The Future of the Fermilab Accelerator Division in 10 minutes

Athula Wickremasinghe
On behalf of the Accelerator Division at Fermilab
New Perspective 2020
21 July 2020

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Fermilab Accelerator Complex

Bird’s-eye view of Fermilab beams
List of Upgrades and Future Plans

- NuMI beamline upgrades for 1-MW beam operations
- Mu2e plans
- IOTA studies
- Artificial Intelligent and Machine Learning efforts
- Fermilab Robotics
Planing to upgrade the beamline components to reach 1-MW beam power
Gradually increase the beam power with faster cycle times

<table>
<thead>
<tr>
<th>2019 summer shutdown</th>
<th>2020 summer shutdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MW target installation</td>
<td>1 MW horn 1 installation</td>
</tr>
<tr>
<td>Target & Horn 1 RAW (Radioactive Water) upgrade</td>
<td>Stripline air diverter T-block</td>
</tr>
<tr>
<td>Target chase cooling / air upgrade</td>
<td>Target and horn 1 module drives</td>
</tr>
<tr>
<td>Target chase supplemental shielding</td>
<td>Hadron beam monitor & absorber</td>
</tr>
</tbody>
</table>
NuMI beamline Upgrades

We are getting ready to operate the NuMI beamline with 1-MW beam operations

1-MW horn 1 preparation is ongoing

1-MW NuMI target has been installed during the summer shutdown in 2019

Radioactive Water pump upgrades in 2019

Old hadron monitor will be replaced with a new hadron monitor in 2021
Mu2e beamline updates

Main Goal: The Mu2e experiment is looking for evidence that a muon can change into an electron and nothing else. This explains the Charged Lepton Flavor Violation (CLFV) in the Standard Model (SM) of particle physics.

- The Mu2e experiment is under construction at the Fermilab Muon Campus.
- The experiment will begin operations in 2022, and will require about 3 years of data-taking.
Mu2e beamline updates

There are future upgrades on building the apparatus. Stay tuned!

V907 is a vertical dipole
- pitched up to run muon beam to g-2
- pitched down to run protons to Mu2e
IOTA (Integrable Optics Test Accelerator)

The facility is dedicated to research and education in beam physics and accelerator technology

Research Staging:

Nonlinear Integrable Optics
- Phase I – Single-particle motion stability using electron beams
 - Run-1 2019, Run-2 2020
- Phase II – intense-beam studies with protons
 - 2021 and beyond

Optical Stochastic Cooling
- Without optical amplifier – Run-3 2020*(Delayed due to the covid19)
- With optical amplifier – 2022 and beyond

Reference:
AI / ML efforts

AD has started implementing AI technology to improve the accelerator system performance by considering following factors:

» Saving energy
» Identifying / predicting incidents
» Detecting anomaly
» Tuning beam parameters
» Optimizing beam quality
» Predicting beam parameters for QA

Example of predicting beam position: NuMI proton beam at the target
AI / ML efforts

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI for superconducting magnet quenching</td>
<td>Early determination of conditions for superconducting magnet quenching</td>
<td>Cristian Boffo, Vittorio Marinozzi, Stoyan Stoynev et al</td>
</tr>
<tr>
<td>The ACORN: Accelerator Controls Operations Research Network</td>
<td>Modernize the accelerator control system and replace end-of-life accelerator power supplies to enable future operations of the Fermilab Accelerator Complex</td>
<td>Erik Gottschalk and the AD Controls Department</td>
</tr>
<tr>
<td>Automated image categorization and data mining for AD e-Log</td>
<td>The Main Control Room's e-log will use ML to automatically categorize all existing and future image attachments, and make text in the images searchable</td>
<td>Kyle Hazelwood, Jason St. John</td>
</tr>
<tr>
<td>NuMI beamline and target ML</td>
<td>NuMI beamline monitoring system for QA with ML predictions on beam parameters, identifying and predicting incidents</td>
<td>Athula Wickremasinghe, Katsuya Yonehara</td>
</tr>
<tr>
<td>User Facility AI proposals</td>
<td>AD Accelerator energy conservation AI, Anomaly detection, Data mining</td>
<td>William Pellico, Jason St. John et al</td>
</tr>
<tr>
<td>Longitudinal Beam Tomography</td>
<td>Automatic disentangling of slip-stacked Main Injector bunches for precision characterization</td>
<td>Kyle J Hazelwood</td>
</tr>
<tr>
<td>PIP2IT adaptive beam current signal monitoring</td>
<td>Environment-aware ML to remove noise artifacts from beam current measurement devices in low- and medium-energy sections of test stand</td>
<td>Eduard Pozdeyev, Michelle Ibrahim and Pavlo Lyalyutskyy</td>
</tr>
</tbody>
</table>
Robotics

AD scientists and engineers are introducing robotics to minimize the radiation exposure.

RVR (Remote Viewing Robot)
360 and regular cameras, both with real-time image and video streaming to an iPad or phone.

Future Upgrades:
- Adding radiation detectors
- Sensors to automate the robot
- Robotic arms

Project Leader: Kris Anderson

5-Axis Robotic Arm
Designed to mount onto RVR for remote-control camera positioning
* Now in testing stage
Project Leader: Noah Curfman

Magnetic Field-Mapping System – NuMI Horn
Updating the motion-control system that moves the 3D hall probe along the NuMI horn’s center axis while the horn pulses
- Open-source code to control new motor drive
- Linear position sensors
- Data acquisition system

Project Leader: Adam Watts
Robotics

UIC – Visually Identifying Objects Using Machine Learning System

Use computer vision and ML to identify and locate bolts on a flange arbitrarily oriented in space

Status
- ML algorithm to detect bolts of various sizes has been created, tested, and evaluated
- Working on object detection script to use with a commercial 3D stereo camera

Project Leaders:
- Katsuya Yonehara, Patrick Hurh

UIC – Radiation Mapping UAV

Outfit a quadcopter to produce a 3D coordinate map integrated with radiation data

Status
- Drone has been assembled
- Integration of temperature sensor (prototype), camera and Geiger-Mueller tube in progress
- Software development for data process in initial stages

Project Leaders:
- Katsuya Yonehara
- Patrick Hurh

List of other projects / proposals:
- UIC – Radioactive Dust Collector - PL: Noah Curfman, Rob Ridgway
- Robot Inside LAr Detector - PL: Bill Pellico, Mayling, Wong-Squires, Sam Zeller
- NIU Exoskeleton Study - PL: Mayling Wong-Squires, Don Peterson (NIU), Simon Kudernatsch (NIU)
Thank you!
On behalf of the Accelerator Division

Thanking to AD colleagues for doing all activities even with COVID19 difficult time

Fermilab