FERMILAB-SLIDES-20-121-E

Fermilab

Design of a reconfigurable autoencoder algorithm for detector front-end ASICs

Christian Herwig November 6, 2020 IEEE Nuclear Science Symposium

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Motivation

- Detectors are becoming increasingly segmented
 - Response to more complex events (e.g. 'pileup' @LHC)
- Trigger challenge: how to manage trigger readout rates, while also benefitting from fine segmentation?
 - The key bottleneck is on-detector data reduction
- Traditionally, detector-specific ASICs simply "sum or sort", leaving the intensive processing to off-detector electronics
 - Meanwhile off-detector logic has become increasingly complex (tracking, clustering, event reco. on FPGAs)
- More computationally intensive on-detector processing may open avenues for enhanced trigger performance

Outline

- This talk presents a Neural Network (NN) autoencoder for front-end data compression on an ASIC, based on the CMS High-Granularity Endcap Calorimeter (HGCal).
- Our design seeks to:
 - enable more complex compression algorithms, with the potential to improve physics performance
 - customize the compression algorithm for individual sensors based on their location within the detector
 - *adapt* the compression algorithm for changing detector conditions (e.g. radiation damage, new beam configs)

*HGCal is used as a *demonstration* only

CMS High-granularity Calorimeter

Over 6M channels. 52 layers of Si+absorber.

Data generated @rates up to 380 Gbps/module (40Mhz BX rate)

Target trigger bandwidth: 2.56 to 6.4 Gbps/module

HGCal trigger path

→ 48 TCs / module
→ 48 TCs / module
After concentrator ASIC
Aggregate 12 sums (high-occ.)

Nov 4, 2020

HGCal trigger path

licon pads → 48 TCs / module After concentrator ASIC aggregate 3 sums (low-occ.)

Autoencoder for Front-End ASIC

HGCal trigger path

Idout requires sending 3x3 "trigger cells" (TCs) compression in ECON-T concentrator ASIC

Significant data reduction is required on-detector

This compression discards potentially powerful information from use in the trigger decision (Electron/photon identification, forward jets, and more)

licon pads → 48 TCs / module

After concentrator ASIC aggregate 3 sums (low-occ.)

Nov 4, 2020

Nov 4, 2020

C. Herwig — Autoencoder for Front-End ASIC

NN inputs and performance metric

- Data sets: training+validation samples of jets, electrons, and pileup, using HGCal modules across many layers
- Image similarity: Energy mover's distance, measuring the (energy)*(distance) cost of the "optimal transport"

NN model to ASIC implementation

- Training: QKeras enables quantization-aware training
 - "Imaging calorimeter" \rightarrow Convolutional NN (CNN)
- Model→RTL: Translated to HLS via hls4ml, enabling a tight optimization loop combined with CatapultHLS.
 - Hear more on hls4ml in NS-32 from D. Rankin
- Configurability: Completely update NN weights via I2C
 - Adapt to changing detector (e.g. radiation effects)
- For full implementation details, see <u>F. Fahim's talk in NS-24</u>

Design floor-plan

NN architecture exploration

- NN complexity may improve performance at the cost of a larger, more power-hungry design
 - Begin with simple CNN: 1 convolution + 1 dense layer
- Many possible variations were investigated:

'Pooling' convolution outputs:

Larger kernel size: $3x3 \rightarrow 5x5$

2d/3d convolution inputs:

NN architecture exploration

- NN complexity may improve performance at the cost of a larger, more power-hungry design
 - Begin with simple CNN: 1 convolution + 1 dense layer
- Many possible variations were investigated:

Model configuration	EMD	Parameters	Ops/eval
Nominal	2.06	2288	11152
Extra conv layer	2.14	+26%	+333%
Extra dense layer	2.00	+12%	+5%
5x5 kernel	1.86	+17%	+110%
2x2 pooling	1.57	-67%	-26%
2d inputs	1.47	+173%	+76%
Non-NN "Aggregation"	4.07 / 4.77	n/a	n/a
in 2x2 / 4x4 sums			

Optimizing bit-wise precisions (I)

48 **inputs** (trigger cells)

Input size reduced by normalizing to sensor maximum $(22 \rightarrow 8 \text{ bits}).$

8 Conv

filters

128

features

Output precision is set by occupancy. Algo is configurable from 48 to 144 bits.

16

outputs

Optimizing bit-wise precisions (II)

- Better to perform many low-precision calculations or fewer with higher precision?
 - Find optimal weight precision, while keeping area fixed.

Conclusions

- We have presented a NN encoder targeting the CMS HGCal concentrator ASIC
 - Our design profits from a tight optimization loop using quantized training and HLS allows for rapid iteration.
- Expanded on-detector processing may enhance the physics performance of off-detector trigger logic
 - Suggests means to exploit fine granularity in the trigger
- Reconfigurability is key to adapt to changing conditions and benefit from future model improvements.
- Beyond the HGCal, the design flow and optimization tools explored here might extend to Intelligent Detectors in data-rich environments across HEP experiment.

Thanks to all Collaborators!

M. Kwok

D. Noonan

L. Carloni, G. Di Guglielmo

‡Fermilab

F. Fahim^{*}, B. Hawks, CH, J. Hirschauer, N. Tran^{*}

Northwestern

Y. Luo, S. Ogrenci-Memik

Thanks also to the FNAL ECON team, CMS HGCal and Fast Machine Learning communities!

BROWN

FLORIDA TECH

Ш

Nov 4, 2020

*also Northwestern