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Abstract
The Fermilab Main Injector enclosure houses two accel-

erators, the Main Injector and Recycler. During normal
operation, high intensity proton beams exist simultaneously
in both. The two accelerators share the same beam loss
monitors (BLM) and monitoring system. Beam losses in
the Main Injector enclosure are monitored for tuning the
accelerators and machine protection. Losses are currently
attributed to a specific machine based on timing. However,
this method alone is insufficient and often inaccurate, re-
sulting in more difficult machine tuning and unnecessary
machine downtime. Machine experts can often distinguish
the correct source of beam loss. This suggests a machine
learning (ML) model may be producible to help de-blend
losses between machines. Work is underway as part of the
Fermilab Real-time Edge AI for Distributed Systems Project
(READS) to develop a ML empowered system that collects
streamed BLM data and additional machine readings to infer
in real-time, which machine generated beam loss.

READS OVERVIEW
The Real-time Edge AI for Distributed Systems (READS)

project is a collaboration between the Fermilab Accelerator
Division and Northwestern University. The project has two
objectives; first to implement Machine Learning (ML) into
the future Delivery Ring slow spill regulation system [2] for
the Mu2e experiment [3, 4], and second to create a real-time
beam loss de-blending system for the Main Injector (MI)
accelerator enclosure also utilizing ML [5].

Beam Loss De-blending
The Main Injector and Recycler Ring (RR) accelerators

share a tunnel and one beam loss monitor (BLM) system.
The 8 GeV permanent magnet Recycler was originally built
as an anti-proton storage ring for the Tevatron collider [6].
Anti-proton losses in Recycler were insignificant compared
to the 8 GeV to 120 GeV proton losses from Main Injector;
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Figure 1: Example illustration of overlapping beam events
and losses in the MI and RR accelerators.

there was less need to monitor ionization beam losses from
Recycler. When the Tevatron was decommissioned, Recy-
cler was re-purposed as a proton stacker for Main Injector
120 GeV NuMI beam operation [7] as well as for 8 GeV
Muon g-2 experiment beam delivery [8]. Currently, nor-
mal operation of the accelerator complex has high intensity
beams in both Main Injector and Recycler simultaneously.
Beam losses from both machines are now a large concern.
The origin of loss on any of the 259 operational BLMs can
be difficult to attribute to any one machine. However, experts
can often attribute losses to either Main Injector or Recycler
based on time (Fig. 1), machine state, and location (Fig. 2).

Using streamed distributed readings and real-time ML in-
ference hardware, this project aims to replicate and improve
upon the machine expert’s ability to de-blend losses between
machines.

PIRATE CARD DEVELOPMENT
In order to satisfy the data requirements for this project,

a parasitic VME bus reader card, commonly referred to as
a Pirate Card, is being developed and integrated into the
existing MI BLM system. Each of the 7 BLM nodes dis-
tributed around the 2.2 mile Main Injector complex consists
of a VME Crate Processor, Control Card, Timing Card, and
an array of digitizers [9]. The sole responsibility of the Pi-
rate Cards is to intercept the BLM values of each digitizer
throughout the beam cycle without disturbing normal op-
erations of the system. The digitized BLM values will be
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Figure 2: Location dependency of MI and RR beam loss as
seen from tunnel residual dose rates.

packaged up with other relevant machine data like beam
intensities, cycle events, and MI momentum. This datagram
will be sent over the network for ML model training data
as well as for the eventual FPGA ML model implementa-
tion. The Pirate Cards have been designed and are currently
being manufactured. Delivery of the cards is expected by
late spring 2021; in time to collect higher frequency training
data to be used in training a final ML model.

DATASETS
A Sample Dataset is being continuously generated using

actual accelerator operations data. The data in the Sample
Dataset is the same in structure and shape as the data that
is expected to be used for training the final ML models,
albeit at a much reduced frequency (15 Hz) compared to
data rates expected from the Pirate Cards. Data rates for the
Sample Dataset are constrained by limitations of the existing
BLM system and ACNET controls network. An algorithm
has been created to label the BLM losses by machine when
possible. This data will help inform the extent and structure
of data coming from the Pirate Cards. Initial ML models
are being designed and trained from this dataset.

The Training Dataset will be created using data streamed
from the aforementioned Pirate Cards. The expected Train-
ing Dataset rate is 333 Hz which corresponds to the current
rate at which the BLM system nodes poll their digitizers for
new BLM sums. Normal operation of the accelerators does
not allow for much opportunity to record BLM readings
when beam exist in only one machine. For this reason, fairly
involved studies have been requested in late spring 2021,
just before the Fermilab accelerator complex has it’s annual
maintenance shutdown. The study will involve manipulat-
ing the beam event time line to purposefully keep events
for Recycler and Main Injector from overlapping, thus only
having beam in one machine at a time. This will allow
for the proper attribution and labeling of beam losses to
one machine using the same algorithm used for the Sample
Dataset. To ensure that a broad range of loss conditions are
captured for the Training Dataset, moderate beam losses will
be generated at all locations in both machines using various
miss-configurations of the machines.

MODEL ARCHITECTURE
The De-Blending Network (DBLN) is comprised of three

parts: a BLM network, a State Network, and an Aggregation
Network (Fig. 3). At each point in time, the DBLN maps ob-
servations of the last 𝑛 BLM loss signatures 𝑙𝑛 ∈ ℝ𝑛×259 and
machine data 𝑒𝑛 ∈ ℝ𝑛×9 to class-conditional probabilities
over individual accelerators per BLM: 𝑝(𝑎𝑖|𝑙𝑛, 𝑒𝑛) ∈ ℝ259×2.
Note here the overloading of the term “loss”: when referring
to the BLM losses we use 𝑙, and when referring to the math-
ematical quantity related to the ML model performance we
use ℓ.

The BLM Network is a convolutional neural network
(CNN) with two max-pooled convolutional layers followed
by two linear layers. The BLM network learns a mapping
between the raw BLM loss data 𝑙𝑛 ∈ ℝ𝑛×259 → 𝐵𝑛 ∈ ℝ𝑘.
This vector 𝐵𝑛 is then ingested by the Aggregator where
it is conditioned on a representation of the machine state
generated by the State Network.

The State Network is a two layer fully-connected multi-
layer perceptron (MLP) that learns a mapping between the
last 𝑛 state observations 𝑒𝑛 ∈ ℝ𝑛×9 → 𝑆𝑛 ∈ ℝ𝑘. The output
𝑆𝑛 serves as a conditioning mechanism for the representation
of the BLM loss signature 𝐵𝑛.

The Aggregator Network is a three layer fully-connected
MLP that learns to map 𝐵𝑛 ⊕ 𝑆𝑛 ∈ ℝ𝑘, where ⊕ is the
elementwise sum, to class-conditional probabilities over
𝑝(𝑎𝑖|𝑙𝑛, 𝑠𝑛) ∈ ℝ259×2. We choose the elementwise sum
instead of concatenation to make the model more compact.

To train the model, we use Binary Cross-Entropy Loss
and the Adam Optimizer with learning rate = 0.001. The
final model has 1.3M trainable parameters.

Figure 3: DBLN model architecture.

PRELIMINARY RESULTS
Initial results using the Sample Dataset show promising

performance. Figure 4 details training accuracy and loss
over the first 1000 batches using the past 𝑛 = 2 observations
and batch size = 32.

Figure 5 (𝐴) shows the measured beam intensities in MI
and Recycler over 24, 15 Hz ticks. Section (𝐵) shows the
normalized BLM measurements at each tick. Sections (𝐶)
and (𝐷) show the output of our model scaled by the BLM
loss intensity (significance). From these plots, we can see
that our model is appropriately classifying the losses in each
region. As beam is extracted from Recycler to MI; our model
recognizes the change in the loss signature and switches the
inferred label from RR to MI in turn.
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Figure 4: RR and MI training accuracy over 1000 batches.

Overall, high validation accuracies (95% and 96% for MI
and RR respectively) is evidence that our model is learning
meaningful mappings between BLM loss profiles and their
machine of origin.

Model Confidence
Of particular interest is the model’s behavior on the BLM

losses which cannot be attributed to a single machine, i.e.
loss profiles acquired when MI and RR operate simultane-
ously. Each row in the output 𝑝(𝑎𝑖|𝑙𝑛, 𝑠𝑛) ∈ ℝ259×2, corre-
sponds to [𝑝(MI), 𝑝(RR)]. Probabilities ≥ 0.5 are treated as
positive identifications and < 0.5 as negative identifications.
Performing inference on these data with unknown labels
yields the confusion matrix in Table 1, where MI/RR (+)
and MI/RR (-) represent positive and negative identifications,
respectively.

Table 1: Model Confusion Matrix

MI (+) MI (-)

RR (+) 1% 2%
RR (-) 77% 19%

Presently, the model is disproportionately recognizing
these unknown losses as originating from MI and not RR. Ex-
perimentation is underway to better understand the model’s
behavior on these data with unknown labels.

MODEL IMPLEMENTATION
The ML model will be implemented as an IP core on

the Intel Arria-10 SOC. The board contains a FPGA side
and a hard processor subsystem (HPS) side which have fast
communication through HPS-FPGA bridges between them.
The FPGA side can be used to implement the DBLN network
for processing the data. The HPS side has Ethernet and can
do complicated calculations. The HPS will also be useful
for updating the implemented DBLN network by partial
reconfiguration.

The hls4ml+Quartus tool flow will be used to generate an
initial design for the ML IP. Based on the model development
described in previous sections, the saved model will act as
an input to hls4ml and will generate an implementation in
C++ which uses HLS Compiler for hardware design. The

Figure 5: Model inference on a single beam extraction from
RR to MI using Sample Dataset.

Quartus backend of hls4ml will be used as a starting point
with additional customization done later. Finally, The DBLN
network will be implemented as an IP core and connected
to HPS using the Platform designer.

During the design phase of the IP, there must be trade-
offs between the expected latency and the limited resources.
Various methods can be adopted to optimize the implemen-
tation by exploiting pipeline and parallelism. For example,
unrolling the potential loops, modifying the initial interval
and adding registers between each layer can all be used to
help achieve the desired data processing pipeline. Multiple
parallel kernels will be used, this will likely translate into
parallel data paths. To fully utilize the limited resources on
the FPGA, with respect to constraints imposed by other func-
tionality that is co-located on it, we need to carefully select
a proper precision of the data representation and consider
reuse of the implemented kernel and BRAM buffers.

SUMMARY
The READS Main Injector accelerator enclosure beam

loss de-blending project is progressing well. A Sample
Dataset has been generated using MI/RR readings and a
very promising preliminary ML model has been created
from the data. To meet the project’s data needs, a custom
BLM node VME bus reader card, commonly referred to
as a Pirate Card, has been designed and is being manufac-
tured. Delivery of the Pirate Cards is expected late spring
2021, just in time to collect high fidelity training data before
the planned Fermilab accelerator complex summer mainte-
nance shutdown. Hardware for the final FPGA ML model
implementation has been acquired and is being developed
on.
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