

FERMILAB-SLIDES-20-107-SCD

28.8.2020.

Multi-Messenger Studies of Cosmic-Ray Acceleration in Galaxy Cluster Accretion Shocks

Aleksandra Ćiprijanović

Research Associate Fermi National Accelerator Laboratory, USA aleksand@fnal.gov

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

https://www.illustris-project.org

- Galaxy clusters largest gravitationally bound objects in the Universe.
- We can learn about them from simulation and multiwavelength observations.
- Galaxy formation and evolution, dark matter, gravitational lensing, big bang and the evolution of the cosmos, chemistry and ... particle acceleration.

Coma cluster

Over 1000 galaxies z=0.02 or 103 Mpc (336 Mly)

- Diffusive shock acceleration origin of highest energy particles in the Universe (far above what we can produce in accelerators on Earth).
- Recipe for particle acceleration ingredients: particles to accelerate, magnetic field, shock wave.
- Ingredients are present in different environments and scales - supernova remnants, Solar wind termination shock, ANGs, gamma-ray bursts ... and ... large scale gas accretion.

Particle acceleration - Cosmic Rays

How do we learn about the source using CRs?

5 Fermilab

What can background radiation tell us about galaxy clusters?

What can background radiation tell us about galaxy clusters?

Unresolved galaxy clusters contribute to diffuse background measurements on different wavelengths!

Gamma ring around Coma cluster [Keshet, U. et al. 2017, ApJ, 845, 24]

 $I_{\chi}(E) \propto cosmology x cosmic accretion rate x gas fraction x gamma-ray spectrum x normalisation$

- Differential intensity [cm⁻² s⁻¹ GeV⁻¹ sr⁻¹]
- Evolution of accretion shocks throughout the history of the Universe analytical models [Pavlidou & Fields 2006, ApJ, 642, 734]
- Cosmic accretion rate J or ρ_{sf}
- Unresolved galaxy clusters contribution to isotropic gamma-ray background (Fermi - LAT) + normalization using neutrinos (IceCube).

- Assumption 1: evolution of cosmic accretion rate directly translates to acceleration of CRs, and the resulting gamma-ray, neutrino, radio waves production etc.
- Assumption 2: gamma-rays are mostly from neutral pions spectral shape is broken power law

[Pfrommer & Enlin 2003, A&A, 407, 73]

[Ackermann et al. 2015, ApJ, 799, 86]

[Aartsen et al. 2014, PhRvL, 113, 101101] [Aartsen et al. 2015, PhRvD, 91, 022001]

- Neutrinos are produced via charged pion decay, while gamma rays have origin in neutral pion decay.
- Neutrino gamma rays link is simple:

$$\begin{split} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} &= \frac{2^{\alpha}}{6} \frac{\mathrm{d}N_{\nu}}{\mathrm{d}E_{\nu}}(E_0) \\ (\alpha = 2) \colon \quad E^2 \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}}(E) = 2E^2 \frac{\mathrm{d}N_{\nu_i}}{\mathrm{d}E_{\nu_i}}(E) |E = E_0 \end{split}$$

[Ahlers & Murase 2014, PhRvD, 90, 023010] [Chang & Wang 2014, ApJ, 793, 131]

- If accretion shocks are predominantly strong neutrinos are much more constraining.
- Accretion shocks can have possible non-negligible contribution to diffuse backgrounds.
- Upper limits to clusters + SF galaxies IGRB contribution > 30-40% (100 GeV) [Murase, Ahlers & Lacki 2013, PhRvD, 88, 121301]
- Less than 20% of the neutrinos could be from clusters?

[Fang & Olinto, 2016, ApJ, 828, 37] [Zandanel et al. 2015, A&A, 578, 32]

[Dobardžić & Prodanović 2014, ApJ, 782, 109] [Dobardžić & Prdanović 2015, ApJ, 806, 184]

Radio and tSZ

- CR electrons produce synchrotron radiation in radio domain.
- CRB spectrum is a power law with index -2.6.
- Regular galaxies, big radio galaxies, AGNs, quasars, galaxy clusters, radio supernovae, diffuse sources,dwarf galaxies, low surface brightness sources...
- Managing to explain only 67% CRB at 1.4 GHz. [Draper et al. 2011]
- We can use the same models as in case of gamma rays to get the contribution of galaxy clusters to the CRB.

🛟 Fermilab

Origin of high-energy CRs in galaxy clusters?

HADRONIC MODELS

$$p_{cr} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} + v_e \overline{v}_e + v_\mu + v_\mu$$

- CR accelerated in accretion shocks, AGNs....
- Power law spectrum.

REACCELERATION OF ELECTRONS

- Electrons that already exist in clusters with 0.1-10 GeV are accelerated above 10 GeV in turbulences during cluster interactions.
- But electrons lose energy fast and acceleration is not efficient.

Origin of high-energy CRs in galaxy clusters?

HADRONIC MODELS

$$p_{cr} + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} + v_e \overline{v}_e + v_\mu + v_\mu$$

- CR accelerated in accretion shocks, AGNs....
- Power law spectrum.

REACCELERATION OF ELECTRONS

- Electrons that already exist in clusters with 0.1-10 GeV are accelerated above 10 GeV in turbulences during cluster interactions.
- But electrons lose energy fast and acceleration is not efficient.

Radio and tSZ

A. Ciprijanovic | SPIG 2020

15

28/08/20

Radio spectrum from observations $L(v) = L_{1.4}(v/1.4GHz)^{-\alpha}$

0.4 - 1.4 GHz α = 1.2 [Farnsworth et al. 2013]

α = 1.8 [Feretti et al. 1997]

tSZ - location of the virial shock, current accretion rate $R_v = (2.93\pm0.05) \times R_{500}$ $J_0 = (1.4\pm0.4) \times 10^5 M_{sun} \text{ yr}^{-1}$

‡Fermilab

Contribution of unresolved galaxy clusters to CRB

• A2319 was observed et several frequencies. Different authors derive slightly different power law spectra for A2319.

[Farnsworth, D. et al. 2013, ApJ, 779, 189] [Feretti, L., Giovannini, G., Böhringer, H. 1997, NewA, 2, 501]

- At 1.4 GHz the possible contribution of galaxy clusters is less than around 1%, and in the 0.02-10 GHz, where CRB is measured, < 1-5%.
- If not all CR electrons located at the outskirts of the cluster are from virial shock than J₀ would be overestimated, but not for much since then we would overshoot the CRB at lowest frequencies.

Fermilab

Conclusion

- Galaxy clusters are probes of large scale particle acceleration.
- Acceleration of particle in accretion shocks is still not well understood.
- Only by leveraging multi-messenger studies we'll be able to better understand processes that lead to CR acceleration, their properties and influence on evolution of astrophysical objects.
- We need new and better observations, and to find more visible galaxy clusters in different observations.

Thank you!