
WLCG Token Usage and Discovery

Brian Bockelman6, Andrea Ceccanti3, Thomas Dack4, Dave Dykstra7, Maarten Litmaath1,

Mischa Sallé5, and Hannah Short1,∗

1European Organization for Nuclear Research (CERN), Switzerland
2Deutsches Elektronen-Synchrotron (DESY), Germany
3Istituto Nazionale di Fisica Nucleare (INFN), Italy
4Science and Technology Facilities Council (UKRI-STFC), United Kingdom
5Nationaal Instituut voor Subatomaire Fysica (Nikhef), Netherlands
6Morgridge Institute for Research, United States
7Fermi National Accelerator Laboratory, United States

Abstract. Since 2017, the Worldwide LHC Computing Grid (WLCG) has

been working towards enabling token based authentication and authorisation

throughout its entire middleware stack. Following the publication of the WLCG

v1.0 Token Schema [1] in 2019, middleware developers have been able to en-

hance their services to consume and validate OAuth2.0 [2] tokens and process

the authorization information they convey. Complex scenarios, involving mul-

tiple delegation steps and command line flows, are a key challenge to be ad-

dressed in order for the system to be fully operational. This paper expands on

the anticipated token based workflows, with a particular focus on local storage

of tokens and their discovery by services. The authors include a walk-through of

this token flow in the RUCIO managed data-transfer scenario, including delega-

tion to FTS and authorised access to storage elements. Next steps are presented,

including the current target of submitting production jobs authorised by Tokens

within 2021.

1 Introduction

Over the past few years there has been significant progress made towards making token based

authentication and authorisation a realistic goal for WLCG. OAuth2.0 workflows for physics

analysis have been prototyped thanks to technical developments, made by both industry and

the wider academic community, and to time dedicated by many members of WLCG to address

WLCG-specific challenges. The current objective is to be able to submit production jobs

within 2021.

1.1 Contributing Groups

The WLCG Authorisation Working Group was formed in 2017, at a time when multiple

activities were independently beginning to seriously consider token based authorisation. Ex-

perts from multiple domains and projects - including SciTokens [3], the INDIGO DataCloud

project [4] and EGI [5] - came together to chart a path towards token based authorisation

∗e-mail: hannah.short@cern.ch

FERMILAB-CONF-21-078-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

for WLCG [6]. Work to enhance software was supported by several European Commission

Projects: EOSC-Hub [7], EOSC Pilot [8] and AARC2 [9]. The group focuses on the technical

and policy challenges affecting WLCG’s transition to OAuth2.0 authorisation.

The Data Organization, Management and Access (DOMA) Working Group [10] has been

instrumental in getting WLCG token support tested in data handling workflows that will be

vital for LHC Run 3 and beyond.

2 Progress towards Token Based Workflows

2.1 WLCG Token Schema

The WLCG Token Schema v1.0 was published in September 2019 [1] and defined the se-

mantics for Token use within the WLCG. It was largely inspired by the SciTokens schema

but, importantly, addressed some WLCG-specific requirements such as the need for includ-

ing group information in tokens. The schema document defines recommended lifetimes for

different tokens in the ecosystem and a mechanism for requesting tokens conforming to a

given version of the specification. Many of the areas that required extended discussion have

since been addressed by an Internet Draft RFC that defines the content of Access Tokens [11].

A future addition of the WLCG specification will take advantage of this new document and

focus on defining only those aspects which fall outside the scope of the RFC.

The publication of the WLCG Schema allowed middleware developers to implement sup-

port for OAuth2.0 Tokens, which they could test using a WLCG Token Issuer deployed at

INFN. This Token Issuer is a deployment of INDIGO IAM [12], the software chosen by the

WLCG for this purpose, following a thorough analysis of several very viable options.

2.2 Command Line Tools

Whilst other scientific domains are seeing their researchers moving to web based analysis, a

large proportion of physicists’ work is still performed on the command line. Tools to pro-

vision OAuth2.0 tokens into a user’s local environment must be both convenient and secure,

minimising any requirements for the user e.g. to perform operations on a web portal. Tokens

must be discoverable by command line clients, which led to the definition of the Bearer To-

ken Discoverability specification described in Section 3. Further details on Command Line

tools for WLCG Token Based workflows can be found in the paper by Dr Dave Dykstra for

vCHEP 2021.

2.3 Token authorization flows

To make token based authentication and authorization a reality in WLCG we need to define

how tokens are obtained from the Virtual Organisation (VO) token issuer (e.g., IAM) and sent

across services to drive authentication and authorization in the infrastructure. We will rely

only on standard OAuth/OpenID connect authorization flows for this purpose.

It is expected that most services will act as OAuth resource servers (which do not need

registration at the token issuer), while services acting as entry points to the infrastructure

(e.g., experiment frameworks, UIs, etc.) or that need to exchange tokens will have to be

registered in IAM as clients.

Most registered services will obtain tokens using the OpenID Connect authorization

flow [13], the recommended flow for server-side applications. The OAuth token exchange

flow [14] will be used for delegation across services, to implement audience and scope re-

strictions and the ability to delegate offline access privileges across the chain of services. The

device code flow [15] will be mainly used in support of CLI applications (e.g., UIs), to imple-

ment authentication flows on the terminal that can support federated identity providers like

the CERN SSO [16]. When services need to act on their own identity, i.e. not on behalf of a

user, the OAuth client credentials flow [2] will be used.

User authentication is requested by including the openid scope in the authorization re-

quests. Audience restrictions are requested using the audience parameter, as standardized

in the OAuth token exchange standard. IAM honours what is a requested by a client, and

includes the requested audience in issued access tokens. When no audience is explicitly re-

quested, the generic audience string is included in access tokens, as required by the WLCG

profile.

2.3.1 The RUCIO-FTS-SEs flow

To support DOMA activities, the first scenario we focused on is the RUCIO managed data

transfer, which is common to many LHC experiments (as depicted in Figure 1).

Figure 1. Token flows used in the RUCIO managed data-transfer scenario.

In this scenario, RUCIO [17] delegates its identity to FTS [18] to manage a third-party

transfer between two storage elements. RUCIO requests a token from IAM using the client

credentials flow, as it is acting on its own service identity. In this request (step 1 in Figure 1),

RUCIO requests that the token audience is restricted to the FTS service. RUCIO then submits

a transfer job to FTS including the token in the request. FTS creates the transfer job, but

cannot use the received token to manage the transfer as the token audience is specific to FTS

and may not provide the privileges needed for reading and writing data at storage elements.

So FTS starts a token exchange flow with IAM to exchange the received token (step 3.) with a

couple of tokens, an access token and a refresh token, that will be used to manage the transfer.

In this flow, FTS requests the scopes needed to access the data and restricts the audience of

the issued tokens to the target storage elements. The access token obtained in the flow is

then used to submit the third-party transfer to one of the SE (step 4.) and for the actual data

transfer among the SEs (step 5.). The refresh token can be used by FTS to get fresh access

token from IAM (using the standard OAuth refresh token flow) if needed.

2.4 WLCG IAM Operational Readiness

In order to transition to production use of the WLCG IAM Token Issuers, the new Token

Based infrastructure must be operated with a level of service at least equivalent to that of the

current infrastructure. This implies running highly available WLCG IAM instances, offering

user support, and ensuring that service incidents can be addressed within an acceptable time-

frame. In addition, the Token Issuers must demonstrate their trustworthiness by conforming

with the EUGridPMA’s Guidelines for Attribute Authority Service Provider Operations [19].

WLCG IAM Instances for CMS and ATLAS have been successfully deployed on CERN’s

Openshift Infrastructure for several months, allowing them to be highly scalable and leverag-

ing central CERN IT services wherever possible. IAM instances for the remaining VOs will

be set up similarly. Each instance will be integrated behind CERN’s Single-Sign-On [16],

improving user experience for the researchers and facilitating the inclusion of such services

in the investigation of security incidents. Production level support is expected for the second

half of 2021.

3 Token Discovery

Client tools that rely on a bearer token for authenticating themselves need a mechanism for

receiving the tokens from their environment. While the browser is a monolithic user agent

(and can internally manage tokens), the terminal environment involves a number of indepen-

dently developed tools; the environment needs a way to communicate the token to be used to

Unix processes. As we did not find any existing standard for token discovery, we have defined

one to be used by the tools built in our community. The rest of this section is a description of

that standard.

If a tool needs to authenticate with a token and does not have out-of-band WLCG Bearer

Token Discovery knowledge on which token to use, the following steps to discover a token

MUST be taken in sequence, where $ID below denotes the process’s effective user ID:

1. If the BEARER_TOKEN environment variable is set, then its value is taken to be the

token contents.

2. If the BEARER_TOKEN_FILE environment variable is set, then its value is interpreted

as a filename. The contents of the specified file are taken to be the token contents.

3. If the XDG_RUNTIME_DIR environment variable is set 1, then take the token from

the contents of $XDG_RUNTIME_DIR/bt_u$ID 2.

4. Otherwise, take the token from /tmp/bt_u$ID.

If a potential token is found at a step, then the discovery implementation MUST strip all

whitespace on the left and right sides of the string. We define whitespace the same way as

the C99 isspace() function: space, form-feed (\f), newline (\n), carriage return (\r), horizontal

tab (\t), and vertical tab (\v). Upon finding a valid token according to section 2.1 of RFC6750

[20], the discovery procedure MUST terminate and return this token. Upon finding an empty

token, the discovery implementation should continue with the next step. Upon finding an

invalid token, the implementation SHOULD stop and return an error.

Upon discovery of a valid token, referred to as $TOKEN, if the tool is to use it to authen-

ticate an HTTP request the tool MUST use it in accordance with RFC6750. For example, in

the Authorization header as follows:

1https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html
2This additional location is intended to provide improved security for shared login environments as

$XDG_RUNTIME_DIR is defined to be user-specific as opposed to a system-wide directory.

Authorization: Bearer $TOKEN

High-level tools that need to simultaneously support bearer tokens for multiple purposes

(e.g. multiple VOs) MAY set $BEARER_TOKEN_FILE using the patterns of steps 3 and

4 with filenames having an added hyphen and purpose name appended to the filename. For

example, the toolset named fife, keeping one token per VO, may choose the following name

for user 1221 and VO xyzzy:

/tmp/bt_u1221-fife-xyzzy

The purpose syntax and semantics are deliberately left undefined and intended for use by

the tool implementer. These high-level tools SHOULD consider potential filename collisions

with other tools when implementing a naming scheme. When executing lower-level tools,

the high-level tool SHOULD set the $BEARER_TOKEN_FILE to the desired file. Tools

SHOULD NOT inspect multiple tokens to try to determine which one to use based on content.

4 Conclusion and Next Steps

Significant progress has been made towards the current goal of submitting jobs authorised

with WLCG Tokens within 2021; a first draft of the Token Discoverability specification has

been published, Token Based Workflows are being planned and tested, a viable solution for

the command line is taking shape and production level Token Issuer support is being set up

at CERN IT. Much work remains to align the community on a realistic timeline for the full

transition to Tokens, away from end entity X.509 certificates. This will be a focus of the

coming months whilst, in parallel, development and testing of token based workflows will

continue.

References

[1] M. Altunay, B. Bockelman, A. Ceccanti, L. Cornwall, M. Crawford, D. Crooks, T. Dack,

D. Dykstra, D. Groep, I. Igoumenos et al., WLCG Common JWT Profiles (2019),

https://doi.org/10.5281/zenodo.3460258

[2] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749 (2012), https://
rfc-editor.org/rfc/rfc6749.txt

[3] INDIGO Identity and Access Management (IAM), https://indigo-iam.github.
io/docs

[4] Indigo Data Cloud, https://www.indigo-datacloud.eu

[5] EGI, https://www.egi.eu
[6] Bockelman, Brian, Ceccanti, Andrea, Collier, Ian, Cornwall, Linda, Dack, Thomas,

Guenther, Jaroslav, Lassnig, Mario, Litmaath, Maarten, Millar, Paul, Sallé, Mischa

et al., EPJ Web Conf. 245, 03001 (2020)

[7] EOSC Hub, https://www.eosc-hub.eu

[8] EOSC Pilot, https://eoscpilot.eu
[9] Authentication and Authorisation for Research and Collaboration (AARC), https://
aarc-project.eu

[10] Data Organization, Management and Access (DOMA) Working Group Twiki , https:
//twiki.cern.ch/twiki/bin/view/LCG/DomaActivities

[11] JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens, https://tools.ietf.
org/html/draft-ietf-oauth-access-token-jwt-11

[12] INDIGO Identity and Access Management (IAM), https://indigo-iam.github.
io/docs

[13] Nat Sakimura and John Bradley and Michael B. Jones, The OpenID Connect dis-
covery specification, https://openid.net/specs/openid-connect-core-1_0.
html (2014)

[14] M. Jones, A. Nadalin, B. Campbell, J. Bradley, C. Mortimore, OAuth 2.0 Token Ex-
change, RFC 8693 (2020), https://rfc-editor.org/rfc/rfc8693.txt

[15] W. Denniss, J. Bradley, M. Jones, H. Tschofenig, OAuth 2.0 Device Authorization
Grant, RFC 8628 (2019), https://rfc-editor.org/rfc/rfc8628.txt

[16] Aguado Corman, Asier, Fernández Rodríguez, Daniel, Georgiou, Maria V., Rische,

Julien, Schuszter, Ioan Cristian, Short, Hannah, Tedesco, Paolo, EPJ Web Conf. 245,

03012 (2020)

[17] RUCIO: Scientific Data Management, http://rucio.cern.ch/
[18] The CERN File Transfer Service, https://fts.web.cern.ch

[19] EUGridPMA Guidelines for Attribute Authority Service Provider Operations, https:
//www.eugridpma.org/guidelines/aaops/

[20] M. Jones, D. Hardt, The OAuth 2.0 Authorization Framework: Bearer Token Usage,

RFC 6750 (2012), https://rfc-editor.org/rfc/rfc6750.txt

