

Measuring the anomalous precession frequency ω_a for the Muon g-2 Experiment

Jason Hempstead

APS April Meeting 2020

20 April 2020 This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Measuring $a_{\mu} = \frac{g^{-2}}{2}$

• Spin precesses relative to momentum in magnetic field

Decay energy as a proxy for spin direction

- In the muon's (μ^+) rest frame, higher energy decay positrons were more likely emitted in the direction of the spin
- Boost to the lab frame, we'll see an oscillation in number of high-energy positron events as the spin precesses relative to momentum

Using calorimeters to measure spin precession

- 24 calorimeters equally spaced around the inner radius of the storage region
 - Each is a 6 high by 9 wide array of PbF₂ crystals
 - Large-area SiPMs to read out Cherenkov light
- Laser distribution system to track and correct for gain fluctuations
- ω_a is imprinted on the arrival time and energy of decay positrons

Positrons shower when striking a calorimeter

- Signals are digitized at ~800 mega-samples per second (actual clock frequency is hardware blinded)
- Reconstruction to find time and energy of impact
 - Two methods
 - Global fitting: fit a block of channels simultaneously
 - Local fitting: fit individual channels, cluster fit results

Fit function

- A typical histogram + fit
 - Cut on positron energy
 - Fit software blinded with offset ΔR

‡ Fermilab

Pileup

- 2 classes of correction methods:
 - Macro
 - Take an (*E*, *t*) histogram and determine the probability of multiple hits happening within the detector dead time
 - Micro
 - For each event, determine the chance it could have been involved in a pileup event
 - "Shadow window"

Extending fit function for other effects

- "Lost muons" change $N \rightarrow N(t)$
 - Muons that escape storage region without decaying
 - See H. Binney's talk in this session
- Beam motion inside storage region
 - Relative acceptance changes

8

 $-N, A, \phi$ oscillate at beam frequencies

 $N_{CBO}(t) = 1 + A_{CBO,N} \cdot e^{-t/\tau_{CBO}} \cos(\omega_{CBO} \cdot t - \phi_{CBO,N})$ $N_{VW}(t) = 1 + A_{VW,N} \cdot e^{-t/\tau_{VW}} \cos(\omega_{VW} \cdot t - \phi_{VW,N})$ $\phi(t) = \phi_0 + A_{CBO,\phi} \cdot e^{-t/\tau_{CBO}} \cos(\omega_{CBO} \cdot t - \phi_{CBO,\phi})$ $A(t) = A_0 \left[1 + A_{CBO,A} \cdot e^{-t/\tau_{CBO}} \cos(\omega_{CBO} \cdot t - \phi_{CBO,A}) \right]$

20 April 2020 Hempstead | APS April Meeting 2020

FFT of residuals from 5-parameter fit <u>×</u>10³ ft mag 5000 4000 3000 2000 1000 0.5 1.5 2 2.5 з CRCf [MHz]

Modified fit function:

μ

UNIVERSITY of WASHINGTON

20 April 2020 Hempstead | APS April Meeting 2020

9

Different histogramming methods

- Threshold (already shown)
 - Optimize energy cut to minimize error on fitted ω_a

N / 149.2 ns

10

Asymmetry

- Weight each energy bin by the measured asymmetry: $1 + A\cos(\omega_a t)$
- Improved statistical precision
- Ratio
 - Split data into 4 subsets; shift 2 of them by ${}^{\pm T_a}/_2$
 - Combine and take a ratio of subsets in a way
 that reduces to only sinusoid
 - Less sensitive to slow effects
- Energy-integrated
 - See L. Kelton's talk in this session

Run 1 (2018)

- 6 independent analyses
 - 2 reconstruction methods
 - 3 pileup correction algorithms
 - 4 fitting methods
- Relative unblinding was encouraging
- Total statistical error for Run 1 is ~450 ppb
 - Still working through the systematic error, expected to be below statistical error
- Method paper underway

A glimpse at a subset of Run 2 (2019)

μ

‡ Fermilab

- Total Run 2 is about twice the data as Run 1
 - More consistent operating conditions

Backup slides

Ratio method

- Split data randomly into 4 subgroups: a_i - Shift 2 in time $u_+(t) = a_1(t + T_a/2)$ $U(t) = u_+(t) + u_-(t)$ $u_-(t) = a_2(t - T_a/2)$ $V(t) = v_1(t) + v_2(t)$

Detector gain

μ^š m**g-2**

- Measured by laser system
 - Hours
 - Temperature-based drifts
 - Microseconds
 - Large "splash" of particles at beam injection
 - Capacitance drop causes reduced effective overvoltage
 - Nanoseconds
 - Multiple pulses close together
 - Pixel recovery

Consistency checks: energy bins

Consistency checks: calorimeter

🛟 Fermilab

Consistency checks: start time scan

18 20 April 2020 Hempstead I APS April Meeting 2020

Run 1 fit residuals FFTs

μ **ğ**-2 m

• T-method

