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We give an update on the status of the Fermilab Lattice-HPQCD-MILC calculation of the con-
tribution to the muon’s anomolous magnetic moment from the light-quark, connected hadronic
vacuum polarization. We present preliminary, blinded results in the intermediate window for this
contribution, 𝑎𝑙𝑙

𝜇,W. The calculation is performed on 𝑁 𝑓 = 2 + 1 + 1 highly-improved staggered
quark (HISQ) ensembles from the MILC collaboration with physical pion mass at four lattice
spacings between 0.15 fm and 0.06 fm. We also present preliminary results for a study of the two-
pion contributions to the vector-current correlation function performed on the 0.15 fm ensemble
where we see a factor of four improvement over traditional noise reduction techniques.
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1. Introduction
In April 2021, the FNAL E989 experiment released their first measurement of the muon’s

anomalous magnetic moment [1]. Combined with the previous result from the BNL E821 experi-
ment [2] the disagreement with the Standard Model prediction of Ref. [3] stands at 4.2𝜎. The error
on the experimental average is now 0.35 ppm, and the Fermilab experiment plans to increase the
precision by a factor of four. The Standard Model prediction of Ref. [3] quotes an uncertainty of
0.37 ppm, dominated by the leading-order hadronic vacuum polarization (HVP). The most precise
theoretical determinations of the hadronic vacuum-polarization contribution come from a data-
driven, dispersive approach using experimental data for the low-energy hadronic 𝑒+𝑒− cross section
[3, 4] as inputs.1 Lattice QCD provides an alternative ab initio approach that is independent of
these experimental inputs and where all sources of uncertainty can be controlled and systematically
reduced. Recently, a lattice QCD calculation [5] obtained a result with sub-percent precision, much
closer to the experimental average (1.5𝜎), in 2.1𝜎 tension with the SM prediction of Ref. [3]. As
such, it is of utmost importance to confront the calculation in Ref. [5] with other, independent lattice
QCD calculations of commensurate precision.

In this proceedings, we give an update on the ongoing effort, of the Fermilab Lattice, HPQCD,
and MILC collaborations, to compute the leading-order HVP contribution to the muon’s anomalous
magnetic moment, 𝑎HVP,LO

𝜇 . In particular, here we focus on the dominant light-quark, connected
contribution (𝑎𝑙𝑙𝜇), we refer readers to Ref. [6] for an update of our disconnected and QED +
QCD calculations. We present preliminary, blinded results for the intermediate window 𝑎𝑙𝑙

𝜇,W [7].
This sub-quantity is obtained by using a smooth ‘window’ function to restrict, to an intermediate
region, the HVP integral over Euclidean time of the light-quark, connected, vector-current two-
point correlation function. This quantity is important as it can be computed to high precision with
significantly less effort than the full 𝑎𝑙𝑙𝜇 and is less dependent on lattice effects. This calculation is
done on the MILC 𝑁 𝑓 = 2 + 1 + 1 highly-improved staggered quark (HISQ) ensembles [8] with
physical pion mass at four lattice spacings between 0.15 fm and 0.06 fm.

As mentioned, precise lattice determinations of the full 𝑎𝑙𝑙𝜇 present many technical and com-
putational challenges [9], notably, the significant statistical noise from the large-time region of the
vector-current correlation function. We present preliminary results from a new study to determine,
exactly, the two-pion contributions to the HVP that dominate this region. Performed on our coarsest
ensemble with 𝑎 ≈ 0.15 fm, using explicit staggered two-pion operators to resolve the lowest-energy
states, we reconstruct the light-quark, connected, vector current two-point function. This approach
results in an improvement over traditional noise-reduction techniques [7] by a factor of four.

2. Light-quark, connected HVP

In the standard model, the HVP in Euclidean space is given by

Π𝜇𝑣 (𝑞2) =

(
𝛿𝜇𝑣𝑞2 − 𝑞𝜇𝑞𝑣

)
Π(𝑞2) =

∫
𝑑4𝑥 𝑒𝑖𝑞𝑥 〈𝐽𝜇 (𝑥)𝐽𝑣 (0)〉 (1)

𝐽𝜇 (𝑥) =
∑︁
𝑖

𝑄𝑖�̄�𝑖 (𝑥)𝛾𝜇𝜓𝑖 (𝑥) . (2)

1See Ref. [3] for complete references to the experimental and theoretical papers leading to the data driven value of
the HVP contribution to the muon anomalous magnetic moment.
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Figure 1: Plot showing the HISQ ensemble parameters, pion mass 𝑚𝜋 and lattice spacing 𝑎2 with number
of configs indicated by area of the circles, used in Ref. [9] (blue), current statistics (green), planned (red).

Here, 𝐽𝜇 (𝑥) is the electromagnetic vector current for the quarks, and 𝑄𝑖 are the corresponding
charges in units of electron charge. The leading-order contribution to the muon’s anomalous
magnetic moment from the HVP is [10]

𝑎HVP,LO
𝜇 = 4𝛼2

∫ ∞

0
𝑑𝑄2𝐾𝐸 (𝑄2)Π̂(𝑄2) , (3)

where Π̂
(
𝑞2) = Π

(
𝑞2) − Π(0) is the subtracted vacuum polarization. The integration kernel

𝐾𝐸 (𝑄2) depends on the muon’s mass. To compute 𝑎HVP,LO
𝜇 on the lattice, it is convenient to use

the time-momentum representation introduced in [11], namely,

𝑎HVP,LO
𝜇 = 4𝛼2

∫ ∞

0
𝑑𝑡 �̃� (𝑡)𝐶 (𝑡) (4)

�̃� (𝑡) ≡ 2
∫ ∞

0

d𝑄
𝑄
𝐾𝐸 (𝑄2)

[
𝑄2𝑡2 − 4 sin2

(
𝑄𝑡

2

)]
(5)

𝐶 (𝑡) =
1
3

∑︁
®𝑥,𝑘

〈
𝐽𝑘 (®𝑥, 𝑡)𝐽𝑘 (0)

〉
(6)

with 𝑘 = 1, 2, 3. The two-point vector-current correlation function 𝐶 (𝑡) receives contributions
from all quark flavors 𝑢, 𝑑, 𝑠, 𝑐, 𝑡, 𝑏 and connected and disconnected Wick contractions. We work
in the isospin-symmetric limit 𝑢 = 𝑑 = 𝑙 and only consider the dominant light-quark, connected
contribution, 𝑎𝑙𝑙𝜇 , here. Some parameters of the HISQ ensembles used in this work are shown in
Fig. 1; most of our ensembles have close to physical pion masses and have box size 𝐿 > 3.7/𝑚𝜋 .
As described in Ref. [9], the correlation function in Eq. (6) is computed using the truncated-solver
method (TSM) [12, 13] with a random-wall source, with one fine-residual conjugate gradient solve
and a number of loose-residual solves, as shown in Table 1.

Reference [9] gave a value of 637.8(8.8) for the light-quark, connected contribution to the
muon’s anomalous magnetic moment. In order to reach sub-percent precision, we have significantly
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≈ a[fm] 𝑁3
𝑠 × 𝑁𝑡 𝑎𝑚sea

𝑙
/𝑎𝑚sea

𝑠 /𝑎𝑚sea
𝑐 𝑁cfg 𝑁src

0.15 323 × 48 0.002426 / 0.0673 / 0.8447 9362 48
0.12 483 × 64 0.001907 / 0.05252 / 0.6382 9011 64
0.09 643 × 96 0.00120 / 0.0363 / 0.432 5384 48
0.06 963 × 128 0.0008 / 0.022 / 0.260 2621 24

Table 1: Ensemble parameters used in this work. Column 2 gives the volume of the lattices in number of
space-time points. Column 3 gives the number of configurations analyzed. Column 4 gives the number of
loose-residual solves performed on each configuration for use in the truncated solver method [12, 13].

increased our statistics on the three finest ensembles, as indicated in Fig. 1. We are currently testing
exact low-eigenmode approaches for computing the vector current propagator to improve our large-
time determination of the correlation function. Aside from statistics, the largest sources of error
were the continuum extrapolation uncertainty, (finite volume, staggered taste-breaking, 𝑚𝜋), and
scale setting (absolute). To improve the continuum extrapolation, we are increasing our statistics
on the ≈ 0.06 fm ensemble and are beginning efforts to add data on a ≈ 0.042 fm ensemble Fig. 1.
Ref. [9] used the chiral model of Ref. [14, 15] to perform all lattice corrections. We are now
developing independent analysis strategies for each correction. There is also an ongoing effort to
address the absolute scale setting uncertainty on HISQ ensembles, using an improved determination
of the Ω baryon mass on all ensembles. [16].

2.1 Intermediate window

Precise lattice determinations of 𝑎𝑙𝑙𝜇 are hindered by large statistical noise in the long Euclidean
time region, significant finite volume effects (even on ensembles with 𝑚𝜋𝐿 > 4) and short-range
discretization effects [9, 15]. As a first step, it makes sense to compute a sub-quantity which
minimizes or isolates these effects. The 𝑎HVP,LO

𝜇 windows were introduced to achieve this by using
a smoothly varying window function to restrict the region of Euclidean time over which the vector
current correlation function is integrated [7].

𝑎
HVP,LO
𝜇,win = 4𝛼2

∫ ∞

0
d𝑡𝐶 (𝑡)�̃� (𝑡)Θ (𝑡, 𝑡1, 𝑡2,Δ) (7)

Θ (𝑡, 𝑡1, 𝑡2,Δ) =
1
2

[
tanh

( 𝑡 − 𝑡1
Δ

)
− tanh

( 𝑡 − 𝑡2
Δ

)]
. (8)

Here, 𝑡1, 𝑡2 control the location of the window boundary, and Δ controls sharpness. A value of Δ is
chosen to be as large as the largest lattice spacing considered, typically 0.15 fm. The intermediate
window ‘ W’ with parameters [𝑡1, 𝑡2] = [0.4, 1] fm and Δ = 0.15 fm provides a quantity 𝑎𝑙𝑙

𝜇,W
which is mostly independent of the long range statistical noise, finite volume, and staggered taste-
breaking effects of the low-energy two-pion contributions. It is also free of the strongest short-range
discretization effects.

Our calculation for the intermediate window, 𝑎𝑙𝑙
𝜇,W on the four ensembles is shown in Fig. 2.

The red points have small finite volume and 𝑚𝜋-mistuning corrections added to the raw data, from
the leading order term in the chiral model, see Table 2. The blue points include taste-breaking
corrections; we ascribe no additional error for these corrections as in [9, 15], instead taking the
spread of the extrapolations as an error. In Fig. 2, we include linear extrapolations, dropping our
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Figure 2: 𝑎𝑙𝑙
𝜇,W vs lattice spacing (𝑎2) on four ensembles. Two correction schemes, finite volume +𝑚𝜋 (red),

finite volume + 𝑚𝜋 + taste breaking (blue). Solid bands (dotted lines) are linear (quadratic) extrapolations in
𝑎2.

coarsest ensemble, and extrapolations including an 𝑎4 term. We observe, without correcting for
taste-breaking, our data already have small discretization effects. Correcting for taste-breaking
reduces the 𝑎4 dependence while introducing a more prominent 𝑎2 dependence. We find reasonable
agreement in all continuum extrapolations with good fit quality (𝜒2/d.o.f ∼ 1), especially for the
linear fits. We plan to include further variations on these fit functions.

≈ a[fm] 𝑚𝜋 FV
0.15 −0.01 % 0.57 %
0.12 −0.004 % 0.26 %
0.09 −0.305 % 0.35 %
0.06 −0.001 % 0.42 %

Table 2: Lattice corrections added to 𝑎𝑙𝑙
𝜇,W using the leading order term in the chiral model of [14, 15]

2.2 Two-pion contribution

As mentioned, a significant challenge in lattice determinations of 𝑎𝑙𝑙𝜇 is the statistical noise in
the tail of the light-quark, connected component. This can be traced to the fact that the variance
of the light-quark component of the vector current, two-point function Eq. (9) falls off with an
exponent of 𝑚𝜋 [17] while the signal falls of with lowest energy two-pion state, ∼ 2𝑚𝜋 . Hence, the
noise overwhelms the two-pion contribution in the large-time region, Fig. 3 (orange points).

𝐶𝐽𝑙 (𝑡) =
1
3

∑︁
®𝑥,𝑘

〈
𝐽𝑘𝑙 (®𝑥, 𝑡)𝐽

𝑘
𝑙 (0)

〉
=

∑︁
𝑛

〈0|𝐽𝑙 |𝑛〉𝑒−𝐸𝑛𝑡 . (9)
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Figure 3: Blinded results for taste singlet vector current two-point, correlation function (orange). Blinded
reconstruction of the correlation function from determined parameters for states up to 𝑛max = 1 − 7.

A remedy is to employ explicit two-pion operators to resolve the lowest lying states of the theory
and reconstruct the correlation function after some Euclidean time with this information [18, 19].
The computational strategy is then to construct a correlation-function matrix of the form

C(𝑡) =
(
𝐶𝐽𝑙 ,𝐽𝑙→𝐽𝑙 ,𝐽𝑙

(𝑡) 𝐶𝐽𝑙 ,𝐽𝑙→𝜋𝜋 (𝑡)
𝐶𝜋𝜋→𝐽𝑙 ,𝐽𝑙

(𝑡) 𝐶𝜋𝜋→𝜋𝜋 (𝑡)

)
(10)

where we have chosen the taste-singlet vector current operator (smeared) 𝐽𝑙 (𝐽𝑙) as opposed to
the taste-vector vector current, used in the work described above, as it has the preferable lowest-
energy two-pion state, namely, two Goldstone-boson pions. The staggered two-pion operators
are constructed from linear combinations of products of staggered single-pion operators which
transform in the same taste representation as the vector current. The staggered single- & two-pion
operators are defined as.

𝜋−( ®𝑝)𝜉 ≡
∑︁
𝑥

𝑒𝑖 ®𝑝 · ®𝑥 �̄�(𝑥)𝛾5 ⊗ 𝛾𝜉 𝑑 (𝑥) (11)

O𝜋𝜋 (0) ≡
∑︁
𝜉1 , 𝜉2

𝑝∈{𝑝}★

𝐶𝐺stag, iso. (𝜉1, 𝜉2, ®𝑝)𝜋( ®𝑝)𝜉1𝜋(− ®𝑝)𝜉2 (12)

where 𝑝★ is the momentum orbit. 𝐶𝐺stag, iso. (𝜉1, 𝜉2, ®𝑝) are the Clebsch-Gordon coefficients of the
isospin-staggered group [20] defined below.

𝑆𝑈𝐼 (2) ×
(
𝑇3
𝑁 o

{
Ξ𝜇, 𝐶0

}
o

{
�̃�𝑖 𝑗 , 𝐼𝑆

})
= 𝑆𝑈 (2) ×

(
𝑍3
𝑁 o Γ4,1 o𝑊3

)
(13)

The Clebsch-Gordon coefficients are obtained by explicit construction of the irreducible represen-
tations (irreps) of the group by a double application of Wigner’s method for semi-direct product

6
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Figure 4: Energies (left) and amplitudes (right) for the two-pion states extracted from a generalized eigenvalue
analysis on the ≈ 0.15 fm ensemble. Bands are results from fits, points are effective masses.

Operator Momentum (back-to-back)
𝐽𝑙, 𝐽𝑙

O⊗𝛾5
𝜋𝜋 [0, 0, 1], [1, 1, 0]

O⊗𝛾5𝑥/𝑦
𝜋𝜋 ,O⊗𝛾5𝑧

𝜋𝜋 [0, 0, 1]
O⊗𝛾𝑥𝑡/𝑦𝑡

𝜋𝜋 ,O⊗𝛾𝑧𝑡
𝜋𝜋 [0, 0, 1]

Table 3: Operator basis on the ≈ 0.15 fm ensemble, the single pion operators in the two-pion states have
equal taste and equal and opposite momentum. We indicate the irrep splitting by separating out the operators.

groups [20]. With the irreps in hand one can extract the coefficients through the well established
methods for discrete groups [21, 22]. We choose a range of back-to-back pion momenta up to the
energy at which the free two-pion state equals the mass of the rho resonance. We include all rows
of the multi-dimensional taste-irrep pions. At non-zero momentum these three dimensional irreps
split into non-degenerate irreps which must be accounted for. For the ≈ 0.15 fm ensemble, the
range of momentum and taste is shown in Table 3. Eigenvectors 𝑣𝑛 are extracted from a generalized
eigenvalue problem (GEVP) [23] applied to,

C(𝑡)𝑣 = 𝜆C (𝑡0) 𝑣. (14)

Optimised operators with the best overlap with the state 𝑛 are then constructed 𝜒𝑛 = (𝑣𝑛)𝑖 O𝑖 .
Energies 𝐸𝑛 and overlap amplitudes 〈0|𝐽𝑙 |𝑛〉 are obtained from a combined Bayesian fit to the
correlation functions 〈

𝜒𝑛𝜒
†
𝑛

〉
=

∑︁
𝑛

𝑍2
𝑛𝑒

−𝐸𝑛𝑡 (15)〈
𝜒𝑛 𝐽

†
𝑙

〉
=

∑︁
𝑛

𝑍𝑛 〈0 |𝐽𝑙 | 𝑛〉 𝑒−𝐸𝑛𝑡 . (16)

7
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Shown in Fig. 4 are the results from a GEVP analysis. The expected irrep splitting is observed
in the two-pion states derived from the three-dimensional single-pion irreps n = 1&2, 4&5 are
non-degenerate. We observe a reduction / enhancement of overlap with the vector current for these
split irreps. The vector current correlation function is reconstructed from these states in Fig. 3. To
evaluate the efficacy of the reconstruction, we determine 𝑎𝑙𝑙𝜇 in three different ways, (i) integrating
the correlator data using Eqn. (4), (ii) integrating using the bounding method [7] to address the
statistical noise at large 𝑡, (iii) integrating the combination of the correlator data below 𝑡★ and
reconstructed correlator after 𝑡★. For (ii) we chose a cut-off of 𝑡𝑐 ≈ 2.6 fm, for (iii) we replace the
correlator with the 𝑁 = 6 reconstruction after 𝑡★ ≈ 1.8. While the central values for 𝑎𝑙𝑙𝜇 obtained
from the three procedures are completely consistent, we find statistical errors of 4% (i), 2.6% (ii),
and 0.6% (iii), respectively, i.e. a 4-fold reduction of the statistical error with the reconstruction
compared to the bounding method.

3. Conclusions & Outlook

We provide an update on the status of our calculation of the light-quark, connected contribution
to 𝑎HVP,LO

𝜇 . In particular, we give a road-map to address the largest sources of uncertainty in our
previous determination: statistical, continuum limit extrapolation, scale setting, and lattice correc-
tions. We present blinded, preliminary results for the light-quark connected contribution evaluated
for the intermediate window, 𝑎𝑙𝑙

𝜇,W. The statistical errors for this quantity are commensurate with
other lattice groups. Our systematic error study is ongoing, and only after it is complete, will we
unblind our final result. We also present the results of our two-pion study, where we successfully
demonstrate the technique for reconstructing the two-pion - vector correlator [18, 19] for staggered
fermions. Our still preliminary results indicate a large improvement in our determination of the
light-quark connected contribution to 𝑎HVP,LO

𝜇 on the ≈ 0.15 fm ensemble. We are in the process of
testing this calculation on the ≈ 0.12 fm ensemble where the number of staggered two-pion states
is significantly increased.
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