Implementing a convolutional neural network in the DESGW pipeline Julian Beas-Gonzalez – Fermilab FERMILAB-POSTER-21-136-STUDENT Supervisor: Dr. Kenneth R. Herner

Background

Many gravitational wave (GW) sources are expected to emit an electromagnetic counterpart. The detection of both kinds of signals helps us understand more about these sources and gives us a measurement of the rate of expansion of the universe¹. The Dark Energy Survey Gravitational Waves (DESGW) group at Fermilab uses observations from the Dark Energy Camera (DECam), mounted on a telescope at the Cerro Tololo Inter-American Observatory, to detect such electromagnetic follow-ups and to analyze them using a data processing pipeline².

The DESGW pipeline

To identify electromagnetic signals that are likely candidates to belong to the GW source, DECam takes observations from a region of the sky in which the source has been detected. These observations are calibrated and corrected for aberrations by the DEGSW pipeline in the "Processing" stage^{3,4}.

They then enter "Post-Processing", in which all candidates are matched to potential host galaxies. The data from each candidate and host is written in data files and in web pages for further inspection.

A significant limitation of this pipeline is that the final list of candidates still needs to be visually examined to reject artifacts and moving objects.⁴ Common artifacts are "bad subtractions", which are misalignments between the observations (search images) and images of the same region taken before the detection (template images).⁵

References

¹Soares-Santos, M., Holz, D. E., Annis, J., et al. (2017). "The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera." The Astrophysical Journal Letters, 848, L16, doi:10.3847/2041-8213/aa9059 ²Herner, K., Annis, J., Brout, D., et al. (2020). "Optical follow-up of gravitational wave triggers with DECam during the first two LIGO/VIRGO observing run." Astronomy and Computing, 33, 1000425, doi:10.1016/j.ascom.2020.100425

³Herner, K., Annis, J., Garcia, A., et al. (2020). "The updated DESGW processing pipeline for the third LIGO/VIRGO observing run." EPJ Web of Conferences 245, 01008, doi:10.1051/epjconf/202024501008 ⁴Morgan, R., Soares-Santos, M., Annis, J., et al. (2020). "Constraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey." The Astrophysical Journal, 901:83, doi:10.3847/1538-4357/abafaa

⁵Shandonay, A. Morgan, R., Bechtol, K., et al. (2021). "Expediting DECam Multimessenger Counterpart Searches with Convolutional Neural Networks." Dark Energy Survey. Fermi National Accelerator Laboratory. arXiv:2106.11315

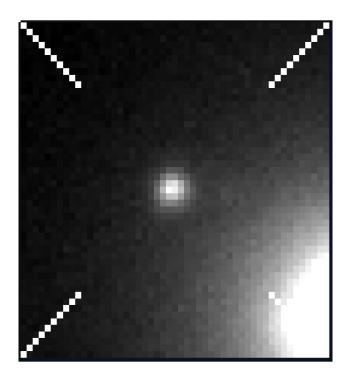
Objectives

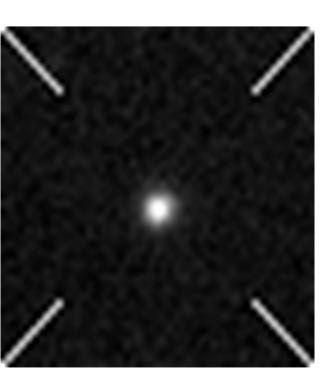
In this project, I incorporate a convolutional neural network (CNN) to the DESGW pipeline to decrease the amount of human inspection needed in the analysis of the candidates. I also update a section of the pipeline to a state in which it is prepared to take data from DECam upon detection.

Convolutional Neural Network

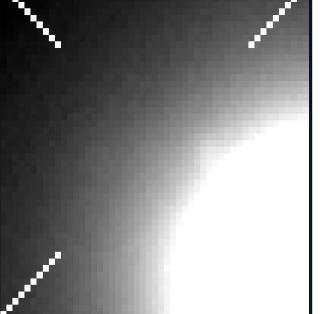
The convolutional neural network, developed through machine learning by Shandonay et al.⁵, takes cutouts, or "stamps", from the search and template images from a given candidate, as well as the difference between the two. It then evaluates their quality in terms of the presence of a bad subtraction and assigns a score from 0 to 1, where a higher score indicates a higherquality observation. Observations with scores lower than 0.7 are rejected.⁵ Given that the CNN evaluates a set of stamps in under one second, it provides for a faster examination of candidates compared to visual inspection.

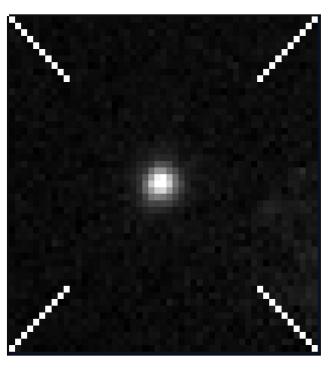
Search

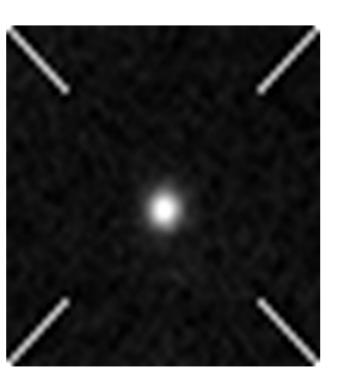


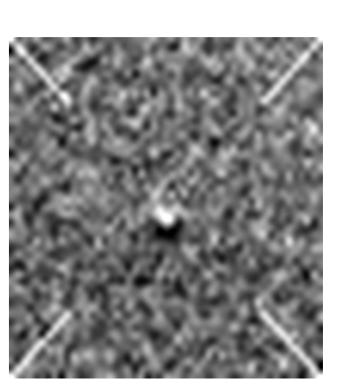


Template







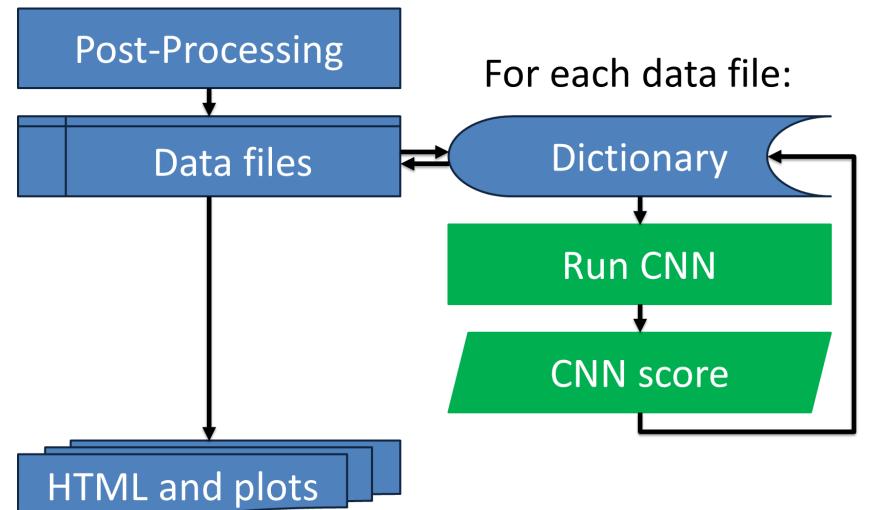


Two sets of stamps from GW170817. The top panel shows a transient object and its host, with a clear difference image. The lower panel shows a bad subtraction, in which the difference image has a dipole like-structure (white and black dots).

Implementing the CNN

In order to incorporate the CNN into Post-Processing, I updated it from Python 2 to Python 3. Most of the modifications consisted in altering syntax and in checking for incompatible or deprecated commands. I tested the pipeline on different sets of observation exposures to ensure its functioning.

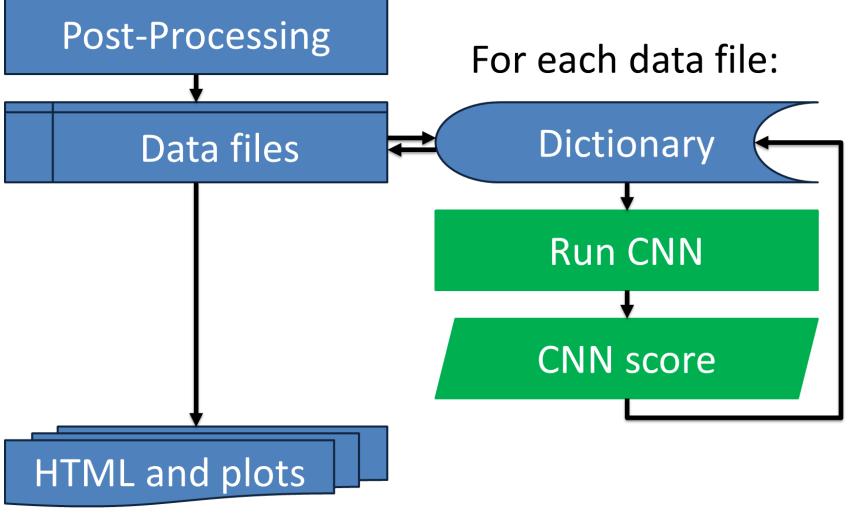
I then added the CNN code into one of the functions called by Post-Processing. Here, data about the observation is read from a data file and written into a Python dictionary. The CNN function takes this data to yield the score, which is added to the dictionary and appended to the data file.



Difference

High CNN score (>0.9)

Low CNN score (<0.3)



Flowchart of relevant processes in Post-Processing. The blue symbols represent the original functioning of the pipeline, while the green symbols are the additions incorporated to the CNN.

Results

- version.
- elliptical galaxy NGC 4993.²
- over one hour.

• Updating Post-Processing to Python 3 ensures its compatibility with applications developed in this newer

I tested the pipeline with data from GW170817 to compare the results of host galaxy matching with a known source. Despite issues with the output, the pipeline replicated the matching of the signal with

Ongoing testing on data from GW signal S190814 shows that taking the stamps of a final list of candidates and running the CNN takes about ten seconds per candidate, resulting in a run time of only

Fermilab U.S. DEPARTMENT OF ENERGY

