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Abstract

The Starobinsky model of inflation remains consistent with observation, forty years after its introduction.

It provides a well motivated origin for the scalar inflaton, the “scaleron” with a mass of O(1011) GeV,

emerging as a graviton degree of freedom from R2 corrections to Einstein-Hilbert gravity. However the

coupling of such a heavy state to the BEH (“Higgs”) scalar is problematic as its quantum loop corrections

can induce an unacceptably large contribution to the radiatively induced BEH scalar mass. The calculation of

these corrections is normally done by Weyl transforming to the Einstein frame, yet at the quantum level Weyl

transformations are fraught with ambiguities. However the recent realization that there exist “gravitational

contact interactions” largely sidesteps these ambiguities. Such contact terms are necessarily present, coming

from t-channel graviton exchange interactions, and they dictate that the theory is always in an Einstein

frame, with additional Planck-scale suppressed interactions that take on the form of a Weyl transformation.

This avoids ambiguous nonlinear field redefinitions, and reliable loop calculations are possible leading to a

consistent low energy theory in an expansion in 1/M2. Taking account of the contact terms we study the

radiative corrections to the BEH mass in the original Starobinsky model with explicit scale breaking, and

in an extension of the model in which exact scale symmetry is spontaneously broken.
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I. INTRODUCTION

There has been considerable interest in recent years in the fundamental role of scale symmetry

with gravity and the cosmological evolution of the early universe. Scale, or equivalently Weyl

invariance (the natural setting for scale symmetry when gravity is incorporated), offers a class of

models in which cosmic inflation, the origin of the Planck mass as a dynamical scale symmetry

breaking, and potentially large hierarchies seen in nature, can arise as a unified phenomenon.

In the present paper we focus on a leading candidate quantum field theory of inflation known as

the Starobinsky Model [1] both in its original form with explicit scale breaking, and in an extension

of the model in which exact scale symmetry is spontaneously broken. This is an R2 theory, and as

such has an extra physical scalar graviton degree of freedom beyond the two propagating degrees

of freedom in the Einstein-Hilbert theory. One can immediately “factorize” the R2 interaction,

replacing it with a scalar auxiliary field Lagrangian, ∼ η2R− ξη4, and η will subsequently acquire

kinetic terms. This new field, η, is known as the “scaleron”, emerges automatically in the model

and can serve as the inflaton. This in turn leads to a phenomenologically successful inflationary

model provided the scaleron is sufficiently heavy of O(1011) GeV. We are interested in the effective

quantum field theory aspects of this scheme. In particular we explore the naturalness of the light

Brout–Englert–Higgs (BEH, “Higgs”) scalar [2–4] of the Standard Model when it is introduced

into the theory and interacts with the scaleron state. This is particularly interesting in the scale

invariant version of the model because scale invariance forbids a bare BEH mass and it is only

generated on spontaneous breaking of the symmetry.

A standard technology used in performing loop calculations in effective field theory in these

schemes involves the “Weyl transformation.” While an exact transformation classically, the Weyl

transformation involves nonlinear field redefinitions, and leads to a morass of ambiguities at the

quantum level. Mainly, Weyl transformations can transform a classical theory with nonminimal

couplings of scalars to gravity, as F (φ)R, into any other coupling, G(φ)R. There is a special frame,

G(φ) = M2, called the “Einstein frame,” where the nonminimal couplings are absent. However,

one would think any frame should be as good as any other and indeed some authors invoke special

properties of other frames, such as those with “conformal coupling, ” − 1
12φ

2R.

In exploring this we find, however, that the resulting induced BEH scalar mass is dependent

upon the frame choice (an example is given in Appendix C). Effectively the different Weyl frames,

as conventionally treated, are different theories. In principle, it is possible to trace this back to

original field definitions in some preferred frame, and obtain consistency, but what dictates the
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initial preferred frame? Therefore, it appears that Weyl transformations are incompatible with

quantum theory. Indeed, this incompatibility has been argued to be the case long ago by M. Duff

[5].

Recently, however, we pointed out that if one considers the t-channel exchange of gravitons

in a theory with non-minimal interactions, F (φ)R, a novel phenomenon occurs [6]: the theory

acquires contact terms. In weak field approximation, gμν ≈ ημν + hμν/M the scalar curvature has

a leading F (φ)∂2h term.1 In a Feynman diagram this implies a vertex proportional to q2, which

in turn cancels the 1/q2 in the graviton propagator. This means that the would-be long range

graviton exchange potential arising from the non–minimal terms collapses to a delta-function, and

becomes a set of local operators. These local operators become part of the effective action. A

well-known example is the “penguin diagram” in which electroweak vertex corrections to gluon

exchange generates contact terms leading to new local operators which mediate processes such as

K → 2π. The contact term is classical, of O(�0) arising from tree diagrams, yet contact terms are

an exception to the rule that corrections to the action come only from single particle irreducible

(loop) diagrams. The contact term is an essential part of the physics.

The contact term in gravity has the same structure in any frame as a Weyl transformation lead-

ing to the Einstein frame.2 Its effect is to erase the non-minimal interaction in a given frame and

replace it with M2, essentially “integrating out” the ∂2h part of R, leaving the normal Einstein-

Hilbert gravity intact. However, it is important to realize that the contact term is not a Weyl

transformation! Here we avoid nonlinear redefinitions of the matric that are problematic in quan-

tum field theory. Instead one is left with the original metric and new Planck-scale suppressed

operators, such as (∂ ln(F (φ)))2/M2 and F (φ)T μ
μ /M2 (where T μ

μ is the stress tensor trace). The

frame ambiguity is gone since the frames are gone. The contact term implies that there is no phys-

ical meaning to a non-minimal interaction — the theory is always in the Einstein frame. While

one can formulate an action in an arbitrary frame, any attempt to do physics in that frame will

have to take the contact term into account, which undoes the non-minimality and forces one into

the physical Einstein frame.

This implies that the ambiguities in loop calculations amongst the various Weyl frames do not

exist, because the various Weyl frames themselves do not exist. There is only one frame that is well

1 This term is projected to zero in the Einstein-Hilbert action where
∫
d4x

√
−gM2D2h is a total divergence

2 In reference [6] the leading behaviour in 1/M2 was derived, but presumably the t-channel diagrams can be re-
summed to yield the full Weyl transformation form. While we have not explicitly proved this, one can see evidence
of it by considering multi-graviton exchange diagrams, or considering iteration of the Einstein equation for R.
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defined, the Einstein-Hilbert frame, and all calculations should be done in that frame. A consistent

effective field theory can then be derived in an expansion in 1/M .

One still has an ambiguity of choice of source currents in an effective potential calculation in the

Einstein frame. This is a “user option”, analogous to whether one computes a magnet’s potential

as function
−→
M (magnetization) or

−→
M2. Many choices are possible, and lead to physically different

potentials and interpretations. Presently we are interested in the order parameter that can serve

optimally as the inflaton. In studying inflation it is necessary to consider the evolution of fields

away from equilibrium and motivates one to choose a variable that diagonalises the kinetic term

in the absence of a constant background field. For the original Starobinsky model this leads one

to a natural fundamental variable eliminating the remaining ambiguity.

In calculating the effective action in the Coleman-Weinberg method [7], it is important to realize

that the source terms lead to a result with “on-shell” classical background fields. Merely shifting

and computing without sources can lead to results that are dependent on the choice quantum

fluctuations (the actual field we integrate in the path integral). For potentials, “on-shell” means

that static classical background fields are VEVs. Since we are interested in the effective potential

far from the true potential minimum we add the source terms that shift these fields to arbitrary

classical values. These shifted fields are then minima of the full potential with sources, where the

currents have deformed the potential. In the special case that background fields are in the true

local minimum of the classical potential, where the sources vanish, then the fields are automatically

on-shell. With a given set of sources and on-shell background fields, the effective potential will

then be invariant under different choices of the quantum fluctuation fields. A proof and discussion

of this is given in Appendix B.

We also introduce an alternative method to compute the effective potential using the renormal-

ization group (RG). This is an expeditious method based on the fact that the rather complicated

and nonrenormalizable form of the potential at short-distance (Planck-scale) contains a subset of

“relevant operators” that propagate logarithmically into the infrared and define the low energy

theory. We write down a generic set of relevant operators, match their coefficients at M to the

Starobinsky potential, and compute the evolution of their couplings into the infrared with con-

ventional RG equations. This is similar to a second order phase transition in condensed matter

physics, where there is approximate scale invariance and sensitivity to the complicated short-

distance physics is erased, leading to universal low energy results. Presently, the low energy form

of the Higgs mass is found to be identical to the Coleman-Weinberg form and can be directly con-

nected to the trace anomaly [8]. This is a powerful and efficient technique, and will be developed
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further elsewhere [9].

Contact terms thus mandate a unique and well defined formulation of the theory in the Einstein

frame. In what follows we will apply this to focus upon two settings for the Starobinsky model. We

will begin with a non-scale-invariant theory in which the Planck mass is present as a fundamental

scale and the model is extended to include the BEH scalar. We will also analyse a Weyl invariant

version of the Starobinsky model including the BEH scalar in which the fundamental mass scales

arise by spontaneous symmetry breaking [10]. This requires an additional scalar field and forms

the basis of the modern Weyl invariant field theory approach [11–25].

Here the spontaneous breaking of the Weyl-scale symmetry is a consequence of the conserved

Weyl current, Kμ = ∂μK where K is a scalar function of the scalar fields. Any conserved current

will redshift to zero in a general expansion of the universe, and so too the Weyl current. However,

since the Weyl current is a derivative of a scalar K, we see that K will therefore redshift to an

arbitrary constant, K̄. This is the order parameter of the spontaneous symmetry breaking, and

when it acquires a nonzero VEV the symmetry is broken. We call this “inertial symmetry breaking”

[26] because it does not involve a potential. There will be a dilaton, and the decay constant of the

dilaton is
√
2K̄, and is also proportional to the Planck mass.

II. THE STAROBINSKY NON-SCALE-INVARIANT INFLATIONARY MODEL

A. The Action

We focus presently upon the non-scale invariant (NSI) Starobinsky inflationary model [1]. The

model has the action:

S =

∫ √−g

(
1

2
gμυ∂μH∂νH − 1

6f2
0

R2 − 1

12
αHH2R+

1

2
M2R− V (H)

)
(1)

where M is the Planck mass and R(g) is the Ricci scalar of the metric gαβ . Here we also include

the Standard Model BEH scalar isodoublet H, which, for convenience we will treat H, as a real

scalar field H. This can be identified with the physical BEH isodoublet scalar of the Standard

Model when H is written in the unitary gauge H = (0,H/
√
2) and we assume the the electroweak

gauge fields are pure-gauge configurations. Then DμH → ∂μH and H†H → 1
2H

2. We have allowed

for a non-minimal coupling of H proportional to αH . Even if this is initially set to zero it is

generated radiatively by Standard Model couplings [27, 28]. We will largely ignore V (H) as it

plays a subdominant role in the radiative corrections.

5



Since the R2 term involves fourth order derivatives it contains an additional (scalar) degree of

freedom [29, 30]. To make this explicit it is conventional to reduce the fourth order derivatives to

second order by introducing a static auxiliary field, η, with the action now given by:

S =

∫ √−g

(
1

2
gμυ∂μH∂νH − 1

12
αηη

2R− 1

12
αHH2R+

1

2
M2R− ξ′

4
η4

)
(2)

where the equation of motion yields:

η2 = −1

6

αη

ξ′
R and: f2

0 =
24ξ′

α2
η

. (3)

The coupling ξ′ and the value of αη are relative. We can define a new ξ = ξ′/α2
η and rescale η2 so

that αη = 1 and,

− 1

12
αηη

2R− ξ′

4
η4 −→ − 1

12
η2R− ξ

4
η4. (4)

We will take α2
η = 1 to be “standard normalization”, in which case we have f2

0 = 24ξ. In the

standard normalization the action becomes:

S =

∫ √−g

(
1

2
gμυ∂μH∂νH +

1

2
M2RΩ2 − ξ

4
η4

)
(5)

where we define:

Ω2 = 1− αH

6M2
H2 − 1

6M2
η2 ≡ exp

(
2χ√
6M

)
(6)

and χ will play the role of the inflaton.

While this formulation is done in the “Jordan frame,” as shown in [6], contact interactions

generated by tree level graviton exchange significantly modify the action. In this sense the Jordan

frame does not really exist, as it is driven to the Einstein frame by the contact terms. In practise,

rather than carrying out the laborious process of calculating the contact terms, we can formally

perform a Weyl transformation to go to an Einstein-Hilbert action:

gμν(x) → Ω−2gμν(x) gμν(x) → Ω2gμν(x)

√−g → √−g Ω−4 R(Ω−2g) = Ω2R(g) + 6Ω3D∂Ω−1. (7)

We emphasize however that the contact terms are not a Weyl transformation and preserve the

original metric, though formally the resulting structure of the theory is that of the Weyl transfor-

mation.

Then we have from eq.(6),

η2 = 6M2

(
exp

(
2χ√
6M

)
−

(
1− αH

6M2
H2

))
. (8)
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and the potential takes the form:

ξ

4
Ω−4η4 =

3

8
M4f2

0

(
1− exp

(
− 2χ√

6M

)(
1− αH

6M2
H2

))2

. (9)

We now turn to two different treatments of the effective potential. One follows the Coleman-

Weinberg approach, introducing sources and performing an expansion to order �. The second

approach uses the renormalization group and is much simpler.

B. A Coleman-Weinberg Calculation of the Effective Potential

The Coleman-Weinberg potential [7] results from a WKB approximation to computing a Gaus-

sian integral in field theory. We add source terms to dynamically shift the classical values of the

fields to nonzero on-shell VEVs. Presently, we choose a source term J
√
6M ln Ω +KH. The pa-

rameterization of the fields is then arbitrary and we will assume, χ =
√
6M ln Ω and H, and then

note that 3M2∂ ln Ω∂ ln Ω = 1
2∂ρχ∂

ρχ. The Einstein frame action is then:

S =

∫ √−g

(
1

2
Ω−2∂ρH∂ρH +

1

2
∂ρχ∂

ρχ+
1

2
M2R− ξ

4
Ω−4η4 + J

√
6M ln Ω +KH

)
(10)

We emphasize that eq.(10) is a result of the contact terms, and the metric appearing is the original

metric of eq.(2).

We now expand in in
√
� ≡ ε:

H = h+ εx, χ = κ+ εy,
√
� = ε (11)

where (h, κ) are classical background fields and (x, y) are quantum fluctuation scalar fields, inte-

grated in the the path integral. We also introduce the following useful functions of the classical

background fields:

P = exp

(
− κ√

6M

)
, p =

√
αH

6M2
h, q =

√
1

6M2
h. (12)

The action to O(�) = ε2 becomes:

S =

∫ √−g

(
1

2
M2R+

1

2
ε2P 2∂ρx∂

ρx +
1

2
ε2∂ρy∂

ρy − V (J,K)

)
, (13)

where the potential of eq.(9) including sources is given by:

V (J,K) =
ξ

4
Ω−4η4 + J (κ+ εy) +K (h+ εx) , (14)
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where,

ξ

4
Ω−4η4 =

3

8
M4f2

0

(
1− P 2

(
1− 2√

6M
yε+

1

3M2
y2ε2 +O

(
ε3
))(

1− αH

6M2

(
h2 + 2hεx+ ε2x2

)))2

. (15)

The sources are determined by the condition that the potential V (J,K) be evaluated at the min-

imum, whence the linear terms in ε vanish. Since the particular sources we have chosen couple

linearly to the fields they do not affect the quadratic term, O
(
ε2
)
, in the expansion of the potential

(see Appendix B for an exception). Then performing the Legendre transformation:

V (κ, h) = V (J,K)− J
d

dJ
V (J,K) −K

d

dJ
V (J,K) (16)

with G = 3
8M

4f2
0 = 9M4ξ, we expand V (κ, h) to O

(
ε2
)
to obtain the potential, V (κ, h),

V (κ, h) = Vclassical

+
G

M2
ε2

(
1

3

(
1− P 2

(
1− p2

))
P 2

(
αHx2 − 4

√
αHpxy − 2y2

(
1− p2

))
+
2

3
P 4

(√
αHpx+ y

(
1− p2

))2
(17)

where the classical potential is Vclassical = (1− P 2
(
1− p2

)
)2.

C. One loop radiative corrections

At O(�), the quadratic term in the fluctuations can be written as an unrenormalized mass

squared matrix amongst the quantum fluctuations (x, y):

1

2

⎛⎝ y

x

⎞⎠T

Ξ2
0

⎛⎝ y

x

⎞⎠ where,

Ξ2
0 =

2G

M2

⎛⎝ 2
3P

2
(
p2 − 1

) (
1− 2P 2

(
1− p2

)) −2
3P

2√αHp
(
1− 2P 2

(
1− p2

))
−2

3P
2√αHp

(
1− 2P 2

(
1− p2

))
1
3P

2αH

(
1− P 2 + 3P 2p2

)
⎞⎠ . (18)

Likewise the kinetic terms for (x, y) can be written:

1

2
ε2P 2∂ρx∂

ρx +
1

2
ε2∂ρy∂

ρy =

⎛⎝ ∂y

∂x

⎞⎠T

Z

⎛⎝ ∂y

∂x

⎞⎠ (19)

where,

Z =

⎛⎝ 1 0

0 P 2

⎞⎠ √
Z

−1
=

⎛⎝ 1 0

0 P−1

⎞⎠ . (20)

8



The physical, renormalized mass squared matrix is therefore:

Ξ2 =
√
Z

−1
Ξ2
0

√
Z

−1

=
8

3

G

M2

⎛⎝ −1
2P

2
(
1− p2

) (
1− 2P 2(1− p2

) −√
αHpP

(
1
2 − P 2(1− p2)

)
−√

αHpP
(
1
2 − P 2(1− p2)

)
1
4αH

(
1− P 2(1− 3p2

)
).

⎞⎠ (21)

Strictly following the analysis of Coleman and Weinberg [7] we should construct the eigenvalues

of the mass squared matrix, denoted as (Ξ2
1,Ξ

2
2). The potential then takes the form, subject to

renormalization conditions,

Γ = − 1

64π2
Ξ4
1 ln(M

2/Ξ2
1)−

1

64π2
Ξ4
2 ln(M

2/Ξ2
2), (22)

(see Appendix A). Here the mass eigenstates correspond to the scaleron and the BEH scalar.

Given the large mass of the scaleron it dominates the contribution to eq(22) and to an excellent

approximation we can can define the resulting effective potential as:

Γ = − 1

64π2
Tr

(
Ξ4

) (
ln

(
M2/m2

))
(23)

where m is the scaleron mass and we have:

Tr
(
Ξ4

)
=

16

9

G2

M4

(
P 4

(
1− p2

)2 (
1− 2P 2

(
1− p2

))2
+ 8αHp2P 2

(
1

2
− P 2

(
1− p2

))2

+
1

4
α2
H

(
1− P 2

(
1− 3p2

))2)
(24)

This is the leading order result in � = ε2 valid to all orders in (κ, h). We are interested in

calculating the correction to the BEH mass at the end of inflation in the limit of small κ → 0,

hence P = exp
(
− κ√

6

)
→ 1 and

Tr
(
Ξ4

) → 16

9

G2

M4

(
1 +

(
−αH

M2
+

1

3

α2
H

M2

)
h2 +O

(
h4

))
(25)

and, with f2
0 = 24ξ, G = (3/8)M4f2

0 = 9M4ξ, the loop induced Higgs mass term is then:

Γ = − 3

4π2
M2ξ2αH(αH − 3)h2 ln

(
M2/m2

)
= − 1

768π2
M2f4

0αH (αH − 3) h2
(
ln

(
M2/m2

))
(26)

Note the parameters refer to the action of eq(1) where ξ is rescaled to standard normalization.

This is our key result for the NSI Starobinsky model, and disagrees with previous results, such as

[17].
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D. Renormalization Group Approach

The effective potential approach used in the preceding section is a well-defined procedure. Its

relationship to other fundamental quantities in the field theory, such as the β-functions and trace

anomalies, is not so obvious. However, we can easily obtain the preceding results with the renor-

malization group equations. The connection to the trace anomaly is then direct, as in ref.[8].

We construct a generic theory consisting of “relevant operators” up to dimension 4, that par-

ticipate in the logarithmic running of the relevant coupling constants. We then impose boundary

conditions at the UV (Planck) scale that match the parameters of this generic potential to the

non-scale invariant Starobinsky model.

Consider the following generic field theory:

S =

∫
1

2
∂ρH∂ρH +

1

2
∂ρχ∂

ρχ−W (χ,H) (27)

where the potential is

W (χ,H) =
1

2
μ2
1χ

2 +
1

2
μ2
2H

2 +m1χ
3 +m2χH

2 +
λ1

4
χ4 +

λ2

4
H4 +

λ3

2
H2χ2. (28)

This maintains the symmetry H → −H. We expand the fields (χ,H) in VEVs + fluctuations,

(χ,H) → (κ+ �x, h+ �y) and integrate the fields (x, y) to obtain one-loop RG equations (this can

be done efficiently by the Tr(Ξ4) method as in Appendix A). There are then seven renormalization

group equations in terms of (t = ln(μ)):3

8π2 ∂

∂t
μ2
2 = − (

3λ2μ
2
2 + 4m2

2 + λ3μ
2
1

)
8π2 ∂

∂t
μ2
1 = − (

2m2
2 + λ3μ

2 + 18m2
1 + 3λ1μ

2
1

)
8π2 ∂

∂t
m1 = − (9λ1m1 + λ3m2)

8π2 ∂

∂t
m2 = (3λ2m2 + 4λ3m2 + 3λ3m1)

8π2 ∂

∂t
λ1 =

(
9λ2

1 + λ2
3

)
8π2 ∂

∂t
λ2 =

(
9λ2

2 + λ2
3

)
8π2 ∂

∂t
λ3 = λ3 (3λ2 + 4λ3 + 3λ1) . (29)

3 We specialize to the case P = 1 which would otherwise lead to wave-function renormalization corrections. We also
presently ignore the interesting issue of αi running which necessitates re-generation of the contact term. These
issues will be dealt with in a subsequent paper [9].
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While these can be formally integrated in leading log approximation, here we are only interested

in the single log solutions, such as,

λ1 = λ10 −
1

8π2

(
λ2
30 + 9λ2

10

)
ln

(
M

μ

)
(30)

where λi0 is the initial value of λi at μ = M (see Appendix A).

To obtain the Higgs mass we use the NSI potential as the boundary condition on the theory

when μ = M . From eq(9):

ξ

4
Ω−4η4 =

3

8
M4f2

0

(
1− exp

(
− 2κ√

6M

)(
1− αH

6M2
h2

))2

(31)

Expanding this to quartic order in the fields and matching coefficients, our generic potential takes

the form at the Planck-scale:

W (κ, h)/f2
0 =

1

4
M2κ2 − 1

2
√
6
Mκ3 +

αH

4
√
6
Mκh2 − αH

8
κ2h2 +

7

72
κ4 +

1

96
α2
Hh4 (32)

In particular we see that, at the Planck-scale, M , the initial values of the parameters relevant to

the Higgs mass are:

μ2
20 = 0 m20 =

αH0

4
√
6
Mf2

0 μ2
10 =

1

2
M2f2

0 λ30 = −1

4
αH0

f2
0 (33)

Therefore, combining these results with the first line of eqs.(29), the Higgs mass is determined at

a lower energy scale μ = m in the single log approximation:

μ2
2(μ) = − 1

384π2
f4
0M

2αH (αH − 3) ln
(
M2/m2

)
(34)

yielding the Higgs potential:

Γ =
1

2
μ2
2h

2 = − 1

768π2
f4
0M

2αH (αH − 3) h2 ln
(
M2/m2

)
(35)

in exact agreement with eq(26).

We have presented the renormalization group (RG) approach here to illustrate that it is much

simpler and potentially more powerful than the effective potential calculation obtained previously.

The RG clarifies the ambiguities, which now largely lie in the choice of the field parameterizations

in the UV boundary conditions of the theory [8].

Note, moreover, that at this order the running of the Higgs mass does not involve the running of

the αi. The running of the αi leads to the tricky problem of the regeneration of the contact term,

which we’ll treat elsewhere [9]. However, ultimately, a stable Higgs mass would likely necessitate

an infrared fixed point of these RG equations.
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III. SCALE INVARIANT STAROBINSKY MODEL

We can readily construct a scale invariant Starobinsky model and introduce the BEH scalar.

The inflationary parameters are predicted to be close to the original Starobinsky model and are in

good agreement with present observations [32, 33]. As before, to obtain the observed amplitude of

the perturbations f0 ∼ 10−5 requires that the scaleron has mass of O(1011) GeV.

The Scale Invariant Starobinsky action is :

S =

∫ √−g
(1
2
gμυ∂μφ∂νφ+

1

2
gμυ∂μH∂νH − 1

12
αφφ

2R− 1

12
αηη

2R− 1

12
αHH2R

−λ

4
φ4 − ξ

4
η4 − ω

4
H4

)
(36)

Here we again have the auxiliary field η, which can be integrated out to recover the R2 term as in

the non-scale invariant model of Section II.

Note that, in the limit αφ = αH and λ = ω = 0, the theory is SO(2) invariant. In this limit the

BEH scalar is massless and the symmetry is not broken by radiative corrections. As a result the

Higgs mass β-function must vanish in this limit.

Note the action is classically invariant under the Weyl-scale transformation:

gμν(x) = e2εgμν(x) gμν(x) = e−2εgμν(x)

(φ, η,H) = e−ε (φ, η,H) (37)

This leads to a conserved Noether current:

Kμ = ∂μK where K =
1

2

(
(1− αφ)φ

2 + (1− αH)H2 − αηη
2
)

(38)

The current has the special form, in analogy to topological currents, of being a derivative of a

scalar, K, which we refer to as the “kernal.” A pre-Plankian phase will cause red-shifting and

the conservation of Kμ implies that K → K constant. This “condensation” of the kernal, K,

spontaneously breaks scale symmetry and has been dubbed “inertial symmetry breaking,” [26],

since it makes no reference to a potential. The phase transition is from a highly disordered state to

an ordered state and occurs when fluctuations in K become small compared to its average VEV,

i.e.,
∣∣∣〈K2

〉−K
2
∣∣∣ � K

2
.

We can rewrite the original dynamical K as

2K =
(
(1− αφ)φ̂

2 + (1− αH)Ĥ2 − αηη̂
2
)
e2σ/f (39)

where f =
√
2K canonically normalizes σ in the broken phase, and the dilaton, σ, apparently

decouples in the Jordan frame [34] but acquires derivative couplings to Standard Model fields via
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contact terms or, formally, via the Weyl transformation going to the Einstein frame. The inertial

symmetry breaking can be viewed as the red shifting of the dilaton to a constant VEV, σ → σ0,

and thus K → K (the VEV of the dilaton has no absolute meaning and is only defined relative to

the other field VEV’s, and in fact the dilaton itself is only well-defined in the ordered phase as a

Nambu-Goldstone boson when K → K).

The resulting constraint is:

2K = (1− αφ)φ̂
2 − αηη̂

2 + (1− αH)Ĥ2 = constant. (40)

In what follows we will determine the radiative corrections to the Higgs mass following from

the action eq(36). Dropping the dilaton, which does not contribute significantly to the radiative

correction, the action becomes:

S =

∫ √−g
(1
2
gμυ∂μφ̂∂ν φ̂+

1

2
gμυ∂μĤ∂νĤ

+
1

2
M2R

(
− 1

6M2
αφφ̂

2 − 1

6M2
αηη̂

2 − 1

6M2
αHĤ2

)
− λ

4
φ̂4 − ξ

4
η̂4 − ω

4
Ĥ4

)
(41)

In what follows, for notational convenience, all fields are understood to be hatted fields although

we do not display the hats. The constraint of eq(40) means that we can consider any pair of the

(φ, η,H) as unconstrained, while the remaining field is then determined by the constraint to be

a function of the other two. The case that η is eliminated manifestly preserves the underlying

SO(2) symmetry where (φ,H) form a doublet. The case that φ is eliminated hides this symmetry

but gives a calculation very similar to the non-scale invariant case. As a gratifying check on the

analysis we have found that both routes lead to the same result for the BEH scalar mass.

A. Calculation manifestly preserving the underlying SO(2) symmetry structure

Defining K = 3M2 we presently use the constraint, eq(40), to eliminate the η2 term in the

coefficient of the Ricci scalar in the action, eq(41). We thus obtain:

SA =

∫ √−g

(
1

2
gμυ∂μφ∂νφ+

1

2
gμυ∂μH∂νH +

1

2
M2R Ω2 − λ

4
φ4 − ξ

4
η4 − ω

4
H4

)
(42)

where,

Ω2 =

(
1− 1

6M2
φ2 − 1

6M2
H2

)
. (43)

Now, the contact interactions arising from graviton exchange must be incorporated into the

action [6] and these again have the effect of forcing one into the Einstein frame. This means that

13



the disorder-order phase transition proceeds directly from pre-Plankian chaos to an Einstein frame

and there is no physical meaning to the “Jordan frame.” However, as in the NSI case, the form of

the contact terms is that of a Weyl transformation, even though the true metric remains invariant.

To incorporate the contact terms we therefore perform a formal Weyl transformation to the

Einstein frame,

S =

∫ √−g

(
1

2
Ω−2∂ρφ∂

ρφ+
1

2
Ω−2∂ρH∂ρH +

3M2

4
Ω−4∂ρΩ

2∂ρΩ2 +
1

2
M2R

−λ

4
Ω−4φ4 − ξ

4
Ω−4η4 − ω

4
Ω−4H4

)
(44)

We are interested in the one loop radiative analysis of the BEH mass which will parallel the analysis

of the scale non-invariant model. The main effects will come through the potential, ξ
4Ω

−4η4 and

we presently set λ = ω = 0. The contribution of this term to the BEH mass is zero at the classical

minimum of the potential, but will be generated at one loop, order �.

Following the Coleman-Weinberg procedure [7] we shift the fields to classical background VEVs,

plus small quantum corrections that are O
(√

�

)
, and the leading one-loop result is then O(�). In

the following we define the parameters:

γi = (1− αi), γ =
1

2
(γφ + γH) , γ′ =

1

2
(γφ − γH) . (45)

From the constraint of eq.(40) we obtain:

V0 =
ξ

4
Ω−4η4 =

ξ

4

(6M2)2

a22

(
1− γφ

φ2

6M2
− γH

H2

6M2

)2 (
1− φ2

6M2
− H2

6M2

)−2

. (46)

As mentioned above, the kinetic terms of the scalars φ and H are SO(2) invariant, and so too

the potential in the limit αφ = αH , or γ′ = 0. This will lead to an important constraint on our

results and simplify our calculation. Since the kinetic terms are SO(2) invariant we can use a polar

representation of the fields, (φ,H) → (ρ, θ) :

φ2 +H2 = ρ2 φ = ρ cos θ, H = ρ sin θ. (47)

As a notational convenience we set 6M2 = 1 and restore this factor at the end of the calculation.

Hence, Ω2 = (1− φ2 −H2) → (1− ρ2), and the classical field VEV’s will be ρ0 and θ0,

φ0 = ρ0 cos θ0 and H0 = ρ0 sin θ0 ≈ ρ0θ0. (48)

We will be interested in the BEH boson mass term, to order H2
0 ≈ (ρ0θ0)

2. The “small” polar

quantum fluctuations are O(ε) =
√
�:

ρ = ρ0 + εr; θ = θ0 + εϑ. (49)
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The polar coordinates have the advantage of diagonalizing the kinetic terms. Expanding the kinetic

terms to O(�) we see:

SKT =

∫ √−g

(
1

2
Ω−2∂ρφ∂

ρφ+
1

2
Ω−2∂ρH∂ρH +

3M2

4
Ω−4∂ρΩ

2∂ρΩ2)

)
→

∫ √−g

(
1

2

(
Ω−4
0

)
drdr +

1

2
ρ20Ω

−2
0 (dϑdϑ)

)
. (50)

Then canonically normalizing the fields we have

SKT =

∫ √−g

(
1

2
dr̂dr̂ +

1

2
dϑ̂dϑ̂

)
, (51)

where,

Z−1r = r̂, K−1ϑ = ϑ̂, Z = Ω2
0, K = Ω0ρ

−1
0 , Ω2

0 = (1− ρ20). (52)

Turning to the potential, we have:

V0 → f
(
1− γφ (ρ cos θ)

2 − γH (ρ sin θ)2
)2

(1− ρ2)−2 (53)

where f = ξ/4α2
η. We see that the SO(2) symmetry is explicitly broken by non-zero 2γ′ = γφ−γH .

We can go to the classical minimum of eq.(53) and expand in the normalized quantum fluctua-

tions. The classical minimum is a flat direction that corresponds to:

1− ρ20
(
γφ + (γH − γφ)

(
sin2 θ0

))
= 0 (54)

Since the potential is proportional to the lhs squared, the classical minimum has a vanishing energy

and hence the Higgs mass term arises at O(�).

The renormalized mass matrix squared in the
(
r̂, ϑ̂

)
basis is given by

Ξ2 = f

⎛⎝ Z2 d2

dr̂2
V0 ZK d2

dr̂dϑ̂
V0

ZK d2

dr̂dϑ̂
V0 K2 d2

dϑ̂2
V0

⎞⎠ (55)

With the constraint of eq(54) used to eliminate ρ0, we find to O
(
θ20

)
:

Ξ2 = 8f

⎛⎝ γ + γ′ − 2γ′θ20 −2γ′θ0X

−2γ′θ0X 4θ20
(γ′)2

γ+γ′−1

⎞⎠+O
(
θ30

)
(56)

where

X =

(
γ + γ′

γ + γ′ − 1

)1/2

(57)
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The trace of (Ξ)4 is then obtained,

Tr(Ξ)4 =

(
64f2

(
γ + γ′

)2 − 256f2
(
γ + γ′

)
γ′

(
γ − γ′ − 1

) θ20
γ + γ′ − 1

+O
(
θ40

))
(58)

and the Higgs mass term is the O
(
θ20

)
term.

We restore 6M2, f = ξ/4αη . Note that the normalized Higgs field in the polar representation

at the potential minimum, eq.(54), where 1− γφρ0 ≈ 0, is now:

h = Ω−1
0 ρ0 sin θ0 → Kθ0 =

1√
(γ + γ′ − 1)

θ0 (59)

Using the Coleman Weinberg form for the induced potential, eq(23), the BEH mass term is given

by:

Γ = − 3

2π2
M2 ξ

2

α4
η

γ′
(
γ + γ′

) (
γ − γ′ − 1

)
h2 ln

(
Λ2/μ2

)
(60)

This vanishes in the γ′ = 0 limit in which case the spontaneously broken SO(2) symmetry implies

that the BEH scalar is a Nambu Goldstone boson and must then have vanishing mass. In terms

of the original non-minimal couplings we have:

Γ = − 3

4π2

(
ξ

α2
η

)2

(1− αφ) (αH − αφ)αHM2h2 ln
(
Λ2/μ2

)
(61)

B. Calculation of the Radiative Correction with Source Terms

In the calculation of the previous section we worked with the action of eq(42) evaluated at

the classical potential minimum, eq(54). As a result it was not necessary to include source terms

and the renormalised mass matrix, eq(56), involved only a a single field that we took to be θ.

More generally we may add sources for H and φ to the action which, as discussed in Section II,

allows us to study the effective potential as a function of both the classical fields h and κ where

H = h+ εx, χ = κ+ εy, unconstrained by the classical minimum condition eq(54).

The potential still has the form given in eq(46) and the unrenormalized mass squared mass

matrix for the quantum fluctuations (x, y) is given by:

1

2

(
y x

)
Ξ2
0

⎛⎝ y

x

⎞⎠ , Ξ2
0 =

⎛⎝ ∂2V0

∂φ2

∂2V0

∂φ∂H

∂2V0

∂φ∂H
∂2V0

∂H2

⎞⎠∣∣∣∣∣∣
φ=κ,H=h

. (62)

Without the constraint of eq.(54) the resulting form is algebraically lengthy and requires the use

of Mathematica or Maple to evaluate it, so we do not quote the result here.
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Turning to the normalisation of the fields, using:

3M2

4
Ω−4∂ρΩ

2∂ρΩ2 = Ω−4
(1
6
φ2(∂φ)2 +

1

6
H2(∂H)2

)
(63)

the kinetic energy term may be rewritten as:

KE = =
3M2

4
Ω−4∂ρΩ

2∂ρΩ2 +
1

2
Ω2 (∂μφ∂μφ+ ∂μH∂μH)

=
1

2
Ω−4

(
(1− 1

6
H2)(∂φ)2 + (1− 1

6
φ2)(∂H)2 +

2

6
φH∂φ∂H

)
. (64)

Thus the kinetic energy has the form:

1

2

(
∂y ∂x

)
Z

⎛⎝ ∂y

∂x

⎞⎠ , Z = Ω(κ, h)−4

⎛⎝ 1− h2

6
hκ
6

hκ
6 1− κ2

6

⎞⎠ . (65)

The renormalized physical mass2 matrix is now:

Ξ2
1 = Z−1/2Ξ2

0Z
−1/2, (66)

which, inserted in eq(23), gives the one loop contribution to the quantum effective potential.

To compare with the previous result we can use this to calculate the BEH mass about the

minimum of the potential which is given by h = 0 and φ = φ0 + φ1, where φ0 =
√

6/αφ is the

minimum of V0, and φ1 is a correction to the minimum due to the one loop correction, V1, given

by:

φ1 = − ∂V1

∂φ

(
∂2V0

∂φ2

)−1
∣∣∣∣∣
φ=φ0

(67)

At the minimum the radiative correction to the BEH mass at one loop order is given by:

δmh2 = − 1

768π2

(
f4
0M

2

α4
η

)
(1− αφ) (αH − αφ)αHh2 ln

(
Λ2/μ2

)
(68)

agreeing with the result of eq.(61), with f2
0 = 24ξ, G = (3/8)M4f2

0 = 9M4ξ.

We have also done a calculation in which we choose to eliminate φ, rather that η, using the

constraint of eq(40). This has the advantage of rendering the calculation similar to that of the

NSI case of Section II. While this method does spoil the manifest SO(2) symmetry, it yields the

same result as eq.(61) which displays the SO(2) symmetry as γ′ → 0. The calculation also checks

whether such a change of variables affects the result — indeed we find it does not. The details are

rather lengthy and we won’t present them here.
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IV. CONCLUSIONS

We have provided detailed calculations of the low energy effective theory, in particular, the

BEH (“Higgs”) boson mass, emerging from Starobinsky inflation models. We have considered the

standard non-scale-invariant form, and we have also introduced a scale invariant form where the

scale symmetry is broken spontaneously inertially.

A key point here is that the contact terms always mandate that one work in an Einstein frame.

This eliminates a large number of ambiguities associated with choice of Weyl frames — there is only

one viable choice for the radiative corrections that is free from the complications of the contact

terms, the Einstein frame. We can always go to the Einstein frame by a Weyl transformation,

but that is only formal, as the metric is not affected by the contact terms, and nonlinear field

redefinitions are not required.

The remaining ambiguity is then the choice of source terms, equivalently, the order parameters

of the effective potential. In the original Starobinsky model we argued the natural choice is χ

and H, where χ is the field with a natural canonical kinetic term. In the scale invariant case the

choice is any two of three of the original set of fields, φ, η and H, introduced when defining the

theory. These are constrained by the kernel of the Weyl current, K, which develops a VEV that

spontaneously breaks Weyl-scale invariance.

Once the source terms are specified, the radiative corrections are unambiguous. Our results

show that in both case the radiative corrections to the BEH mass do not vanish in the “conformally

coupled” limit, αH = 1, in contrast to the results obtained by previous authors [17].

A renormalization group approach, introduced here, significantly improves our understanding

of these theories and expedites these analyses. We have only touched upon the RG approach here

in application to the non-scale invariant Starobinsky model. In the RG approach the choice of

variables is embedded in the choice of boundary conditions on the RG equations. This will be

developed elsewhere in greater detail [9]. Note that the running of the Higgs boson mass is not

due to the running of the αi but rather mainly due to the effects of other relevant operators that

emerge from the non-polynomial Starobinsky potential at the Planck-scale. At the single-log order

discussed here, the αH enters in the UV only as a boundary condition upon the relevant couplings.

The determination of the radiative corrections to the BEH mass is of importance to the viability

of the Starobinsky inflationary model. To generate an acceptable period of inflation the model

requires a very heavy scaleron, of O(1011)GeV, and the coupling of the scaleron to the BEH scalar

typically gives an unacceptably large contribution to its mass leading to a severe hierarchy problem.
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Conceiveably, the SO(2) symmetry of the scale invariant model, or its generalization, might allow

the possibility of a protected BEH scalar mass, as a pseudo-Nambu-Goldstone boson. We will

discuss the implications of our results for the hierarchy problem in detail elsewhere [31].

Appendix A: Regularized Loop Integrals and Quantum Scale Breaking

We are interested in loop induced effective potentials. These are contained in the log of the

path integral: Γ = i lnP . In the case of a real scalar field of physical mass, m, we have:

P =
∏
k

(
k2 −m2

)−1/2
= det

(
k2 −m2

)−1/2
(A1)

hence,

Γ = i lnP = − i

2

∫
d4k

(2π)4
ln

(
k2 −m2 + iε

)
(A2)

This can be evaluated with a Wick rotation and Euclidean momentum space cut off:

Γ =
1

2

∫ Λ

0

d4kE

(2π)4
ln

(
k2E +m2

Λ2

)
+ (irrelevant constants)

=
1

64π2

(
ln

Λ2 +m2

Λ2
Λ4 −m4 ln

Λ2 +m2

Λ2
− 1

2
Λ4 + Λ2m2 +m4 ln

m2

Λ2

)
(A3)

The cutoff can be viewed is a spurious parameter, introduced to make the integral finite and not

part of the defining action. The only physically meaningful dependence upon Λ is contained in the

logarithm, where it reflects scale symmetry breaking by the quantum trace anomaly. Powers of Λ,

e.g., Λ4,Λ2m2. spuriously break scale symmetry and are not part of the classical action [35].

It is therefore conceptually useful to have a definition of the loops in which the spurious powers

of Λ do not arise. This can be done by defining the loops applying projection operators on the

integrals. The projection operator

Pn =

(
1− Λ

n

∂

∂Λ

)
(A4)

removes any terms proportional to Λn. Since the defining classical Lagrangian has mass dimension

4 and involves no terms with Λ2m2 or Λ4, we define the regularized loop integrals as:

Γ → 1

2
P2P4

∫ Λ

0

d4kE

(2π)4
ln

(
k2E +m2

Λ2

)
+ (irrelevant constants)

= − 1

64π2

(
m4

(
ln

Λ2

m2
− 1

)
+O

(
m6

Λ2

))
(A5)

where we take the limit Λ >> m to suppress O
(
m6/Λ2

)
terms. It appears this can be consistently

used in N -loop calculations with (P2P4)
N though we now apply it only to single loop amplitudes.
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Eq.(A5) defines the quantum effective potential for a classical real scalar field with mass term

Vc = m2φ2/2:

Γ = Vc − 1

64π2
m4 ln

M2

m2
(A6)

where we have replaced the cut-off by the Planck-scale.

As a check we can compute the β-function for a quartic coupling constant. Consider Vc =

λφ4/4. We expand φ in a classical plus quantum fluctuation field x, φ → φc + εx and Vc →
λφ4

c/4 + 3�λφ2
cx

2/2, where terms linear in x integrate to zero. We see that the physical mass of x

is m2 = 3λφ2
c and using Γ we have:

Γ =
λ

4
φ4
c −

9λ2

64π2
φ4
c ln

M2

m2
(A7)

Therefore, we see that λ runs as:

λ(μ) = λ0 − 9λ2

8π2
φ4 ln

M

μ
(A8)

where the initial value at the Planck-scale is λ0 and the β-function is:

β =
∂λ(μ)

∂ ln(μ)
=

9λ2

8π2
(A9)

a well-known result (see ref.[7, 8] and references therein).

The above result is O(�). since the expansion in � is an expansion in the number of loops.

Note that Γ = i� ln(iS/�), so a classical action S produces an O(1) result in the � expansion. The

quantum field kinetic terms are ∼ S ∼ ∫
�(∂φ)2 hence a propagator is 1/� and a single Feynman

loop is Γ ∝ � ln(i
∫
�(∂φ)2/�) ∼ �; N loops are ∝ �

N .

Appendix B: Equivalence of On-shell Field Configurations and Ambiguities in Effective

Potentials

It is fairly easy to give a formal proof of the equivalence of different field choices for calculation

of effective potentials with on-shell classical background fields. Our proof for N = 1 fields is

schematic and readily can be generalized to N fields. Consider the action:

S =

∫
1

2
∂φ∂φ− V (φ) (B1)

For an effective potential, such as a Coleman-Weinberg calculation, V (φ) is understood to contain

the source terms. Note that we expand in a classical background field φ0 plus a quantum fluctuation,
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x, φ = φ0 + εx (where ε =
√
�), and we have,∫

1

2
∂φ0∂φ0 + ∂φ0∂x+

1

2
∂x∂x− V (φ0)− d

dφ0
V (φ0)x− 1

2

d2

dφ2
0

V (φ0)x
2 (B2)

We now make the assumption that φ0 is “on-shell,” i.e., satisfies its classical equation of motion:

∂2φ0 = − d

dφ0
V (φ0) (B3)

hence, integrating by parts,

S =

∫
1

2
∂φ0∂φ0 +

1

2
∂x∂x− V (φ0)−

1

2
(
d2

dφ2
0

V (φ0))x
2 (B4)

If we are only interested in a potential, we simplify by assuming φ0 = spatially (and temporally)

constant. Therefore the “on-shell” condition requires:

d

dφ0
V (φ0) = 0 (B5)

i.e., φ0 must be at the minimum of the potential. Bear in mind that the source currents shift the

true potential minimum to an arbitrary value, φ0, and the potential we compute will correspond

to the energy of a state with lowest energy subject the constraint that the expectation value of φ

is φ0.

Now suppose φ (χ) is a function of a new field χ. Then

S =

∫
1

2
∂φ∂φ− V (φ) →

∫
1

2

(
∂φ

∂χ

)2

∂χ∂χ− V (φ (χ)) (B6)

and now we want the expansion χ = χ0 + εy with spatially constant χ0

S =

∫
1

2
∂φ∂φ− V (φ) →

∫
1

2

(
∂φ0

∂χ0

)2

∂y∂y − V (φ0)−
∂φ0

∂χ0

d

dφ0
V (φ0) y

−1

2

(
∂φ0

∂χ0

d

dφ0

(
∂φ0

∂χ0

d

dφ0

)
V (φ0)

)
y2 (B7)

Examine the last term, which takes the form

−1

2

(
∂φ0

∂χ0

)2 ( d2

dφ2
0

(V (φ0))

)
x2 − 1

2

∂2φ0

∂χ2
0

(
∂φ0

∂χ0

∂

∂φ0
V (φ0)

)
x2 (B8)

The last term is problematic off-shell, but on-shell we have:

∂φ0

∂χ0

∂

∂φ0
(V (φ0 (χ0))) =

∂

∂χ0
V̂ (χ0) = 0 (B9)

That is, χ0 must be a minimum of the new potential:

V̂ (χ0) = V (φ0 (χ0)) (B10)
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which corresponds to the minimum of V (φ0). Hence the action is:

S →
∫ (

1

2

(
∂φ0

∂χ0

)2

∂y∂y − V̂ (χ0)− 1

2

(
∂φ0

∂χ0

)2 d2

dφ2
0

V (φ0) y
2

)
(B11)

Renormalizing y yields: ∫ (
1

2
∂y∂y − V̂ (χ0)−

1

2

d2

dφ2
0

V (φ0) y
2

)
(B12)

Since

1

2

d2

dφ2
0

V (φ0) = m2 (B13)

is common to both the χ and φ theories, therefore the quantum potentials, ∝ ∫
ln(k2 +m2) must

be equivalent when the background fields are localized at the minimum of the potential (including

source terms).

We can test this theorem in a simplified model (we will use the model in Appendix C to illustrate

the ambiguities that result if there are different Weyl frames). We consider a model which is similar

to those encountered in Starobinsky inflation. It has the fields Ω,H and external sources (J,K)

with action:

S =

∫
1

2
∂H∂H +

1

2
M2∂ ln Ω∂ ln Ω − V (H,Ω)− JM ln (Ω)−KH (B14)

where

V (H,Ω) =
1

4
M4

(
Ω2 −

(
1 +

α

M2
H2

))2
(B15)

We use the representation of the field, Ω (χ) = exp(χ/M), and define classical background fields

and quantum fluctuations
√
� = ε, H = h+ εx, and χ = κ+ εy.

Our procedure is as follows:

(1) Expand the action to O(�) including sources,

V (H,Ω)− JM ln (Ω)−KH → W (J,K;h, κ, εx, εy) (B16)

(2) Determine on-shell conditions for (J,K) from the O(ε0) (classical term) of the potential by

imposing the minimum conditions on (h, κ) .

d

dκ
W (J,K;h, κ, 0, 0) = 0

d

dh
W (J,K;h, κ, 0, 0) = 0 (B17)

This determines J,K as functions of (h, κ) .
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(3) Define the effective potential by performing the Legendre transformation

W (J,K;h, κ, εx, εy) − dW

dJ
κ− dW

dK
h = Γ(κ, h, , εx, εy) (B18)

At this stage the terms linear in εx, εy cancel. Hence the functions J,K completely drop out if the

source terms are linear in x, y. Otherwise, J,K will enter the quadratic and higher terms.

(4) Expand Γ(κ, h, , εx, εy) to determine the mass2 matrix of the quantum fluctuations εx, εy at

order ε2

Γ(κ, h, , εx, εy) =
1

2

⎛⎝ y

x

⎞⎠T

Ξ2 (κ, h)

⎛⎝ y

x

⎞⎠ (B19)

and the kinetic terms and renormalization constant matrix

1

2

⎛⎝ ∂y

∂x

⎞⎠T

Z (κ, h)

⎛⎝ ∂y

∂x

⎞⎠ (B20)

(5) Integrating out (εx, εy) the quantum effective potential is now determined,

− 1

64π2
Tr

((
ZΞ2 (κ, h)

)2)
ln

(
Λ2/m2

)
(B21)

We apply this to two examples with different quantum field definitions.

Example (1): With Ω = exp (χ/M), the potential V (H,Ω) in eq.(B15), and source terms

−JM ln (Ω)−KH, and we follow the procedure, find that J,K cancel in the mass matrix

Ξ2 =
1

2

⎛⎝ 6κM − αh2 + 6κ2 +M2 −αhM − 2αhκ

−αhM − 2αhκ −ακM + 3
2α

2h2 − ακ2

⎞⎠⎛⎝ y

x

⎞⎠
Z−1 =

⎛⎝ 1 0

0 1

⎞⎠⎛⎝ y

x

⎞⎠ (B22)

Keeping only quadratic order in κ, h we find:

Tr
(
Z−1Ξ2

)2
=

(
1

4
M4 + 3M3κ

)
+

(
1

2
α2M2 − 1

2
M2α

)
h2 +O

(
h4, κ2, κh2

)
(B23)

Example (2) Now consider the alternative parametrization (χ̃,H) where χ = M ln(1+ χ̃/K). We

keep the same sources −JM ln (Ω) and V − KH. We now need to expand the log, and we find

that J appears in quadratic terms of (x, y) due to nonlinear term Jχ̃2:

Ξ2 =
1

2

⎛⎝ 4κM − αh2 + 4κ2 +M2 − 1
M καh2 − 1

M2κ
2αh2 −αhκ− αhM

−αhκ− αhM −ακM + 3
2α

2h2 − 1
2ακ

2

⎞⎠⎛⎝ y

x

⎞⎠
Z−1 =

⎛⎝ (
1 + 2

M κ
)

0

0 1

⎞⎠ (B24)
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we obtain Tr
(
Z−1Ξ2

)2
=

(
1
4M

4 + 3M3κ
)
+

(
1
2α

2M2 − 1
2M

2α
)
h2 + O

(
h4, κ2, κh2

)
These expres-

sions agree and yield the same potential though the intermediate steps are quite different. The

equivalence is a consequence of the above theorem.

Appendix C: Source and Frame Ambiguities

The equivalence proved in Appendix B requires that the same sources should be used in both

parameterisations. Thus in Example (2) above it was important to choose the same source,

−JM ln(Ω) ≡ −Jχ, an in Example (1), and the result is independent of the integration over

quantum fluctuations. However, if instead we used the source −Jχ̃ we have changed the order

parameter and the two calculations will differ. Such an ambiguity is inherent to the theory and

requires the choice of “reasonable” sources when defining the theory. This is an ambiguity that

would arise if one assumed there exist different Weyl “frames,” where one might choose one set

of variables in frame A and a different set in frame B. In this case there is a priori no logical

connection between them and thus is no guarantee of a common consistent result.

To illustrate this we note that in many studies of Starobinsky inflation the coupling to the

BEH field is not included when Weyl transforming to the Einstein frame. Alternatively one can

eliminate the anomalous coupling by a second Weyl transformation that completes the definition

of the model in the Einstein frame. Weyl transformations satisfy the group property and the

two Weyl transformations are equivalent to the single Weyl transformation going directly to the

Einstein frame. However the fundamental variables suggested by this approach differ from that of

the previous section even though the inflationary era is preserved because the difference between

variables involves the BEH field which does not play a significant roll during inflation.

The two stage model starts with rewriting the action of eq(2) in the form 4

S =

∫
d4x

√
−g̃

(
M

2
Ω−2
1 R(g)− ξ

4
η4 +

1

2
∂μH∂μH − 1

12
H2R(g) − V (H)

)
(C1)

where,

Ω−2
1 = 1− αη

6

( η

M

)2
− αH − 1

6

(
H

M

)2

≡ exp
(√2

3

χ

M

)
. (C2)

We perform the first Weyl transformation:

g̃ = Ω2
1g1, (C3)

4 Here, to keep the algebraic complexity to a minimum while demonstrating the ambiguity, we do include a compo-
nent of the BEH scalar in the first Weyl transformation. This component vanishes in the conformal limit.
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giving,

S =

∫
d4x

√−g1

(
M

2
R(g1) +

1

2
∂μχ∂

μχ+
1

2
∂μH̃∂μH̃ − 1

12
H̃2R(g1)−

ξ

4
Ω4
1η

4 − Ω4
1V (H)

)
, (C4)

in terms of the conformally rescaled field,

H1 = Ω1H. (C5)

The second Weyl transformation eliminates the residual anomalous coupling of the Higgs field and

is given by,

g1 = Ω2
2g2, (C6)

with the conformal factor,

Ω−2
2 = 1− 1

6

(
H1

M

)2

≡ exp
(√2

3

ρ

M

)
, (C7)

giving:

S =

∫
d4x

√−g2

(M
2
R(g2) +

1

2
Ω2
2∂μχ∂

μχ+
1

2
∂μρ∂

μρ+
1

2
Ω2
2∂μH1∂

μH1

−ξ

4
Ω4
2Ω

4
1η

4 − Ω4
2Ω

4
1V (H)

)
=

∫
d4x

√−g

(
M

2
R(g) +

1

2
Ω2
2∂μχ∂

μχ+
1

2
Ω4
2 ∂μH1∂

μH1 − ξ

4
Ω4 η4 − Ω4V (H)

)
. (C8)

Since the Weyl transformations form a group, comparing to the case studied in Section IIA we

have g2 = g and Ω = Ω2Ω1. Comparing with eq(2) we see that the difference is that now the

natural choice of fundamental variables is χ and H̃. Proceeding as in Section II we obtain,

Γ =
1

768π2
M2f4

0

(
(αH − 1)(αH − 2) + 1

)
h2

(
ln

(
Λ2/m2

))
(C9)

A comparison with eq(26) shows that the mass terms differ, demonstrating the ambiguity associated

with the choice of fundamental fields. Both of these choices leave the original form of Starobinsky

inflation unchanged as the BEH VEV is small during inflation.

The resolution of this ambiguity follows from the existence of the contact terms. As stressed in

[6], when the BEH scalar is included, this approach implicitly requires the inclusion of contact terms

to take account of its anomalous coupling to the Ricci scalar. Including this term automatically

takes one to the Einstein frame so there is no meaning to the two stage Weyl transformations just

discussed and there is no corresponding ambiguity.
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