

FERMILAB-SLIDES-20-023-ND

NEUTRINO INTERACTION MEASUREMENTS ON ARGON

Kirsty Duffy, Fermi National Accelerator Laboratory on behalf of the MicroBooNE Collaboration XXIX International Conference on Neutrino Physics 23rd June 2020

This document was prepared by MicroBooNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Run 3469 Event 53223, Oct

Cross-section measurements **on argon** are vital to reduce systematic uncertainties for the **SBN** program and **DUNE**

With low thresholds and 4π acceptance, Liquid Argon Time Projection Chambers (LArTPCs) are powerful detectors to study detailed final state topologies and quantitatively inform theoretical models

Expanded statistics, better detector understanding since Neutrino 2018

Are models able to describe v-Ar data?

Many measurements of v-Ar scattering

v_{μ} CC inclusive cross section

Single-differential cross section Phys. Rev. Lett. 108 161802 (2012) Updated single-differential cross section Phys. Rev. D 89, 112003 (2014)

V_{μ} exclusive channels

µBooNP Charged-particle multiplicity

Eur. Phys. J. C79, 248 (2019)

μBooNE V_u CCQE-like scattering Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 (submitted to PRL)

ArgoNeuT Ž

 V_{μ} and \overline{V}_{μ} CC2p production Phys. Rev. D 90, 012008 (2014)

Phys. Rev. D99, 091102(R) (2019)

 v_{μ} and \overline{v}_{μ} NC π^{0} production Phys. Rev. D 96, 012006 (2017)

Other measurements

3

 V_e and \overline{V}_e scattering (inclusive) arXiv:2004.01956[hep-ex]

MeV-scale physics Phys. Rev. D 99, 012002 (2019) **µBooNP** Double-differential cross section

Phys. Rev. Lett. 123, 131801 (2019) **µBooNP** Single-differential cross section with updated detector and interaction models MICROBOONE-NOTE-1069-PUB

ArgoNeuT

 v_{μ} and \overline{v}_{μ} CC π^{+} production Phys. Rev. D 98, 052002 (2018)

 v_{μ} and \overline{v}_{μ} Coherent CC π^{+} production Phys. Rev. Lett. 113, 261801 (2014)

 v_{μ} CC kaon production

MICROBOONE-NOTE-1071-PUB

 ν_{μ} NC Ip production

MICROBOONE-NOTE-1067-PUB

MeV-scale physics MICROBOONE-NOTE-1076-PUB

Limits on millicharged particles Phys. Rev. Lett. 124, 131801 (2020)

Kirsty Duffy

Many measurements of v-Ar scattering

v_{μ} CC inclusive cross section

Single-differential cross section Phys. Rev. Lett. 108 161802 (2012) Updated single-differential cross section Phys. Rev. D 89, 112003 (2014)

V_{μ} exclusive channels

µBooNP Charged-particle multiplicity

Eur. Phys. J. C79, 248 (2019)

μBooNE V_L CCQE-like scattering Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 (submitted to PRL)

ArgoNeuT Ž

 V_{μ} and \overline{V}_{μ} CC2p production Phys. Rev. D 90, 012008 (2014)

$\mu Boo NE \sim v_{\mu} CC \pi^{0}$ production

Phys. Rev. D99, 091102(R) (2019)

 v_{μ} and \overline{v}_{μ} NC π^{0} production Phys. Rev. D 96, 012006 (2017)

Other measurements

 V_e and \overline{V}_e scattering (inclusive)

arXiv:2004.01956[hep-ex]

MeV-scale physics Phys. Rev. D 99, 012002 (2019) **µBooNP** Double-differential cross section

Phys. Rev. Lett. 123, 131801 (2019) **µBooNP** Single-differential cross section with updated detector and interaction models MICROBOONE-NOTE-1069-PUB

ArgoNeuT

 v_{μ} and \overline{v}_{μ} CC π^{+} production

Phys. Rev. D 98, 052002 (2018)

 v_{μ} and \overline{v}_{μ} Coherent CC π^{+} production Phys. Rev. Lett. 113, 261801 (2014)

 v_{μ} CC kaon production

MICROBOONE-NOTE-1071-PUB

 $v_{\mu} NC Ip production$

MICROBOONE-NOTE-1067-PUB

MeV-scale physics

MICROBOONE-NOTE-1076-PUB

Limits on millicharged particles Phys. Rev. Lett. 124, 131801 (2020)

See also: "Searches for New Physics with MicroBooNE" by G. Karagiorgi, 2nd July

MicroBooNE: 170 ton LArTPC JINST 12 P02017 (2017)

- 3 planes of wires (vertical, +60°, -60°) with
 3mm spacing
- **32 PMTs** collect light from flash at time of interaction
- Sits in **two neutrino beams** at Fermilab: BNB (on-axis, $\langle E_{\nu\mu} \rangle = 800$ MeV) and NuMI (off-axis, $\langle E_{\nu e} \rangle = 650$ MeV)
- Stable detector operation since 2015:
 Iongest-running LArTPC to date
 - >95% DAQ uptime
 - 1.52x10²¹ POT collected in total (analyses shown here use subsets, not full POT)

 From December 2017: data with Cosmic Ray Tagger (CRT)

6

GETTING THE MOST OUT OF LARTPCs

- MicroBooNE Collaboration has made huge improvements in our understanding of the detector since Neutrino 2018
- Detailed understanding of detector is key to our R&D mission for future LArTPCs
- Improved signal processing (2D deconvolution) accounts for interfering wire signals on all three planes
- Tracking is hard when particles go parallel to wires. Precise calorimetry on all planes → 3D tracking → 4π particle identification

JINST 13 P07006 (2018)

L. Cooper-Troendle, poster 147, poster session 4 - H.Wei, poster 264, poster session 4

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

MICROBOONE-NOTE-1084-PUB

- Cosmic rejection power (without kinematic requirements) increased by factor of 8 compared to previous publications
- High efficiency: 80.4% for vµCC (87.6% for veCC)
- Increased statistics: 11.3k events, compared to 4.3k events in same data set for 2019 CC inclusive measurement

Simultaneously match all clusters in event to light → find cluster consistent with neutrino-induced flash

8

Many measurements of v-Ar scattering

v_{μ} CC inclusive cross section

Single-differential cross section Phys. Rev. Lett. 108 161802 (2012) Updated single-differential cross section Phys. Rev. D 89, 112003 (2014)

V_{μ} exclusive channels

µBooNP Charged-particle multiplicity

Eur. Phys. J. C79, 248 (2019)

μBooNE V_u CCQE-like scattering Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 (submitted to PRL)

ArgoNeuT Ž

 V_{μ} and \overline{V}_{μ} CC2p production

Phys. Rev. D 90, 012008 (2014)

Phys. Rev. D99, 091102(R) (2019)

 v_{μ} and \overline{v}_{μ} NC π^{0} production Phys. Rev. D 96, 012006 (2017)

Other measurements

9

 V_e and \overline{V}_e production (inclusive) arXiv:2004.01956[hep-ex]

MeV-scale physics Phys. Rev. D 99, 012002 (2019) **µBooNP** Double-differential cross section

Phys. Rev. Lett. 123, 131801 (2019) **µBooNP** Single-differential cross section with updated detector and interaction models MICROBOONE-NOTE-1069-PUB

 v_{μ} and \overline{v}_{μ} CC π^{+} production Phys. Rev. D 98, 052002 (2018)

ArgoNeuT

 v_{μ} and \overline{v}_{μ} Coherent CC π^{+} production Phys. Rev. Lett. 113, 261801 (2014)

 V_{μ} CC kaon production

MICROBOONE-NOTE-1071-PUB

 ν_{μ} NC Ip production

MICROBOONE-NOTE-1067-PUB

MeV-scale physics MICROBOONE-NOTE-1076-PUB

Limits on millicharged particles Phys. Rev. Lett. 124, 131801 (2020)

- Selection presented at Neutrino 2018 → new since then: double-differential cross section measurement
- First time double-differential cross section has been measured on argon: compared to worldwide interaction generators
- All models overpredict in high-momentum, forward going bins: interesting physics in this region!

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

Previous Measurement

PRL 123, 131801 (2019)

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

IMPROVED DETECTOR UNDERSTANDING ENABLES BETTER MEASUREMENTS

IMPROVED INTERACTION MODELING ENABLES BETTER MEASUREMENTS

DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

uncertainties

Source	Uncertainty	
	Previous Analysis	This Analysis
Detector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	N/A
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%
	•	

MICROBOONE-NOTE-1075-PUB MICROBOONE-NOTE-1069-PUB

DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

Drastically reduced systematic uncertainties MICROBOONE-NOTE-1075-PUB MICROBOONE-NOTE-1069-PUB

Largest reduction in uncertainties comes from improved detector understanding

Source	Uncertainty	
	Previous Analysis	This Analysis
Oetector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	N/A
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

DRASTICALLY REDUCED SYSTEMATIC UNCERTAINTIES

MICROBOONE-NOTE-1075-PUB MICROBOONE-NOTE-1069-PUB

Instead of cosmic ray simulation, now use overlay: simulated neutrino interactions overlaid on real cosmic data → no uncertainty in cosmic ray model

Source	Uncertainty	
	Previous Analysis	This Analysis
Detector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	N/A
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

IMPROVED CROSS SECTION MEASUREMENT

_ MICROBOONE-NOTE-1074-PUB _ MICROBOONE-NOTE-1075-PUB _ MICROBOONE-NOTE-1069-PUB

Single-differential cross section as a function of reconstructed muon momentum and angle → very good agreement with previous measurement, but reduced uncertainties

Future development towards **double-differential** cross-section measurement

Many measurements of v-Ar scattering

v_{μ} CC inclusive cross section

Single-differential cross section Phys. Rev. Lett. 108 161802 (2012) Updated single-differential cross section Phys. Rev. D 89, 112003 (2014)

V_{μ} exclusive channels

µBooNP Charged-particle multiplicity Eur. Phys. J. C79, 248 (2019)

μBooNE V_L CCQE-like scattering Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 (submitted to PRL)

ArgoNeuT Ž

 V_{μ} and \overline{V}_{μ} CC2p production Phys. Rev. D 90, 012008 (2014)

$\mu Boo NE \sim v_{\mu} CC \pi^{0}$ production

Phys. Rev. D99, 091102(R) (2019)

 v_{μ} and \overline{v}_{μ} NC π^{0} production Phys. Rev. D 96, 012006 (2017)

Other measurements

 V_e and \overline{V}_e scattering (inclusive)

arXiv:2004.01956[hep-ex]

MeV-scale physics Phys. Rev. D 99, 012002 (2019)

µBooNP Double-differential cross section Phys. Rev. Lett. 123, 131801 (2019) **µBooNP** Single-differential cross section with updated detector and interaction models

MICROBOONE-NOTE-1069-PUB

 v_{μ} and \overline{v}_{μ} CC π^{+} production Phys. Rev. D 98, 052002 (2018)

 v_{μ} and \overline{v}_{μ} Coherent CC π^{+} production Phys. Rev. Lett. 113, 261801 (2014)

 v_{μ} CC kaon production

MICROBOONE-NOTE-1071-PUB

 $\nu_{\mu} NC Ip production$

MICROBOONE-NOTE-1067-PUB

MeV-scale physics

MICROBOONE-NOTE-1076-PUB

Limits on millicharged particles Phys. Rev. Lett. 124, 131801 (2020)

D. Cianci, poster 283, poster session 3

- Low thresholds → probe 2p2h scattering and nuclear processes
 Phys. Rev. D 98, 032003 (2018)
- MicroBooNE: 300 MeV/c
- ArgoNeuT: 200 MeV/c Phys. Rev. D 90, 012008 (2014)
- T2K: 500 MeV/c
- MINERvA: 450 MeV/c Phys. Rev. D 99, 012004 (2019)
- Protons identified by Bragg peak in last 30 cm of track

A. Papadopoulou, poster 145, poster session 2

CCQE-LIKE CROSS SECTION Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 [hep-ex] (2020)

First extraction of ν_μ-40Ar CCQElike cross section using a surface LArTPC

Signal: I muon (pµ>100 MeV/c), I proton (p_p>300 MeV/c) with extra cuts on coplanarity and transverse imbalance to enhance CCQE contribution → ~84% CCIp0π (~81% CCQE) purity, ~20% efficiency

Good agreement with models, except at very **forward muon scattering** angles → low momentum transfer (similar effects previously seen in carbon scattering)

A. Papadopoulou, poster 145, poster session 2

CCQE-LIKE CROSS SECTION Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 [hep-ex] (2020)

momentum threshold 300 MeV/c

Across all kinematic variables, agreement is improved if forward muon angles are excluded

L. Ren, poster 292, poster session 4

MICROBOONE-NOTE-1067-PUB

NCIP CROSS SECTION

- Measure cross section for neutral-current single proton production
- Measurement includes events with Q² ~ 2m_pT_p = 0.1 GeV², significantly lower than previous measurements
- Future development towards a measurement of NC elastic
 scattering cross section → measure strange component of neutral-current axial form factor

$CC \pi^{\pm} PRODUCTION$

Phys. Rev. D 98, 052002 (2018)

LArIAT, ProtoDUNEs

- Highly relevant for DUNE: dominant interaction mode at DUNE energies and less wellunderstood than CCQE-like scattering
- ArgoNeuT v_{μ} and \overline{v}_{μ} CCI π^{\pm} measurement:
 - Select two-track events: one matched to a track in MINOS (muon candidate)
 - Select CCI π[±] events using dE/dx of pion candidate, event topology
- MicroBooNE measurement in progress: development work focused on muon/pion separation and pion reinteractions

ArgoNeuT ν_{μ}

More information: "Searches for New Physics with MicroBooNE", 2nd July

LARTPC STRENGTH: ELECTRONS AND PHOTONS S. Berkman, Poster 410, Poster Session 2

- Electrons and photons produce showers in LArTPCs \rightarrow important to understand for V_e appearance searches in SBN and DUNE
- π⁰ interactions are a background (although often can be distinguished by energy deposition) can also be used to verify shower reconstruction by reconstructing π⁰ mass peak

R. Fitzpatrick, Poster 139, Poster Session 4

FIRST MEASUREMENT OF ELECTRON NEUTRINO CROSS SECTION arXiv:2004.01956 [hep-ex]

- Flux-averaged V_e+V_e cross section measured by ArgoNeuT
- Purity 78.9%, efficiency 10.5% → 13 events selected
- First measurement of its kind in an energy regime highly relevant for DUNE, demonstration of fully-automated reconstruction and analysis
- MicroBooNE Ve measurements in BNB see
 "Searches for New Physics with MicroBooNE", 2nd July
- V_e+V_e cross-section measurements in progress with NuMI beam: purity 40%, efficiency 9%
 →~ 00 events in 5x10¹⁹ POT

A. Fiorentini, poster 369, poster session 3

I. Lepetic, Poster 88, Poster Session I I. Lepetic, Poster 89, Poster Session 2 A. Bhat, Poster 4, Poster Session 4

PUSHING THE LIMITS

Phys. Rev. Lett. 124, 131801 (2020) Phys. Rev. D 99, 012002 (2019) MICROBOONE-NOTE-1076-PUB

- CC kaon production: rare process, few existing measurements, background for proton decay p→ K⁺V searches in DUNE
- Selection developed with 68% purity and 7% efficiency → expect 12 candidate interactions in 1.3×10²¹ POT
 MICROBOONE-NOTE-1071-PUB

- Reconstruct sub-MeV particles: photons from nucleus de-excitation or neutron reinteractions
- Demonstration of low-threshold LArTPC capabilities
- Used in ArgoNeuT to place constraints on BSM physics (millicharged particles)

Many measurements of v-Ar scattering

v_{μ} CC inclusive cross section

Single-differential cross section Phys. Rev. Lett. 108 161802 (2012) Updated single-differential cross section Phys. Rev. D 89, 112003 (2014)

V_{μ} exclusive channels

µBooNP Charged-particle multiplicity

Eur. Phys. J. C79, 248 (2019)

μBooNE V_u CCQE-like scattering Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 (submitted to PRL)

ArgoNeuT Ž

 V_{μ} and \overline{V}_{μ} CC2p production Phys. Rev. D 90, 012008 (2014)

Phys. Rev. D99, 091102(R) (2019)

 v_{μ} and \overline{v}_{μ} NC π^{0} production Phys. Rev. D 96, 012006 (2017)

Other measurements

 V_e and \overline{V}_e scattering (inclusive) arXiv:2004.01956[hep-ex]

MeV-scale physics Phys. Rev. D 99, 012002 (2019)

MICROBOONE-NOTE-1069-PUB

 v_{μ} and \overline{v}_{μ} CC π^{+} production Phys. Rev. D 98, 052002 (2018)

 v_{μ} and \overline{v}_{μ} Coherent CC π^{+} production Phys. Rev. Lett. 113, 261801 (2014)

 V_{μ} CC kaon production

MICROBOONE-NOTE-1071-PUB

 ν_{μ} NC Ip production

MICROBOONE-NOTE-1067-PUB

MeV-scale physics MICROBOONE-NOTE-1076-PUB

Limits on millicharged particles Phys. Rev. Lett. 124, 131801 (2020)

FUTURE PROSPECTS

This talk has focused on current results from MicroBooNE and recent results from ArgoNeuT

FUTURE PROSPECTS

This talk has focused on current results from MicroBooNE and recent results from ArgoNeuT

MicroBooNE recent improvements in detector understanding directly results in **reduced systematic uncertainties** on CC inclusive measurement
→ will form the basis of new, **more precise measurements** of neutrino interactions on argon in the near future

Additional measurements in progress: $v_{\mu} CC\pi^{0}$, $v_{\mu} CCI\pi^{+}$, $v_{\mu} CC-Coherent \pi^{+}$, $v_{\mu} CC0\pi Np$, $v_{\mu} CC0\pi 2p$, $v_{\mu} CC0\pi STV$, $v_{\mu} CC0\pi C0\pi Np$, $v_{\mu} CC0\pi 2p$, $v_{\mu} CC0\pi 1p$

FUTURE PROSPECTS

- This talk has focused on current results from MicroBooNE and recent results from ArgoNeuT
 Absorption Candidate (π -> 3p)
- Exclusive measurements will be informed by test-beam measurements of charged particles in LArTPCs (e.g. interactions of pions, protons) by LARIAT and ProtoDUNES
- In the future, look out for more measurements from upcoming experiments:
 SBND, ICARUS, and eventually DUNE-ND

ICARUS will start taking data very soon SBND will collect 7m V-Ar interactions in 3 years See talk: "ICARUS and the Fermilab Short-Baseline Neutrino Program" on 2nd July

LArIAT Data

SUMMARY

- Cross-section measurements on argon are vital for the success of the SBN program and eventually DUNE
- Huge progress over the past two years since Neutrino 2018
 → measurements with low-energy protons, π⁰s, V_es and more
 are extremely valuable
- LArTPC technology has demonstrated 4π acceptance and ability to measure sub-MeV energies — we are already able to make precise, accurate measurements of exclusive final states
- First time we can confront models tuned to carbon with high-statistics argon data: seem to do well with the data now available
- More (and more precise) measurements expected in the future

 -> stronger tests of our models

-Cross-section Posters and Supporting Documents

MicroBooNE

- ν_µ CCQE-like measurement: A. Papadopoulou, Poster 145, Poster Session 2
 Cosmic rejection: Eur. Phys. J. C 79 673 (2019), Cross-section measurement: arXiv:2006.00108 [hep-ex] (2020)
- Updated ν_μ CC-inclusive measurement: MICROBOONE-NOTE-1069-PUB
- ν_μ NCIp measurement: L. Ren, Poster 292, Poster Session 4 MICROBOONE-NOTE-1067-PUB
- ν_μ CCKaon selection: A. Fiorentini, Poster 369, Poster Session 3 MICROBOONE-NOTE-1071-PUB
- MeV-scale Physics: A. Bhat, Poster 4, Poster Session 4 MICROBOONE-NOTE-1076-PUB
- Interaction model and uncertainties: MICROBOONE-NOTE-1074-PUB
- Detector uncertainties: L. Yates, Poster 176, Poster Session | MICROBOONE-NOTE-1075-PUB
- ArgoNeuT
 - V_e+V_e CC inclusive measurement: **R. Fitzpatrick, Poster 139, Poster Session 4** arXiv:2004.01956 [hep-ex]
 - Improved limits on millicharged particles: I. Lepetic, Poster 89, Poster Session 2 Phys. Rev. Lett. 124, 131801 (2020)

MICROBOONE PUBLICATIONS

* cross-section specific

- MicroBooNE collaboration, "First Measurement of Differential Charged Current Quasi-Elastic-Like Muon Neutrino Argon Scattering Cross Sections with the MicroBooNE Detector", arXiv:2006.00108, submitted to PRL
- MicroBooNE collaboration, "Vertex-Finding and Reconstruction of Contained Two-track Neutrino Events in the MicroBooNE Detector", arXiv: 2002.09375, submitted to JINST
- MicroBooNE collaboration, "Search for heavy neutral leptons decaying into muon-pion pairs in the MicroBooNE detector", arXiv:1911.10545, Phys. Rev. D101, 052001 (2020), Fermilab News article (02/13/20)
- MicroBooNE collaboration, "Reconstruction and Measurement of O(100) MeV Electromagnetic Activity from π0 → γ γ Decays in the MicroBooNE LAr TPC", arXiv:1910.02166, JINST 15, P02007 (2020)
- MicroBooNE collaboration, "A Method to Determine the Electric Field of Liquid Argon Time Projection Chambers Using a UV Laser System and its Application in MicroBooNE", arXiv:1910.01430, submitted to JINST
- MicroBooNE collaboration, "Calibration of the Charge and Energy Response of the MicroBooNE Liquid Argon Time Projection Chamber Using Muons and Protons". arXiv:1907.11736. JINST 15. P03022 (2020)
- MicroBooNE collaboration, "First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at Enu ~0.8 GeV with the MicroBooNE Detector", arXiv:1905.09694, Phys. Rev. Lett. 123, 131801 (2019), Fermilab News article (12/13/19)
- MicroBooNE collaboration, "Design and Construction of the MicroBooNE Cosmic Ray Tagger System", arXiv:1901.02862, JINST 14, P04004 (2019)
- MicroBooNE collaboration, "Rejecting Cosmic Background for Exclusive Neutrino Interaction Studies with Liquid Argon TPCs: A Case Study with the MicroBooNE Detector", arXiv:1812.05679, accepted by Eur. J. Phys. C.
- MicroBooNE collaboration, "First Measurement of Muon Neutrino Charged Current Neutral Pion Production on Argon with the MicroBooNE LAr TPC", arXiv:1811.02700, Phys. Rev. D99, 091102(R) (2019)
- MicroBooNE collaboration, "A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber", arXiv:1808.07269, Phys. Rev. D99, 092001 (2019), Fermilab News article (09/12/18), DOE HEP Science Highlight (01/30/19)

- MicroBooNE collaboration, "Comparison of Muon-Neutrino-Argon Multiplicity Distributions Observed by MicroBooNE to GENIE Model Predictions", arXiv:1805.06887, Eur. Phys. J. C79, 248 (2019), Fermilab News article (05/31/18)
- MicroBooNE collaboration, "Ionization Electron Signal Processing in Single Phase LAr TPCs II: Data/Simulation Comparison and Performance in MicroBooNE", arXiv:1804.02583, JINST 13, P07007 (2018), Fermilab News article (07/09/18), DOE HEP Science Highlight (05/21/19)
- MicroBooNE collaboration, "Ionization Electron Signal Processing in Single Phase LAr TPCs I: Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation", arXiv:1802.08709, JINST 13, P07006 (2018), Fermilab News article (07/09/18), DOE HEP Science Highlight (05/21/19)
- MicroBooNE collaboration, "The Pandora Multi-Algorithm Approach to Automated Pattern Recognition of Cosmic Ray Muon and Neutrino Events in the MicroBooNE Detector", arXiv:1708.03135, Eur. Phys. J. C78, 1, 82 (2018)
- MicroBooNE collaboration, "Measurement of Cosmic Ray Reconstruction Efficiencies in the MicroBooNE LAr TPC Using a Small External Cosmic Ray Counter", arXiv:1707.09903, JINST 12, P12030 (2017)
- MicroBooNE collaboration, "Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC", arXiv:1705.07341, JINST 12, P08003 (2017), Fermilab News article (07/05/17), DOE HEP Science Highlight (05/16/18)
- MicroBooNE collaboration, "Michel Electron Reconstruction Using Cosmic Ray Data from the MicroBooNE LAr TPC", arXiv:1704.02927, JINST 12, P09014 (2017)
- MicroBooNE collaboration, "Determination of Muon Momentum in the MicroBooNE LAr TPC Using an Improved Model of Multiple Coulomb Scattering", arXiv:1703.06187, JINST 12 P10010 (2017)
- MicroBooNE collaboration, "Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber", arXiv: 1611.05531, JINST 12, P03011 (2017)
- MicroBooNE collaboration, "Design and Construction of the MicroBooNE Detector", arXiv:1612.05824, JINST 12, P02017 (2017)

ARGONEUT PUBLICATIONS

* cross-section specific

- ArgoNeuT collaboration, "First Measurement of Electron Neutrino Scattering Cross Section on Argon", arXiv:2004.01956[hep-ex]
- ArgoNeuT collaboration, "Improved Limits on Millicharged Particles Using the ArgoNeuT Experiment at Fermilab", arXiv:1911.07996[hep-ex], Phys. Rev. Lett. 124, 131801 (2020)
- ArgoNeuT collaboration, "Demonstration of MeV-Scale Physics in Liquid Argon Time Projection Chambers Using ArgoNeuT", arXiv: 1810.06502[hep-ex], Phys. Rev. D 99, 012002 (2019)
- ArgoNeuT collaboration, "First measurement of the cross section for v_μ and v
 _μ induced single charged pion production on argon using ArgoNeuT", arXiv:1804.10294[hep-ex], Phys. Rev. D 98, 052002 (2018)
- ArgoNeuT collaboration, "First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber", arXiv: 1610.04102[hep-ex], Phys. Rev. D 95, 072005 (2017)
- ArgoNeuT collaboration, "Measurement of v_µ and v̄_µ neutral current π⁰→γγ production in the ArgoNeuT detector", arXiv:1511.00941[hep-ex], Phys. Rev. D 96, 012006 (2017)
- ArgoNeu1 collaboration, "First Measurement of Neutrino and Antineutrino Coherent Charged Pion Production on Argon", arXiv:1408.0598[hep-ex], Phys. Rev. Lett. 113, 261801 (2014), Phys. Rev. Lett. 114, 039901 (erratum) (2015)
- ArgoNeuT collaboration, "Detection of Back-to-Back Proton Pairs in Charged-Current Neutrino Interactions with the ArgoNeuT Detector in the NuMI Low Energy Beam Line", arXiv:1405.4261[nucl-ex], Phys. Rev. D 90, 012008 (2014)
- ArgoNeuT collaboration, "Measurements of Inclusive Muon Neutrino and Antineutrino Charged Current Differential Cross Sections on Argon in the NuMI Antineutrino Beam", arXiv:1404.4809[hep-ex], Phys. Rev. D 89, 112003 (2014)

- ArgoNeuT collaboration, "A Study of Electron Recombination Using Highly Ionizing Particles in the ArgoNeuT Liquid Argon TPC", arXiv: 1306.1712[physics.ins-det], JINST 8 P08005 (2013)
- ArgoNeuT collaboration, "Analysis of a Large Sample of Neutrino-Induced Muons with the ArgoNeuT Detector", arXiv:1205.6702[physics.ins-det], JINST 7 P10020 (2012)
- ArgoNeuT collaboration, "First Measurements of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon", arXiv: 1111.0103[hep-ex], Phys. Rev. Lett. 108 161802 (2012)
- ArgoNeuT collaboration, "The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab", arxiv:1205.6747[physics.ins-det], JINST 7 P10019 (2012)

MICROBOONE DATA COLLECTION

Very stable detector operation, smooth and steady data taking, efficient data acquisition

µBooNE

COSMIC RAY TAGGER (CRT)

JINST 14 P04004 (2019)

MICROBOONE-NOTE-1069-PUB

ELECTRON-PHOTON DISCRIMINATION

MicroBooNE V_e Selection: presented at NuInt 2018

MICROBOONE-NOTE-1054-PUB

Current: with improved detector understanding

MICROBOONE-NOTE-1085-PUB

CC INCLUSIVE CROSS SECTION MEASUREMENT

Selection presented at Neutrino 2018

- Topological and optical information → reject background events from cosmic rays
- Energy deposition profile: select candidate muon

Largest ever sample of neutrino interactions on argon

Signal (CC-inclusive) events: 50.4%

Largest background: cosmic rays (29%)

 \rightarrow directly measured with beam-off data

New since Neutrino 2018: double-differential cross section measurement

H H H

Kirsty Duffy 43

Kirsty Duffy 44

PREVIOUS CC-INCLUSIVE CROSS SECTION: I D MEASUREMENT

Single-differential cross section measurement presented at Neutrino 2018: PRL 123, 131801 (2019)

UPDATED CC-INCLUSIVE SELECTION: SYSTEMATIC UNCERTAINTIES

Drastically reduced systematic uncertainties MICROBOONE-NOTE-1075-PUB MICROBOONE-NOTE-1069-PUB

CRT better able to reject interactions in surrounding material ("dirt") → reduced systematic uncertainty

Source	Uncertainty	
	Previous Analysis	This Analysis
Detector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	N/A
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

UPDATED CC-INCLUSIVE SELECTION

MICROBOONE-NOTE-1069-PUB

Cosmic rejection:

- Topological and optical information
- Veto events with CRT hits when all tracks are contained
- Cut on CRT hit-reconstructed vertex z position if tracks are uncontained

Muon selection

- Longest track > 20 cm is muon candidate
- Topology must be track-like
- Energy deposition must be inconsistent with a proton

UPDATED CC-INCLUSIVE SELECTION EFFICIENCY

MICROBOONE-NOTE-1069-PUB

- Good efficiency to select
 QuasiElastic, Meson Exchange
 Current, RESonant pion
 production, and Deep Inelastic
 Scattering interaction channels
- → truly **inclusive** selection
 - Efficiency limited at low neutrino energy/muon momentum due to muon candidate track length > 20 cm requirement

UPDATED CC-INCLUSIVE CROSS SECTION: SYSTEMATIC UNCERTAINTIES

MICROBOONE-NOTE-1069-PUB

Improved detector understanding → **drastically reduced** systematic uncertainties from detector modeling

UPDATED CC-INCLUSIVE CROSS SECTION: REDUCED PHASE SPACE

- MICROBOONE-NOTE-1069-PUB
- Efficiency is low for p_{μ} <150 MeV due to >20 cm track length requirement
- Main result includes all CC interactions in signal definition (no requirement on muon momentum)
- As a check: re-extract cross section with signal requirement p_µ>150 MeV/c (note: statistical uncertainties only)

UPDATED CC-INCLUSIVE CROSS SECTION: REDUCED PHASE SPACE

- MICROBOONE-NOTE-1069-PUB
- Efficiency is low for p_{μ} <150 MeV due to >20 cm track length requirement
- Main result includes all CC interactions in signal definition (no requirement on muon momentum)
- As a check: re-extract cross section with signal requirement p_µ>150 MeV/c (note: statistical uncertainties only)

CCPIO SELECTIONS

Low-energy photons appear more track like

- → low reconstruction efficiency
- \rightarrow requiring that we reconstruct both π^0 photons limits statistics

Two-shower selection

 \rightarrow validate π^0 hypothesis by invariant diphoton mass

Single shower selection

 → validate photon hypothesis
 → maximize statistics for cross section measurement

Phys. Rev. D 99, 091102(R) (2019)

$CC \pi^0 PRODUCTION$

Phys. Rev. D 99, 091102(R) (2019)

A. Papadopolou, poster 145, poster session 2

CCQE-LIKE CROSS SECTION

Eur. Phys. J. C 79 673 (2019) arXiv:2006.00108 [hep-ex] (2020)

• First extraction of v_{μ} -⁴⁰Ar CCQE-like cross section using a surface LArTPC

- Important channel for low-energy excess search (and other LArTPC oscillation analyses)
- Signal: I muon (>100 MeV/c), I proton (300 MeV/c)

Selection:

- Two tracks
- Energy deposition consistent with one muon and one proton
- Tracks are not collinear
- Tracks are coplanar
- Low vertex activity
- Low transverse momentum

CCQE CROSS SECTION: A. Papadopolou, poster 145, poster session 2 MODEL COMPARISONS

- Nominal: GENIE v2.12.2. Bodek-Ritchie Fermi Gas, Llewellyn-Smith CCQE model, empirical MEC model, Rein-Sehgal resonant and coherent scattering model, "hA" FSI model
- hA2015: GENIE v2.12.2 with a more recent "hA2015" FSI model
- Alternative: GENIE v2.12.10. Local Fermi Gas, Nieves CCQE model, Nieves MEC model, KLN-BS resonant and BS coherent scattering models, and hA2015 FSI model
- v3.0.6: GENIE v3.0.6. Same model configuration as Alternative model, with hA2018 FSI model

L. Ren, poster 292, poster session 4

NCIP SELECTION

MICROBOONE-NOTE-1067-PUB

Ø.05

0.1

0.15

0.2 0.25 0.3 0.35 0.4 0.45 0.5 Reconstructed kinetic energy (GeV)

- Single isolated track
- Must be contained within fiducial volume
- Length I.2 200 cm
- Must be forward-going (cosθ > 0 w.r.t neutrino beam direction)
- Deposited energy profile consistent with a proton
- Multi-class gradient-boosted decision tree used to further reduce background from cosmic interactions

NCIP CROSS SECTION MEASUREMENT

Signal: I isolated proton

Selection: 42.1% efficiency, 29.8% purity

Largest backgrounds :

- Proton from charged-current interaction (other particles missed by reconstruction)
- Proton from non-Ip neutral-current interaction (other particles missed by reconstruction)

MICROBOONE-NOTE-1067-PUB

L. Ren, poster 292,

poster session 4

CC KAON PRODUCTION SELECTION

A. Fiorentini, poster

369, poster session 3

MICROBOONE-NOTE-1071-PUB

- CC kaon production: rare process, few existing measurements, background for proton decay $p \rightarrow K^+ v$ searches in DUNE
- Selection developed on simulation: look for K⁺ track from neutrino interaction and µ⁺ from K⁺ decay
- 67.7% purity and 7% efficiency → expect to select 12 candidate interactions in 1.3×10²¹ POT MicroBooNE data set
- Aim: cross section measurement and study of K⁺ in LArTPC

A. Fiorentini, poster 369, poster session 3

CC KAON SELECTION

MICROBOONE-NOTE-1071-PUB

- Reject cosmic rays based on topology and optical information
- Must have one track with energy deposition consistent with a muon
- K⁺ candidate selected based on energy deposition: consistent with a kaon and inconsistent with a proton
- Must have exactly one µ⁺ candidate: must start within 5cm of end of kaon track, track length >30cm, energy deposition inconsistent with a proton

ARGONEUT ELECTRON NEUTRINO SELECTION

- Focus on reconstructing leading shower in neutrino interaction
- Reject events with a muon reconstructed in downstream MINOS detector
- Reject events with through-going muons
- Reconstructed shower must be forward-going: cos(θ) >0.05 w.r.t. beam direction
- Shower must start within 2cm of reconstructed vertex
- Electron candidate selected based on topology and charge of entire candidate shower using a BDT: BDT score >0.9

R. Fitzpatrick, Poster 139, Poster Session 4

arXiv:2004.01956 [hep-ex]

ARGONEUT CHARGED PION PRODUCTION MEASUREMENT

- ArgoNEUT: CCIπ[±] production Phys. Rev. D 98, 052002 (2018)
- Select two-track events: one matched to a track in MINOS (muon candidate)

ARGONEUT CHARGED PION PRODUCTION MEASUREMENT v_{μ} CCI π^{\pm} ArgoNeuT measurement $T = \int_{10}^{10} \frac{1}{10} \frac{1}{$

ArgoNeuT

ARGONEUT CHARGED PION PRODUCTION MEASUREMENT ν_μ CCIπ[±] ArgoNeuT measurement

Resonant pion production model

- GENIE, NEUT: Rein-Sehgal
- NuWro: $\Delta(1232)$ resonance only

Nonresonant model

- NEUT: Rein-Sehgal
- GENIE, NuWro: Bodek-Yang above resonance region, extrapolate smoothly to converge with resonance model at lower W

FSI

- NEUT, NuWro: Salcedo-Oset cascade
- GENIE: effective cascade model
- GiBUU: quantum-kinetic transport theory

All predictions within 2σ of measurement, except GENIE \overline{v} (3.3 σ)

ArgoNeuT

MICROBOONE v_e CC INCLUSIVE SELECTION

Ve selection efficiency: 9%, purity: 40%

MICROBOONE $v_e + \overline{v}_e$ MEASUREMENTS

MICROBOONE-NOTE-1054-PUB

- Select $v_e + \overline{v}_e$ **CC** inclusive interactions by looking for single Entries [A.U.] shower Purity 40%, efficiency 9% →~100 0.08 events in 5x10¹⁹ POT 0.06 Future plans: 0.04 • $V_e + \overline{V}_e$ **CC inclusive** flux integrated cross section 0.02 measurement
 - $v_e + \overline{v}_e$ **CC** inclusive differential cross-section measurement
 - Exclusive $V_e + \overline{V}_e CClelp$ differential cross-section measurement

CHARGED PARTICLE MULTIPLICITY

Eur. Phys. J. C79, 248 (2019)

- Both ArgoNeuT and MicroBooNE have demonstrated ability to reconstruct energy depositions from sub-MeV particles (ArgoNeuT: 300 keV, MicroBooNE: 100 keV)
- Demonstration of low-threshold LArTPC capabilities: important for measurements of cross sections, especially solar neutrinos, supernova neutrinos, and neutrinos from µDAR
- BSM physics search for millicharged particles in ArgoNeuT set leading limits (poster by I. Lepetic)

