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Abstract. Programming for a diverse set of compute accelerators in addition
to the CPU is a challenge. Maintaining separate source code for each archi-
tecture would require lots of effort, and development of new algorithms would
be daunting if it had to be repeated many times. Fortunately there are sev-
eral portability technologies on the market such as Alpaka, Kokkos, and SYCL.
These technologies aim to improve the developer productivity by making it pos-
sible to use the same source code for many different architectures. In this paper
we use heterogeneous pixel reconstruction code from the CMS experiment at
the CERNL LHC as a realistic use case of a GPU-targeting HEP reconstruction
software, and report experience from prototyping a portable version of it us-
ing Kokkos. The development was done in a standalone program that attempts
to model many of the complexities of a HEP data processing framework such
as CMSSW. We also compare the achieved event processing throughput to the
original CUDA code and a CPU version of it.

1 Introduction1

Graphics processing units (GPUs) are being used in scientific computing because of their cost2

and power efficiency in solving data-parallel problems. Currently each GPU vendor provides3

their own APIs and programming models, that also differ from the programming of the CPU.4

There are, however, similarities in these GPU programming models, and in many cases the5

code for very core pieces of algorithms can be shared between the CPU and the GPUs, but6

the surrounding code arranging the data and calling the algorithms has to differ. In multi-7

million line code bases that have many custom algorithms and have to be maintained for tens8

of years, such duplication of code would require significant development and maintenance9

effort, and be error prone to maintain.10

Over several years, many technologies for fully portable code between CPUs and com-11

pute accelerators have emerged to ease the development and maintenance burden of het-12

erogeneous applications. These technologies include C++ libraries, such as Alpaka [1–13

3], Kokkos [4], and RAJA [5, 6]; SYCL [7] that can be implemented as libraries such as14

triSYCL [8] and hipSYCL [9] or as specific compilers such as ComputeCpp [10] by Code-15

play and DPC++ [11] by Intel; compiler pragma based solutions such as OpenMP [12] and16
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OpenACC [13]; or as standard C++ itself via parallel STL where the compiler is solely re-17

sponsible for generating necessary code for the offloading.18

In this work we explore the applicability of Kokkos for portability across CPU and GPUs19

using the Patatrack heterogeneous pixel reconstruction workflow [14] from the CMS exper-20

iment [15] at the CERN LHC [16] as a use case for a set of realistic HEP reconstruction21

algorithms that are able to effectively utilize a GPU. The work was done in the context of22

the DOE HEP Center for Computational Excellent (HEP-CCE). We look into not only the23

porting of the algorithms, but also the implications of integrating such an approach into a24

HEP data processing software.25

We mimic the setup of the CMS data processing software, CMSSW [17]. CMSSW is26

multi-threaded [18–20] using the Intel Threading Building Blocks (TBB) [21], and the cur-27

rent plan for direct same-node compute accelerators is to build code for all supported accel-28

erators in the same release build, express all possibilities in the configuration, and decide at29

runtime what code exactly to run based on hardware availability [22, 23]. We are looking for30

a single-source solution that would provide portability at least across CPU and GPUs, would31

be relatively easy to program with by HEP physicists, would provide adequate performance32

on all relevant platforms, and would require the least amount of change in the CMSSW build-33

ing and data processing model. It is unlikely that all these goals would be met by a single34

technology, and therefore it is necessary to learn the details in all these aspects to find the35

best compromise.36

This paper is organized as follows. The technical aspects of the Patatrack pixel recon-37

struction are described in Section 2. A brief introduction of Kokkos is given in Section 3.38

The experience of porting the original CUDA application into Kokkos is reported in Sec-39

tion 4. In Kokkos’ nomenclature a place that runs code is called an execution space. We40

have tested Serial, Threads, CUDA, and HIP execution spaces of Kokkos, and we focus on41

several aspects in how Kokkos would fit into a framework like CMSSW. We have measured42

the event processing throughput of the Kokkos version’s CPU and CUDA execution spaces,43

and compare those to direct CPU and CUDA implementations in Section 5. Conclusions are44

given in Section 6.45

2 Patatrack Heterogeneous Pixel Reconstruction46

The Patatrack pixel reconstruction pioneered offloading algorithms to NVIDIA GPUs with di-47

rect CUDA programming within CMSSW. The offloaded chain of reconstruction algorithms48

takes the raw data of the CMS pixel detector as an input, along with the beamspot parameters49

and necessary calibration data, and produces pixel tracks and vertices. CMSSW schedules50

algorithms as units that are called modules. The pixel reconstruction algorithms are orga-51

nized in five modules, depicted in Figure 1, that communicate the intermediate data in the52

GPU memory through the CMSSW event data. The BeamSpot module only transfers the53

beamspot data into the GPU. The Clusters module transfers the raw data to the GPU, un-54

packs them, calibrates the individual pixels, and clusters the pixels on each detector module.55

The RecHits module estimates the 3D position of each cluster forming hits. The Tracks mod-56

ule forms n-tuplets from the hits, and fits the hit n-tuplets to obtain track parameters. The57

Vertices module forms vertices from the pixel tracks. There are further modules to optionally58

transfer the tracks and vertices to the CPU, and to convert the Structure-of-Array (SoA) data59

structures to the data formats used by downstream algorithms in CMSSW, but those are not60

considered in this work and therefore not shown in Figure 1.61

In order to explore code portability technologies, the CUDA code of the Patatrack pixel62

reconstruction was extracted from CMSSW into a standalone program [24]. The separation63

from CMSSW gives us freedom to modify the compilers, build rules, external libraries, and64
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Figure 1. Directed acyclic graph of the framework modules in the Patatrack pixel reconstruction. The
arrows denote the data dependencies of the modules, e.g. RecHits module depends on data produced
by BeamSpot and Clusters modules. The Clusters module (red rectangle) is the only one that transfer
data from the device to the host and uses External Worker synchronization mechanism, while the other
modules (blue oval) do not.

code organization that would be more laborious to achieve in the full CMSSW software65

stack. The standalone program was crafted to mimic several aspects of CMSSW, including66

similar organization of code into shared libraries, plugin libraries that are loaded dynamically67

based on run-time information, and a simple framework that uses TBB for multi-threading.68

From the CMSSW framework concurrency features this simple framework includes only69

event loop based on TBB tasks, processing of multiple events concurrently, and processing70

of independent modules concurrently for the same event. There is only a single module71

type of each module having a separate instance for each concurrent event, and the External72

Worker concept [23] is included in order to use the CPU threads to do other work while the73

GPU is running the offloaded work. The CMSSW tools to use CUDA runtime directly in the74

modules [23] are also included.75

The standalone setup includes a binary data file that contains raw pixel detector data from76

1000 simulated top quark pair production events from CMS Open Data [25], with an average77

of 50 superimposed pileup collisions with a center-of-mass energy of 13 TeV, using design78

conditions corresponding to the 2018 CMS detector. All of the data, about 250 MB, are79

read into the memory at the job startup to exclude I/O from the throughput measurement.80

The necessary pixel detector conditions data are also stored in binary files, and read into the81

memory at the start of the job. The data processing throughput is calculated by measuring82

the time spent in the event processing, and dividing the number of processed events with83

that time. For each event, the object holding the raw data for that event is copied once from84

the aforementioned memory buffer to another object owned by the event data structure. The85

event processing time includes the time taken by this copy operation.86

3 Kokkos87

Kokkos is a programming model and a C++ library for writing performance portable appli-88

cations. At the time of writing the latest version of Kokkos is 3.3.1, and it supports several89

execution spaces. An algorithm can be run serially on the host CPU via a host serial ex-90

ecution space, or it can be parallelized with one of two host parallel execution spaces that91

are OpenMP and (POSIX) Threads. An algorithm can also be offloaded to compute accel-92

erators with device parallel execution spaces. NVIDIA GPUs can be used with CUDA or93

HPX execution spaces, and AMD GPUs can be used with HIP execution space. There are94

also OpenMP-Target and SYCL 2020 execution spaces that can support various platforms95

depending on the underlying toolchain. Currently all other device parallel execution spaces96

than CUDA are experimental. In this work we have tested Serial, Threads, CUDA, and HIP97

execution spaces.98



// declarations of variables
constexpr uint32_t MaxNumModules;
constexpr uint32_t maxHitsInModule();
Kokkos::View<uint32_t const*, Kokkos::CudaSpace > cluStart;
Kokkos::View<uint32_t*, Kokkos::CudaSpace > moduleStart;

Kokkos::parallel_for(
Kokkos::RangePolicy <Kokkos::Cuda>(0, MaxNumModules)),
KOKKOS_LAMBDA(const int index) {
moduleStart(index + 1) = std::min(maxHitsInModule(), cluStart(index));

});

Figure 2. A simplified example of using RangePolicy policy with parallel_for. The initializa-
tion of the declared variables is omitted for brevity. In this example the execution and memory space
template argument are spelled out explicitly. If the compile-time defaults for those suffice, the explicit
template arguments can be left out. Corresponding CUDA program is shown in Figure 3.

Kokkos makes use of a runtime library. The library can have the Serial, one host parallel,99

and one device parallel execution space enabled at the same time, and this set is chosen at the100

library build configuration time. In addition, at least for CUDA execution space, one library101

can support only GPUs that have the same major compute capability number. For example,102

one library can support Volta (compute capability 7.0) and Turing (7.5) GPUs, but not Volta103

and Pascal (6.0) GPUs. In the code the execution space to be used can be chosen at compile104

time with template arguments. If the execution space is not specified explicitly, the most105

advanced execution space available in the library is used, i.e. device parallel execution space106

is preferred over host parallel execution space, which is preferred over the Serial execution107

space. Currently Kokkos supports only one device per process.108

Kokkos provides high-level interface for parallel operations. These include109

parallel_for for a for-loop of independent iterations, parallel_scan for a prefix scan,110

and parallel_reduce for a reduction. Parallel operations can be nested with some restric-111

tions. The details of the iteration are controlled with a policy. A RangePolicy can be used112

for a 1-dimensional range where all elements of the range can be processed independently.113

An example of parallel_for with RangePolicy is shown in Figure 2 and a corresponding114

CUDA version in Figure 3. An MDRangePolicy extendes the concept of the 1-dimensional115

RangePolicy to many, up to 6, dimensions. A TeamPolicy introduces a league of teams116

that consist of threads1. Threads in a team can use a common scratch memory space, and can117

synchronize within the team with a barrier. In addition, Kokkos has some support for tasks118

and graphs, that are not explored in this work.119

As well as parallel operations, Kokkos provides a datastructure for multi-dimensional ar-120

ray, Kokkos::View. It is reference counted and behaves like std::shared_ptr, and can121

be passed to device functions by value. A major feature of the Kokkos::View is that its122

memory layout can be controlled with template arguments, and the default layout depends on123

the memory space. In addition, intents for the memory can be expressed with additional tem-124

plate arguments, for example specifying random-access constant data enables seamless use125

of CUDA texture caches. Data transfers between the host and the device are done explicitly.126

1The league corresponds to grid in CUDA, and team corresponds to block.



// declarations of used variables
constexpr uint32_t MaxNumModules;
constexpr uint32_t maxHitsInModule();

__global__
void fillHitsModuleStart(uint32_t const* cluStart, uint32_t* moduleStart) {
for(int i = threadIdx.x, iend = MaxNumModules; i < iend; i += blockDim.x) {
moduleStart[i + 1] = std::min(maxHitsInModule(), cluStart[i]);

}
}

uint32_t const* cluStart_;
uint32_t* moduleStart_;
fillHitsModuleStart <<<1, 1024>>>(cluStart_ , moduleStart_);

Figure 3. CUDA version of the simplified example expressed in Kokkos in Figure 2. The initialization
of the declared variables is omitted for brevity.

4 Porting experience127

4.1 Impact on building128

The current plan to support compute accelerators in CMSSW software stack is to build code129

for all supported accelerators, and choose the exact version to be run at runtime [22]. The130

various constraints of the Kokkos runtime library, described in Section 3, make it challenging131

to deploy in this manner. A single runtime library supporting only one device parallel exe-132

cution space, and only one CUDA major architecture or CPU vector architecture, would, in133

this plan, imply the need to build many versions of the runtime library. The correct version134

would have to be loaded dynamically based on the available hardware. In this work we used135

exactly one runtime library at a time.136

Every source file that includes any Kokkos header must be built with a compiler that is137

capable of compiling the code for all the enabled execution spaces, even if the source file138

would not use any Kokkos functionality. For example, if the Kokkos runtime library was139

built with CUDA execution space enabled, all source files including Kokkos headers must be140

compiled with a CUDA capable compiler.141

Kokkos provides an integration with the CMake build system. In this work, however, we142

used CMake only to build the Kokkos runtime library itself, and we used a plain Makefile to143

build the application code. We did this because CMSSW uses the SCRAM build system [26],144

and therefore we’d have to understand the exact build rules in order to implement those for145

SCRAM.146

The inability of nvcc to link device code from shared objects imposed severe constraints147

on how the Kokkos runtime library had to be built. We were able to use the runtime library148

built as a dynamic library with RangePolicy, but with the first use of TeamPolicy that149

approach lead to link errors from nvcc. The only build setup we managed to get to work was150

to build the Kokkos runtime library as a static library without support for relocatable device151

code, but with position-independent code for the host (-fPIC) to be able to link the static152

library with dynamic libraries of the application. This setup implies that CUDA separate153

compilation model can not be used, and therefore each source file must contain all device154

code called from that file, either directly or via including other files. Also, CUDA dynamic155

parallelism can not be used.156

With the HIP execuion space we were able to use a dynamic Kokkos runtime library, and157

in fact were not able to get a static build to work with the HIP compiler.158



4.2 Impact on code159

As mentioned in Section 3, the Kokkos execution space is chosen at compile time. A choice160

done at runtime would be a much better fit in the current plans of using compute accelerators161

in CMSSW. We implemented the capability of choosing the execution space at runtime by162

building each source file containing Kokkos code once for each execution space and using163

namespaces to guarantee different symbols for each execution space.164

Conversion of CUDA kernel calls to Kokkos parallel operations was mostly straightfor-165

ward. Kokkos provides a parallel scan and sort, and therefore we decided to use those instead166

of trying to port the implementations of scan and radix sort device functions in the direct167

CUDA version. The code uses team-wide scan, but before version 3.3, Kokkos provided only168

league-wide scan. Before updating to Kokkos 3.3 we used the league-wide scan with two ad-169

ditional kernels to post-process the league-wide result to be equivalent to a team-wide scan.170

Kokkos’ parallel sort function can be called only from the host code, which meant that we171

had to split all the CUDA kernels that called the device-side sort function into two kernels,172

and call the Kokkos’ host-side sort function in between. Finding out the proper and efficient173

way to transform the CUDA code to use the Kokkos’ scan and sort APIs was the most time174

consuming single effort.175

For hierarchical parallelism, or thread teams, we found that the number of threads in a176

team is not exactly portable. The Serial execution space requires it to be exactly one, Threads177

execution space can use at most the number of CPU threads, and CUDA execution space has178

the same limitations as CUDA itself. This disparity can be largely mitigated by specifying179

the number of threads as Kokkos::AUTO(), that leaves the decision of the number of threads180

to Kokkos.181

We found Kokkos::View to be useful by providing a unified interface for memory allo-182

cation, and smart pointer semantics for managing the ownership of the memory block. Also183

the ability to avoid an additional memory allocation in code that transfers data from host to184

device for CPU-only execution spaces is a plus. The more advanced features like multiple185

dimensions and the layout control are not needed in this code, where nearly all arrays have186

only one dimension. The only exception is the track covariance matrix, but we did not try187

to transform the Eigen-based implementation in the original CUDA into multidimensional188

Kokkos::View. In this code a SoA abstraction would be much more useful than multi-189

dimensional array, and we do not see how Kokkos::View would help in crafting SoA data190

structures.191

In the first Kokkos version we found that about 80 % overall kernel runtime was spent192

in Kokkos::View initialization. In this code the first operation for all device memory is193

a write either by a memory copy from the host memory, or by a computation done in a194

kernel. Therefore all the initialization done by default is unnecessary, and avoiding that with195

Kokkos::ViewAllocateWithoutInitializing argument to Kokkos::View constructor196

improved the event processing throughput by almost a factor of 3.197

At the time of writing, we have not been able to successfully run the full application with198

the HIP execution space. A test application that uses the same build and dynamic library199

infrastructure works well, but is not complex-enough to give meaningful insights into the200

performance.201

Furthermore, we have not yet managed to run the application with multiple concurrent202

events with Serial or CUDA execution spaces. The Threads execution space explicitly pre-203

vents calls from more than one thread, even if the calls would come at different times. Despite204

of the Threads execution space being uninteresting to be used in the context of CMSSW, we205

have included it as a comparison point in the performance measurements in Section 5 to show206

how a parallelization strategy different from concurrent events would perform.207



5 Performance comparison208

The performance tests were done on GPU nodes of the Cori supercomputer at the National209

Energy Research Scientific Computing Center (NERSC). A Cori GPU node has two sockets210

with Intel Xeon Gold 6148 ("Skylake") processors, each with 20 cores and 2 threads per core,211

and eight NVIDIA V100 GPUs. For this work we used only one CPU socket, to avoid the212

impact of non-uniform memory access (NUMA), and one GPU. In all tests the threads were213

pinned to a single socket. Each job was run for approximately 5 minutes, processing the set214

of 1000 individual events for an integer number of times, and repeated 8 times on random215

nodes of the GPU cluster. The code was compiled with GCC 8.3.0, and nvcc from CUDA216

11.1.217

In order to minimize the impact of the CPU frequency scaling the CPU programs were218

tested by running another program on the background with as many threads as needed to fill219

all the 40 hardware threads of the socket. Table 1 shows the throughput of the Kokkos ver-220

sion with Serial and Threads execution spaces, and of the direct CPU version with 1 and 40221

threads. The Kokkos version processes one event at a time, and with the Threads execution222

space each Kokkos parallel operation is parallelized with the same number of threads. The223

direct CPU version, on the other hand, is parallelized by processing multiple events concur-224

rently, one event per thread. While comparing the multi-threaded throughput of these two225

approaches is not exactly fair, it does show what can be achieved with a single process using226

the different approaches.227

The results in Table 1 show that the intra-event parallelization scales poorly, whereas par-228

allelizing over events gives much better throughput and scales well. We have not concluded229

yet why the direct CPU version gives 1.5 times better throughput than the Kokkos version230

with Serial execution space.231

The programs using CUDA were tested without any background activity on the CPU.232

Table 2 shows the throughput of the Kokkos version with CUDA execution space, and of233

the direct CUDA version. The direct CUDA version can process data from multiple events234

concurrent with CUDA streams, and this approach helps to get 2.5 times higher throughput235

from the V100 GPU than when processing one event at a time. With a single event in flight,236

the memory pool, based on the CachingDeviceAllocator of the CUB [27] library, helps237

to increase the throughput by 4.5 times compared to using raw CUDA memory allocations.238

Table 1. Comparison of the event processing throughput between the Kokkos version of the program
using Serial and Threads execution spaces and the CPU version implemented from the original CUDA

version through a simple translation header. In all cases all the threads were pinned to a single CPU
socket (Intel Xeon Gold 6148) that has 20 cores and 2 threads per core. Each test ran about 5 minutes,
and CPU-heavy threads from a background process were used to fill all the 40 hardware threads of the
socket. The work in the CPU version is parallelized by processing as many events concurrently as the
number of threads the job uses without any intra-event parallelization, whereas in the Kokkos version
there is only one event in flight, and all parallelization is within the data of that event. For the Kokkos
version with Threads execution space the maximum throughput from a scan from 1 to 20 threads is

reported. The reported uncertainty corresponds to sample standard deviation of 8 trials.

Test case Throughput (events/s)
CPU version, 1 thread 13.5 ± 0.2
Kokkos version, Serial execution space 8.5 ± 0.2
CPU version, 40 threads 539 ± 9
Kokkos version, Threads execution space, peak (18 threads) 28 ± 1



Table 2. Comparison of the event processing throughput between the Kokkos version of the program
using CUDA execution space and the original CUDA version. In all cases the CPU threads were

pinned to a single CPU socket, and used one NVIDIA V100 GPU. Each test ran about 5 minutes, and
the machine was free from other activity. The CUDA version can process data from multiple events
concurrently using many CPU threads and CUDA streams, and uses a memory pool to amortize the

cost of raw CUDA memory allocations. The maximum throughput from a scan from 1 to 20
concurrent events is reported for the CUDA version. In order to compare to the current state of the

Kokkos version, the CUDA version was tested also with 1 concurrent event and disabling the use of
the memory pool. The reported uncertainty corresponds to sample standard deviation of 8 trials.

Test case Throughput (events/s)
CUDA version, peak (9 concurrent events and CPU threads) 1840 ± 20
CUDA version, 1 concurrent event 720 ± 20
CUDA version, 1 concurrent event, memory pool disabled 159 ± 1
Kokkos version, CUDA execution space 115.7 ± 0.3

The Kokkos version with the CUDA execution space reaches about 70 % of the through-239

put of the direct CUDA version when run on a single concurrent event and disabling the use240

of the memory pool. Profiling indicates that various overheads e.g. in the Kokkos::View241

are the main cause for the performance difference. From Table 2 it is also clear that the kind242

of data processing done in this application benefits greatly from a memory pool, and from243

processing multiple events concurrently.244

6 Conclusions245

We have ported the Patatrack heterogeneous pixel reconstruction code from CUDA to246

Kokkos. In our experience Kokkos provides an API that is at a higher level than CUDA,247

and would be easier to develop new algorithms by physicists that are not necessarily experts248

in programming. We have achieved almost full portability between CPU, CUDA, and HIP,249

even if work still continues to understand runtime failures of the HIP execution space version250

of the code. This analysis shows that Kokkos can give 70 % of native CUDA performance in251

a simplified setup without either a memory pool or concurrent events. If similar performance252

proportion can be achieved also in a more realistic setup, it may be worth using a portable253

framework to reduce person power in maintaining a code base despite the loss of compute254

performance.255

Our impression is that Kokkos would work well for a project that compiles the code256

separately for each target architecture, does not rely much on shared libraries, uses CMake as257

the build system, and does not rely on concurrent work outside of Kokkos. CMSSW doing258

all these in the opposite way implies that integrating the current version of Kokkos into the259

current data processing model of CMSSW would be challenging to do without sacrificing260

application performance. It is not, however, clear to us at this time to what extent these261

challenges are caused by design choices in Kokkos, or by the nature of the portability problem262

itself.263

More work is needed to complete the study with Kokkos. In addition, comparisons to264

other portability technologies are planned within the HEP-CCE.265
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