Measuring the anomalous precession frequency ω_α for the Muon $g - 2$ Experiment

Jason Hempstead
APS April Meeting 2020

20 April 2020

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Measuring $a_\mu = g^{-2}/2$

- Spin precesses relative to momentum in magnetic field

\[\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -\frac{e}{m} \left[a_\mu \vec{B} - \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] \]

\[\approx 0 \] for motion transverse to magnetic field

\[\approx 0 \] for muons at “magic” momentum 3.1 GeV / c or $\gamma = 29.3$
Decay energy as a proxy for spin direction

- In the muon’s (μ^+) rest frame, higher energy decay positrons were more likely emitted in the direction of the spin.
- Boost to the lab frame, we’ll see an oscillation in number of high-energy positron events as the spin precesses relative to momentum.
Using calorimeters to measure spin precession

• 24 calorimeters equally spaced around the inner radius of the storage region
 – Each is a 6 high by 9 wide array of PbF$_2$ crystals
 – Large-area SiPMs to read out Cherenkov light
• Laser distribution system to track and correct for gain fluctuations
• ω_a is imprinted on the arrival time and energy of decay positrons
Positrons shower when striking a calorimeter

- Signals are digitized at ~800 mega-samples per second (actual clock frequency is hardware blinded)
- Reconstruction to find time and energy of impact
 - Two methods
 - Global fitting: fit a block of channels simultaneously
 - Local fitting: fit individual channels, cluster fit results

![Sample graph showing time and energy of impact](image)
Fit function

- A typical histogram + fit
 - Cut on positron energy
 - Fit software blinded with offset ΔR
 - Unique to each analyzer

$$N(t) = N_0 \exp\left(-t/\gamma \tau_\mu\right) \left[1 + A \cos \left(\omega_{a,\text{ref}} \left(1 + \Delta R + R \cdot 10^{-6}\right) t - \phi\right)\right]$$
Pileup

- 2 classes of correction methods:
 - Macro
 - Take an \((E, t)\) histogram and determine the probability of multiple hits happening within the detector dead time
 - Micro
 - For each event, determine the chance it could have been involved in a pileup event
 - "Shadow window"

Energy spectra before and after pileup correction

Examples of pileup
Extending fit function for other effects

- “Lost muons” change $N \rightarrow N(t)$
 - Muons that escape storage region without decaying
 - See H. Binney’s talk in this session

- Beam motion inside storage region
 - Relative acceptance changes
 - N, A, ϕ oscillate at beam frequencies

\[
N_{CBO}(t) = 1 + A_{CBO,N} \cdot e^{-t/\tau_{CBO}} \cos(\omega_{CBO} \cdot t - \phi_{CBO,N})
\]

\[
N_{VW}(t) = 1 + A_{VW,N} \cdot e^{-t/\tau_{VW}} \cos(\omega_{VW} \cdot t - \phi_{VW,N})
\]

\[
\phi(t) = \phi_0 + A_{CBO,\phi} \cdot e^{-t/\tau_{CBO}} \cos(\omega_{CBO} \cdot t - \phi_{CBO,\phi})
\]

\[
A(t) = A_0 \left[1 + A_{CBO,A} \cdot e^{-t/\tau_{CBO}} \cos(\omega_{CBO} \cdot t - \phi_{CBO,A}) \right]
\]

Modified fit function:
Fits for Run 1 (2018) datasets

1a

\[\chi^2/\text{ndf}: 3955/4137 \]

precision: 1.33 ppm

1b

\[\chi^2/\text{ndf}: 3988/4133 \]

precision: 1.13 ppm

1c

\[\chi^2/\text{ndf}: 4055/4133 \]

precision: 0.91 ppm

1d

\[\chi^2/\text{ndf}: 4213/4134 \]

precision: 0.64 ppm
Different histogramming methods

- **Threshold (already shown)**
 - Optimize energy cut to minimize error on fitted ω_a

- **Asymmetry**
 - Weight each energy bin by the measured asymmetry: $1 + A\cos(\omega_a t)$
 - Improved statistical precision

- **Ratio**
 - Split data into 4 subsets; shift 2 of them by $\pm T_a/2$
 - Combine and take a ratio of subsets in a way that reduces to only sinusoid
 - Less sensitive to slow effects

- **Energy-integrated**
 - See L. Kelton’s talk in this session
Run 1 (2018)

- 6 independent analyses
 - 2 reconstruction methods
 - 3 pileup correction algorithms
 - 4 fitting methods
- Relative unblinding was encouraging
- Total statistical error for Run 1 is ~450 ppb
 - Still working through the systematic error, expected to be below statistical error
- Method paper underway
A glimpse at a subset of Run 2 (2019)

- Total Run 2 is about twice the data as Run 1
 - More consistent operating conditions

- Questions?
Backup slides
Ratio method

• Split data randomly into 4 subgroups: a_i
 – Shift 2 in time

\[
\begin{align*}
 u_+ (t) &= a_1 \left(t + T_a/2\right) & U(t) &= u_+ (t) + u_- (t) \\
 u_- (t) &= a_2 \left(t - T_a/2\right) & V(t) &= v_1 (t) + v_2 (t) \\
 v_1 (t) &= a_3 (t) & R(t) &= \frac{V(t) - U(t)}{V(t) + U(t)} \\
 v_2 (t) &= a_4 (t)
\end{align*}
\]

\[R(t) \approx A \cos(\omega_a t + \phi)\]
Detector gain

• Measured by laser system
 – Hours
 • Temperature-based drifts
 – Microseconds
 • Large “splash” of particles at beam injection
 • Capacitance drop causes reduced effective overvoltage
 – Nanoseconds
 • Multiple pulses close together
 • Pixel recovery
Consistency checks: energy bins
Consistency checks: calorimeter

1a
1b
1c
1d
Consistency checks: start time scan

A-Weighted

ΔR

Δt [μs]

start time [μs]

35 40 45 50 55 60 65 70

60-Hour High Kick 9 Day End Game Average

35 40 45 50 55 60 65 70

60-Hour High Kick 9 Day End Game Average
Run 1 fit residuals FFTs

• T-method