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Abstract

Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision
magnetic field measurements. The absolute value of the magnetic field is
determined from the precession frequency of nuclear magnetic moments. The
Hilbert transform is one of the methods that have been used to extract
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the phase function from the observed free induction decay (FID) signal and
then its frequency. In this paper, a detailed implementation of a Hilbert-
transform based FID frequency extraction method is described, and it is
briefly compared with other commonly used frequency extraction methods.
How artifacts and noise level in the FID signal affect the extracted phase
function are derived analytically. A method of mitigating the artifacts in the
extracted phase function of an FID is discussed. Correlations between noises
of the phase function samples are studied for different noise spectra. We
discovered that the error covariance matrix for the extracted phase function
is nearly singular and improper for constructing the χ2 used in the fitting
routine. A down-sampling method for fixing the singular covariance matrix
has been developed, so that the minimum χ2-fit yields properly the statistical
uncertainty of the extracted frequency. Other practical methods of obtaining
the statistical uncertainty are also discussed.

Keywords: FID, high-precision magnetometer, frequency extraction,
Hilbert transform, uncertainty analysis

1. Introduction

Nuclear magnetic resonance (NMR) is extensively used in medical and
chemistry researches and industries. Besides the well-known applications
like magnetic resonance imaging and molecular structure analysis, NMR is
also an important technique used to construct magnetometers for both strong
and weak magnetic fields [1][2]. Proton nuclear magnetic resonance magne-
tometers are widely used in high precision magnetic field measurements [3].
The magnetic field magnitude B is determined by measuring the proton spin
precession angular frequency ωs = γB using a proton-rich material, where γ
is the gyro-magnetic ratio of a proton. The magnetization of the detection
material is aligned with the magnetic field B in thermal equilibrium. In the
pulsed NMR measurement scheme, a pulsed oscillating magnetic field (π/2-
pulse) transverse to B with an angular frequency near ωs is generated by a
coil surrounding the detection material, which tips the magnetization into
the transverse plane. After the π/2-pulse, the precessing magnetization gen-
erates an oscillating signal that can be picked up in the same coil, amplified,
and detected. The signal amplitude decays due to the relaxation of the mag-
netization. Therefore, the detected signal of the pulsed NMR is referred to
as the free induction decay (FID). FID signals can be analyzed by hardware
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spectrometers, or be digitized and stored so that more sophisticated analysis
algorithms can be performed by a computer or an embedded system. Often
the FID signal is mixed with a sinusoidal reference with an angular frequency
ωR ≈ ωs. The mixed signal is then passed through a low-pass filter that keeps
the |ωs− ωR| component. This reduces the sampling frequency requirement,
data rate and readout noise.

Numerous FID analysis methods have been developed for different ap-
plications, and a large fraction of these methods are based on the Fourier
transform of the FID. These methods usually target resolving peaks close
to each other and reducing noise [4]. For NMR magnetometers, the most
straightforward way to extract the FID frequency is to determine the cen-
troid of the peak in the frequency-domain spectrum obtained through the
Fast Fourier Transform (FFT). However, the accuracy of this method is lim-
ited by the length of the FID and the inhomogeneity of the magnetic field
being measured. In an inhomogeneous magnetic field, the nuclear spin pre-
cession frequencies vary across the volume of the detection material, and
the superposition of signals with different frequencies results in an FID with
a broadened and complicated frequency spectrum. Because the magnetic
field inhomogeneity is not known beforehand, it is impossible to model the
frequency-domain spectrum and determine the centroid by fitting the mea-
sured spectrum. The frequency-peak centroid can also be determined numer-
ically, but its accuracy is limited by the frequency-domain sample interval,
which is inversely proportional to the FID signal length. To improve the
accuracy and meanwhile reduce the dependency on the signal length and
magnetic field inhomogeneity, Cowan et. al. developed a method [5] that
relates the frequency for the average field sensed by a probe to the deriva-
tive of the time-dependent phase of the FID. Cowan’s method can determine
this average frequency sensed by the probe with an accuracy better than
the frequency-domain line width and the frequency-domain sample inter-
val. This method can be used in any application where high accuracy is
the primary requirement. The time-dependent phase function of an FID
used in Cowans method can be extracted using several methods like the
zero-crossing-counting method and the Hilbert-transform method described
in Sec. 2. The Hilbert-transform phase extraction method has been used in
previous NMR spectrum analyses [6, 7]. Other methods like the IQ (in-phase
and quadrature) demodulation [8] have been developed using two-channel
detection techniques. In those applications where more advanced hardware
systems are difficult to implement due to various limitations (for example,
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the physical size of the electronics, power consumption, and as well as bud-
get), the Hilbert-transform phase extraction method is preferred due to its
simpler read-out scheme.

Pulsed proton NMR magnetometers have been used in many nuclear and
high-energy physics experiments [9, 10], and precisions better than 1 part-
per-million (ppm) have been achieved. Recent experiments are aiming at
even higher precisions and accuracies. For example, the Muon g − 2 Experi-
ment [11] at Fermilab uses pulsed NMR probes to measure the magnetic field
in the storage ring, and the uncertainty budget for FID frequency extraction
is 10 part-per-billion (ppb) of a ∼1.45 T magnetic field. Because of the limit
of physical size, power consumption, and data rate, the one-channel read-out
scheme has been adopted, and the Hilbert-transform method has been used
for FID frequency extraction. To achieve such high precision and accuracy,
it is critical to evaluate the systematic and statistical uncertainties intro-
duced by the read-out system. For example, due to saturation effects of the
amplifiers, imperfections of the mixer, and pedestal instabilities of the Ana-
log to Digital Converter (ADC), the FID signal is distorted and a non-zero
baseline is added to the signal. Understanding how biases are introduced
through these effects quantitatively will help in determining specifications of
components when designing an NMR magnetic field measurement system,
and estimating the systematic uncertainties when they are irreducible. On
the other hand, noises introduced by the electronics lead to statistical uncer-
tainty in the FID frequency measurement, and it is important to understand
this mechanism quantitatively in order to fully describe the uncertainty of
the FID frequency measurement. Noise and error analyses have been per-
formed on proton-NMR magnetometers using zero-crossing-based frequency
extraction methods [12, 13, 14]. However, the noise spectrum in the phase
function and the statistical uncertainty of the FID frequency extracted using
the Hilbert-transform method have not been thoroughly investigated. The
goal of this study is to quantify the systematic uncertainties caused by arti-
facts and develop a method for determining the statistical uncertainty of the
FID frequency extraction.

In this paper, a detailed implementation of the phase function extraction
using the Hilbert transform and Cowan’s method for frequency determina-
tion are described in Sec. 2. Comparisons with other frequency extraction
methods are discussed as well. The mechanism of how the discrete Hilbert
transform and artifacts like the signal distortion and baseline affect the phase
function of an FID is presented in Sec. 3. The systematic uncertainties caused
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by these effects and a mitigation method are discussed as well. Furthermore,
the noise spectrum in the phase function and the statistical uncertainty for
Cowan’s method are discussed in Sec. 4. The Hilbert transform is also used
in many other fields [15, 16, 17]. The uncertainty analysis presented in this
paper can be applied to any signal processing application where the Hilbert
transform is used to extract the phase from an oscillating signal.

2. FID Frequency Extraction Method Using the Hilbert Transform

In an inhomogeneous magnetic field, the general form of an FID resulting
from the superposition of signals with different frequencies can be modeled
as

f(t) = N exp

(
− t

T2

)∫ +∞

−∞
g(ω) exp(i(ωt+ φ0))dω, (1)

where N is a normalization constant, φ0 is the initial phase, and T2 is the
intrinsic transverse relaxation time constant of the detection material [18].
The spectrum density function g(ω) is normalized so that

∫ +∞
−∞ g(ω)dω = 1,

and g(ω)dω is proportional to the amplitude of the signal with an angular
frequency within the range (ω, ω+dω). The function f(t) is complex, and the
measured signal is its real part fr. The FID function f(t) can be expressed
in the form of a general complex function

f(t) = A(t) exp(iΦ(t)), (2)

where A(t) and Φ(t) are real. According to Ref. [5], the average NMR fre-
quency ω̄ weighted by g(ω) can be determined by calculating the derivative
of Φ(t) at t = 0:

ω̄ =

∫ +∞

−∞
ωg(ω)dω (3)

=
dΦ(t)

dt

∣∣∣∣
t=0

,

and t = 0 corresponds to the time when the π/2-pulse starts. This average
frequency corresponds to the average field sensed by the probe weighted by
the signal amplitude for the frequency interval.
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The phase function Φ(t) can be constructed using the Hilbert transform.
The Hilbert transform (H) of an arbitrary function u(t) is defined as [19]:

H{u(t)} =
1

π
lim
ε→0

∫ +∞

ε

u(t+ τ)− u(t− τ)

τ
dτ. (4)

Particularly, the Hilbert transform of exp(−t/T2) cos(ωt) (ω > 0, t > 0) is
exp(−t/T2) sin(ωt). According to Eq. 1, the physical FID signal fr(t) is
essentially a linear superposition of functions exp(−t/T2) cos(ωt + φ0) with
weight Ng(ω). Because the Hilbert transform is linear, the Hilbert transform,
fi(t), of the FID signal must be the superposition of the exp(−t/T2) sin(ωt+
φ0) with the same weight. Therefore,

fi(t) = N exp

(
− t

T2

)∫ +∞

−∞
g(ω) sin(ωt+ φ0)dω, (5)

= A(t) sin(Φ(t)),

= Im(f(t)).

Then the envelope function, A(t), and the phase function, Φ(t), of an FID
can be obtained by

A(t) =
√
f 2
r (t) + f 2

i (t), (6)

Φ(t) = tan−1(fi(t)/fr(t)). (7)

The Hilbert transform can be performed via the Fourier transform (F ):

H{u(t)} = F−1{−isgn(ω)F{u(t)}}, (8)

and therefore Fourier transform algorithms are often used to compute the
Hilbert transform of a function. Because the FID waveforms in this analysis
are discrete, in this paper H and F represent discrete Hilbert and Fourier
transforms.

The constant initial phase φ0 in Eq. 1 can be factored out, and thus,
Φ(t)− φ0 can be written explicitly as

Φ(t)− φ0 = tan−1

(∫ +∞
−∞ g(ω) sin(ωt)dω∫ +∞
−∞ g(ω) cos(ωt)dω

)
. (9)
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Therefore, Φ(t)−φ0 is an odd function of t, and its Taylor expansion at t = 0
contains only odd orders. The third and higher order derivatives of Φ(t) at
t = 0 are related to higher-order moments of g(ω) [5]. The phase function is
then fit to a truncated power series

Φfit(t) = φ0 + p1t+ p3t
3 + p5t

5 + · · · , (10)

and ω̄ is the fitted value of p1 according to Eq. 3.
The validity of this method has been studied with simulated FIDs that are

constructed using artificial g(ω) functions. In this study, the g(ω) function
is derived from a realistic magnetic field map in the Muon g − 2 experiment
[20] and the geometry of the NMR probes used in this experiment. The
magnetic field in the muon beam storage ring is ∼1.45 T. The NMR probes
for scanning and monitoring the magnetic field have a coil with a length of
1.5 cm and a diameter of 4.6 mm, and the detection material is petroleum
jelly filled in a cylindrical cell inside the coil and that extends twice as long
as the coil length. The proton-precession frequency in this magnetic field
is about 61.79 MHz, and the local oscillator [21] reference frequency is set
to 61.74 MHz so that the frequency of the measured FID is near 50 kHz.
The magnetic field has a peak-to-peak 90 ppm fluctuation around its ∼45-m
perimeter. The fluctuations are short-ranged, resulting in gradients larger
than 1 ppm/mm (∼62 Hz/mm in terms of frequency) at many locations.
To exemplify the FID frequency extraction, an FID measured in a typical
magnetic field with a gradient of 0.3 ppm/mm and a second-order derivative
of 5 ppb/mm2 along the probe axis is simulated, and the simulated spectrum
density function is shown in Fig. 1. Due to the nonzero second-order spatial
derivative of the field, g(ω) is not symmetric and thus Φ(t) is nonlinear [5].
The FID constructed using this g(ω) function is shown in Fig. 2a together
with the extracted envelope function. The extracted phase function is shown
in Fig. 2b, along with a fit to Eq. 10 truncated at the order of t7 in the window
of 0 to 2.5 ms. The fitted value of p1 is different from the true value of ω̄/2π
(evaluated using Eq. 3) by 0.1 Hz, well below the uncertainty budget of 0.6 Hz
[11] for the FID frequency extraction in the Muon g − 2 experiment. The
fit accuracy can be improved by adjusting the fit region and the truncation
order of the fit function. For example, if the end of the fit range is reduced
to the time when the FID envelope drops to 70% of its maximum amplitude,
and the truncation order is t5, the difference between the fitted value and
the truth of ω̄/2π is below 0.01 Hz. This choice has been proven adequate
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for the Muon g − 2 experiment to fulfill its uncertainty requirement [22]. In
the following studies, this choice3 of fit range and truncation order is used.

49.7 49.8 49.9 50 50.1 50.2 50.3 50.4
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 [Hz]π/2ω

5

10
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3−

10×)
ω

g
(

Figure 1: Spectrum density function g(ω) for a simulated FID of an NMR probe that
measures a magnetic field with both a first-order derivative (0.3 ppm/mm) and a second-
order derivative (5 ppb/mm2) along the probe axial direction.

The accuracy of the fit described above is achieved for an FID without
noise or artifacts, even with a ∆ω/2π =∼350 Hz full-width-half-maximum
(FWHM) of the corresponding g(ω). As long as the fit range is within the
Taylor series convergence radius of Φ(t), the fit accuracy can be improved
by increasing the truncation order. However, the fit accuracy is also limited
by the effects of artifacts, which will be described in Sec. 3.4. If the FID is
analyzed using the conventional frequency-domain analysis, the accuracy of
the extracted ω̄ is limited by the frequency interval of the discrete Fourier
transform. Due to the data rate limit, the magnetic field scanner of the
Muon g − 2 experiment can record the FID signal up to 12 ms. This results
in an interval of 83.3 Hz in ω/2π as shown in Fig. 3. With such granular-
ity in the Fourier transform spectrum, the accuracy of ω̄ is difficult to be
controlled below the 10 ppb benchmark (0.6 Hz in terms of frequency). For
the FID shown in Fig. 2a, the ω̄ estimated using the average ω (weighted by
the Fourier transform spectral amplitude in the frequency range 45 kHz to

3Most of the FIDs of the Muon g − 2 magnetic field scanner are taken in regions
where the magnetic fields are more homogeneous than that is shown in this example. In
this particular experiment, it is adequate to use the same truncation order and fit region
determination method used in this paper for all FIDs of the field scanner. For other
applications, researchers may choose a different truncation order or fit range to optimize
their own uncertainties.
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Figure 2: FID, envelope and phase. The pattern seen in the FID plot is an artifact due
to the discretized data points. The insert in Fig. 2a is a magnified view of the FID near
t = 0.6 ms to show its sinusoidal-oscillation pattern. In Fig. 2b, to better visualize the
non-linear component of the phase function, ω0t is subtracted from Φ(t), where ω0 is an
angular frequency close to ω̄. The fit region is magnified.

55 kHz) deviates from the true value of ω̄/2π by 23.7 Hz.
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Figure 3: FFT Amplitude spectrum of the example FID shown in Fig. 2a.
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3. Artifacts and Systematic Uncertainties

The FID frequency extraction method described in Sec. 2 relies on the
fitting of the phase function, so it is crucial to understand how the artifacts,
created by the discrete Hilbert-transform or intrinsic to the FID waveform,
affect the phase function extraction. These artifacts and their effect in the
phase function are discussed in Sec. 3.1 to Sec. 3.3, and a mitigation method
will be described in Sec. 3.4.

3.1. Discrete Hilbert Transform of a Finite-length Waveform
The discrete Hilbert transform of the digitized FID waveform with a

finite length does not produce the exact Hilbert transform for a continuous
and infinitely-long function, and thus Eq. 5 is not accurately produced. This
artifact is obvious in the frequency domain. For the function cos(ω0t) with
ω0 > 0, according to Eq. 8, the discrete Fourier transform (for ω ≥ 0) of its
Hilbert transform is

F{H{cos(ω0t)}} =
−i
2

T/∆t−1∑
k=0

(
ei(ω0−ω)k∆t + e−i(ω0+ω)k∆t

)
∆t (11)

=
∆t

2i

sin(ω0−ω
2
T )

sin(ω0−ω
2

∆t)
e

i(ω0−ω)
2

(T−∆t) +
∆t

2i

sin(ω0+ω
2
T )

sin(ω0+ω
2

∆t)
e

−i(ω0+ω)
2

(T−∆t),

where ∆t is the sampling period and T is the length of the digitized waveform.
However, the discrete Fourier transform (for ω ≥ 0) of sin(ω0t), which is the
exact Hilbert transform of cos(ω0t), is

F{sin(ω0t)} =
1

2i

T/∆t−1∑
k=0

(
ei(ω0−ω)k∆t − e−i(ω0+ω)k∆t

)
∆t (12)

=
∆t

2i

sin(ω0−ω
2
T )

sin(ω0−ω
2

∆t)
e

i(ω0−ω)
2

(T−∆t) − ∆t

2i

sin(ω0+ω
2
T )

sin(ω0+ω
2

∆t)
e

−i(ω0+ω)
2

(T−∆t),

whose second term in the final line is the negative of that in Eq. 11. Com-
paring Eq. 11 and Eq. 12 and those corresponding expressions for ω < 0,
the difference between the discrete Hilbert transform and the exact Hilbert
transform of cos(ω0t) is

∆h(t) := H{cos(ω0t)} − sin(ω0t) (13)

= F−1

{
sgn(ω)∆t

i

sin(ω0+sgn(ω)ω
2

T )

sin(ω0+sgn(ω)ω
2

∆t)
e

−isgn(ω)ω0−iω
2

(T−∆t)

}
.
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In the following example, ∆h(t) is computed numerically with ω0/2π =
50 kHz, ∆t = 0.1 ms, and T = 20 ms. The value of |∆h(t)| is large near the
edges of the waveform as shown in Fig. 4, but if t is two or more oscillation
periods away from the edges, |∆h(t)| is less than 1.5% of the amplitude of the
original waveform (which is 1 in this example) and ∆h(t) is a slow-varying
function. With a non-zero ∆h(t), for f(t) = cos(ω0t), the extracted phase
function is

Φ(t) = tan−1

(
sin(ω0t) + ∆h(t)

cos(ω0t)

)
(14)

= ω0t+ cos(ω0t)∆h(t)− cos(ω0t) sin(ω0t)∆h
2(t) + · · · .

Therefore, ∆h(t) causes an artifact in the phase function Φ(t), which includes
all terms on the right-hand side of Eq. 14 except ω0t. Up to the linear order
of ∆h(t), the artifact is an oscillation with an angular frequency ω0 and an
envelope ∆h(t) as shown in Fig. 3. The method of mitigating this artifact
is described in Sec. 3.4.
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Figure 4: The artifact Φ(t) − ω0t in the extracted phase function caused by the discrete
Hilbert transform. Only the beginning section up to 1 ms is shown.

3.2. Artifacts of the FID Waveform

In the following parts of this section, FIDs from the magnetic field scanner
probe [23] in the Muon g − 2 Experiment are chosen for illustration and
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algorithm validation. One example FID is shown in Fig. 5. The π/2-pulse
is fired at 300 µs, and the signal amplifier is turned on at 350 µs. It is
obvious that the upper and lower envelopes do not have the same shape
before ∼600 µs, indicating a time-dependent baseline or signal distortion.
By definition, a baseline is a slow-varying function added to the ideal FID.
Therefore, the baseline of a measured FID waveform can be determined by
finding the line that intersects with the FID waveform at even intervals within
the range of one or two complete oscillations, assuming the phase function
is linear in this time range. The extracted baseline for the FID in Fig. 5 is
shown in Fig. 6. For this FID, the maximum of the baseline absolute value
is <0.5% of the amplitude of the FID.

300 400 500 600 700 800
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.U
.]

Figure 5: The early section of a trolley FID exhibits the signal distortion and the time-
dependent baseline.

After the baseline is determined, the positive amplitude (from the baseline
to a local maximum) and the negative amplitude (from the local minimum
to the baseline) of the FID are investigated. Throughout the entire FID,
the positive amplitude is consistently smaller than the negative amplitude.
This effect is also illustrated in Fig. 6, and in this beginning part of the
FID, the positive amplitude is ∼10% smaller than the negative amplitude.
In the frequency domain, such a waveform distortion results in higher-order
harmonics in the power-density spectrum as shown in Fig. 7

The time-dependent baseline and the waveform distortion are caused by
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Figure 6: The extracted baseline and FID with the positive amplitude corrected. To better
visualize the shape of the extracted baseline, the 10-times exaggerated baseline is shown
as the dashed blue line.

the readout electronics, and they can be reduced by optimizing the circuit
design. However, they may be irreducible when there are constraints on the
choice of components, for example, power consumption, vacuum compatibil-
ity, and magnetic footprint. In these cases, it is important to understand
how these artifacts affect the extracted phase function and how to mitigate
their effects.

3.3. Effects of the Baseline and Signal Distortion on the Phase Function

Because the difference between the FIDs with and without the artifacts
is usually less than 10% of the FID oscillation amplitude in its full range,
the artifacts can be treated as small perturbations on the FID signal. In this
section, the perturbations on the phase function are derived analytically up
to the leading order.

Suppose the measured FID waveform with a nontrivial baseline is fr(t) =
A(t) cos(Φ(t)) + b(t), where b(t) is the baseline. The Hilbert transform of fr
is fi(t) = A(t) sin(Φ(t)) + bi(t), where bi(t) is the Hilbert transform of b(t).
To simplify the following expressions, define α(t) = b(t)/A(t) and αi(t) =
bi(t)/A(t). The envelope and phase of fr(t) can be extracted using Eq. 6
and Eq. 7. Alternatively, one can also extract them by explicitly writing
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Figure 7: FID power spectrum with higher harmonics. The power is defined as the square
of the signal.

the complex function fr(t) + ifi(t) into the modulus-argument form while
keeping α and αi up to the linear order:

fr + ifi = A(exp(iΦ) + α + iαi) (15)

= A exp(iΦ)(1 + (α + iαi) exp(−iΦ))

= A exp(iΦ)(1 + α cos(Φ) + αi sin(Φ) + i(αi cos(Φ)− α sin(Φ))

≈ A exp(iΦ)
√

1 + 2α cos(Φ) + 2αi sin(Φ)

× exp

(
i tan−1

(
αi cos(Φ)− α sin(Φ)

1 + α cos(Φ) + αi sin(Φ)

))
≈ A(1 + α cos(Φ) + αi sin(Φ)) exp(iΦ + iαi cos(Φ)− iα sin(Φ)).

Assuming the baseline is slow-varying compared to the fast oscillation
cos(Φ(t)), b(t) is approximately a constant and bi(t) is approximately zero.
After dropping αi, the extracted FID envelope and phase become

Aext(t) = A(t) + b(t) cos(Φ(t)), (16)

Φext(t) = Φ(t)− α(t) sin(Φ(t)). (17)

Therefore, the baseline results in ripples b(t) cos(Φ(t)) in the envelope func-
tion, and also ripples −α(t) sin(Φ(t)) in the phase function. The frequencies
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of the envelope ripple and the phase ripple are the same as the FID fre-
quency, but the phase of the ripple in the phase function is ±π/2 different
from the FID oscillation phase, where the ± sign depends on the sign of α(t).
The amplitude of the ripple of A(t) depends on the baseline size b(t), while
the amplitude of the phase ripple depends on the baseline-to-amplitude ratio
α(t).

For the signal distortion, it is easier to treat them as higher-order harmon-
ics. Suppose the m’th order harmonic term is β(t)A(t) exp(imΦ(t)). A com-
plex FID waveform with this term is f(t) = A(t)(exp(iΦ(t))+β(t) exp(imΦ(t))),
and keeping up to the linear order of β(t), it becomes

f = A exp(iΦ)(1 + β exp(i(m− 1)Φ)) (18)

≈ A(1 + β cos((m− 1)Φ)) exp(iΦ + iβ sin((m− 1)Φ)).

Therefore, higher-order harmonics also result in ripples in the envelope and
phase function. The ripple frequency of an m’th order harmonic term is
m− 1 times the FID base frequency. Particularly, the slow-varying baseline
can be treated as the case when m = 0, and the ripple frequencies for the
baseline and the second-order harmonic term are the same, which is the FID
base frequency.

The extracted envelope and phase functions of the FID in Fig. 5 are shown
in Fig. 8. For this FID, the second harmonic term β(t) dominates the other
harmonic terms and the baseline. The phases of the ripples in the extracted
envelope and phase functions are consistent with the derivation described
above.

3.4. Artifact-related systematic uncertainty and mitigation method

The ripples caused by the artifacts in the phase function will affect the fit
result of the average frequency. The bias of the fit result is sensitive to the
starting and ending points of the fit range relative to the ripple phase. We
simulated an FID with a ∼50 kHz frequency and with artifacts that made the
amplitude of the phase ripple 0.03 rad. For such an FID, if the start of the
fit range is fixed and the width of the fit range varies within 1± 0.02 ms, the
bias of the ω̄/2π extraction caused by the phase ripple varies within ±0.6 Hz.
The magnitude of the bias depends strongly on the overall fit range. The
longer the fit range is, the smaller the bias is.

Because the ripple in the phase function oscillates at the same frequency
as the FID, it can be mitigated by a moving-average smoothing method

15



380 400 420 440 460 480 500 520 540
s]µt [

20−

10−

0

10

20

30

40

S
ig

n
a

l 
[A

.U
.]

380 400 420 440 460 480 500 520 540
s]µt [

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0.1

0.12

t 
[r

a
d

]
0

ω
(t

)
Φ

FID

Envelope

Phase

Figure 8: Ripples on the extracted FID envelope (blue) and phase function (red). To
better visualize the ripples on the phase function, ω0t is subtracted from Φ(t), where ω0

is an angular frequency close to ω̄.

with the averaging window Tw, which is the same as the FID oscillation
period. Tw can be determined using an approximated FID frequency found
by fitting the extracted Φ(t) without the ripple mitigation. If the ripples are
totally eliminated, the extracted FID frequency will not be sensitive to the
end points of the fit region within an FID cycle. However, the smoothing
is discrete and thus Tw cannot perfectly match the FID cycle period T0. If
∆T = T0−Tw is small, the amplitude of the remaining ripple after smoothing
is ∆T/T0 of the original amplitude. Moreover, the smoothing distorts the
phase function for samples within Tw from the edge of the FID. Because the
discrete Hilbert transform also introduces large ripples near the edges, the
actual fit window should start at least one or two oscillation cycles from the
FID sample with the largest amplitude. If the smoothing is applied multiple
times, then multiples of Tw should be avoided when determining the fit range.

For those FIDs with a fast-decreasing envelope or a fast-varying baseline,
α(t) varies significantly within one oscillation period and thus the smoothing
is less effective. For such FIDs, the phase function Φ(t) usually has large non-
linear terms, so the systematic bias of the FID frequency extraction becomes
significant. In these cases, it is better to use the simulated FID to estimate
the systematic biases as long as the analysis algorithms and parameters (like
the truncation order of the fit function) are chosen the same as those in real
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measurements.
There are other ways to mitigate the effects of the baseline and the sig-

nal distortion, but the running-average phase smoothing method has more
advantages. Although the baseline can be extracted from the FID wave-
form as described in Sec. 3.2 and then corrected, it is difficult to formulate
the systematic uncertainty caused by an imperfect baseline extraction. The
slow-varying baseline and higher-order harmonics can be filtered out in the
frequency domain, but such filters also affect the phase function extraction
and complicate the systematic uncertainty analysis. On the other hand,
the running-average phase smoothing method is simple to implement, and
the systematic uncertainty analysis described above is also straight-forward.
The smoothing operation can also be easily incorporated in the statistical
uncertainty analysis described in Sec. 4. Besides off-line analysis methods,
alternative measurement schemes have also been considered, for example,
the IQ demodulation method. Although in principle the artifacts described
above could be determined better, new causes of systematic uncertainties
are introduced, for example the relative gain between the IQ detection chan-
nels. The complexity of data analysis is not reduced with a more complex
hardware system. The artifact mitigation method presented in this section
is one way to overcome the drawbacks of a hardware system without a major
overhaul.

4. Noise and Statistical Uncertainty

The statistical uncertainty of ω̄ is given by the minimum-χ2 fit of Eq. 10 to
the extracted phase function Φ(t), provided that the uncertainty of each Φ(t)
sample and the correlation between samples are set correctly. In this section,
the noise in Φ(t) is derived given the signal noise. The phase noise covariance
matrix for constructing the χ2, bias of the fit results, and the goodness of the
fit are investigated for the white noise and a few generic noise spectra. It is
important to obtain the correct expression of the χ2 and make sure that the
covariance matrix is invertible so that the fit yields unbiased and consistent
results of ω̄ and its error bar. A method of handling non-invertible covariance
matrices is described. The performances of two other less rigorous methods,
the unweighted and diagonal minimum-χ2 fit methods, are discussed as well.
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4.1. Noise in the Phase Function

The noise in the detected signal is a random sequence N(t) added to the
FID waveform: fr(t) = A(t) cos(Φ(t)) +N(t). Following the same procedure
described in Sec. 3.3 and replacing b(t) with N(t), one gets the complex form
of the FID waveform with noise N(t)

fr + ifi = A(1 + n cos(Φ) + ni sin(Φ)) (19)

× exp(iΦ + ini cos(Φ)− in sin(Φ)),

where n(t) = N(t)/A(t) and ni(t) = H{N}(t)/A(t). Therefore, the noise in
the phase function is

nφ(t) = ni(t) cos(Φ(t))− n(t) sin(Φ(t)). (20)

Unlike the slow-varying b(t), the Hilbert transform of N(t) is not negligible
and must be kept in the noise analysis. This formula has been verified using
simulated FIDs with injected noises.

4.2. White Noise

For simplicity, we first assume that N(t) is a Gaussian white noise, and we
let the distribution of N(t) have a mean of zero and a standard deviation of
σN . The standard deviation of n(t) thus increases as A(t) decreases with time.
For a white noise N(t), different noise samples are statistically independent,
so different samples of n(t) are also independent. Because Ni(t) is derived
from N(t), the correlation between samples of N(t) and Ni(t) must be taken
into account. So is the correlation between samples of n(t) and ni(t). If the
Hilbert transform is performed via discrete Fourier transform as in Eq. 8, the
covariance matrix element for sample-j from n(t) and sample-k from ni(t) is
then (see Appendix Appendix A)

COV(n(tj), ni(tk)) =
1− (−1)k−j

π(k − j)
σ2
N

A(tj)A(tk)
(21)

for j 6= k. For j = k, the matrix element is zero. Among the samples of ni(t)
(see Appendix Appendix B)

COV(ni(tj), ni(tk)) ≈
σ2
N

A2(tj)
δjk, (22)
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if the two samples are not close to the ends of the sequence 4. According to
Eq. 20, 21 and 22 the covariance matrix for nφ(t) can be calculated:

Σjk = COV(nφ(tj), nφ(tk)) (23)

=
σ2
N

A2(tj)
δjk + (1− δjk)σ2

N

1− (−1)k−j

π(k − j)

(
cos(Φ(tj)) sin(Φ(tk))

A(tj)A(tk)
− cos(Φ(tk)) sin(Φ(tj))

A(tj)A(tk)

)
,

where δij is the Kronecker Delta. The covariance matrix in Eq. 23 parame-
terizes the statistical distribution of the Φ(t) fluctuations. Therefore, when
fitting the phase function, the χ2 to be minimized is

χ2 = (Φ(tj)− Φfit(tj))Σ
−1
jk (Φ(tk)− Φfit(tk)) (24)

= (Φ− Φfit)
TΣ−1(Φ− Φfit),

where Φfit(t) is the polynomial fit function defined in Eq. 10. The standard
minimum-χ2 fit procedure then yields the fit value of ω̄ and its statistical
uncertainty σω.

However, the matrix Σ is nearly singular and becomes difficult to in-
vert numerically. The approximate singularity of Σ indicates that there are
strong constraints on the nφ(t) elements. This can be better revealed in the
frequency domain. For a typical FID with a slow-varying envelope and a
nearly linear phase, assuming A(t) is a constant and Φ(t) = ω0t, the Fourier
Transform of nφ is

ñφ(ω) =
i

2
(ñ(ω − ω0)(1− sgn(ω − ω0))− ñ(ω + ω0)(1 + sgn(ω + ω0))).

(25)

Because the Fourier Transform is discrete, ω in Eq. 25 ranges from −π/∆t
to +π/∆t. The amplitude spectrum of ñφ(ω) for such a typical FID is shown
in Fig. 9. Since nφ(t) is a real function, ñφ(−ω) = ñφ(ω) and the following
discussions are for ω ≥ 0.

For ω < ω0, the amplitude of ñφ(ω) is
√

2 times that for ω0 < ω <
π/∆t− ω0, because

ñφ(ω) = i(ñ(ω0 − ω)− ñ(ω + ω0)), (26)

4The accurate expression is derived in Appendix Appendix B. The approximation of
the diagonal element of COV(ni(tj), ni(tj)) is about 2.5% off from the true value for j = 7.
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over 500 simulated FIDs with the same signal but independent noises.

which is a linear combination of two independent frequency components.
If the independent variable ω of ñ(ω) is greater than the Nyquist angular
frequency π/∆t, ñ(ω) is close to zero. Therefore, for ω > π/∆t−ω0, ñφ(ω) =
−iñ(ω + ω0) ≈ 0. After expressing ñφ(ω) explicitly in terms of nφ(t), one
gets ω0T/2π constraint equations for ω > π/∆t− ω0:

Σjnφ(j∆t)e−iω(j∆t) = 0. (27)

Therefore, the degrees of freedom for nφ(t) is reduced by ω0T/2π, which
makes Σ singular. A more detailed explanation is given in Appendix Ap-
pendix C. The most straightforward way to remove these almost-redundant
degrees of freedom in nφ(t) is to down-sample nφ(t) by a factor of two before
fitting so that nφ(t) does not have Fourier components at those high angular
frequencies. Moreover, according to Eq. 23, the off-diagonal elements are
zero if k − j is a even number. In this instance, the covariance matrix Σ for
the down-sampled nφ(t) is a diagonal matrix

Σjk =
σ2
N

A2(t2j)
δjk, (28)
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which simplifies the computation of its inverse.
The smoothing method described in Sec. 3.4 for artifact mitigation affects

the covariance matrix Σjk as well. The smoothing can be expressed in a
matrix form as

ΦS(tj) = SjkΦ(tk), (29)

and for t far from the ends of the sequence (more than W/2 from each end)

Sjk =
1

W + 1
for |j − k| ≤ W/2, (30)

where W is the smoothing window size. The covariance matrix for the
smoothed phase function is then SΣST . From another point of view, the
smoothing operation is a convolution of nφ(t) with a square-pulse kernel
function, and thus, in the frequency domain, the Fourier transform of nφ(t)
is multiplied with the Fourier transform of the square-pulse kernel function,
which is a sinc function sin(πTwω)/(πTwω) with Tw representing the duration
of the smoothing window. After the smoothing, the noise spectrum becomes
the black curve shown in Fig. 10. Therefore, the smoothing operation is
a low-pass filter with zeros at frequencies of multiples of 1/Tw that greatly
suppresses frequencies higher than 1/Tw. Applying the smoothing function
multiple times will further suppress high-frequency noise components. As
discussed above, to make the covariance matrix of the smoothed phase noise
regular, the phase function has to be down-sampled so that ñφ(ω) 6= 0 up to
the Nyquist angular frequency after the down-sampling. For a single-iteration
smoothing, the down-sample factor should be at least Tw/(2∆t).

The scheme of obtaining the covariance matrix described above was ver-
ified using simulated FIDs with the same signal and 500 independent white-
noise waveforms. The bias and consistency of the extracted ω̄ and its sta-
tistical uncertainty are also investigated in this way. Fitting each of these
FIDs yields ω̄, σω and χ2/ν, where ν is the degree of freedom. The mean
of the extracted ω̄ is statistically consistent with the true value used in the
simulation, and the standard deviation of these 500 ω̄ values is statistically
consistent with the mean of the 500 σω values. The distribution of χ2/ν is
centered around 1. This test was performed for FIDs with different T ∗2 (the
time when the envelope first decays to 1/e of the initial FID amplitude) val-
ues and phase non-linearities, and this fit scheme always yielded error bars
consistent with the statistics and χ2/ν consistent with 1. Because the fit
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Figure 10: Spectrum of the amplitude of ñφ(ω) for smoothed nφ(t), compared with that
for the phase noise without smoothing as shown in Fig. 9.

yields a χ2/ν consistent with 1, the goodness of the fit can be tested using a
χ2-test. Then, one can use the goodness of the fit to determine whether the
truncation order of the fit function is sufficient.

The statistical uncertainty (σω) of the extracted average frequency ω̄ in-
creases with the noise-to-signal ratio, and decreases with the length of the
fit window. It also increases with the truncation order of the fit polynomial
due to the increase of degrees of freedom. The fit window and truncation
order can be optimized in order to minimize the total uncertainty depending
on how non-linear the phase function is. In principle, σω also depends on
the shape of the envelope function A(t). To study this effect, we determined
the σω for simulated FIDs with different T ∗2 values and envelope shapes. The
fit window is adjusted accordingly as described in Sec. 2. To generate such
set of FIDs, one can scan through various ranges of first and second order
spatial derivatives of the magnetic field where the probe is placed. As shown
in Fig. 11, the relationship between σω and the actual fit window length has
a low dispersion, indicating that under the influence of the same noise, σω
depends predominantly on the fit window length, not the shape of A(t).

4.3. Generic Noise Spectrum

The white noise model is a good approximation of noises in a wide range of
magnetometer signals. In some applications, low-pass or band-pass filters are
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used to improve the signal-to-noise ratio of the FID. For example, the read-
out electronic system for the Muon g − 2 magnetic field scanner probes has
a low-pass filter with a cut-off frequency at 90 kHz. The frequency-domain
spectra of the noises in the FID and the phase function after smoothing
are shown in Fig. 12. In these cases, the noise power spectrum is not a
constant and thus the phase noise covariance matrix is not as simple as
the form of Eq. 23. If a large ensemble of noise waveforms are available, the
corresponding phase noise can be calculated using Eq. 20, and the covariance
matrix element Σjk can be determined by calculating the ensemble average
of nφ(tj)nφ(tk). The ensemble of noise waveforms can be obtained by taking
data with the magnetometer in a field outside its dynamic range and leaving
the configurations of the electronics the same so that all sources of noise
are included. Because the phase noise function nφ(t) depends on the FID
envelope and phase function, the noise covariance matrix has to be evaluated
for each FID. Due to the filter effect, the high-frequency cut-off of ñφ(ω) is
much lower than π/∆t − ω0. Therefore, a larger down-sampling factor λ
is needed so that π/(λ∆t) is smaller than the cut-off frequency of ñφ(ω),
and thus, the covariance matrix Σjk becomes invertible. After obtaining an
invertible noise covariance matrix, it can be used to construct the χ2 in the
FID frequency extraction and statistical uncertainty determination. If the
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smoothing operation is performed, the shape of ñφ(ω) for frequencies lower
than the first zero position is similar to that for white noises (the red dashed
curve in Fig. 9) because the spectrum Ñ(ω) is flat near ω0 (50 kHz). As
more smoothing iterations are performed, the more similar these two spectra
become. Many results of the studies performed for the white noise can be
directly used for these measured FIDs with realistic noises.
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Figure 12: Frequency-domain spectra for noises in the signal (Ñ(ω)) and the smoothed
phase function (ñφ(ω)) of the Muon g − 2 magnetic field scanner probe.

In some cases, the noise spectrum may have sharp spikes at certain fre-
quencies on top of a continuous spectrum. These peaks may be caused by
electromagnetic interference with other devices. Suppose the single-frequency
noise is N(t) = N0 cos(ωN t+Φ0N) and the FID phase function is Φ(t) = ω0t.
According to Eq. 20, the phase noise is

nφ(t) =
N0

A(t)
sin((ωN − ω0)t+ Φ0N), (31)

which is an oscillation at angular frequency |ωN − ω0| that can be mitigated
using the moving-average smoothing method. However, if |ωN − ω0| is too
small, the size of the smoothing window may be comparable to T ∗2 so the
actual fit window will be very small after eliminating the edges. Therefore,
noises with angular frequencies peaked near ω0 are almost irreducible. Fur-
thermore, the polynomial fit of Φ(t) is affected more by low-frequency noise,
particularly when 2π/|ωN − ω0| is longer than the fit window. For noises
with sharp spikes in the frequency domain spectrum, the resolution depends
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on the FID frequency, and the resolution of the probe becomes significantly
poorer when the FID frequency gets close to a noise frequency spike.

4.4. Unweighted and diagonal Minimum-χ2 Fit

Calculating the noise covariance matrix, particularly for the generic noise,
is computation-intensive, so it is not suitable for online or large-scale FID
analyses. Instead, the unweighted minimum-χ2 fit (assuming Σjk ∝ δjk) or
the diagonal minimum-χ2 fit (keeping only diagonal elements of Σjk) are
used if the minimized χ2-value is not used as a check of the goodness of the
fit. The biases of the expectation and standard deviation of the extracted
ω̄ are analysed using simulated FIDs with various envelope shapes, phase
functions, and noise spectra. For both the unweighted and the diagonal fit,
the fit result of ω̄ is always unbiased, and the standard deviations of ω̄ deter-
mined using these two methods are about 0 to 10% larger than the fit result
with the proper noise-correlation treatment described above. Therefore, if
the unweighted or the diagonal fit is used, the fit result is not biased and the
statistical uncertainty of the extracted ω̄ can be determined via the standard
deviation of multiple measurements in the same field, but the χ2/ν cannot be
used as an indicator of the goodness of the fit. However, if the down-sampling
factor is significantly large, the diagonal fit generates the fit uncertainty and
the minimal χ2 very close to those given by the fit with the correct noise
covariance matrix. This effect can be explained using the auto-correlation
spectrum of the smoothed nφ(t) shown in Fig. 13. For this nφ(t), if two sam-
ples are separated by more than 20 µs, their auto-correlation is effectively
zero. If the period after down-sampling is larger than 20 µs, the noise covari-
ance matrix is essentially diagonal. This method can be applied when it is
essential to obtain the statistical uncertainty from each FID and acceptable
to worsen the statistical uncertainty with a sufficiently large down-sampling
factor.

5. Conclusions

We have presented a detailed prescription of implementing Cowan’s method
for extracting the FID frequency, which can be used in high-precision mag-
netometers. The phase function and the envelope function of an FID are
determined using the Hilbert Transform. We have developed the methods
for analyzing the effects caused by artifacts like the discrete Hilbert trans-
form, baseline and signal distortion. These methods can be applied in the
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Figure 13: Auto-correlation of samples in nφ(t) for the noise of the Muon g − 2 magnetic
field scanner probe.

analysis frameworks of existing magnetometers to obtain systematic uncer-
tainties, and they can also contribute to future designs of NMR read-out
electronics to calculate the tolerances of artifacts. To leading order, these
artifacts result in ripples in the phase function and the envelope function. A
running-average method for smoothing the phase function has been devel-
oped to mitigate these effects. The remaining bias caused by the artifacts
depends on their details, and it is recommended to use simulated FIDs with
these artifacts to quantify their systematic biases on the frequency extraction.
In general, small T ∗2 times and large nonlinear terms in the phase function
amplify these biases.

Furthermore, the relationship between the noise in the phase function and
the noise in the FID waveform has been derived to the leading order as shown
in Eq. 20. The method for obtaining an invertible noise covariance matrix
used in the minimal-χ2 fit has been described for the white and generic
noise sources. The spectra of the noise in the phase functions have been
discussed. The consistency between the statistical uncertainty generated
by the minimum-χ2 fit and the standard deviation of the extracted FID
frequency has been verified using simulated FIDs. This method is useful
in determining the resolution of an NMR probe from a single shot when
repeated measurements of the same field are difficult to achieve, and a χ2-
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test can be performed to determine the goodness of the fit. We have also
verified that the fit results obtained through the unweighted and diagonal fits
are not biased, and one can use these methods to extract the FID frequency
without significantly worsening the resolution when the computing power is
limited.

The application of the uncertainty analysis methods described in this pa-
per is not limited to FID frequency analysis. In any signal processing tech-
niques where the Hilbert transform is used for frequency extraction, these
uncertainty analysis methods can be used. Currently, the Muon g − 2 col-
laboration is also investigating the spin echo method [18], and the Hilbert
transform will also be used for phase function extraction. The results pre-
sented in this paper remain important for such future developments.
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Appendix A. Correlation between n(t) and ni(t) samples for white
noise

According to Eq. 8, the Hilbtert transform of an arbitrary noise function
N(t) is

Ni(t) =
1

2π

∫ ∞
0

[∫ ∞
−∞

N(τ)(−i)sgn(ω)eiω(t−τ)dω

]
dτ (A.1)

=
1

2π

∫ ∞
0

[∫ 0

−∞
iN(τ)eiω(t−τ)dω

]
dτ +

1

2π

∫ ∞
0

[∫ ∞
0

(−i)N(τ)eiω(t−τ)dω

]
dτ

=
1

2π

∫ ∞
0

[∫ ∞
0

iN(τ)e−iω(t−τ)dω

]
dτ +

1

2π

∫ ∞
0

[∫ ∞
0

(−i)N(τ)eiω(t−τ)dω

]
dτ

=
1

π

∫ ∞
0

[∫ ∞
0

N(τ)
eiω(t−τ) − e−iω(t−τ)

2i
dω

]
dτ

=
1

π

∫ ∞
0

[∫ ∞
0

N(τ) sin (ω(t− τ)) dω

]
dτ.

The integration over τ starts from 0 because the signal starts from t = 0.
Because of the finite sampling frequency, the integration over ω is truncated
at π/∆t where ∆t is the interval between samples. One can then simplify
Eq A.1 by performing the integration over ω and get

Ni(t) = P.V.

{
1

π

∫ ∞
0

N(τ)
1− cos( π

∆t
(t− τ))

t− τ
dτ

}
. (A.2)

The principal value of the integral is taken, because the integrand of Eq. A.1
is zero for t = τ . Expressing the integral in Eq. A.2 as a sum over the discrete
samples of N(t), the k-th sample of Ni(t) is

Ni(tk) =
1

π

L−1∑
l=0,l 6=k

N(tl)
1− cos( π

∆t
(tk − tl))

tk − tl
∆t (A.3)

=
1

π

L−1∑
l=0,l 6=k

N(tl)
1− cos(π(k − l))

k − l

=
1

π

L−1∑
l=0,l 6=k

N(tl)
1− (−1)k−l

k − l
,
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where tk = k∆t and L is the total number of samples of N(t).
If N(t) is a white noise, any pair of different samples are statistically

independent, and thus the expected value of N(tj)N(tk) is

〈N(tj)N(tk)〉 = δjkσ
2
N , (A.4)

and then the expected value of N(tj)Ni(tk) for j 6= k is

〈N(tj)Ni(tk)〉 =
1

π

L−1∑
l=0,l 6=k

〈N(tj)N(tl)〉
1− (−1)k−l

k − l
, (A.5)

=
1

π

L−1∑
l=0,l 6=k

δjlσ
2
N

1− (−1)k−l

k − l

=
1− (−1)k−j

π(k − j)
σ2
N .

For j = k, 〈N(tj)Ni(tk)〉 = 0 because the Ni(tk) does not depend on N(tk)
according to Eq. A.3. Finally, for n(t) and ni(t) defined in Sec. 4, the covari-
ance matrix element between sample j and k is

COV(n(tj), ni(tk)) = 〈n(tj)ni(tk)〉 (A.6)

=
〈N(tj)Ni(tk)〉
A(tj)A(tk)

=
1− (−1)k−j

π(k − j)
σ2
N

A(tj)A(tk)
.
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Appendix B. Correlation between different ni(t) samples for white
noise

The expected value ofNi(tj)Ni(tk) can be calculated directly using Eq. A.3

〈Ni(tj)Ni(tk)〉 =
1

π2

〈[
L−1∑

m=0,m6=j

N(tm)
1− (−1)j−m

j −m

][
L−1∑

l=0,l 6=k

N(tl)
1− (−1)k−l

k − l

]〉
(B.1)

=
1

π2

L−1∑
m=0,m6=j

L−1∑
l=0,l 6=k

〈N(tm)N(tl)〉
1− (−1)j−m

j −m
1− (−1)k−l

k − l

=
1

π2

L−1∑
m=0,m6=j

L−1∑
l=0,l 6=k

δmlσ
2
N

1− (−1)j−m

j −m
1− (−1)k−l

k − l

=
σ2
N

π2

L−1∑
m=0,m6=j,m 6=k

(1− (−1)j−m)(1− (−1)k−m)

(j −m)(k −m)
.

If j and k are not close to the ends (0 or L), then the bounds of the sum
in Eq. B.1 can be extended to (−∞,+∞). The following discussions assume
that j and k are not close to the ends. Particularly, for j = k, Eq. B.1
becomes

〈
N2
i (tj)

〉
=
σ2
N

π2

∞∑
m=−∞,m6=j

(1− (−1)j−m)2

(j −m)2
(B.2)

= 2
σ2
N

π2

∞∑
m=1

4

(2m+ 1)2

= 8
σ2
N

π2

π2

8
= σ2

N .

According to Eq. B.1, it is obvious that 〈Ni(tj)Ni(tk)〉 = 0 when j − k is
an odd number. When j − k is an even number, Eq. B.1 can be further
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simplified as

〈Ni(tj)Ni(tk)〉 =
σ2
N

π2

∞∑
m=−∞,m6=j,m6=k

(1− (−1)j−m)2

(j −m)(k −m)
(B.3)

=
σ2
N

π2

∞∑
m=−∞,m6=j,m6=k

(1− (−1)j−m)2

k − j

[
1

j −m
− 1

k −m

]
= 0

Therefore, the covariance matrix element between sample j and k of ni(t) is

COV(ni(tj), ni(tk)) = 〈ni(tj)ni(tk)〉 (B.4)

=
〈Ni(tj)Ni(tk)〉
A(tj)A(tk)

≈ σ2
N

A2(tj)
δjk,

where the approximation depends on how far j and k are from the ends.
One can use Eq. B.1 to compute 〈Ni(tj)Ni(tk)〉 and 〈ni(tj)ni(tk)〉 accurately.
For example, 〈Ni(tj)Ni(tk)〉 = 0.5σ2

N for j = k = 0, while 〈Ni(tj)Ni(tk)〉 =
0.975σ2

N for j = k = 7.

Appendix C. Rank of the covariance matrix

Let L be the total number of samples in the fit region. The dimension of
the Σ matrix in Eq. 23 is L × L. Σ is invertible if and only if its rank is L,
or equivalently, linear equations

ΣX = 0 (C.1)

have only one solution X = 0. By definition,

Σ =
〈
nφn

T
φ

〉
, (C.2)

where nφ is a column-vector representing the phase noise in the fit region.
The Fourier transform of nφ(t) expressed as a vector product is

ñ(ω) = nTφZ(ω), (C.3)
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where Z(ω) is a column-vector with the j-th element Zj(ω) = exp(−iω(j∆t)).
According to Eq. 27, for ω > π/∆t− ω0 approximately

ñ(ω) = nTφZ(ω) = 0. (C.4)

After multiplying nφ to both sides of Eq. C.4 and taking the expected value,
one gets 〈

nφn
T
φ

〉
Z(ω) = ΣZ(ω) = 0. (C.5)

Because of the discrete Fourier transform, ω can only be an integer times
∆ω = 2π/T up to the Nyquist angular frequency π/∆t, where T is the
duration of the entire signal. In the region (π/∆t − ω0, π/∆t), there are
ω0/∆ω = ω0T/2π values of ω that satisfies Eq. C.5. In other words, there
are ω0T/2π non-trivial solutions to the linear equations in Eq. C.1. The rank
of matrix Σ is then L− ω0T/2π, and thus, Σ is not intervible.
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