hoped-for behavior.
Ref. [18] introduced Kéhler-Dirac fermions [19] to the
EDT formulation. This approach provides a general-
ization of staggered fermions to the random lattices of
dynamical triangulations without the need to introduce
vielbeins or spin connections. In the flat-space, con-
tinuum theory the Kahler-Dirac action reduces to four
copies of Dirac fermions [20, 21]. This appears to be true
of Kéhler-Dirac fermions coupled to EDT as well, but
only in the continuum, infinite-volume limit. This is seen
in the approximate four-fold degeneracy of the low-lying
eigenvalues of the Kéhler-Dirac matrix, and in the degen-
eracy of scalar bound states in the continuum limit [18].
The four-fold degeneracy is lifted by lattice discretization
effects in a similar manner to what is found with stag-
gered fermions in lattice QCD [22], but just as in lattice
QCD, the degeneracy appears to be restored in the con-
tinuum limit. An additional advantage of Kéhler-Dirac
fermions is that they possess an exact U(1) symmetry,
which is related to continuum chiral symmetry. A study
of fermion bilinear condensates provides strong evidence
that this U(1) symmetry is not spontaneously broken
at order the Planck scale, implying that fermion bound
states do not acquire unacceptably large masses due to
chiral symmetry breaking. These results for Kahler-Dirac
fermions in EDT show that lattice fermions with the de-
sired properties can be incorporated into the theory.

Ref. [14] followed up this work with a study of the grav-
itational interaction of scalar fields. Once again work-
ing in the quenched approximation, Ref. [14] studied
the binding energy of two scalar particles in the non-
relativistic limit, as originally proposed in Ref. [23]. By
looking at the binding energy as a function of the con-
stituent particle mass, it was shown in Ref. [14] that the
ground-state energy of the bound-state system is com-
patible with the result of solving the Schrédinger equa-
tion with Newton’s potential in 3+1 dimensions. This
recovery of Newton’s law of gravitation in the appropri-
ate limit allowed the determination of the renormalized
Newton’s constant G for the first time within EDT. This
value of G sets the lattice spacing in units of the Planck
length, and given the value that was obtained, it was de-
termined that the lattice spacings of the simulations are
smaller than the Planck length. This suggests that there
is no barrier to taking the continuum limit.

Given these successes in the quenched matter sector, it
is interesting to return to a study of the global behavior
of the geometries. As noted above, the geometries resem-
ble Euclidean de Sitter space. This is seen by comparing
the classical de Sitter solution (analytically continued to
imaginary time) to the ensemble average of the shape of
the geometries. The agreement between the lattice data
and the expected classical, continuum curve gets better
as the continuum limit of the lattice theory is approached

[7]. Even so, it would be desirable to have additional
cross-checks that the lattice geometries are actually ap-
proaching semiclassical de Sitter space, and that the sim-
ulations properly account for quantum fluctuations about
the classical solution. In this regard we take our inspira-
tion from causal dynamical triangulations (CDT), a vari-
ant of the dynamical triangulations approach in which a
foliation of the geometries is introduced explicitly [24—
26].

Many of the nice properties that appear to be recovered
by EDT in the continuum limit were first seen in CDT, in-
cluding the emergence of four-dimensional (Euclidean) de
Sitter space [27-29] and the scale-dependence of the spec-
tral dimension [15]. In the CDT formulation it has also
been shown that semiclassical fluctuations about de Sit-
ter space are well-described by a simple mini-superspace
model [30, 31]. Thus, the evidence for the emergence of
four-dimensional de Sitter space in CDT is quite com-
pelling. The EDT geometries in our simulations have
baby universe-like structures that have a cross-section
of order the cut-off but are rather long in linear extent.
These baby universes branch off of the mother universe,
and they seem to cause a large deviation from the puta-
tive de Sitter solution at finite lattice spacing. Nonethe-
less, this deviation gets smaller and appears to vanish
as the EDT continuum limit is approached [7], though
the study of quantum fluctuations about de Sitter space
is complicated by these effects at finite lattice spacing.
Since branching baby universes are explicitly forbidden
in the CDT path integral, that formulation does not suf-
fer from this particular problem.

In this work we look at the finite-volume scaling of
one of the bare parameters in the lattice action, the bare
cosmological constant. It can be shown that if semiclas-
sical physics is to be recovered, then this bare parameter
should be a linear function of 1/v/V, where V is the lat-
tice volume. We show that for large volumes our lattice
data is in fact consistent with this expectation. Follow-
ing the discussion in Ref. [32], we study the saddle-point
approximation of the Euclidean partition function about
de Sitter space, and we show how the parameters in the
effective action for the lattice theory can be related to the
continuum Hawking-Moss instanton solution [33], evalu-
ated for the special case of de Sitter space. This relation-
ship allows us to use the finite-size scaling of our bare cos-
mological constant to obtain a result for the renormalized
Newton’s constant. Our result is in excellent agreement
with the previous determination of Newton’s constant
from the interaction of scalar particles in Ref. [14], pro-
viding further evidence that the EDT formulation realizes
a theory of gravity, and that de Sitter space with the cor-
rect quantum fluctuations emerges from our simulations.
The determination of G in this work is to a higher preci-
sion than that of Ref. [14], allowing for a slightly better
determination of our absolute lattice spacing.

This paper is organized as follows: Section II reviews
the EDT formulation. Section III discusses the de Sitter
instanton solution and how it may be used to extract



the renormalized Newton’s constant in our framework.
Section IV gives the details of the simulations. Section V
presents our numerical results for the finite-size scaling of
the bare cosmological constant and our determination of
G, as well as our results for the lattice distance conversion
factors needed to complete our calculation of G and to

compare it to previous results. We conclude in Section
VI

II. EUCLIDEAN DYNAMICAL
TRIANGULATIONS

In Euclidean quantum gravity the partition function is
given by the path-integral sum over geometries,

Zp = [ Digle Sl )

where the Euclidean Einstein-Hilbert action is
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with R the curvature scalar, A the cosmological constant,
and G Newton’s constant.

The EDT approach to quantum gravity assumes that
the partition function is given by the sum over triangu-
lations [1, 34]

1
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where the factor Cp divides out equivalent ways of label-
ing the vertices in a given geometry, the term in brackets
is a local measure term with the product over all trian-
gles, and O(t;) is the order of triangle j, i.e. the number
of four simplices to which it belongs. The exponent [ is
an adjustable parameter within the simulations. Sgg is
the Einstein-Regge action [35] of discretized gravity,
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the deficit angle around a triangular hinge t;, and with
the volume of a d-simplex of equilateral edge length a
given by
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It is standard to absorb the overall numerical factors into

constants and to perform the sums in Eq. (4) so that the
lattice action is given the convenient form

V=

SeEr = —K2Na + K4 Ny, (6)

with N4 the number of four simplices and N5 the number
of triangles.

The lattice geometries are constructed by gluing to-
gether four-simplices along their (4 — 1)-dimensional
faces. The four-simplices are equilateral, with constant
edge length a, and the dynamics is encoded in their con-
nectivity. In practice one would like to simulate for a
fixed bare cosmological constant, but this is impractical
since the simulations would take an exponentially long
time to make excursions to large four-volumes. Instead,
it is standard in dynamical triangulations to simulate at
fixed lattice volume, adding a volume preserving term to
the action such as 6A|NJ — Ny|. This term keeps the lat-
tice volume in the simulations close to the target fiducial
volume N, Z . In principle one should take the limit where
O\ is sent to zero, though in practice it suffices to take it
sufficiently small. Once the volume is fixed, the value of
the parameter k4 is then completely fixed, as discussed
in the following section. The other parameters, ko and
[, form a two-dimensional parameter space for the phase
diagram in which to search for a fixed point.

The phase diagram for this model has been mapped out
in previous work [12], and it is shown in Figure 1. The
solid line AB is a first order transition line that separates
the branched polymer phase from the collapsed phase.
Neither of these phases resembles semiclassical gravity.
The branched polymer phase has Hausdorff dimension 2,
while the collapsed phase has a large, possibly infinite,
dimension. The crinkled region and the collapsed phase
do not appear to be distinct phases; rather the crinkled
region appears to be connected to the collapsed phase
by an analytic cross-over. The crinkled region requires
very large volumes to see the characteristic behavior of
the collapsed phase, suggesting that it is a part of the
collapsed phase with especially large finite-size effects [11,
12].

It was shown in Ref. [7] that a fine-tuning of 3, such
that one approaches the first-order transition line from
the left, leads to semi-classical geometries with a dimen-
sion close to four. The continuum limit appears to ex-
ist and is approached by following the transition line to
large, possibly infinite, Ko.

IIT. THE DE SITTER INSTANTON

The overall shape of our lattice geometries resembles
that of FEuclidean de Sitter space, and this agreement
gets better as we take the continuum limit, as shown
in Ref. [7]. Though this appears promising, we can do
better by looking at the semiclassical approximation of
the EDT partition function about the classical de Sitter
solution. The first part of the discussion in this section
mirrors that of Ref. [32], and following that we present
our strategy for testing the expected behavior using our
simulations.

Consider the partition function of Euclidean dynami-
cal triangulations, where we assume that the sum over
triangulations of fixed four-volume has already been per-
formed, and we are only interested in the dependence on
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FIG. 1. Schematic of the phase diagram as a function of ko
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Ny. Then the path integral defining the partition func-
tion reduces to a sum over N4. The leading behavior of
the partition function is exponential in the four-volume

Z(ka k) = Y e ONs £(Ny, ko), (7)
Ny

where f(Ny,r2) is sub-exponential in Ny, and x§ is the
pseudo-critical value of the coupling k4. The limit k4 —
kg allows one to take the infinite lattice-volume limit
N4 — oo. This is not necessarily the infinite physical-
volume limit, since this procedure is equally valid in the
unphysical crumpled phase, where the numerical simula-
tions show that the emergent geometries are on the or-
der of the size of the cut-off. The critical value x§ is not
known a priori, but emerges from the nonperturbative
sum over triangulations. In practice it is determined by
adjusting the constant x4 at a particular target volume
until the moves are equally likely to cause an upward
fluctuation in volume as a downward one.

This term in the exponential corresponds in the con-
tinuum to the renormalized cosmological constant term,
so that we can identify

A

(I<L4 - HZ)N4 = %‘/7 (8)

where V = CyN4a*, with Cy a geometric factor equal to
v/5/96. Once the bare parameters sy and 3 are chosen
such that the simulations are in the physical region of
the phase diagram, the size of the semiclassical universe
is specified when we input the target volume Ny. The size
of the de Sitter universe at a given k5 and  uniquely fixes
K4, and thus the renormalized cosmological constant A.

4

If the partition function in Eq. (7) is to reproduce
semiclassical gravity, the subleading exponential behav-
ior should be given by the Einstein-Hilbert term. By
power counting, the 4-volume dependence of this term
should scale like

1 . VV
W/d x\/ﬁROC?. (9)

Thus, the partition function with all other degrees of free-
dom integrated out except for the four-volume should
have the form [32]

Z(l{4,/{2) = Ze—(ﬁ4—ﬁi)N4+k(H2)m7 (10)
Ny

where the expected scaling of k is
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If a continuum limit exists, then for some values of the
bare parameters k approaches zero in lattice units, and
Ny approaches infinity, leaving the volume fixed in physi-
cal units. The constant k at a given lattice spacing must
be determined from the simulations. To see how, we
consider the expectation value of the number of four-
simplices, (Ny), which a straightforward saddle-point ex-
pansion shows to be [32]

EN N4e—(ﬁ4—KZ)N4+k(Kz)m
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In our simulations we fix N4, so the expectation value
(N4) = Ny is just an input to our simulations. Solving
Eq. (12) for k we find

k:2|li471€2|\/ ]\747 (13)

and from this we see that a plot of k4 as a function of
1/+/Ny should be linear if the semi-classical limit is re-
alized in the simulations. Thus, a finite-volume scaling
study of x4 should allow us to determine the slope of
that linear dependence and thereby determine k. Given
k we can get G/a?, since by Eq. (11), they are inversely
proportional. It remains to find that proportionality con-
stant, which we get from the following argument.

The same saddle-point expansion used in Eq. (12) gives
for the partition function

iy = (09 ) o (22, 19

where the equality comes from a calculation of the con-
tinuum partition function, assuming that it is dominated
by the de Sitter instanton. This continuum expression
for the partition function is the well-known Hawking-
Moss instanton production amplitude [33]. In making
this equality we assume that the approximate agreement



between our lattice geometries and the continuum de Sit-
ter solution gets better and better in the continuum limit,
such that the de Sitter instanton dominates the parti-
tion function in that limit. This picture can be tested,
first by seeing whether r4 plotted versus 1/1/Ny is lin-
ear, and second by computing the renormalized Newton’s
constant and comparing it to our recent determination of
G from the binding energy of scalar particles [14]. One
can obtain the renormalized Newton’s constant G from
the semiclassical partition function as follows. Combin-
ing Egs. (8), (13), and (14), one finds

G 54a? (15)
N 16\/N4|I€4 — /{2 ’
which implies
G 51
— = 16
a®  16|s|’ (16)

with s the slope determined by a fit to k4 as a function
of 1/v/Ny.

In practice we must calculate this slope for each new
pair of values of ko and § in the bare action. Even differ-
ent volumes at the same nominal lattice spacing require
separate additional volume runs to perform the finite-
volume scaling, since the bare parameters vary to follow
the transition line, which moves as a function of volume.
Each slope determined from finite-volume scaling at fixed
values of ko and S determines a value of G at some fi-
nite volume and nonzero lattice spacing. These values of
G must then be extrapolated to the continuum, infinite
volume limit.

There is another subtlety involved in this analysis. We
want G in the same physical units across ensembles, but
our relative lattice spacing is given in simplex units £
rather than link units a, normalized at our fiducial lat-
tice spacing (8 = 0). The above prescription gives us G
in link units a, so if we want to put G into common units
across lattice spacings using the relative lattice spacing
in simplex units ¢, then we must first convert G into sim-
plex units. We also want to compare our final value for
G with that determined from the Newtonian binding of
scalar particles given in Ref. [14], but this determination
involved scalar fields living on the simplices, and their
correlation functions were measured on the dual lattice,
making the corresponding masses, and thus G, in simplex
units. Therefore, we must use the conversion

G G raN? ,
N =2 (z) Lrers (17)

where the lattice spacing conversion factors are given in
Table I, and fre = £/lgq, with £gq the fiducial lattice
spacing in simplex units at 8 = 0. We discuss the deter-
mination of the lattice spacing conversion factors a/¢ in
Section V.

IV. DETAILS OF THE SIMULATIONS

The generation of the EDT ensembles is described in
detail in Ref. [7], but we review some of those details
here. The lattices used in that and subsequent works
[14, 18] have been saved and are reused here. The path-
integral sum is over a set of degenerate triangulations,
where the usual combinatorial manifold constraints are
relaxed [36]. Thus, distinct four-simplices may share the
same five distinct vertex labels, and the neighbors of
any given four-simplex are not necessarily unique. Ei-
ther of these conditions is a violation of the combina-
torial manifold constraints. However, degenerate trian-
gulations have an advantage; there is a factor of ~10
reduction in finite-size effects compared to combinatorial
triangulations [36]. Since it is likely that degenerate and
combinatorial triangulations are in the same universality
class, if a continuum limit does in fact exist, we continue
to use degenerate triangulations.

The numerical methods used to perform the simula-
tions are by now well established [37]. The standard
(scalar) algorithm to perform the Monte Carlo integra-
tion of the path integral consists of an ergodic set of local
moves, known as the Pachner moves, which are used to
update the geometries [2, 38, 39], and a Metropolis step,
which is used to accept or reject the proposed move. Most
of the lattice ensembles used in this work were generated
using a parallel variant of the standard algorithm, called
parallel rejection. This algorithm gives identical results,
configuration by configuration, to the scalar algorithm,
but the parallel streams can lead to a significant speed-
up of the calculation. Parallel rejection takes advantage
of, and partially compensates for, the low acceptance of
the Metropolis step in our simulations and is described
in more detail in Ref. [7]. The sum over geometries is
restricted to the fixed global topology S*. In order to
enforce this restriction it is sufficient to start from the
minimal four-sphere at the beginning of the Monte Carlo
evolution, since the local moves are topology preserving.

Table I shows the ensembles that have been generated
previously that are used in the present work. They in-
clude ensembles at several different physical volumes and
lattice spacings. The relative lattice spacing quoted here
was obtained in Ref. [7] (and updated in Ref. [14]) by
looking at the return probability of a diffusion process
on the lattice geometries. The return probability is di-
mensionless, but varies as a function of the diffusion time
step, which is not. One can rescale the diffusion time
step so that the return probability lies on a universal
curve; the rescaling factor then leads to the relative lat-
tice spacing. The errors quoted reflect the uncertainties
in matching the curves in this procedure. The ratio of
link length a and simplex distance ¢ on each ensemble is
also given in Table I; the determination of this ratio is
described in detail in the next section.

Table II shows the new ensembles created in this work
to perform the finite-size scaling of k4 for fixed values of
the other two parameters ko and 8. As the volume of the



bt afl JE; K2 Ny Number of configs
1.59(10) 3.4(3) 1.5 0.5886 4000 367
1.28(9) 3.9(2) 0.8 1032 4000 524
1 52(1) 0 1605 2000 248
1 5.2(1) 0 1.669 4000 575
1 52(1) 0 17024 8000 489
1 5.2(1) 0 1.7325 16000 501
1 5.2(1) 0 1.75665 32000 1218
0.80(4) 7.2(7) —0.6 245 4000 414
0.70(4) 8.6(9) —0.8 3.0 8000 1486
0.70(4) 8.6(9) —0.776 3.0 16000 2341

TABLE I. The parameters of the ensembles used in our studies
of EDT. The first column shows the relative lattice spacing in
units of simplex distance, with the ensembles at 5 = 0 serving
as the fiducial lattice spacing. The quoted error is a system-
atic error associated with matching the return probabilities
across lattice spacings. The second column shows the ratio of
the link distance a to the simplex distance ¢ on a given en-
semble, with a systematic error associated with the matching
procedure. All a/¢ have been corrected for finite size effects.
The third column is the value of 3, the fourth is the value of
K2, the fifth is the number of four-simplices in the simulation,
and the sixth is the number of configurations sampled.

lattice is increased at fixed lattice spacing, one of these
other two parameters must be re-tuned in order to move
the simulation closer to the phase transition line, which
shifts as the volume changes, even for what is nominally
the same lattice spacing. Thus, we need a series of ad-
ditional runs at different volumes even where we already
have multiple volumes at the same nominal lattice spac-
ing. Since the phase transition line shifts to the right for
increasing volume, and to the left for decreasing volume,
it is necessary to go to larger volumes than the nominal
volume when we do the finite-size scaling, since only in
that case do we remain in the correct phase. Thus, all of
the volumes used in the finite-size scaling of k4 are larger
than the nominal volume of our original ensembles.

V. NUMERICAL RESULTS
A. Relating lattice distance measurements

We present the calculation of the conversion factors
between link units a and simplex units ¢ on our EDT
ensembles. First, we review the calculation of the return
probability P(c), with diffusion time o, on the dual lat-
tice. This quantity has been used to set the relative lat-
tice spacing in previous works [7, 14]. Before starting the
random walk of the diffusion process on the dual lattice,
the lattice is first shelled, with a starting four-simplex
chosen at random as the source; the next shell consists
of the nearest neighbors of the source simplex. The next
shell consists of all of their nearest neighbors, without
replacement, and so on until all of the four-simplices of
the lattice configuration have been counted. The starting

153 Ko N4 # of configs K4
1.5 0.5886 4000 414 7.989973(93)
8000 327 7.99258(18)
16000 801 7.99530(27)
32000 584 7.996832(49)
64000 494 7.997903(77)
0.8 1.032 4000 262 7.00464(11)
8000 495 7.00800(18)
16000 91 7.01003(15)
32000 369 7.011645(77)
64000 869 7.012781(43)
0 1.605 2000 1712 6.147791(67)
4000 414 6.152958(79)
6000 579 6.154980(81)
8000 327 6.15600(12)
12000 244 6.15733(12)
16000 28 6.15800(31)
0 1.669 4000 476 6.32841(18)
8000 2849 6.330489(58)
16000 1216 6.332214(59)
32000 1208 6.333493(49)
64000 903 6.33420(11)
0 1.7024 8000 489 6.42259(18)
12000 1056 6.424000(58)
16000 1145 6.424592(59)
32000 1529 6.425800(49)
64000 295 6.42652(11)
0 1.7325 16000 402 6.50854(20)
24000 430 6.509460(96)
32000 1369 6.509929(58)
64000 95 6.510592(73)
-0.6 2.45 4000 414 6.78342(25)
8000 298 6.78545(15)
12000 807 6.786175(94)
16000 973 6.786636(98)
24000 1057 6.787203(78)
32000 343 6.78758(15)

TABLE II. The parameters of the ensembles used to extract
the volume scaling of 4. The first three columns label the
ensembles. The first column is 3, the second is k2, and the
third is the lattice volume N4. The fourth column is the
number of configurations used to determine k4, and the fifth
column is the value of x4 determined on that ensemble, along
with its statistical error.

simplex for the diffusion process is then chosen from the
shell with the maximum number of four-simplices. We
find that restricting our sources to come from the largest
three-slice minimizes finite lattice spacing effects, and it
is the same procedure that has been used throughout the
recent EDT work involving the present authors, includ-
ing the study of K&hler-Dirac fermions [18] and the study
of scalar interactions [14].

The diffusion process on the dual lattice uses a ran-

dom walk where the next jump is chosen from the neigh-
bors of a given simplex. Because degenerate triangu-



lations are used, some of the five neighbors of a four-
simplex are not unique, that is, sometimes the same four-
simplex shares multiple tetrahedra with a neighboring
four-simplex. Even so, each of the five neighbors of a
given four-simplex is given equal weight when choosing
the next step of the random walk. One source is used
per configuration, and many random walks starting from
that source are run in order to sample the probability of
returning to the starting four-simplex. One peculiarity
of degenerate triangulations is that for the dual lattice
return probability, all of the odd time steps have zero
probability, at least for time steps sufficiently early in the
diffusion process. In order to compute the return proba-
bility, and the corresponding spectral dimension, we take
only the even time steps, so that each step ¢ is actually
two lattice hops in the diffusion process. This procedure
of omitting the odd steps in the return probability was
shown to work in the branched polymer phase, where
it correctly reproduces the known spectral dimension of
4/3 [12]. This procedure was also used to compute the
return probability and spectral dimension in the subse-
quent work on the tuned semi-classical geometries [7].

In order to get the ratio of the link distance and the
simplex distance, we compare the return probability on
the direct lattice with that on the dual lattice. The imple-
mentation of the diffusion process on the direct lattice is
new to the present work. Since the hops are now between
vertices, and each vertex is separated by link length a,
this allows us to convert simplex distance to link distance.
The random walk used to compute the return probabil-
ity is once again chosen from the shell with the maximal
volume, but this time the shelling is performed on the
vertices. In the diffusion process, a given vertex does not
have a fixed number of neighbors. In fact, the number
of neighbors can occasionally grow to be quite large. For
this reason it is helpful to use dynamical memory allo-
cation while computing the diffusion process. For this
work, an array of linked lists was used to store all of the
neighboring vertices to any particular vertex on a given
configuration. Because the triangulations are degener-
ate, there can exist multiple links connecting the same
two vertices. All such links are given equal weight when
computing the probability of a hop to a nearest neighbor.
In the case of the return probability on the direct lattice,
both even and odd diffusion time steps are non-zero and
are used in the calculation. There is an oscillation vis-
ible between the even and odd steps at early times due
to discretization effects; this oscillation dies out after a
sufficiently large number of time steps. This effect is com-
mon in computations involving the return probability or
spectral dimension on random lattices [28].

Figure 2 shows the return probabilities for both the
dual and direct lattice diffusion processes on the 32k, 8 =
0 ensemble. The return probability on the direct lattice
has been rescaled along the ¢ axis so that the two curves
overlap. This rescaling factor is used to determine the
ratio a/f. Recalling that the diffusion step is proportional
to distance squared, calling o4y, the diffusion time step
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FIG. 2. The return probability P(o) as a function of the
diffusion step size o for both the dual lattice and the direct
lattice at a volume of Ny = 32,000 and S = 0. The return
probability for the direct lattice has a rescaled o, so that it
overlaps with the return probability of the dual lattice.

on the dual lattice, and ogjpec; the diffusion time step on
the direct lattice, we find
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where it is assumed that the os are at matching points
on the return probability curve. The factor of 2 accounts
for the fact that each step of the diffusion process on the
dual lattice is actually two lattice hops. As can be seen
in Fig. 2, the agreement between the rescaled curves is
very good. Fig. 3 shows this same matching on the finer
ensemble at § = —0.6. Again, the rescaled curves line up
nicely.

Table III presents our values for a/f extracted from
each of our ensembles. For our Newton’s constant anal-
ysis we quote a single number for a/f at a given lattice
spacing. These values are corrected for finite-volume ef-
fects. In the case of the 8 = 0 ensembles, where we have
multiple lattice volumes, we do a direct extrapolation to
infinite volume. This extrapolation is shown in Fig. 4. In
order to correct all of the values of a/{ at other lattice
spacings for finite-volume effects, we assume that the fi-
nite volume dependence is the same as that of the 3 =10
ensembles, and we use that dependence to determine a
correction factor for a/¢. This is done by matching the
physical volume of the ensembles at other lattice spacings
against those at = 0, and computing the percentage
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FIG. 3. The return probability P(o) as a function of the
diffusion step size o for both the dual lattice and the direct
lattice at a volume of Ny = 4000 and 5 = —0.6. The return
probability for the direct lattice has a rescaled o, so that it
overlaps with the return probability of the dual lattice.

Cren Na a/t
1.50(10) 4000  3.6(3)
1.28(9) 4000  4.3(2)
1 2000  6.2(3)
1 4000  6.3(2)
1 8000  6.1(2)
1 16000  5.7(2)
1 32000  5.43(16)
0.80(4) 4000  8.6(2)
0.70(4) 8000  10.6(6)
0.70(4) 16000  10.4(5)

TABLE III. The values of a/f for the different ensembles in
our analysis. The first two columns identify the ensemble, the
first by its relative lattice spacing in units of simplex distance,
with the ensembles at 5 = 0 serving as the fiducial lattice
spacing. The second column identifies the ensemble by the
lattice volume. The third column is the value of a/£ on that
ensemble, with an error associated with matching the return
probability curves.

difference between where that physical volume lines up
with the curve in Fig. 4 and the infinite volume limit.
The errors in the values of a/f are estimated as fol-
lows. First, the statistical errors are taken into account
by varying the matching factor according to the lo sta-
tistical errors in the data points for the return probabil-
ities. Second, we account for the errors associated with
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FIG. 4. The ratio of direct to dual lattice spacings a/¢ as
a function of 1/V at § = 0 for multiple volumes, and two
sample fits extrapolating this quantity to the infinite volume
limit.

Crel aft
150(10)  3.4(3)
1.28(9)  3.9(2)

1 5.2(1)
0.80(4)  7.2(7)
0.70(4)  8.6(9)

TABLE IV. The values of a/f for different lattice spacings.
The first column identifies the ensemble by its relative lattice
spacing in units of simplex distance. The second column is
the value of a/f at that lattice spacing in the infinite volume
limit, including the total error.

extrapolating a/{ at a given lattice spacing to its value
in the infinite volume limit. At 8 = 0, where the ex-
trapolation to infinite volume can be done explicitly, we
vary the fit form and the number of data points included
in the fit in order to estimate a systematic error asso-
ciated with the infinite-volume extrapolation. Figure 4
shows a quadratic fit to all five volumes at 8 = 0 and
a linear fit to the largest three volumes. We also con-
sider a quadratic fit to the four largest volumes. Based
on the spread in these results, we quote an infinite vol-
ume result of a/f = 5.2(1) at 8 = 0. The errors in the
infinite-volume results for a/f at other lattice spacings
are obtained by combining the error in the finite volume
correction with the error in a/f at a given lattice spacing;
the central values with their errors are quoted in Tab. IV.



B. Finite volume scaling and Newton’s constant

To compute Newton’s constant given in Eq. (16) in link
units a, we need to extract the value of \/Ny|ry — k5|,
with the pseudo-critical value k5. The parameter x§ cor-
responds to the value of the coupling k4 needed to take
the infinite lattice-volume limit, and it is a function of 3
and ky. To extract /Nj|k4 — k5|, we therefore perform
simulations at fixed values of ko and 3, and increasing
volumes N4, and measure the tuned value of k4 at each
of the volumes. A linear fit

1
H4(N4) = Am; +s \/7]\74 ’ (19)

then allows us to determine the slope s to obtain New-
ton’s constant G/a? in link units. The errors on the
values for k4(N;) are assumed to be purely statistical,
and are estimated using single-elimination jackknife re-
sampling. Autocorrelation errors are taken into account
by a blocking procedure, where x4 data sets are blocked
until the error stops increasing. The x4 values of all en-
sembles are summarized in Tab. II, where the smallest
volume at fixed values of 8 and ko corresponds to the
tuned ensemble close to the first order phase transition
on which measurements of physical quantities have been
performed in previous works. Tab. V summarizes the
resulting slopes |s| for each pair of ko and g values, to-
gether with the x2/d.o.f. and the p-value corresponding
to each fit. In Figs. 5, 6, and 7, we display examples of
these fits, each of them showing a different finite-volume
scaling study at a different relative lattice spacing £e;-
In some of these fits, the x4 value of the tuned ensemble,
i.e., the smallest volume for each set of values for ko and
B, was discarded due to it not being well described by a
linear fit to the rest of the data points. A possible reason
for this is that the lattice volume is too small, or that
its closeness to the first-order phase transition results in
contamination by occasional tunneling into the branched
polymer phase, where the values of k4 differ significantly
[12]. We find good evidence of linear scaling of k4 as
a function of 1/4/N, across lattice spacings and nomi-
nal volumes, showing strong numerical evidence for the
validity of the semi-classical approximation, Eq. (13).

Given the finite-volume scaling of x4, the conversion
factor for link units into simplex units a/¢, and the rel-
ative lattice spacing in simplex units £..;, we compute a
value of Newton’s constant in units of our fiducial lattice
spacing using Eq. (17) for all of our results across lattice
spacings and nominal volumes. To perform the extrap-
olation to the continuum, infinite volume limit, we use
the simplest viable ansatz for the dependence of G on
the physical volume and lattice spacing. We use a fit
function for the Newton constant extrapolation that is
similar to what was used in the recent study of gravita-
tional binding [14],

H
G= 7(; +1al + Jolia + Ka, (20)

Lrel Vel B K2 |s] x2/d.o.f. p-value
1.59(10) 25.6(6.4) 1.5 0.5886 0.724(32) 1.4 0.24
1.28(9) 10.7(3.0) 0.8 1.032 0.6840(55) 0.35  0.79

1 2.0(0) 0 1.605 0.652(14)  0.60 0.62

1 400) 0 1.669 0.521(11) 1.4 0.24

1 80(0) 0 1.7024 0.502(12)  0.43 0.65

1 16.0(0) 0 1.7325 0.436(39) 0.76 0.38
0.80(4) 1.64(32) -0.6 2.45 0.393(22)  0.15  0.96

TABLE V. Extracted slopes s following a fit of the data in
Tab. II to Eq. (19), together with the other relevant parame-
ters of the ensembles. The first column is the relative lattice
spacing in simplex units. The second is the relative physi-
cal volume, given by Vel = Nuli., in units of thousands of
four-simplices. The third and fourth columns are g and ka2,
respectively. The fifth column is the slope |s|, the sixth col-
umn is the x?/d.o.f. of the linear fit, and the seventh column
is the p-value of that fit.
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FIG. 5. The k4 values corresponding to the parameters S = 0
and k2 = 1.669 versus 1/4/Ny. The line is a linear fit with
x?/d.o.f. = 1.4 and p-value of 0.24, resulting in a slope s =
0.521(11), cf. Tab. V. The data point corresponding to the
tuned ensemble, i.e., the smallest volume, was not included
in the fit.

where Hg, Ig, Jg, and Kg are fit parameters. We in-
clude quartic corrections in the relative lattice spacing,
since the coarse lattices introduce curvature as a function
of the relative lattice spacing. The inclusion of 1/V?2 cor-
rections is not necessary, however, since the additional
fit parameter does not improve the quality of the fit. To
test the results of the fit ansatz Eq. (20), we perform an
additional fit with Jg set to zero, while simultaneously
dropping the data points with £,; > 1. The result for the
continuum, infinite-volume limit of G for this fit is con-
sistent within one sigma with that of the extrapolation
using the full ansatz given in Eq. (20).

The extrapolation of G is shown in Fig. 8 against the
inverse physical volume. The colored lines correspond to
lines of constant lattice spacing, and the black line rep-
resents the continuum limit extrapolation. Fig. 9 shows
the same data, plotted against the squared relative lat-
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FIG. 6. The k4 values at the coarsest lattice spacing with
B = 1.5 and k2 = 0.5886 versus 1/\/ﬁ4. The line is a linear
fit with x*/d.o.f. = 1.4 and p-value of 0.24, resulting in a slope
of s = 0.724(32). The data point at the smallest volume was
not included in the fit.
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FIG. 8. Newton’s constant G as a function of the inverse
physical volume (expressed in units of 1000 simplices) for all
of the ensembles (colored), as well as the continuum limit
(in black). Here quadratic corrections in 1/V as well as £Z;
were used to model the extrapolation. For this fit we find
x%/d.o.f. = 0.87 corresponding to a p-value of 0.46, and the
continuum, infinite volume value is G = 14.3(3.6).
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FIG. 7. The k4 values corresponding to the parameters 8 =
—0.6 and ko = 2.245 versus 1/1/Ns. The line shows a linear
fit with x?/d.o.f. = 0.15 and a p-value of 0.96, resulting in a
slope s = 0.393(22).

tice spacing, which represents a different slice through the
parameter space spanned by 1/V and £,¢. Here, lines of
fixed physical volume at the fiducial lattice spacing, i.e.
L1 = 1 are shown. In both figures, the black cross corre-
sponds to the infinite-volume continuum extrapolation of
the Newton constant. We find for the extrapolated value
of the Newton constant G = 14.3(3.6). The x?/d.o.f. for
the extrapolation fit is 0.87, corresponding to a p-value
of 0.46, an acceptable confidence level for this fit. This
result for G in fiducial simplex units can be compared
directly to our recent result from Newtonian binding in
Ref. [14], where the value G = 15(5) was quoted. The
agreement is clearly excellent, and it is a powerful check
that both calculations are making contact with the cor-
rect semi-classical limit.

FIG. 9. The same data and fit from Fig. 8 however now
plotted as a function of the squared lattice spacing. Here
example lines of constant physical volume are plotted along
with the infinite volume limit as a solid black line, and the
data are represented in the same manner as Fig. 8.

VI. CONCLUSION

In this work we have revisited the emergence of de
Sitter space in the EDT formulation. We have studied
whether the lattice geometries that emerge from our sim-
ulations are compatible with the semiclassical de Sitter
solution in the continuum, large-volume limit. Following
the discussion in Ref. [32], we have studied the saddle-
point approximation of the Euclidean partition function
about de Sitter space. The finite-volume scaling of the
bare cosmological constant in the semi-classical approx-
imation can be shown to be a linear function of 1/v/V,
where V is the lattice volume. Our data confirms this ex-
pectation. Given this agreement, it is possible to use this



result to extract a value of the renormalized Newton con-
stant G from a comparison between the lattice partition
function in the semiclassical limit and a similar calcula-
tion in the continuum. The continuum calculation in this
case is the well-known Hawking-Moss instanton solution
[33], evaluated for the special case of tunneling to a de
Sitter universe.

This identification provides a value of G at a series of
volumes and lattice spacings, so that it is necessary to ex-
trapolate these values to the continuum, infinite-volume
limit. Before doing so, we must put G at the different
lattice spacings into common physical units. There is
a subtlety here, in that we obtain our raw values of G
in link units, while our relative lattice spacings are de-
termined in simplex units. We calculate the conversion
factor by comparing the return probabilities computed
on the dual lattice and on the direct lattice. With the
appropriate conversion factors, and after the extrapola-
tion, we finally find a value of G = 14.3(3.6), measured
in simplex units at our fiducial lattice spacing at 5 = 0.
This result can be compared to our previous calculation
of Newton’s constant obtained by studying the gravita-
tional interaction of scalar particles. Both calculations
use the same tuned ensembles described in this work,
and the value G = 15(5) given in Ref. [14] is normal-
ized in the same units as the one presented here, so that
a comparison is possible. The agreement is clearly very
good. Our new result for G implies a somewhat improved
determination of our absolute lattice spacing in Planck
units, with gpl = (38 + 05)€ﬁd

The main source of error in the determination of New-
ton’s constant in the present analysis is the error in the
conversion factor a/¢ between link and simplex units, and
the determination of the relative lattice spacing. The lat-
ter also determines the uncertainties on the physical vol-
ume and the squared lattice spacing, cf. Figs. 8 and 9. A
reduction of the uncertainties on the quantities a/¢ and
lre1 in the future will most likely require larger volumes

11

at finer lattice spacings. Additional measurements of the
finite-volume scaling of the bare cosmological constant
at finer lattice spacings and larger volumes should also
allow for a better determination of G in the continuum,
infinite-volume limit. Improved precision on this quan-
tity is important for testing the consistency of the EDT
formulation.

In conclusion, the good agreement between the de-
termination of Newton’s constant in Ref. [14] and the
present work is highly non-trivial, since one calculation
studies the semi-classical expansion of the partition func-
tion about de Sitter space, and the other measures the
gravitational interaction between scalar particles. That
both of these features emerge from Euclidean dynamical
triangulations governed by the same universal constant
provides strong evidence that EDT is not merely a theory
of random geometry, but a theory of gravity.
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