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Aromatic organic compounds, because of their small excitation energies ∼ O(few eV) and scin-
tillating properties, are promising targets for detecting dark matter of mass ∼ O(few MeV). Addi-
tionally, their planar molecular structures lead to large anisotropies in the electronic wavefunctions,
yielding a significant daily modulation in the event rate expected to be observed in crystals of these
molecules. We characterize the daily modulation rate of dark matter interacting with an anisotropic
scintillating organic crystal such as trans-stilbene, and show that daily modulation is an ∼ O(1)
fraction of the total rate for small DM masses and comparable to, or larger than, the ∼ 10% annual
modulation fraction at large DM masses. As we discuss in detail, this modulation provides significant
leverage for detecting or excluding dark matter scattering, even in the presence of a non-negligible
background rate. Assuming a non-modulating background rate of 1/min/kg that scales with total
exposure, we find that a 100kg · yr experiment is sensitive to the cross section corresponding to
the correct relic density for dark matter masses between 1.3 − 14 MeV (1.5 − 1000 MeV) if dark
matter interacts via a heavy (light) mediator. This modulation can be understood using an effective
velocity scale v∗ = ∆E/q∗, where ∆E is the electronic transition energy and q∗ is a characteristic
momentum scale of the electronic orbitals. We also characterize promising future directions for the
development of scintillating organic crystals as dark matter detectors.

I. INTRODUCTION

Dark matter-electron scattering is a promising search
strategy for sub-GeV dark matter (DM) [1–53]. In molec-
ular or solid-state systems, atoms are close enough that
electronic orbitals overlap significantly, lowering the elec-
tronic excitation energies to the eV scale and thus allow-
ing detection of DM particles with ∼ MeV-scale mass
which carry eV-scale kinetic energy. Moreover, solid-
state systems can exhibit anisotropic electronic wave-
functions (see for example [9, 16, 20, 27, 28, 33]), enabling
directional detection schemes which leverage the charac-
teristic signature of the daily modulation of the direction
of the DM wind in the lab frame (first noted in the con-
text of multiple scattering from terrestrial overburden in
[54–56], followed by the connection to directional detec-
tion in [57]).

In this paper, we focus on, and advocate for, a particu-
lar class of detector materials for DM-electron scattering:
aromatic organic crystals. These compounds have nu-
merous advantages, both practical and theoretical, over
existing detectors. Their molecular structures consist pri-
marily of hexagonal carbon rings with alternating single
and double bonds (see Fig. 1), and the excited molecular
electronic levels at O(5 eV) above the ground state can
de-excite by emitting a scintillation photon with O(1)
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bulk quantum efficiency. As a subset of the authors
showed in a previous paper [30], simple organic liquids
like benzene and its analogs have superior reach per unit
target mass compared to single-electron threshold semi-
conductor detectors for DM heavier than about 10 MeV.
Furthermore, as noted in [30] and as discussed at length
in the present work, the planar structure of the molecules
leads to a marked anisotropy in the electronic wavefunc-
tions which is absent in silicon and germanium detectors
and which allows for directional detection: even though
the scintillation emission is isotropic, the excitation rate
to the scintillation level depends strongly on the direction
of the incoming DM.

Building on our previous work, in this paper we focus
on larger organic molecules which are solids at room tem-
perature with known bulk quantum efficiencies at cryo-
genic temperatures. Furthermore, we focus on molecules
with reduced in-plane symmetry. This additional asym-
metry means that the lowest-energy transitions are not
suppressed, distinguishing them from simpler molecules
like benzene. The crystal lattice effects in these organic
crystals are small enough that the electronic structure
closely resembles that of the isolated molecules. Single-
crystal scintillators can have Avogadro’s number of unit
cells containing the same relative orientations of the
molecules, allowing the anisotropic response to persist.
From a practical standpoint, single-crystal samples of
trans-stilbene (t-stilbene), which we focus on in this pa-
per, can be manufactured at kilogram scale with order-1
scintillation efficiency, such that even a single scintilla-
tion photon produced from a DM scattering event has
a high probability of being detected from a large-mass
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sample [58].

These practicalities suggest that running a t-stilbene
experiment with a large exposure is feasible in the near
future, so we consider possible interpretations of plausi-
ble near-future experimental data. As most sources of
background noise (such as radioactive impurities in the
target material) are constant in time, daily modulation
provides a way to detect dark matter even without re-
ducing the background rate to zero. Cosmic rays, the
primary time-varying external background, have a daily
modulation that has been constrained to be below the
level of 0.1% in underground facilities [59], so a modu-
lating signal with a significantly larger amplitude would
provide a clear detection of dark matter.

For example, assuming an average observed rate of
1/60 Hz kg−1, and without incorporating expectations for
daily modulation, the assumed (constant) background
rate would limit the reach to approximately an order
of magnitude above the interesting parameter space,
with no prospects for improvement over time or with a
larger experiment. However, a 1 kg·yr exposure reaches
DM relic density targets if the data are interpreted
with the expected modulation information. The sensi-
tivity of a modulation analysis continues to scale with
(exposure)1/2 even without mitigating backgrounds, so a
larger 100 kg·yr exposure improves the reach by an order
of magnitude. This probes the relic density target for DM
masses 1.3 . mχ . 14 MeV if the DM interacts through
a heavy mediator, or the range 1.5 . mχ . 1000 MeV
if the DM achieves its relic abundance through freeze-
in via a light kinetically-mixed dark photon. Solid-state
organic scintillator detectors would therefore greatly re-
duce the necessity for a low-threshold zero-background
experiment in order to conclusively discover or exclude
DM.

As a consequence of our analysis of organic crystals,
we point out a generic feature of DM-electron scatter-
ing in condensed matter systems: daily modulation is
governed by the relationship between the DM velocity
and an effective electron velocity v∗ ≡ ∆E/q∗, where
∆E is the energy of an electronic transition and q∗ is
the typical momentum scale for the electron wavefunc-
tions governing the transition. A necessary condition for
daily modulation is anisotropy of the molecular form fac-
tor for electronic transitions, but for the anisotropy to be
kinematically accessible, the transition needs to be either
near a kinematic threshold (for small DM masses) or have
v∗ close to, but smaller than, the maximum DM velocity
in the lab frame vmax (for large DM masses). Intriguingly,
this suggests that daily modulation, like annual modula-
tion, is driven by the high-velocity tail of the DM velocity
distribution. The centrality of these kinematic relations
has recently been noted by [38], which discusses v∗ in the
context of maximizing the total rate, and by [60], which
uses a related v∗ to study modulation in the context of
single-phonon production.

This paper is organized as follows. In Sec. II, we re-
view the quantum chemistry relevant for describing the
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by Brown (1966; Fig. 2). In contrast to the strong 
disorder in the p-azotoluene crystals studied by Brown 
and in the TSB crystals studied by Finder et al. (1974), 

Fig. 2. Superposition of two centrosymmetric p-azotoluene 
molecules (Brown, 1966). The N-N bonds are approxi- 
mately perpendicular to each other. 

Fig. 3. Projection along the monoclinic b axis. Molecules hav- 
ing their centres at y = 0 and y =½ are drawn with thin and 
thick lines respectively. The intermolecular distance given 
is H(ct, y=0) '-  .H(fl', y= 1)=2.222/~. 

in our TSB crystals the second orientation of the 
molecule is present to only a few per cent. 

The molecular structure in the solid and in the 
gaseous state 

The packing of the molecules is shown in Figs. 3 and 
4. There is only one intermolecular distance shorter 
than the relevant sum of the van der Waals radii. This 
H . . .  H distance of 2.222 A is given in Fig. 3. In the 
b direction there are columns of ~ molecules around 

i 1 [0,y,0] and [2,Y,~] and columns offl molecules around 
[½,y,0] and [0,y,½]. Within a column successive mole- 
cules are obtained by translation in the b direction. 
From Fig. 5 it can be seen that the packing of the 
molecules is not the same for the two columns. 

The bond lengths and angles in the two independent 
centrosymmetric molecules are listed in Fig. 6. The 
standard deviations in the bond lengths and angles as 
obtained from the variance-covariance matrix of the 
coordinates (Darlow, 1960) are 0.0015 A_ for C-C and 
0.11 ° for C-C-C. Owing to the disorder described 
above we have multiplied these values by a factor of 
two for the ~ molecule. Corresponding bond lengths 
and C-C-C valence angles in the two molecules do not 
show significant differences. The disorder of the 
molecules is so small that it does not affect the thermal 
parameters to a large extent. The value of (U~(prin- 
cipal axis)) x/2 for the C atoms is 0.0217 A 2 for the 
and 0.0177 A_ 2 for the fl molecules. 

Comparison with the earlier structure determinations 
shows that the present work has a considerably higher 
accuracy. The two centrosymmetric molecules are 
approximately planar. The torsion angle ~ around the 
C-C(phenyl) bond is 3.4 ° for the a and 6.9 ° for the fl 
molecule. The C6H5-C groups show only small devia- 

1 1 

Fig. 4. Projection along [001] onto the plane (001). The 0~ molecules having their centres at z=0 are drawn with thin lines, the 
,8 molecules having their centres at z = ½ are given with thick lines. FIG. 1. Top: The chemical structure of trans-stilbene. Fol-

lowing the convention common in organic chemistry, ver-
tices are taken to be carbon atoms, single lines are carbon–
carbon single bonds, and double lines are carbon–carbon dou-
ble bonds. Our numbering convention for the atoms is shown
at each vertex, along with the L̂ and M̂ unit vectors used in
our coordinate system. Bottom: A diagram of the unit cell
of the trans-stilbene crystal, adopted from Ref. [62]. Here b
is the axis of symmetry for the crystal: the positions of the
molecules in the middle row are related to those of the upper
or lower rows by a translation of 1

2
b and a rotation of 180◦

about the b axis. The long axis of each molecule (L̂i) is not
perfectly perpendicular to the b crystal axis. Molecules (1)
and (−1) are shown with thin lines, (2) and (−2) with thick
lines.

molecular orbitals in t-stilbene. In Sec. III we describe
the crystal structure of t-stilbene and justify our use
of the isolated-molecule orbitals based on experimental
measurements of the absorption and emission spectra.
In Sec. IV we set up our calculation of the DM scatter-
ing rate, including the relevant molecular form factors
and the daily modulation of the velocity distribution. In
Sec. V we determine the daily modulation signal from
DM in the Standard Halo Model (SHM) and derive a con-
venient test statistic for daily modulation in the presence
of a non-modulating background. In Sec. VI we study
the kinematic features of t-stilbene which lead to a large
modulation amplitude, and explore how a system with a
different v∗ could lead to large daily modulation even for
DM up to the GeV scale. We conclude in Sec. VII.

II. MOLECULAR ORBITAL MODEL

Here we determine the many-electron wavefunctions
for the electronic transitions which are responsible for
the electronic-optical properties of trans-stilbene, follow-
ing methods appropriate for all aromatic molecules. As
shown in Fig. 1 (top), t-stilbene is an alternant hydrocar-
bon hosting two phenyl groups joined by an ethene bridge
in the trans configuration (trans-1,2-diphenylethylene).
This 14-carbon molecule is planar in the solid state and
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s Platt Symbol Symmetry ∆E [eV] Configuration amplitudes

s1
1B Bu 4.240 d7,8 = 0.94, d4,11 = −0.24

s2
1G− Bu 4.788 d7,10 = 0.53, d5,8 = 0.53, d6,11 = 0.37, d4,9 = −0.37

s3
1G− Ag 4.800 d7,9 = 0.53, d6,8 = 0.53, d5,11 = 0.37, d4,10 = −0.37

s4
1(C,H)+ Ag 5.137 d7,11 = 0.41, d5,9 = −0.41, d6,10 = −0.41, d4,8 = −0.59

s5
1H+ Bu 5.791 d5,10 = 0.54, d6,9 = 0.54, d7,12 = 0.33, d3,8 = 0.33

s6
1G+ Ag 6.264 d7,9 = 0.68, d6,8 = −0.68

s7
1C− Ag 6.013 d7,11 = 0.66, d4,8 = 0.54,

s8
1G+ Bu 6.439 d7,10 = 0.65, d5,8 = −0.65

TABLE I. The first eight excited states sn=1...8, with their energy eigenvalues ∆E(sn) with respect to the ground state and

coefficients d
(n)
ij as calculated by Ting and McClure [61].

presents C2h molecular symmetry [63, 64], which is a
Z2×Z2 symmetry group composed of a two-fold symme-
try axis, a center of inversion, a horizontal mirror plane,
and the identity. Since this is the symmetry of the Hamil-
tonian, the electronic states of t-stilbene should trans-
form as irreducible representations of C2h. In order to
construct electronic states which accurately describe the
energy eigenstates of t-stilbene, we first construct the
Hückel molecular orbitals (HMOs) using a simple Lin-
ear Combination of Atomic Orbitals (LCAO) model tak-
ing into account only direct bonding interactions. We
then take into account the configurational interactions
and construct fully antisymmetric many-body states fol-
lowing the method of Pople, Pariser, and Parr (PPP) [65–
67].

The HMOs, Ψi, of t-stilbene are constructed as linear
combinations of Slater-type atomic orbitals (SAOs)

Ψi =

14∑
j=1

cjiφ2pz (r−Rj), (1)

where cji are the coefficients to be determined, φ2pz are
the atomic orbitals, and Ri are the equilibrium locations
of the carbon nuclei using the numbering conventions in
Fig. 1. The 2pz Slater atomic orbital is parameterized as

φ2pz (r) =

√
Z5

eff

25πa3
0

r cos θ

a0
exp

(
−Zeff r

2a0

)
, (2)

where a0 = (αme)
−1 is the Bohr radius and Zeff = 3.15

is the effective nuclear charge of the carbon 2pz orbital
[66]. The HMOs diagonalize the 14 × 14 core Hamil-
tonian matrix, Hlm = 〈φl|Hcore|φm〉, where 〈r|φm〉 =
φ2pz (r −Rm) and only bonding atoms interact. Diago-
nalization is done by solving the following system,

14∑
j=1

[
(Hlj − Emδlj) cjm

]
= 0, for m = 1, 2, . . . , 14. (3)

The core Hamiltonian contains two types of matrix ele-
ments; diagonal on-site energies and off-diagonal interac-
tion energies, with values given in Appendix A. The on-
site energy is an empirical quantity which is determined
by the atomic species, while the off-diagonal energy is a

measure of the bonded nuclear interactions determined
by the effective charge and bond length. The ambigu-
ity in the construction of degenerate states is resolved
by requiring that all electronic states transform as irre-
ducible representations of the C2h point group. Since the
HMOs are constructed from 14 SAOs, diagonalization of
the core Hamiltonian results in 14 HMOs Ψ1, . . . ,Ψ14,
numbered in order of increasing energy (up to degenera-
cies). See [30] for an example of this procedure performed
on the simpler benzene molecule containing only six car-
bon atoms.

In order to form antisymmetric many-electron wave
functions, we take Slater determinants of the filled
HMOs. The ground state |g〉 is approximately given by
the following combination of orbitals,

ψG = |Ψ1Ψ1Ψ2Ψ2Ψ3Ψ3Ψ4Ψ4Ψ5Ψ5Ψ6Ψ6Ψ7Ψ7|, (4)

where | · · · | denotes the antisymmetrized product of the
HMOs and Ψi is the opposite spin state as Ψi. Follow-
ing standard conventions in quantum chemistry, we la-
bel some Z2 symmetries of the many-electron wavefunc-
tion by A(B) and g(u), corresponding to (anti)symmetry
with respect to transformation under 180◦ rotation about
the z-axis normal to the molecular plane and inversion
through the center of mass, respectively. Notice that
the ground state represents an electronic configuration
in which the lowest 7 HMO’s are filled by pairs of elec-
trons in the spin-singlet configuration. Therefore, the
ground state transforms as the Ag representation, being
totally symmetric under the transformations in the C2h

group. This is a generic feature of the ground state of al-
ternant hydrocarbons. Reduction of the 14-dimensional
t-stilbene representation of C2h predicts 7 Ag and 7 Bu
states [63]. These states correspond to the multi-electron
configurations of the HMOs which each have either Au
or Bg symmetry [64].

We construct the multi-electron states starting with
the Ag ground state and proceeding upwards in en-
ergy through the one-electron singlet excitation config-
urations, ψji as follows,

ψji =
1√
2

(|Ψ1Ψ1...ΨiΨj ...Ψ7Ψ7|−|Ψ1Ψ1...ΨjΨi...Ψ7Ψ7|).
(5)
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Molecule (Lx, Ly, Lz) (Mx,My,Mz)

(1) L̂ = (0.153, 0.988,−0.022) . . M̂ = (0.467,−0.068, 0.882)

(2) L̂ = (−0.809, 0.565, 0.162) M̂ = (−0.130,−0.458, 0.879)

(−1) L̂ = (−0.153,−0.988,−0.022) M̂ = (−0.467, 0.068, 0.882)

(−2) L̂ = (0.809,−0.565, 0.162) M̂ = (0.130, 0.458, 0.879)

TABLE II. The vectors L̂ and M̂ describe the orientations of each of the four molecular constituents of the unit cell, shown
here in the right-handed crystal basis x̂ = ĉ, ŷ = â′, ẑ = b̂.

The electronic repulsion is taken into account by append-
ing the electronic two-body interaction to the core Hückel
Hamiltonian:

HPPP = Hcore +
∑
〈ij〉

4πα

rij
, (6)

where α is the fine-structure constant, rij = |ri − rj |,
and the sum runs over all pairs of electrons 〈ij〉 with
i 6= j. This PPP Hamiltonian perturbs the energy levels
of the ψji configurations and mixes degenerate states of
like symmetries to produce PPP HMOs of either Ag or
Bu symmetry [61, 63, 64]. The PPP energy eigenstates

are expressed as a linear combination of ψji ,

|sn〉 =
∑
i,j>i

d
(n)
ij |ψji 〉,

∑
ij

|d(n)
ij |2 = 1. (7)

The leading coefficients d
(n)
ij (known as configuration

amplitudes) for the first n = 1 . . . 8 excited states
of t-stilbene are tabulated in Tab. I [61]. To better
match our analysis to experimental data, we take the
experimentally-determined energy eigenvalues, which are
also listed in Tab. I [61].

The spin-singlet configurations we have focused on are
responsible for the radiative de-excitations known as flu-
orescence that could be seen with single-photon detectors
in a DM experiment. The triplet states are classically for-
bidden from decaying down to the ground state and hence
are responsible for the delayed fluorescence component of
photoluminescence which generically has a significantly
lower quantum yield [68].

III. CRYSTAL STRUCTURE

In the solid state, t-stilbene is a monoclinic crystal be-
longing to the space group C52h(P21/c), with unit cell
parameters a = 12.29 Å, b = 5.66 Å, c = 15.48 Å, and
γ = 112◦ [62]. In this convention, the crystal coordinate

basis is defined by a unit vector b̂ = b/b that is orthogo-
nal to both â and ĉ, and γ is the opening angle between â
and ĉ. The coordinate system is right-handed, such that
c × a ‖ b. To form an orthonormal basis we define an

â′ unit vector, â′ = b̂× ĉ. The crystal is symmetric with
respect to translations of a and c, and to the twofold
screw action composed of the translation b/2 with 180◦

rotation about b̂.

Four distinct molecules of t-stilbene inhabit each unit
cell of the crystal (see Fig. 1, bottom): an M1 and M2

with different orientations, and an M−1 and M−2, which
are the images of molecules M1,2 (respectively) under the
twofold screw action along b [69]. In Tab. II we provide
the orientations of each of the four molecules in terms of
their unit vectors L̂ and M̂ identified in Fig. 1, in a crys-
tal coordinate system where the ẑ direction is assigned
to the b symmetry axis. The position of each molecule
within the crystal is listed in Refs. [62, 69], but the DM–
stilbene scattering rate depends only on their rotational
orientation because the kinematics of the scattering pro-
cess do not permit coherent scattering over an entire unit
cell (see Secs. IV and V below).

The molecular orbital model derived in the preced-
ing section is empirically valid for macroscopic single-
crystal samples of t-stilbene. Although lattice effects are
known to perturb the energy bands of molecular crys-
tals [70], the Davydov splitting of the molecular bands,
which is due to the dipole-dipole (and to a lesser ex-
tent quadrupole-quadrupole) interaction of neighboring
molecules in a molecular crystal, is known to be very
small in single-crystal t-stilbene [71]. Furthermore, the
lowest two UV-absorption bands (labeled A and B in the
literature) of t-stilbene in the liquid state remain rela-
tively untouched when observed in the solid state [72].
The A band is thought to arise from the g → s1 through
g → s4 transitions while the B band is thought to arise
from the g → s5 transition [63]. These bands are a direct
measurement of transitions between the many-electron
configurations described in the previous section which
represent the non-interacting single-molecule electronic
state, usually taken to be most like the molecular en-
vironment of the low-temperature liquid or gas state.
Since these bands remain the same in the solid states,
we conclude that the PPP model accurately describes
the molecules of t-stilbene in the solid state where lattice
effects are only very weak.

A mole of t-stilbene has a mass 180.24 g and occupies a
volume of 185.69 cm3. Thus, a kilogram of detector ma-
terial can be fabricated from a cube of t-stilbene of 10.1
cm per side, or a 1 cm thin sheet of approximately one
square foot. These sizes will be convenient to instrument
with conventional photodetectors, such as photomulti-
plier tubes or charge-coupled devices (CCDs).
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IV. RATE CALCULATION

The interaction of DM with the electronic system of
a molecule produces a detectable signal through a pro-
cess analogous to photoluminescence. This process can

be separated into two stages: electronic excitation from
DM-electron scattering followed by radiative deexcita-
tion. Specifically, DM-electron scattering will produce
detectable scintillation photons from t-stilbene at a rate
given by [30]

R =
ΦFBNAmT

m
(t-stil)
mol

ρχ
mχ

σ̄e
µ2
χe

∑
i=1

∫
d3q

4π

∫
d3u fχ(u)δ

(
∆E(si) +

q2

2mχ
− q · u

)
F 2

DM(q)|fg→si(q)|2. (8)

Here, NA ' 6.022 × 1023 is Avogadro’s number; mT is
the total detector mass; the molar mass of t-stilbene is

m
(t-stil)
mol = 180.25 g; ρχ and mχ are the DM mass den-

sity and mass, respectively; µχe is the DM–electron re-

duced mass; σ̄e ≡ µ2
χe

16πm2
χm

2
e
〈|M(q0)|2〉 is a fiducial DM–

electron cross section proportional to the free-particle
spin-averaged squared matrix element 〈|M|2〉 for χ − e
scattering, evaluated at q0 = αme; fχ(u) is the DM ve-
locity distribution in the lab frame; FDM(q) is a form
factor parameterizing the fundamental DM-electron in-
teractions, which has the limits FDM(q) = 1 for a contact
interaction and FDM(q) = (αme/q)

2 for a long-range in-
teraction; and ∆E(si) is the excitation energy for each
si above the ground state as given in Tab. I.

The detector-dependent quantities are the molecular
form factor |fg→si(q)|2, representing the transition am-
plitude from the ground state to a singlet excited state
si, and the bulk fluorescence quantum efficiency ΦFB ,
representing the probability that a molecular excitation
will produce a photon through radiative deexcitation
that will exit the detector without being absorbed. As
is the case with photoluminescence, the emission lines
are broadened by vibrational energy sublevels, thermal
motion, and lattice effects. The emission spectrum of
the single crystal is a continuum of peaks which closely
resembles the molecular and micro-crystalline emission
spectra but is modified by self-absorption and lattice ef-
fects [73]. Here we focus on computing the form fac-
tor and the quantum efficiency, which determine the sig-
nal rate, leaving a detailed investigation of the emis-
sion spectrum (which determines the signal photon wave-
length and hence the detection mechanism) for future
work. We compute the molecular form factors using
the first 8 singlet transitions since these are the tran-
sitions responsible for the first three lowest-lying absorp-
tion bands of trans-stilbene [63]. Since the probability
of interaction is suppressed for higher energy thresholds
(see Fig. 11), it is expected that the rate will be driven
primarily by the strongest low-lying excitations. Using a
simple, spherically-symmetric DM velocity distribution,
the SHM, we also calculate daily modulation effects due
to the rotation of the Earth.

A. Molecular Form Factors

The molecular form factor as calculated for PPP con-
figurational states sn is given by the following,

fg→sn(q) =

〈
ψsn(r1 . . . r14)

∣∣∣∣∣
14∑
m=1

eiq·rm

∣∣∣∣∣ψG(r1 . . . r14)

〉
=
∑
ij

d
(n)
ij

〈
ψji
∣∣eiq·r∣∣ψG〉

=
√

2
∑
ij

d
(n)
ij 〈Ψj(r)|eiq·r|Ψi(r)〉. (9)

where rm is the position of electron m. In the sec-
ond line we have isolated the contribution from the sin-
glet states which only contain a single-electron excita-
tion above the ground state, and in the third line we
have transformed to the basis of HMOs, where the fac-
tor of

√
2 is effectively a spin degeneracy factor. The

matrix element of HMOs may be readily computed from
Eq. (1) in momentum space, where the wavefunctions are
simply the momentum-space 2pz orbitals times a prod-
uct of phase factors determined by the positions of the
carbon atoms [30]. An example of the single-molecule
form factor for the g → s1 transition is shown in Fig. 2
(see also App. A), showing strong damping of the form
factor beyond a characteristic momentum scale given by
q∗ ' Zeff/(2a0) ' 6 keV. There are also secondary “in-
ner” peaks at q ' 2π/` ' 1.2 keV where ` ≈ 0.83 nm is
the length scale of the long axis of t-stilbene.

Measurements of the spectrum of trans-stilbene ob-
serve three absorption bands, A, B and C, which have
been identified primarily with the s1, s5 and s8 molec-
ular transitions, respectively [63]. Compared with the
B and C bands, the A band is larger in magnitude and
broader in frequency space, overlapping with the s2...4

transitions. Our analysis for dark matter scattering re-
produces these features: for example, the s1 transition
dominates the scattering rate, comprising 50–70% of the
rate both near-threshold and at large mχ. If mχ is large
enough that the higher-energy excitations are kinemat-
ically accessible, the scattering rate receives secondary
contributions from s3 and s4, and typically smaller con-
tributions from s2, s5 and s8. The s6 and s7 transition
rates remain negligibly small at all values of mχ. We
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FIG. 2. Molecular form factors for the g → s1 transition for momentum transfers q = (qx, qy, 0) in the plane of the molecule.
Left: contour plot of |fg→s1 |2, showing the hexagonal symmetry of the benzene ring with secondary inner peaks arising from
the extended structure of the joined benzene rings. Right: the product of |fg→s1 |2 with F 2

DM for FDM ∝ 1/q2, proportional to
the rate integrand Eq. (15) for a light mediator (logarithmic color scale).

provide additional detail regarding the separate molecu-
lar transitions that contribute to the scattering rate in
Appendix A 2.

In a t-stilbene crystal, the unit cell contains four
molecules of different orientations, as described in Sec-
tion III. As discussed in more detail below, the momen-
tum transfers required to deposit energy above ∆E(s1)
are sufficient to localize the interaction to a single
molecule within a unit cell, so to compute the rate
we treat the scattering as incoherent between different
molecules, and we sum over four different squared form

factors |f (i)
g→s(q)|2 rotated to give the appropriate orien-

tations of each molecule with respect to q. The interac-
tion rate of DM with a crystal of t-stilbene then scales
like the product of the rate calculated as described with
the total number of unit cells Nuc = Nmol/4 in the entire
crystal, which is proportional to the total crystal mass
mT .

B. Quantum Efficiency

Given the molecular fluorescence quantum efficiency
(ΦF ), defined as the ratio of emitted photons to absorbed,
the probability ΦFB of a photon exiting the bulk target
after an excitation is then given by

ΦFB = (1− axx)ΦF , (10)

where axx is the probability of self absorption. At liquid
nitrogen temperatures, ΦF ' 97% [74–76], approach-
ing unity at cryogenic temperatures. Furthermore, us-
ing the photoluminescent spectra of t-stilbene in the

liquid, microcrystalline, and macroscopic single-crystal
state as measured via reflection and transmission, Birks
et al. conclude that axx ≈ 0.35 as the continuous reab-
sorption and emission of the photon gradually red-shifts
the radiation into wavelengths to which the bulk crystal is
transparent [73]. Thus, the bulk fluorescence quantum ef-
ficiency of t-stilbene is at least ΦFB = 0.63 [58, 77], likely
approaching 0.65 at cryogenic temperatures, though we
use the lower value to be conservative. We propose such
a detector to be run around 100K in order to maximize
bulk quantum efficiency while maintaining a high enough
temperature to run CCD based photo-detectors [41].

C. DM Velocity Distribution

We denote the velocity of a particle in the Milky
Way reference frame by v. We adopt the SHM ansatz
for the bulk of the Milky Way DM distribution. The
DM velocity is then distributed according to f0(v) =
exp(−|v|2/2σ2

0)Θ(|v|2 − v2
esc)/N0, where the dispersion

σ0 is related to the velocity of the Local Standard of
Rest by σ0 = v0/

√
2 and the normalization is

N0 =π3/2v3
0

[
erf

(
vesc

v0

)
− 2√

π

vesc

v0
exp

(
−v

2
esc

v2
0

)]
. (11)

Numerically, the Local Standard of Rest has value v0 '
220 km/s and the escape velocity is near vesc ' 544 km/s
[78]; the uncertainties on these values are nonzero, but
. 10%. We use this velocity distribution in order to
facilitate comparison with previous studies, but future
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exploration of the implications of more realistic velocity
distributions will be important for interpreting any future
experimental results.

To calculate the rate in Eq. (8), we integrate over the
velocity measured in the laboratory u, which is related
to the velocity in the Milky Way frame by v = u + v⊕,
where v⊕(t) is the velocity of the Earth as measured in
the Milky Way frame. Following the conventions of [27],
we use the energy conservation δ-function to resolve the
integral over the velocity distribution:

g0(q, t) ≡
∫
d3u f(v⊕(t) + u) δ

(
∆E − q · u +

q2

2mχ

)
=
πv2

0

qN0

(
e−v

2
−/v

2
0 − e−v2

esc/v
2
0

)
, (12)

where

v−(q, t) = min

(
vesc,

∆E

q
+

q

2mχ
+ v⊕(t) · q̂

)
. (13)

The momentum transfer q = qq̂ has been related to the
velocity by the requirement that ∆E = q ·u− q2/(2mχ),
and all dependence on the local velocity v⊕ is contained
in v−.

The rotation of the Earth over a 24-hour period enters
the rate by casting the direction of Earth’s velocity (more
precisely, the velocity vector of a fixed laboratory location
on the Earth’s surface) as a function of time [27]:

v̂⊕(t)=

 cosβ − sinβ 0
sinβ cosβ 0

0 0 1

 sin θe sinϑ
sin θe cos θe(cosϑ− 1)
cos2 θe + sin2 θe cosϑ

 ,

(14)
where ϑ(t) = 2π×

(
t

24 h

)
, θe ≈ 42◦, and we have chosen to

align the (x, y) plane of the crystal to be perpendicular to
the direction of the DM wind at time t = 0 with the initial
orientation of the crystal with respect to rotations about
the ẑ axis given by β. As is clear from Eq. (13), the only
aspects of the Earth velocity vector that we need to know
when calculating rates in the context of the SHM are
the Earth’s speed, for which we adopt |v⊕| ≡ v⊕ = 234
km/s, and the angle between the Earth’s north pole and
its velocity in the Milky Way frame, θe. Our formalism is
easily extended to other velocity distributions by making
the substitution in Eq. (13) of v⊕ → v⊕−〈v〉 where 〈v〉 is
the mean velocity of the DM distribution as measured in
the Milky Way frame. The vector 〈v〉 is zero by definition
for the SHM, but would be nonzero for substructure in
the form of a stream.

In terms of g0, the total (time-dependent) rate per unit
mass is

R(t)

mT
=

ΦFBNA

m
(t-stil)
mol

ρχ
mχ

σ̄e
µ2
χe

∑
i=1

∫
d3q

4π
g0(q)F 2

DM(q)|fsi(q)|2,

(15)
where we emphasize that g0(q) is implicitly also a func-
tion of v⊕(t). Eqs. (12)–(15) indicate that, from the
perspective of kinematics alone, the largest modulation

will occur when v−(q) modulates around vesc. However,
as we will see in Secs. V and VI below, the morphology
of the molecular form factors will also play a large role
in determining the modulation.

V. DAILY MODULATION REACH

With the molecular form factors in hand, we can com-
pute the total DM-induced excitation rate by summing
over the eight lowest transitions si for a given choice of
velocity distribution and DM form factor. As we show in
Appendix A, the lowest-energy transition g → s1 domi-
nates both the daily modulation effect and the total av-
erage rate. Near the mass threshold, mχ . 10 MeV, the
g → s3 transition contributes at the 20% level, with all
other transitions contributing less than 10% of the total
rate. Above 10 MeV the s1 transition remains dominant,
accounting for about 50% of the total rate for both DM
form factors. With FDM = 1 and mχ & 100 MeV the s3

and s4 transitions contribute equally, at the 15% level.
For the same masses and FDM ∝ 1/q2, the s3 transition
provides a larger 20% correction to the total rate, com-
pared to less than 15% from s4 and less than 10% from
each of the other excited states. This behavior is dis-
tinct from the case of benzene, where the lowest-energy
transition is dipole-forbidden [30].

Fig. 3 shows the modulating rate R(t) over a 24-hour
period (one sidereal day) for two different alignment an-
gles of the detector crystal, β = 0◦ and β = 90◦, normal-
ized by the average scattering rate,

〈R〉 = (24 h)−1

∫ 24 h

0

dtR(t). (16)

We see that the peak-to-trough modulation amplitude
is as large as 60% (10%) for a low-mass (high-mass)
DM particle interacting via a heavy mediator, climbing
to 70% (25%) for a low-mass (high-mass) DM particle
interacting via a light mediator. This is on the same
scale, or larger than, the annual modulation amplitude
for WIMP-nuclear scattering well above threshold [79–
83], as well as for DM-electron scattering in semiconduc-
tors at high masses [4, 34].

Assessing evidence in favor of a signal will be an im-
portant step in making a DM discovery, and the daily
modulation is an important handle for improving our sta-
tistical power. As we discuss in more detail in Appendix
B, the statistical significance that we formally assign to
a modulating signal is

∆L = −2
∑
k

nk ln
[
νmk (θm)/ν0

k(θ0)
]
, (17)

where k labels the data bins, νmk is the number of ex-
pected events in bin k assuming a modulating signal,
ν0
k is the expected number of events in bin k assuming

a constant rate, and θm,0 are parameters describing the
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Figure 12: Modulation plots for FDM = 1

Figure 13: Modulation plots for FDM = 1/q2

0 5 10 15 20

0.6

0.8

1.0

1.2

1.4

mχ=2 MeV
mχ=3 MeV

mχ=4 MeV
mχ=6 MeV

mχ=10 MeV
mχ=1000 MeV

FDM = 1, � = 0�
R

(t
)/
hR

i
1.4

1.2

1.0

0.8

0.6

0 5 10 15 20 0 5 10 15 20

0.6

0.8

1.0

1.2

1.4

mχ=2 MeV
mχ=3 MeV

mχ=4 MeV
mχ=6 MeV

mχ=10 MeV
mχ=1000 MeV

FDM = 1, � = 90�
1.4

1.2

1.0

0.8

0.6

0 5 10 15 20

0 5 10 15 20

0.6

0.8

1.0

1.2

1.4

mχ=2 MeV
mχ=3 MeV

mχ=4 MeV
mχ=6 MeV

mχ=10 MeV
mχ=1000 MeV

FDM / 1/q2, � = 0�

t (hours)

R
(t

)/
hR

i

1.4

1.2

1.0

0.8

0.6

0 5 10 15 20 0 5 10 15 20

0.6

0.8

1.0

1.2

1.4

mχ=2 MeV
mχ=3 MeV

mχ=4 MeV
mχ=6 MeV

mχ=10 MeV
mχ=1000 MeV

FDM / 1/q2, � = 90�

t (hours)

1.4

1.2

1.0

0.8

0.6

0 5 10 15 20

Figure 14: Modulation plots for both F

5

FIG. 3. Normalized modulation signals for a variety of DM masses, mχ = 2–1000 MeV, for a crystal in β = 0◦ and β = 90◦

orientations. Above 10 MeV, the rate relaxes into a function of time that is nearly independent of the DM mass and with
modulation amplitude only mildly dependent on the crystal orientation. The peak-to-trough modulation amplitudes are as
large as 60% at low masses and 10% at high masses for FDM = 1, increasing to 70% at low masses and 25% at high masses for
FDM = (αme/q)

2.

expected rate in the modulating and non-modulating sce-
nario, respectively. The values of ∆L are distributed as
a χ2 distribution of the number of additional degrees of
freedom needed to characterize the modulating (as op-
posed to the non-modulating) signal; in the case of two
bins, this would be a χ2 with two degrees of freedom. Al-
though we focus on the two-bin case in the remainder of
this analysis, we emphasize that Eq. (17) is appropriate
for any binning of data, including an unbinned analysis.
We provide more general explorations of this test statistic
in Appendix B.

A particularly simple limit of Eq. (17) is one for which
we take two bins per day and describe the modulation
simply by a single parameter, the integrated modulation
fraction f2, defined as the fractional difference in inte-

grated rate between the two bins, averaged over a day:

f2 =
1

(24 h)〈R〉

(∫ t0+12h

t0

dtR(t)−
∫ t0+24h

t0+12h

dtR(t)

)
.

(18)
For a perfectly sinusoidal signal, f2 equals the peak-to-
trough amplitude divided by π. Our choice in Eq. (14)

to align the crystalline symmetry axis, b̂, with the lab
frame DM wind at t = 0 ensures that the dominant part
of the modulation signal has a 24-hour period, with only
small contributions from higher harmonics. In this orien-
tation, the integrated modulation amplitude Eq. (18) is
maximized by t0 ≈ 18 hours, based on the results shown
in Fig. 3. This observable is particularly well suited for
describing the daily modulation, because it is unaffected
by the non-modulating background rate and thus does
not require any knowledge of the background.

As explored in detail in Appendix B, this simple bin-
ning is amenable to analytic results in the large-N limit
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6

FIG. 4. The capability of a 1 kg · year t-stilbene experiment to detect or exclude DM models with FDM = 1 (left) or FDM =
(αme/q)

2 couplings to electrons, shown with existing limits from SENSEI [51], XENON 10 [14], and XENON 1T [50]. The
dotted and dashed lines show the 90% CL exclusions that can be set from the total number of events, without considering
modulation effects, for R = 1/60 Hz kg−1 (Nevents ≈ 5.26 × 105) and for Nevents = 0, respectively. The orange shaded regions
indicate parameter space that leads to a sufficiently large modulation signal that a 1 kg · year experiment could observe a 3σ
detection, given a total observed rate of R = 1/60 Hz kg−1. The solid black “∆N = 0” lines show the improved limit that can
be set from a null result exhibiting no daily modulation but the same total observed rate. Each plot also shows (in blue) a
benchmark model from Ref. [13] as a target for the experimental sensitivity. In the FDM = 1 example the scalar DM abundance
is set by freeze-out mediated by a dark photon of mass mA′ = 3mχ, while for FDM ∝ 1/q2 we show freeze-in via light mediator,
mA′ � 3 keV.

of the Skellam distribution or in the small-modulation
limit of the Poisson distribution. In each case, we find
that the statistical significance we may assign to either
the modulating or non-modulating hypothesis based on
an experiment in which Ntot events are observed is

Nσ =
f2 Texp〈R〉√

Ntot

, (19)

where 〈R〉 is the time average of the signal event rate R(t)
defined in Eq. (16), and where Texp is the total exposure
time for the experiment. Since the number of signal and
background events both grow linearly with exposure, the
significance of a modulating signal improves with expo-
sure as long as the integrated modulation fraction f2 is
nonzero. Our Eq. (19) matches the χ2

sb statistic suggested
by Ref. [28].

In Fig. 4 we show the expected results of a 1 kg · year
t-stilbene experiment operated under a number of differ-
ent assumptions. As a benchmark to facilitate compari-
son with other experiments, we demonstrate the reach
with an entirely background-free experiment using no
modulation information. The potential for parameter
space exclusion in this scenario is σ̄e ' 10−41 cm2 (few×
10−41 cm2) for DM interacting with a form factor FDM =
1 (FDM ∝ 1/q2) and with a mass in the range 5 MeV .

mχ . 10 MeV. This is within a factor of 2 or 3 from the
expected reach of a silicon CCD experiment like SENSEI
or Oscura for an equivalent target mass [3, 84]. Tak-
ing the more realistic scenario that the observed rate
for a 1 kg detector is R = 1 min−1 = 1/60 Hz (includ-
ing both signal and background components), the future
reach depends on analysis strategy. Without leveraging
modulation information, the limit we obtain is slightly
stronger than the current exclusion from SENSEI [51] at
low masses below ∼ 5 MeV, and comparable at higher
masses. We also comment in passing on the prospects
for the detectability of the (non-modulating) absorption
of DM: since ρT ' 1 g/cm3, we anticipate a rate of
∼ O(1)/kg/min for a dark photon kinetic mixing pa-
rameter of ε ' 10−13, assuming a dielectric loss of order
∼ O(10−2), similar to that in benzene [85] and compara-
ble to those in semiconductors [86]. This setup would
set leading limits on dark photons in the mass range
4.2 eV < mA′ . 10 eV.

For DM scattering, our sensitivity to exclusion and
discovery can be dramatically extended by utilizing the
information in the rate via the simple two-bin analy-
sis. Using the significance from Eq. (19), a 1 kg, 1 year
t-stilbene experiment that observes a constant R =
1 min−1 = 1/60 Hz event rate can exclude at 90% CL
a DM particle with a scattering cross section as small
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FIG. 5. As a demonstration of the utility of daily modulation, we show the 3σ discovery and 90% CL exclusion potential for
a trans-stilbene experiment with a background rate of 1/60 Hz kg−1, for exposures of 0.01 kg · year, 1 kg · year, and 100 kg · year.
The dashed lines, labelled “90% CL 1/60 Hz kg−1,” show the 90% CL exclusion from an analysis that does not consider the
daily modulation effects. The inclusion of daily modulation in the statistical analysis allows even the 0.01 kg · year exposure to
set a significantly stronger limit on σ̄e. For the FDM = 1 and FDM = (αme/q)

2 form factors we show the benchmark freeze-out
and freeze-in models, respectively, from Ref. [13].

as σ̄e ' 10−37 cm2. This cross section lies below the
well-motivated line from freeze-out production of scalar
DM for 2 MeV . mχ . 7 MeV with a heavy dark pho-
ton mediator mediator, and also probes a wide range of
masses 2 MeV . mχ . 200 MeV for freeze-in produc-
tion through a light mediator [13]. The 3σ discovery
reach for a modulating signal for a total R = 1/60 Hz/kg
background event rate is nearly as strong, reaching just
below (above) the cross section σ̄e ' 10−37 cm2 for
FDM = 1 (FDM ∝ 1/q2).

Very meaningfully, as shown in Eq. (19), the discov-
ery or exclusion significance grows with cumulative ex-
posure, even without background mitigation: this im-
provement in significance is absent in a non-modulating
signal. We demonstrate this explicitly in Fig. 5, display-
ing the 90% CL exclusion and the 3σ discovery reach
for a t-stilbene experiment with a constant observed rate
R = 1 min−1 kg−1 and increasing exposures of 0.01, 1, 100
kg·yr. For the lowest exposure proposed here, the back-
ground rate is very nearly equal to the 2e− rate observed
by the SENSEI experiment with a ∼2g detector [51]. The
sensitivity improves with

√
Ntot, so given the assumption

of constant total rate in counts per unit time per unit
mass, the sensitivity improves with

√
exposure. This

conservative expectation for scaling of the background
rate essentially assumes that bulk events will dominate
the background. There will be an irreducible background
from the low-energy tail of 14C decays which would yield
only a single scintillation photon, but assuming scintilla-

tors can be manufactured with the 10−18 g/g 14C levels
achieved by Borexino [87, 88], the total 14C decay rate
would be 0.01 events/min/kg, well below the background
rates we have assumed here. These background rates
also include radio contamination from heavy metals (e.g.
Th and U) whose beta decay spectrum is not compati-
ble with the one-photon signal that such an experiment
will look for. Finally, the cosmic ray background is ex-
pected to be the bulk of the exogenous rate and the only
major background that might vary over the time scale
of a day. This rate can be minimized by running un-
der sufficient overburden, and the daily modulation of
this background is constrained to be . 0.1% in a deep
underground facility [59]. If the background rate were
dominated by the dark rate in the photodetector, which
would likely scale with area, a large-volume experiment
and/or light-focusing scheme would improve the signifi-
cance even further. We plan to return to these issues in
future work.

VI. KINEMATICS AND TARGET SELECTION
FOR DAILY MODULATION

Given the large daily modulation amplitude present in
t-stilbene, and the associated improvement in discovery
and exclusion significance, it is worth examining which
characteristics of our target molecule govern the size of
the modulation, and whether other choices of organic
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FIG. 6. Molecular form factors and modulating rates for DM masses near threshold, mχ = 2 MeV. In the contour plots,
the gridded shaded regions indicate the kinematically accessible momentum transfers q for the four molecules M1,2,−1,−2 that

comprise the unit cell of the crystal, shown at t = 0 and t = 10 h. Here, q is given in the molecular basis, qx = q · L̂,
qy = q · M̂, and the kinematically accessible region is defined by v−(q) < vesc, following Eq. (13). Top left: Contour plot of
the molecular form factor |f(q)|2 for the g → s1 transition in the (qx, qy) plane, with qz = 0. Bottom left: Contour plot for
fixed φ ≡ arctan(qy/qx) = 55◦, showing the strong anisotropy in qz with maxima at qz = 0. Top right: The scattering rate
(summed over all g → si transitions) as a function of time, R(t), normalized by the average daily rate Ravg. The modulation is
dominated by the s1 transition (dashed). Bottom right: A closer look at the form factor near the peak at φ ' 55◦, plotting
|fs1 |2 as a function of |q| for fixed θ = 90◦ and various φ.

molecules could improve the modulation amplitude even
further. Indeed, in other systems sensitive to sub-MeV
DM (Dirac materials, for example), the modulation am-
plitude can be even larger, O(1) even for DM masses well
above threshold [27, 28].

A. Daily modulation in t-stilbene

The peaks of the t-stilbene molecular form factors de-
fine a preferred momentum scale q∗ ' 6 keV where the
rate is largest, so for the purposes of understanding the
daily modulation, we may approximate all DM interac-
tions as imparting momentum q∗. The s1 transition has

∆E = 4.2 eV, which defines an effective velocity scale

v∗ ≡ ∆E

q∗
' 200 km/s, (20)

on the same order as v⊕ ' 230 km/s. For sufficiently
small mχ such that q∗/(2mχ) ' vesc, Eq. (13) shows
that v−(q) will be driven to vesc unless v⊕ is antiparallel
to q, and hence the rate will be nonzero only for a very
narrow range of directions of q.

Fig. 6 illustrates this phenomenon, with the grid-
ded “bean-shaped” shaded regions representing the
kinematically-accessible region v−(q) < vesc overlaid on
contour plots of the s1 molecular form factor at β = 90◦

for DM mass of 2 MeV and a heavy-mediator form fac-
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FIG. 7. Same as Fig. 6 for large DM masses, mχ = 100 MeV. Only the nearly-spherical region near q ∼ 0 with inner boundary
qmin ' 1.6 keV is kinematically forbidden. As a result, the daily modulation amplitude is smaller, driven by the anisotropy of
the inner secondary peaks and the tails of the primary peaks.

tor FDM = 1. There are four such regions for the
four different t-stilbene orientations within a unit cell.
The daily modulation arises from the movement of the
kinematically-allowed region over the course of a day, in
particular as these regions rotate out of the plane of the
molecule and the peaks at qz = 0 become inaccessible.

On the other hand, for sufficiently large mχ,
q/(2mχ) → 0 and v−(q∗) < vesc for any direction of q̂.
Thus, the kinematically-allowed region in q-space always
includes q∗ but has inner boundary

qmin =
∆E

vesc + v⊕
' 1.6 keV. (21)

Fig. 7 provides the same information as Fig. 6 except now
for a heavier DM particle, with mass mχ = 100 MeV.
The form factor remains the same, but the “beans”
have now expanded to fill in across the plane, leaving
only circular “holes” with inner boundary qmin. Because
the kinematically-accessible region now includes the full
peaks of the form factor, the rate modulation of the

course of the day arises only due to the mismatch of the
circular inner boundary with the hexagonal symmetry of
the form factor and the presence of the inner secondary
peaks, compounded by the vector addition of q̂ and v̂⊕.
This leads to a smaller ∼ 10% peak-to-trough modula-
tion amplitude for all mχ & 10 MeV.

For DM scattering through a light mediator, FDM =
(αme/q)

2, the rate integrand Eq. (15) is weighted to-
ward small q. In Fig. 8 we show the molecular form
factors multiplied by F 2

DM; the rescaled form factors are
peaked more strongly towards low momenta, as expected.
Because the inner peaks are kinematically forbidden for
DM of all masses, but the tails of these peaks are also
probed by all DM masses, this increases the magnitude
of the peak-to-trough modulation amplitude to ' 70%
for mχ = 2 MeV and remains as large as ' 30% for
mχ = 100 MeV.
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FIG. 8. Same as Figs. 6 and 7 (top) for a light mediator DM form factor FDM = (αme/q)
2. Here, the contour plots show

F 2
DM|f(s1)|2 which appears in the rate integrand Eq. (15); the scattering is dominated by the smallest kinematically-allowed
q. Top: Molecular form factors with qz = 0 and rate modulations for mχ = 2 MeV. Bottom: Molecular form factors with
qz = 0 and rate modulations for mχ = 100 MeV.

B. Target selection for daily modulation

The analysis of Sec. VI A suggests a strategy for de-
signing target materials to obtain a large anisotropic re-
sponse to electron scattering, and correspondingly large
rate modulation, even in the limit of heavy DM. In
this limit, the time-independent part of the argument
of v− (Eq. (13)) is simply ∆E/q. Now consider a mate-
rial with a form factor peaked at a momentum q∗ and
with a lowest-lying excitation energy ∆E. To maxi-
mize the modulation, we look for a material for which
q∗ and ∆E are related by q∗ ' ∆E

vmax
, where vmax =

vesc + v⊕ is the maximum DM velocity attainable in the
lab frame. Equivalently, the “effective velocity” charac-
terizing the lowest-lying molecular transition, defined as
v∗ = ∆E/q∗, should be v∗ . vmax. In t-stilbene, the pri-
mary outer peaks have v∗ ' 200 km/s, which is a factor
of a few too small to lead to the maximal rate, whereas
the secondary inner peaks have v∗ ' 1200 km/s, and
these peaks are always kinematically forbidden.

An ideal target for daily modulation would have ei-
ther larger ∆E or a larger spatial extent (smaller q∗),
so as to match v∗ . vmax for the primary peaks. To
illustrate this, Fig. 9 shows the molecular form factor
for the g → s1 transition in t-stilbene but with the
kinematically-allowed region defined by a transition en-
ergy ∆E = 8 eV, rather than the 4.2 eV in t-stilbene.
Here, we have chosen a form factor FDM ∝ 1/q2, which
weights the kinematically-forbidden inner peaks more,
but the modulation is still driven by the forbidden re-
gion in q which has comparable radius to the outer peaks.
As the forbidden region moves in q-space, the peak-to-
trough modulation amplitude can be as large as 20% for
all mχ & 20 MeV for the g → s1 transition alone in this
hypothetical material, almost a factor of 2 larger than
the modulation amplitude for the equivalent transition
in t-stilbene.

Taking a broader perspective, the anisotropic response
of a condensed matter target to DM-electron scattering
arises from an interplay of preferred scales q∗ set by the
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FIG. 9. Same as Fig. 8 (bottom), but with a counterfactual transition energy of ∆E = 8 eV. This larger transition energy
leads to a larger daily modulation for the g → s1 transition in the large mχ limit. To facilitate a comparison with Fig. 7, we
also provide the modulation signal of the s1 transition with ∆E = 4.2 eV as the dotted gray line with the smaller amplitude.

molecular size and a coincidence between the effective
transition velocity v∗ and the maximum DM velocity in
the lab frame. In the case of organic molecular solids, the
conjugated π-electron system provides two length (mo-
mentum) scales given by the extent of the molecule along
the molecular plane (q∗ ' 1.2 keV for t-stilbene), and
the extent of a single 2p orbital (q∗ ' 6 keV), which
sets both the carbon-carbon bond length and the extent
of the out-of-plane π orbitals. The large hierarchy be-
tween these scales in large organic molecules means that
the excitation dynamics in the plane are largely sepa-
rated from excitations along the normal to this plane.
Transitions along the normal direction will typically re-
quire larger imparted momenta than in the extended di-
rections, and thus the form factor for the lowest transi-
tion will be peaked at qz = 0, with peaks in the x − y
plane corresponding to the characteristic scales of the
molecular (sub)structure. The kinematically-allowed re-
gions which dominate the rate integral rotate in q-space
over the course of the day, where the planar anisotropy
(and to a lesser extent, the hexagonal structure of a
benzene ring which breaks rotational symmetry to a
discrete subgroup) gives the modulation for small mχ,
and the anisotropy of the two displaced benzene rings
contributes significantly to the residual modulation for
large mχ. Having electronic transitions with v∗ slightly
smaller than vmax (as in our counterfactual example with
∆E = 8 eV in Fig. 9) will maximize the anisotropy for
masses above threshold. That said, there is an inevitable
tradeoff between the modulation amplitude and the total
rate (consistent with the analysis of Ref. [60] for single-
phonon production) because as v∗ approaches vmax, the
kinematically-allowed transitions rely more and more on
the high-velocity tail of the DM velocity distribution.

From this perspective, we can understand why daily
modulation amplitudes are typically small or nonexis-
tent for electron scattering in conventional semiconduc-

tor and noble liquid detectors. In noble liquids, the filled
electron shells are spherically symmetric (ignoring small
effects due to van der Waals attraction and dimeriza-
tion between noble atoms), and thus the form factor will
be isotropic and no daily modulation will occur. On
the other hand, solid-state lattices have only discrete
translational symmetries, which may be expected to lead
to anisotropies like those due to the hexagonal struc-
ture of the benzene rings. However, the dominant low-
energy electronic transitions in conventional semiconduc-
tors with eV-scale gaps are due to delocalized valence
electrons, which lead to a continuous energy spectrum
and smooth form factors without a preferred momentum
scale, at least for q smaller than the inverse lattice spacing
∼ 3 keV.1 For larger q, scattering will probe core elec-
tron shells of single atoms at individual lattice sites, but
these filled shells will be spherically symmetric and give
isotropic form factors. That said, more exotic solid-state
systems like Dirac materials, where a combination of a
narrow gap (which permits small q) and an anisotropic

linear dispersion ∆E ∼
√
v2
xq

2
x + v2

yq
2
y + v2

zq
2
z with the

vi bracketing vmax, can have order-1 daily modulation
[27, 28] and a fairly large overall rate [16].

Importantly, q∗ is related to the characteristic size of
the (sub)structure of the molecule as well as the sym-
metry of the transition, which determines whether the
transition is dipole/quadrupole allowed. Meanwhile, the
minimum ∆E is set by the HOMO/LUMO gap which is
sensitive to the topology of the conjugated electron sys-
tem, as well as the presence of functional groups which

1 In fact, the form factors in silicon and germanium have peaks at
q = 0 and ∆E = 18 eV from the plasmon, as well as at v∗ =
vF ' 10−2 from the approximately free Fermi gas behavior of the
valence electrons, but neither of these peaks are kinematically-
accessible for halo DM [38].
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could donate or accept electronic density. For example,
1,2-diphenylacetylene is the acetylene-bridged analog of
t-stilbene and presents a HOMO/LUMO gap of O(10%)
larger than that of t-stilbene [89]. This implies that the
two quantities are somewhat decoupled and can be inde-
pendently tuned, at least for ∆E in the range 1− 10 eV
where the efficiency for scintillation photon detection is
high. Furthermore, theoretical computations of the DM
form factor as detailed in this paper can be verified by the
complementary experimental probe known as electron
energy-loss spectroscopy (EELS), which can be used to
extract the generalized oscillator strength (i.e. dielectric
function) of the molecular excitations in a given target;
such a measurement automatically includes many-body
effects [38] such as the ones parameterized by the PPP
Hamiltonian as well as multi-electron excitations. Since
t-stilbene and related chromophores have been identified
as good scintillators for decades, their single-crystal syn-
thesis is mature and can be scaled up to O(10 cm) crys-
tals [90]. Therefore, it is entirely within the reach of
existing methods and technology to implement O(10 kg)
of organic crystal scintillation target since O(10 cm) sin-
gle crystals of anthracene, t-stilbene and p-terphenyl are
commercially available already, though ensuring the ra-
diopurity of samples will be paramount to reduce back-
grounds. In principle, this is no more challenging than
obtaining radiopure liquid scintillator since crystals are
readily grown from liquid stock.

C. Daily modulation from dark matter kinematic
substructure

Another mechanism for exploring different scattering
kinematics is supplied in the form of a cold, co-rotating
stream of DM particles. The exemplary such sub-
distribution of DM particles is the putative Nyx stream
[91]. This stream has velocity vNyx ' (150, 0, 140) km/s
[92] for components (vr, vθ, vφ). In reality Nyx appears
slightly anisotropic [91, 92], but it has a relatively low
spatially average velocity dispersion, σ̄Nyx ' 60 km/s.
Given its inferred size, we can attribute to it a low escape
velocity wesc = 150 km/s. To calculate the rate for the
Nyx stream, vNyx is subtracted from v⊕ ' (40, 10, 230)

km/s [92, 93] in Eq. (13) and σNyx and wesc replace v0/
√

2
and vesc in Eq. (12), respectively.

Because of the smaller escape velocity wesc, activating
the 4.2 eV transition requires larger momentum trans-
fers, q & O(10) keV. As a result the inner peaks of
|fsi |2 at q ' 1.2 keV are kinematically inaccessible,
and the peaks at q∗ ' 6 keV are only accessible at the
high velocity tail of the distribution w ≈ wesc, even for
mχ & 100 MeV. Keeping the peaks of |fsi |2 at the edge
of the kinematically-accessible region can induce a large
modulation amplitude for a wide range of mχ, but at
the price of significantly lowering the overall scattering
rate. Because the Nyx fraction is . 10% [93] of the local
DM density, however, such modulation is unlikely to be

a dramatic effect in any experiment, especially for the
FDM ∝ 1/q2 form factor.

VII. CONCLUSIONS

Among the many target materials proposed for DM-
electron scattering, few have demonstrated the necessary
anisotropic response to probe the daily modulation of
DM, and none (to our knowledge) optimized for DM from
the MeV to GeV scale. In this paper we have shown that
organic crystals are a promising family of targets with
excellent prospects for daily modulation, already at the
same level as the expected annual modulation signal for
the particular case of t-stilbene, and possibly larger if a
compound with a suitable v∗ = ∆E/q∗ can be identified.
In previous work [30] we have already demonstrated the
efficacy of (liquid) organic scintillators in an experimental
context, and we expect that many of the same design
considerations will hold for solid-state scintillators.

The excellent overall sensitivity of t-stilbene – within
a factor of a few of a comparable mass of silicon – com-
bined with the additional handle of daily modulation,
would make such a detector strongly complementary to
the existing experimental program for Oscura [84] which
uses silicon targets. In the event a positive signal is de-
tected, daily modulation will be crucial for confirming a
DM origin, and we have also derived a useful test statistic
for determining the daily modulation significance in the
presence of non-modulating backgrounds. We will ex-
plore design considerations for a concrete experimental
implementation of a crystal organic scintillator detector
in future work.

Beyond the particular case of t-stilbene, we have ar-
gued that aromatic organic crystals are a near-optimal
compromise between overall rate, daily modulation, and
scalability to large target masses, for DM of mass mχ &
1 MeV. The building blocks of organic scintillators, the
sp2-hybridized carbon orbital and its 2pz double bonding
counterpart, are naturally anisotropic and support delo-
calized electronic states extended in the molecular plane,
while the spatial extent of the 2p orbitals determines
a preferred momentum scale. The weak intermolecular
forces in organic crystals allow the electronic wavefunc-
tions (and hence the form factors) to retain their molec-
ular character rather than being entirely delocalized as
in semiconductors. Furthermore, the discrete transitions
at well-defined energies ∆E, combined with the sharply-
peaked form factors, give v∗ which is close to optimal for
t-stilbene, and may give larger modulation in compounds
with slightly larger HOMO/LUMO gaps and therefore
with a slightly larger v∗. The combination of exciting
features demonstrated by these results point to the abil-
ity to probe extremely well-motivated parameter space
with plausible near-future technology, even in the pres-
ence of realistic but significant background rates. This
indicates great potential for anisotropic organic scintilla-
tor detectors.
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Appendix A: Molecular orbital calculation details

1. LCAO Hückel Molecular Orbitals

The HMOs of t-stilbene are found using the same tech-
nique as in Ref. [30]. Here, the onsite energy is taken to
be Ec = −6.7eV and nearest-neighbor resonance integral
given by the following [94, 95],

Hij = −0.63
~2

mex2
ij

δi,i±1 = −2.45eV, (A1)

where xij is the distance between atoms. It should be
noted, however, that these parameters become irrelevant
after obtaining the HMOs when taking into account con-
figurational interactions since new semi-empirical param-
eters are used for the single and many-body integrals as
described by Pariser, Pople, and Parr [65–67].

2. Form Factor Details

Of the excited states beyond s1, the s3 and s4 tran-
sitions provide the largest corrections to the scattering
rate for a wide range of DM masses. In Fig. 10 we show
their form factors squared in the qz = 0 plane. The
s3 form factor has a larger amplitude, and an approxi-
mately rectangular symmetry. Compared to the s1 form
factor, |fs3 |2 extends to larger values of qx, parallel to the
long axis of the molecule. The s4 transition exhibits a
rougher version of the approximate hexagonal symmetry

of |fs1 |2, but with each peak stretched along the qy direc-
tion, and with enhancements to the peaks at φ ∼ 120◦

and φ ∼ −60◦. This is because the s4 transition corre-
sponds to one-electron excitations confined to the phenyl
rings, so one should expect more spread-out support in
q-space. The localized character of the 1A→ 1H+ transi-
tion, in Platt notation, is discussed in detail by Beveridge
and Jaffé (see e.g., Fig. 4 in [63]).

The relative importance of each excited state to the
scattering rate is shown in the fractional modulation plot
of Fig. 11. At 2 MeV, around 65%–70% of the FDM = 1
scattering rate occurs via the g → s1 transition. Around
15% of the FDM = 1 rate is due to the s3 transition,
with s2 and s4 each contributing at the 7–8% level. For
FDM = (αme/q)

2 the s3 and s2 transitions have some-
what greater importance, comprising 23% and 11% of
the rate, respectively, compared to the 60% fraction of
the rate generated by s1. We note that the conspicu-
ously small contribution of s2 serves as an independent
confirmation of our molecular orbital model since the
11Ag →21Bu transition of t-stilbene in known to present
an anomalously weak oscillator strength [96].

As indicated in Fig. 7 and Fig. 8, the dominance of
the s1 transition is lessened at larger mχ � 10 MeV,
due in part to the greater kinematic accessibility of the
s5 and s8 transitions, but the s1 still comprises nearly
50% of the total scattering rate, with s3 and s4 provid-
ing the leading corrections. Furthermore, is it expected
that at these larger mχ, s5 and s8 contribute a larger
portion of the overall rate since they are the lowest lying
classically-allowed 1Bu transitions with strong oscillator
strengths. Meanwhile the hierarchy of the s3 and s4 tran-
sitions comes primarily from their q-dependent morphol-
ogy since they are both 1Ag transitions with roughly the
same ∆E.

Appendix B: Statistics of daily modulation

Here we discuss two methods for obtaining analytic
limits of Eq. (17) and Eq. (19) in the simple two-bin
analysis that we utilize in this paper.

1. Skellam Distribution

For a two-bin example, the likelihood and test statistic
can be derived directly from the Skellam distribution [97].
Given two bins (1) and (2), with mean expected numbers
of events µ1 and µ2, the probability of measuring a dif-
ference ∆N = N1 − N2 between the numbers of events
N1,2 in the two bins is given by

P (∆N |µ1, µ2) = e−(µ1+µ2)

(
µ1

µ2

)∆N/2

I∆N (2
√
µ1µ2) ,

(B1)

where Ik(z) is the kth modified Bessel function of the
first kind, and where we have assumed Poisson statistics



17

FIG. 10. Form factors |fs3 |2 and |fs4 |2, shown in the qz = 0 plane as a function of (qx, qy). The s4 form factor has a roughly
hexagonal structure, like the s1 transition, but stretched in the ±qy directions. The s3 form factor has approximately rectangular

symmetry, stretched along the long axis (x̂ = L̂) of the molecule. These two transitions provide the largest corrections to the
scattering rate, but remain subdominant to the g → s1 transition even in the large mχ limit.

for the distribution of events in each bin. Defining

µtot ≡ µ1 + µ2, µ∆ ≡ µ1 − µ2 (B2)

for convenience, the mean µ0, variance σ2, skew and ex-
cess kurtosis of the Skellam distribution are [98]

µ0 = µ∆, σ2 = µtot, (B3)

γ1 =
µ∆

µ
3/2
tot

, γ2 =
1

µtot
, (B4)

so that in the large µtot limit the distribution is approx-
imately Gaussian.

An exact version of the test statistic can be derived
from the double-sided distribution,

L(h) = −2 lnλ(h), λ(h) =
∑

|j|≥|∆N |
P (j|µ(h)

1 , µ
(h)
2 ),

(B5)

where the index (h) refers to the null or modulating hy-
potheses, (0) or (m). The difference between the test
statistics,

∆L ≡ L(m) − L(0) = −2 ln
λ(m)

λ(0)
, (B6)

quantifies the significance of a signal and obeys a χ2 dis-
tribution with two degrees of freedom.

If µ1,2 � 3, the Skellam distribution is well described
by the Gaussian

P (∆N |µ1, µ2) ' 1√
2πσ2

exp

(
− (∆N − µ∆)2

2σ2

)
, (B7)

with σ2 = µtot, where the higher moments γ1,2 become
negligible. In this limit λ can also be approximated by
an integral over a continuous variable,

1− λ =

∫ µ∆+|∆N |

µ∆−|∆N |
dnP (n|µ1, µ2)

' erf

( |∆N − µ∆|√
2µtot

)
. (B8)

The significance of a measured ∆N can be easily ex-
pressed in terms of a number of standard deviations Nσ
by inverting the error function:

Nσ =
√

2 erf−1 (1− λ) ' |∆N − µ∆|√
µtot

. (B9)

As an example, we apply this result to a modulating

signal, µ
(m)
1 6= µ

(m)
2 , and the null hypothesis of a con-

stant background rate, µ
(0)
1 = µ

(0)
2 , where µ1 and µ2 are

the predicted numbers of events in two bins of equal in-
tegration time. They can be expressed in terms of the
expected signal and background rates (µs and µb, respec-
tively) for each hypothesis:

µ
(m)
1 = µs(1 + f2)+µb, µ

(m)
2 = µs(1− f2) + µb,

µ
(0)
1 = µ

(0)
2 = µ0

b , (B10)

where f2 is the integrated modulation fraction defined in
Eq. (18), and the significance of a measurement of the
number of events in each bin N1 and N2 can be assessed
using Eq. (B9). In terms of R(t) from Eq. (15), µs is

µs =
1

2
Texp〈R〉, (B11)
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Figure 20: Fractional modulation plots for F = 1 and F = 1/q2 at m� = 2MeV, 100MeVat � = 90�.

8

FIG. 11. In the left and right panels we show the daily modulation signal from 2 MeV (top) and 100 MeV (bottom) DM in
the β = 90◦ orientation, with FDM = 1 and FDM = (αme/q)

2 in the left and right columns, respectively. The black lines show
the total rate, normalized with respect to the 24 hour average, while each colored line represents the fraction of the signal that
comes from an si transition, also normalized by the total average rate. We use a logarithmic scale for the 100 MeV example,
and include the s5 and s8 transitions.

where 〈R〉 is R(t) averaged over one sidereal day, and
Texp is the total exposure time.

If the background rate were well understood, the to-
tal number of events (Ntot = N1 + N2) could be com-

pared to the prediction from the null hypothesis, N
(0)
tot =

2µ0
b = µtot as a way to discover or exclude particular DM

models. Even without knowledge of the background, a
small value for Ntot can still be used to rule out those
models which predict significantly more events than the
measured Ntot, but a larger Ntot cannot be construed
as a detection of DM without a better understanding of
the background. However, the existence of a modulating
signal provides an additional statistical handle on both
discovery and exclusion.

Assuming that the background rate is unmodelled, a

measurement of Ntot supplies the best-fit values for µ
(0)
b

and µ
(m)
b in the null and modulating hypotheses, through

µ
(0)
b =

1

2
Ntot. µs + µ

(m)
b =

1

2
Ntot. (B12)

All of the information about the signal, µs, is extracted
from the measured value of ∆N = N+ −N−, which has
expected value

〈∆N〉 = 2f2(mχ, σe)µs(mχ, σe), (B13)

and we have explicitly specified that both the modulation
fraction f and the signal strength parameter µs depend
on the DM mass mχ and cross section σe.

In assessing the capabilities of a directional detection
experiment in the presence of daily modulation, we ask
two questions: which DM models predict modulation sig-
nals that are large enough to be detected by the exper-
iment? And, if the experiment measures a null result,
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which DM models are ruled out? The first question,
which determines the discovery significance, can be posed
in the context of ruling out the null hypothesis, where

µ
(0)
∆ = 0:

Ndisc.
σ (∆N) ' |∆N |√

µ
(0)
tot

=
|∆N |√
Ntot

, (B14)

in the Gaussian limit Ntot � 3. Models that satisfy
Ndisc.
σ (〈∆N〉) > 3 or Ndisc.

σ (〈∆N〉) > 5 for this central
value, for example, are likely to generate a modulation
signal strong enough to claim a detection at the 3σ or 5σ
level, respectively. The “Discovery” regions in Fig. 4 and
Fig. 5 show Ndisc.

σ (2f2µs) ≥ 3 using this central value.
To set exclusion limits, we ask which models are ruled

out by a null result, ∆N ≈ 0. In this case, we use µ
(m)
∆ =

2f2µs in Eq. (B9):

N excl.
σ (∆N) ' |∆N − µ(m)

∆ |√
2(µs + µ

(m)
b )

=
|∆N − 2f2µs|√

Ntot

. (B15)

The exclusion curves of Fig. 4 and Fig. 5 show the models
that would be excluded at the 90% confidence level from
a null result ∆N = 0, using N excl.

σ (0) > 1.65.
In both examples above, we have taken ∆N to be equal

to its expectation value under either the modulating hy-
pothesis (∆N = 2µsf2) or the null hypothesis (∆N = 0),
which has allowed us to quantify the significance of a
measurement without reference to the log-likelihood ra-
tio: both discovery and exclusion limits are given by

Nσ =
2f2µs√
Ntot

. (B16)

This is simply because the “p value”, λ, is equal to
1 at the central value of the double sided distribution
Eq. (B5), and so the likelihood ratio is trivial. Because
µs is the expected counts per half of a day, we see that
2µs is the exposure times the rate expected in Eq. (15).
Thus, Eq. (B16) exactly recovers Eq. (19).

To assess a measurement away from the central value
with more generality, it is better to use the log-likelihood
L defined exactly in Eq. (B5) for each hypothesis. For
small λ, the Nσ(λ) defined in Eq. (B9) is approximated
by

Nσ(L) ≈
(
L+ ln

2

πL
+

ln π
2

L
+O(1/L2)

)1/2

. (B17)

For Nσ � 1, Eq. (B17) can be inverted to give an ex-
pression for L in terms of Nσ and expanded as a series
in N−2

σ ,

L ' N2
σ + ln

(
N2
σπ

2

)
− ln

(
1− 1

N2
σ

+ . . .

)
. (B18)

This expression is particularly useful in the Gaussian
limit, where Nσ is given by Eq. (B9). To leading order

in large Nσ,

∆L(∆N) ≈ (∆N − 2f2µs)
2

Ntot
− (∆N)2

Ntot
, (B19)

where the test statistic ∆L compares a specific modu-
lation model with f2(mχ, σe)µs(mχ, σe) to the null hy-

pothesis, µ
(0)
b = 1

2Ntot. At the central values of the two
distributions, ∆N = 2f2µs and ∆N = 0, the test statis-
tic takes values of ∆L = ∓4f2

2µ
2
s/Ntot, respectively, and

we recover exactly Eq. (B16).
For other values of ∆N , still in the Gaussian limit

(µs � 3), the significance is found from the cumulative
distribution function (CDF) of the χ2

2 distribution,

CDF(∆L) ≈ 1− γ
(

1,
1

2
∆L

)
, (B20)

where γ is the lower incomplete Euler gamma function,
and where k = 1 for the simple two-bin analysis. Gen-
eralizing to k statistically independent pairs of bins, the
combined test statistic

∆L =

k∑
i=1

∆Li (B21)

satisfies a χ2 distribution with 2k degrees of freedom, and
its CDF is given by

p ≈ 1− γ
(
k, 1

2∆L
)

Γ(k)
. (B22)

In the limit of very few events, µs . 3, the CDF should
be evaluated using the Skellam distribution instead, as it
ceases to be approximately Gaussian for µ1,2 < 1. How-
ever, as it is not possible to resolve an O(10%) modu-
lation fraction with so few events, in this limit a more
powerful constraint will come from using Poisson statis-
tics on the total number of events.

2. Alternate Derivation with Poisson Statistics

The negative log-likelihood for a Poisson process is

L ≡ −2 lnλ = 2

Nbins∑
k=1

[νk(θ)− nk + nk ln(nk/νk(θ))] ,

(B23)
where νk is the expected number of events in a bin k,
nk is the observed number in that bin, and θ are Nθ
parameters that determine νk. The statistic L follows a
χ2 distribution of Nbins −Nθ degrees of freedom [99].

If we want to compare the hypothesis of a modulating
signal versus the null hypothesis of a nonmodulating sig-
nal, we simply take the difference of their log-likelihoods.
Since the total number of events in a day is fixed in the
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two scenarios, and only their distribution throughout the
day is varying, we have

∆L = −2

Nbins∑
k=1

nk ln

[
νmk (θm)

ν0
k(θ0)

]
, (B24)

where νmk is the number of expected events assuming a
modulating signal and ν0

k is the number of events assum-
ing a constant rate over the course of a day, and we have
chosen the sign such that ∆L < 0 means that modu-
lation is preferred. The distribution of values of |∆L|
follows a χ2 distribution with the number of degrees of
freedom set by the difference between the number of pa-
rameters θm and the number of parameters θ0. Eq. (B24)
is an exact expression for the improvement in fit when al-
lowing a modulating signal instead of a constant signal,
appropriate for whichever event binning is most conve-
nient. Because the total number of events is fixed, this
is also the difference of the Kullback-Leibler divergences
between these two hypotheses with the data.

Eq. (B23) and Eq. (B24) are appropriate for any choice
of data binning, and can even be used for an unbinned
analysis. For simplicity, and to provide an alterna-
tive derivation of the results in Sec. B 1, we calculate
Eq. (B24) for the specific choice of two 12-hour bins per
day, here labeled by + and −. The rates per bin are
νm± = ν̄s(1± f2) + νb and ν0

± = ν̄s + νb, where νb is the
expected background rate and ν̄s is the average expected
signal rate per bin.

Let us assume first that the true signal is not modulat-
ing: the number of observed counts in each bin in a given
day is expected to be equal, such that 〈nk+〉 = 〈nk−〉 =
ν̄s + νb. In this case, we have

∆L = −2

Ndays∑
d=1

∑
±

(ν̄s + νb) ln

(
1± f2ν̄

s

ν̄s + νb

)

= −2

Ndays∑
d=1

(ν̄s + νb) ln

[
1−

(
f2ν̄

s

ν̄s + νb

)2
]

' 2

Ndays∑
d=1

f2
2 (ν̄s)2

ν̄s + νb
, (B25)

where in the second step we take the limit f2ν̄
s/(ν̄s +

νb) � 1. We now define Ntot =
∑
d 2(ν̄s + νb) =

2Ndays(ν̄
s + νb) to be the total number of events ob-

served and, to make contact with the preceding section,
we define µs =

∑
d ν̄

s = Ndaysν̄
s to be half of the total

number of signal events expected to be observed over the
entire experimental exposure. This gives

∆L ' (2f2µs)
2

Ntot
(B26)

The observed significance of a signal is therefore χ2 =
(2f2µs)

2/Ntot. Conversely, a limit at Nσ significance
on a modulating signal is possible when N excl.

tot '
(2f2µs/Nσ)2. As in the preceding section of this Ap-
pendix, because µs is the expected counts per half of a
day, the factor 2µs is the exposure times the rate ex-
pected in Eq. (15). Thus, Eq. (B26) exactly recovers
Eq. (19).

Assuming on the other hand that the signal is modulat-
ing, the number of observed counts is no longer expected
to be the same in the two bins in a given day. Instead,
the counts will be related by 〈nk±〉 = ν̄s(1± f2) + νb. In
this case, we have

∆L = −2

Ndays∑
d=1

∑
±

[ν̄s(1± f2) + νb] ln

(
1± f2ν̄

s

ν̄s + νb

)

' −2

Ndays∑
d=1

∑
±

[ν̄s + νb ± f2ν̄
s]

[
± f2ν̄

s

ν̄s + νb
− 1

2

(
f2ν̄

s

ν̄s + νb

)2
]

' −2

Ndays∑
d=1

f2
2 (ν̄s)2

ν̄s + νb
, (B27)

where the relative sign between Eq. (B25) and Eq. (B27)
is reflective of the choice we made that ∆L < 0 means
that a modulating signal is preferred. The magnitude of

the significance is exactly the same as in the prior case,
differing only in that the interpretation in this scenario
is as discovery of a signal.
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