Toward the Frontiers of Particle Physics with the Muon g-2 Experiment

Eremey Valetov

Shanghai Jiao Tong University | Michigan State University On behalf of the Muon g-2 Collaboration

Office of Science

This document was prepared by Muon g-2 collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Introduction

Muon Anomalous Magnetic Dipole Moment (a_{μ})

$$\mu = g \frac{e}{2m} s$$

Classical:
$$g = 1$$

Dirac Equation:
$$g = 2$$

 $i \left(\partial_{\mu} - i e A_{\mu}(x) \right) \gamma^{\mu} \psi(x) = m \psi(x)$

Contributions to a_{μ} **in the Standard Model**

F. Jegerlehner, arXiv:1804.07409 [hep-ph] (2018).

Recent Advances in the Theory

Improvements in $a_{\mu}^{\text{Had, LO VP}}$ (KNT18)

Direct energy scan: CMD-3, SND, KEDR Radiative return: BABAR, KLOE/KLOE-2, BESIII

A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 97, no. 11, 114025 (2018).

Calculation of $a_{\mu}^{\text{Had, VP}}$ and $a_{\mu}^{\text{Had, LbL}}$ using Lattice QCD

- From first principles
- Can be used to improve R-ratio results
- Several collaborations working on this
 - including RBC/UKQCD and Mainz
- Precision needs improvement; calculations ongoing

Jegerlehner 2017 Teubner et al 2018 Davier et al 2019 RBC/UKQCD 2018 RBC/UKQCD 2018 BMW 2017 CLS Mainz 2019 FermiLab/HPQCD/MILC 2019 ETMC 2019 PACS 2019

V. Gülpers, arXiv:2001.11898 [hep-lat] (2020).

Beyond–Standard Model Possibilities

In case of a Beyond-SM a_{μ} , some of the possible contributors to the respective discrepancy would be:

- Dark matter
- Supersymmetry (SUSY)
- Extra dimensions
- Additional Higgs Bosons
 [S. Iguro *et al.*, arXiv:1907.09845 [hep-ph]]

Muon g-2 window in the search for inelastic dark matter (iDM) :

(*a*_D: analogue of the fine structure constant for a new *U*(1) gauge symmetry *U*(1)_D. Δ: mass splitting $\Delta = \frac{(m_2 - m_1)}{m_1}$.)

NA62 Experiment at CERN is ongoing and may yield iDM results.

See Y.-D. Tsai et al., arXiv:1908.07525 [hep-ph] (2019).

The Muon g-2 Experiment at Fermilab (E989)

Improvements over the Muon g-2 Experiment at BNL (E821):

- More muons, delivered more often to the storage ring
- Improved muon storage function
- Better beam dynamics modeling
- Higher field uniformity and better field monitoring
- Reduced spin precession frequency systematics

The Great Move

The Muon g-2 Experiment at Fermilab (E989)

Technical design projection:

- ➤ ~20x more data
- ~3x reduction of systematic errors

The Muon g-2 Storage Ring

If g=2, the angle between the magnetic moment and the momentum does not change. If g>2, the angle between the magnetic moment and the momentum changes linearly.

Measurement of Muon Spin Precession

Straw trackers: reconstruct decay e^+ trajectories Calorimeters: detect decay e^+ energy and arrival times

The Wiggle Plot

 $\cos(\omega_a t + \phi) = \cos(\omega_a t + \phi_0 + \phi_1 t) =$

 $= \cos((\omega_a + \phi_1)t + \phi_0)$

 ω_a : muon anomalous precession frequency

Calculation of a_{μ} from Muon and Proton Spin Precession

Magnetic Field Shimming

- Passive shimming is performed by inserting tiny metal pieces to increase the field.
- ➤ Magnetic field was made 3x more uniform than at BNL.
- > Active shimming is also used.

Fixed probes on vacuum chambers

Trolley with matrix of 17 NMR probes

ω_a Systematics

Table 5.2: The largest systematic uncertainties for the final E821 ω_a analysis and proposed upgrade actions and projected future uncertainties for data analyzed using the T method. The relevant Chapters and Sections are given where specific topics are discussed in detail.

Category	E821	E989 Improvement Plans	Goal	Chapter &
	[ppb]		[ppb]	Section
Gain changes	120	Better laser calibration		
		low-energy threshold	20	16.3.1
Pileup	80	Low-energy samples recorded		
	\square	calorimeter segmentation	40	16.3.2
Lost muons	(90)	Better collimation in ring	(20)	13.10
CBO	70	Higher n value (frequency)		
		Better match of beamline to ring	< 30	13.9
E and pitch	50	Improved tracker		
		Precise storage ring simulations	30	4.4
Total	180	Quadrature sum	70	

We will consider the lost muons systematic error in some detail later in this presentation.

ω_p Systematics

Table 5.3: Systematic uncertainties estimated for the magnetic field, ω_p , measurement. The final E821 values are given for reference, and the proposed upgrade actions are projected. Note, several items involve ongoing R&D, while others have dependencies on the uniformity of the final shimmed field, which cannot be known accurately at this time. The relevant Chapters and Sections are given where specific topics are discussed in detail.

Category	E821	Main E989 Improvement Plans	Goal	Chapter
	[ppb]		[ppb]	
Absolute field calibra-	50	Special 1.45 T calibration magnet	35	15.4.1
tion		with thermal enclosure; additional		
		probes; better electronics		
Trolley probe calibra-	90	Plunging probes that can cross cal-	30	15.4.1
tions		ibrate off-central probes; better po-		
		sition accuracy by physical stops		
		and/or optical survey; more frequent		
T-11	50	calibrations	20	15.9.1
f_{D} measurements	50	Reduced position uncertainty by fac-	30	15.3.1
or D_0		stabilized magnet field during mea		
		surements*		
Fixed probe interpola-	70	Better temperature stability of the	30	15.3
tion		magnet; more frequent trolley runs		1010
Muon distribution	30	Additional probes at larger radii;	10	15.3
		improved field uniformity; improved		
		muon tracking		
Time-dependent exter-	_	Direct measurement of external	5	15.6
nal magnetic fields		fields; simulations of impact; active		
		feedback		
Others †	100	Improved trolley power supply; trol-	30	15.7
		ley probes extended to larger radii;		
		reduced temperature effects on trol-		
	4 50	ley; measure kicker field transients	50	
Total systematic error	170		70	15
on ω_p				

In the following eight or nine slides, I will talk about some of my personal contributions:

- ▶ field calculation for quads
- *▶end-to-end simulations*

>application of simulation results to muon loss systematics

ELECTRODE AND SUPPORT FRAME - END VIEW

Conformal Mapping Methods

$$f'(z) = c \operatorname{cn}(z|m) \operatorname{dn}(z|m) \prod_{j=1}^{n} (\operatorname{sn}(z|m) - \operatorname{sn}(x_j + iy_j|m))^{\alpha_j - 1}$$

Advantages of conformal mappings for field calculations:

- Fully Maxwellian
- Rapid recalculations with voltage asymmetries (e.g. for RF scraping)

Beamlines of the Muon Campus

Need to understand

potential sources of

early-to-late beam-

related systematics.

Muon g-2 Target Station

Simulations Using High Performance Computing Systems

2×10^{13} protons on target

HPC systems:

- NERSC
 - Edison (2013–2019): 2.57 PFLOPS
 - Cori (2015–): 30 PFLOPS
- Open Science Grid
 - Up to 10000 cores at a time
- FermiGrid

Simulation tools:

- gm2ringsim (Geant4)
- COSY INFINITY
- BMAD
- MARS
- G4Beamline (Geant4)

Dependence of Initial Phase on Muon Creation Location

Simulation results, preliminary

InitZ: muon creation location. PhiX: muon spin phase at entrance into the ring. dp/p0: momentum deviation. All data within $\left|\frac{dp}{dp0}\right| < 0.5\%$, i.e. 3σ acceptance of the storage ring.

Dependence of Relative Initial Phase on Momentum

A real momentum dependence of the initial phase develops because of magnetic dipoles in the Delivery Ring.

Experimental data: based on runs with muon storage with higher or lower momenta.

Momentum-Dependent Muon Losses

Work is still in progress, but we expect a 10-20 ppb error due to muon losses. Far below the overall 70 ppb systematic error on the spin precession. Meeting the TDR goal of 20 ppb.

Projection of Data Acquisition as a Multiple of BNL Data

Currently: ~5xBNL physics quality data

Future EDM or μ^- anomalous MDM Possibilities

- Currently measuring μ^+ anomalous MDM
- Measure µ⁺ EDM using vertical phase asymmetry detection in calorimeters
- Measure µ⁻ by reconfiguring the
 beamlines and storage ring (switching electric field direction)
 - No other proposed experiment can do μ⁻ (JPARC μ⁺ only)

- ➤ The experiment is running well and has entered Run-3.
- The analysis is coming along, and we are expecting to publish first results this year.
- We have developed sophisticated modeling tools and datadriven approaches to quantify systematics, e.g. the muon loss phase.

• This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-FG02-08ER41546 and Contract No. DE-SC0018636.

- This document was prepared by the Muon g-2 collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.
- This research was done using resources provided by the Open Science Grid, which is supported by the National Science Foundation award 1148698, and the U.S. Department of Energy's Office of Science.

Muon g-2 Inflector

- 1.45 T bucking field to cancel main field
- Can't perturb main field by more than ~1 ppm
- Interface optics of storage ring and the M5 beamline

$$N = N_0 \Lambda N_{cbo} N_{2cbo} N_{vw} e^{-t/\tau} (1 - AA_{cbo} \cos(\omega_a t + \phi \phi_{cbo}))$$

$$\begin{split} N_{cbo} &= 1 - A_{1cbo} e^{-\frac{t}{\tau_{cbo}}} \cos(\omega_{cbo}t + \phi_{1cbo}) \\ N_{2cbo} &= 1 - A_{2cbo} e^{-\frac{2t}{\tau_{cbo}}} \cos(2\omega_{cbo}t + \phi_{2cbo}) \\ N_{vw} &= 1 - A_{vw} e^{-\frac{t}{\tau_{vw}}} \cos(\omega_{ww}t + \phi_{vw}) \\ A_{cbo} &= 1 - A_{Acbo} e^{-\frac{t}{\tau_{cbo}}} \cos(\omega_{cbo}t + \phi_{Acbo}) \\ \phi_{cbo} &= 1 - A_{\phi cbo} e^{-\frac{t}{\tau_{cbo}}} \cos(\omega_{cbo}t + \phi_{\phi cbo}) \\ \omega_{cbo} &= \omega_0 (1 + 2.875 e^{-\frac{t}{76}} / \omega_0 t + 5.47 e^{-\frac{t}{8.85}} / \omega_0 t) \\ \Lambda &= 1 - K_{loss} \int L(t') e^{t'/64.4} dt \end{split}$$

Momentum-Dependent Muon Losses

Straw Tracking Detectors

