

Approaching scalable VQE of interacting bosons with NISQ devices

Andy C. Y. Li APS March Meeting 2020 3 March 2020

This document has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Boson encoding by qubits

Goal: encode a truncated boson Hilbert space in qubits

Position basis binary encoding

Ref: Phys. Rev. Lett. 121, 110504

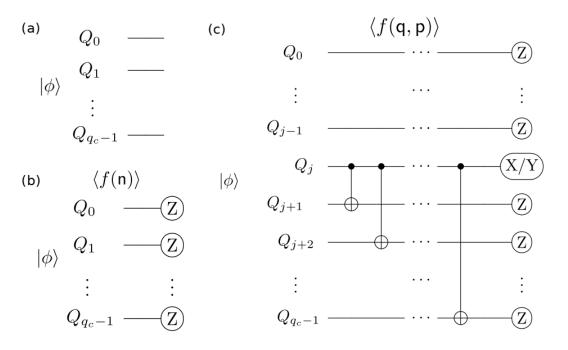
$$|x = \Delta \frac{N-1}{2}\rangle = |1 \dots 11\rangle_q$$

$$|x = \Delta (\frac{N-1}{2}-1)\rangle = |1 \dots 10\rangle_q$$

$$|x = \Delta (-\frac{N-1}{2})\rangle = |0 \dots 00\rangle_q$$

Number basis binary encoding

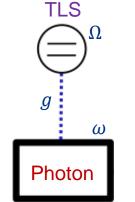
$$|n = N\rangle = |1 \dots 11\rangle_q$$


$$|n = 2\rangle = |0 \dots 10\rangle_q$$

$$|n = 1\rangle = |0 \dots 01\rangle_q$$

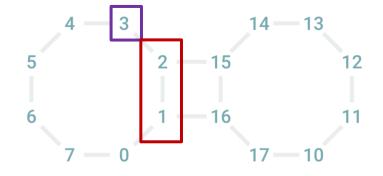
$$|n = 0\rangle = |0 \dots 00\rangle_q$$

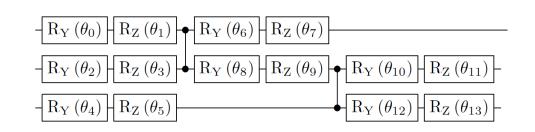
Measuring expectation value with number-basis binary encoding



n_c boson with N_I -mode interaction

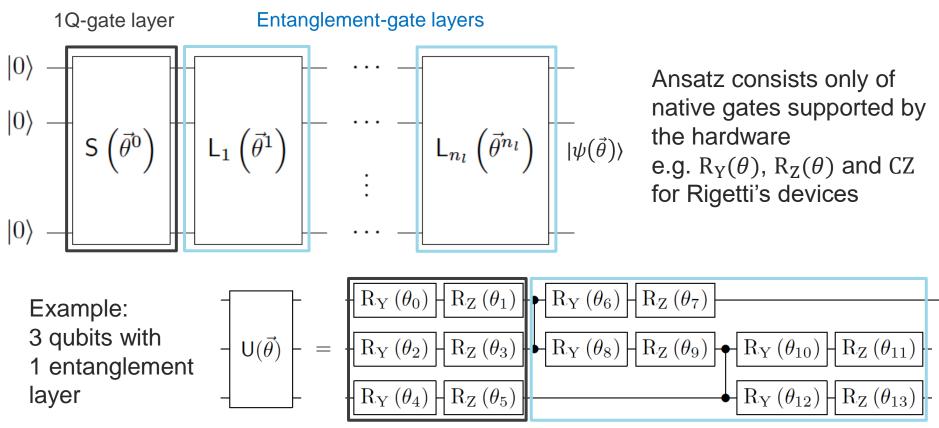
	Number- basis	Position- basis
Qubit count q _c per boson mode	$O(\log_2 n_c)$	$O(\log_2 n_c)$
Sampling count	$O(q_c^{N_I \log_2 \frac{n_A}{N_I}})$	0(1)
Gate count	$O(N_I q_c)$	$egin{aligned} & O(N_I q_c^2) ext{ or } \ & O(N_I 4^{q_c}) \end{aligned}$

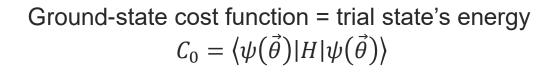

Proof-of-principle expt. – Rabi model using Rigetti's device

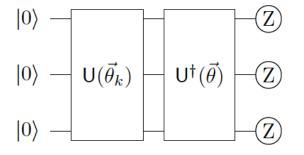


Rabi Hamiltonian: two-level system (TLS) coupled to a photon mode $H = \omega a^{\dagger}a + \frac{\Omega}{2}\sigma_z + g(a^{\dagger} + a)\sigma_x$

Number-basis binary encoding: photon mode truncated to up to 3 photons


 $\begin{array}{l} |n=0\rangle = |00\rangle_q \; |n=1\rangle = |01\rangle_q \\ |n=2\rangle = |10\rangle_q \; |n=3\rangle = |11\rangle_q \end{array}$


Hardware efficient trial state's ansatz


Cost function for ground state & excited states

 $|\psi(\vec{\theta})\rangle$

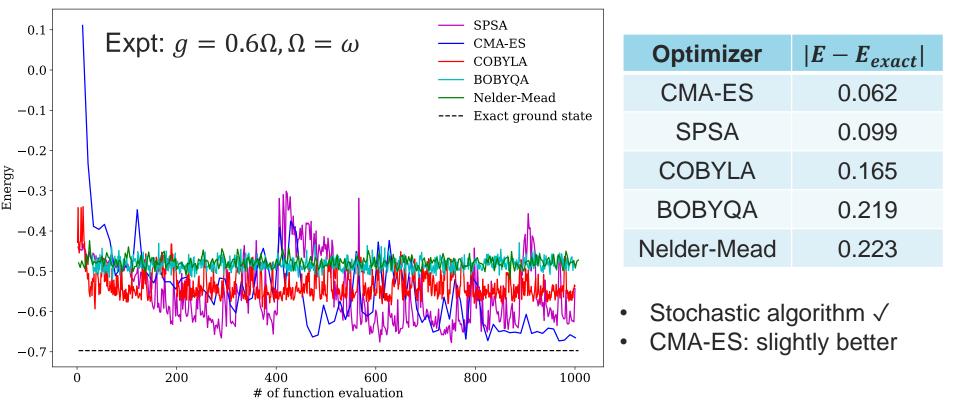
Ground state: $|\psi_0\rangle = \underset{|\psi(\vec{\theta})\rangle}{\operatorname{argmin}} C_0$

1st-excited state: $|\psi_1\rangle = \operatorname{argmin} C_1$

1st-excited state cost function: $C_1 = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle + \epsilon | \langle \psi_0 | \psi(\vec{\theta}) \rangle |^2$

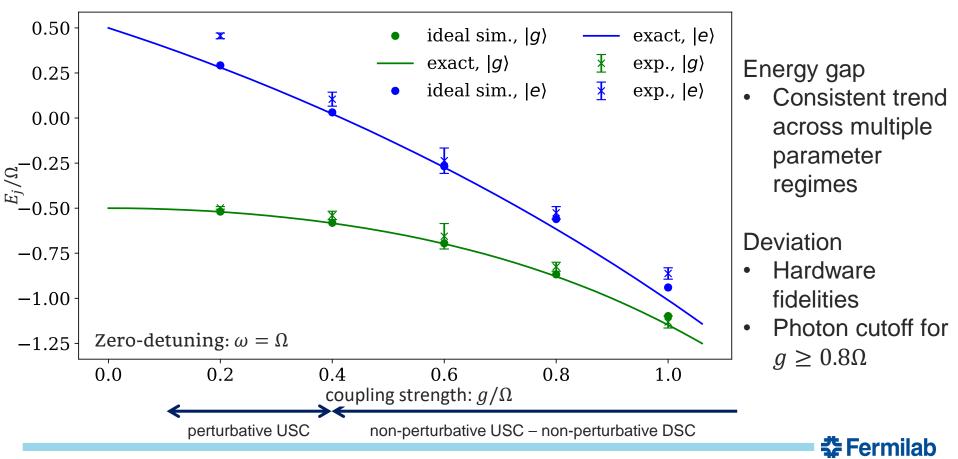
Overlap with the ground state

2nd-excited state cost function: $C_2 = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle + \epsilon | \langle \psi_0 | \psi(\vec{\theta}) \rangle |^2 + \epsilon | \langle \psi_1 | \psi(\vec{\theta}) \rangle |^2$



Optimizers

Optimization algorithm	
Simultaneous Perturbation Stochastic Approximation (SPSA)	Stochastic
Nelder-Mead	Gradient-free
Constrained Optimization BY Linear Approximations (COBYLA)	Gradient-free
Bound Optimization BY Quadratic Approximation (BOBYQA)	Gradient-free
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)	Evolutionary algorithm: stochastic & gradient-free

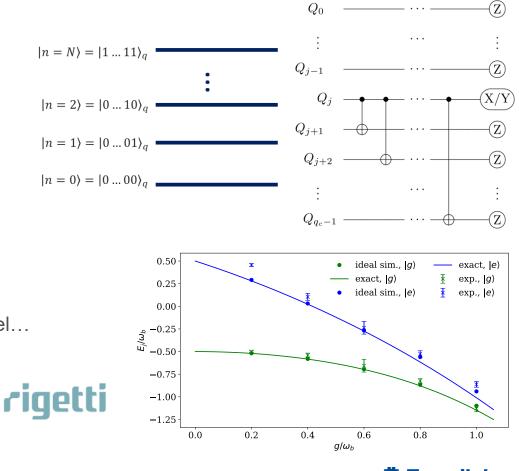


Optimizer with noisy device

🛟 Fermilab

Experimental result

Summary


- Scalable number-basis encoding scheme
- Proof-of-principle experiment of Rabi model
 - 3-qubit implementation on Rigetti's device
 - Ground state and 1st excited state
- Future works
 - Trial state's ansatz
 - Error mitigation techniques
 - Lattice models: Rabi lattice, Holstein model...

Andy C. Y. Li

Alex Macridin Panagiotis Spentzouris

