
Microwave measurements of the high magnetic field vortex
motion pinning parameters in Nb3Sn

Andrea Alimenti1, Nicola Pompeo1, Kostiantyn Torokhtii1,
Tiziana Spina2, René Flükiger3, Luigi Muzzi4, Enrico Silva1
1Università Roma Tre, Department of Engineering, 00146 Roma, Italy
2Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA
3University of Geneva, Department of Quantum Matter Physics (DQMP), Geneva,
Switzerland
4ENEA, 00044 Frascati (RM), Italy

E-mail: andrea.alimenti@uniroma3.it

Abstract. The high frequency vortex motion in Nb3Sn was analyzed in this work up to 12 T.
We used a dielectric loaded resonator tuned at 15 GHz to evaluate the surface impedance
Z of a Nb3Sn bulk sample (24.8 at.%Sn). From the field induced variation of Z, the high
frequency vortex parameters (the pinning constant kp, the depinning frequency νp and the flux
flow resistivity ρff ) were obtained over a large temperature and field range; their field and
temperature dependences were analyzed. Comparison with other superconducting materials
shows that high frequency applications in strong magnetic fields are also feasible with Nb3Sn.
In the present work, we report the first measurements about the microwave response in Nb3Sn
in strong magnetic fields.

1. Introduction

Among superconducting (SC) materials, Nb3Sn is currently one of the most used in
technological applications due to its interesting superconductive and mechanical properties.
Despite being a well-known material, new perspective applications of Nb3Sn, such as
superconductive radio frequency cavities (SRFC) [1, 2] also for magnetic environments [3–6]
and improved magnets for new particles accelerators (e.g. the High Luminosity upgrade
of LHC, or the Future Circular Collider FCC [7, 8]), are revamping the interest in Nb3Sn
characterization [9–11]. In fact, it is necessary to test this SC in the new challenging working
conditions of these applications, to better understand how to improve its performances.

In particular, the interest in Nb3Sn is increasing, the goal being to improve the high
frequency performances in view of its use in SRFC particle accelerators. At present, the most
used material for this application field is elementary Nb. However, the need to improve the
performances of RF cavities and to achieve higher accelerating fields motivated the search for
a new material. Nb3Sn is a good candidate for this application but there is still a need to study
why the predicted performances (i.e. superheating field) are still far from those experimentally
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obtained [12–16]. Local geometrical surface defects are often identified as being responsible
for these low performances. A recent theoretical study has identified in the broadening of the
density of states, in regions with higher pair-breaking scattering rates, a source of local heating
and thus of decrease of the superheating field [17].

As reported above, different kinds of RF-cavities are expected to work in presence of
moderate to high static magnetic fields. It its well known that superconductors, at high
frequencies and in the presence of magnetic fields, can exhibit surface resistances comparable
to those of normal conductors. In fact, under these conditions themain dissipative phenomenon
is related to the vortex oscillations induced by the impinging electromagnetic (e.m.) wave.
For these applications, materials are searched with properties being quite different from those
needed for the realization of standard SRFC cavities. Indeed, cavities optimized for zero static
magnetic field require a pure superconductor with ideally no pinning centers to completely
remove the trapped field after cooldown. However, in finite static magnetic fields, strong
pinning is needed to avoid large oscillations of the fluxons. In particular, above the so called
depinning frequency νp the vortices move in the highly dissipative flux-flow regime [18–20].
Hence, the measurement of νp in high magnetic fields is a discriminating parameter for the
application of SC materials in experiments in dc magnetic fields.

In many power applications of Nb3Sn, the knowledge of vortex pinning is essential. Even
if microwave (µw) measurements do not directly yield design parameters for dc applications,
they provide useful information about the pinning characteristics, in addition to those obtained
by the dc characterization techniques. A better comprehension of the pinning phenomenon is
only obtained by merging the different information given by different dynamical regimes [21]
and µw can help to unveil new vortex pinning regimes [22].

Many aspects of the physics of Nb3Sn have been already studied. For what concerns
the high frequency regime, Nb3Sn surface impedance Z measurements were performed in the
1-10 GHz range and allowed to observe deviations of the measured Z from the BCS theory
and a particularly large gap ∆0/kBT = 2.15 (being kB and T the Boltzman constant and the
temperature, respectively) [23–25]. The higher frequency behavior (at 87 GHz) was explored
in [26] confirming the large superconductive gap in Nb3Sn, 1.8 < ∆0/kBT < 2.2. Despite
the large ∆0, caused by a strong electron-phonon coupling in Nb3Sn, a typical BCS signature
on the conductivity temperature dependence (e.g. a large coherence peak in the real part [27])
was observed at 87 GHz [26, 28]. Since the experimentally determined penetration depth λ
was shown to be close to the expected BCS value λBCS [29], the latter is often used when
analyzing the experimental Nb3Sn data [29]. The first Z measurements in Nb3Sn at low
magnetic fields (not larger than 12 mT) and in the non-linear region were presented in [30].

As it can be seen from the present description of the high frequency behavior of Nb3Sn,
no studies exist on the high frequency vortex motion regime in high static magnetic field.
We present in this work a complete microwave (∼ 15 GHz) characterization of Nb3Sn up
to 12 T (with preliminary results reported in [31]) to provide new useful information about
high frequency vortex motion physics in this SC. Thus, this work fills the gap of knowledge
in the high frequency behavior of Nb3Sn in high magnetic fields. In particular, the surface
impedance Z(T,H) of a bulk Nb3Sn polycristalline sample is here measured with a dielectric
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loaded resonator (DR) [32] in zero field cooling (ZFC) condition at fixed temperature T , and in
field cooling (FC) condition at fixed applied magnetic field µ0H values up to 12 T. Then, with
a classical electrodynamics approach the complex resistivity ρ̃(T,H) is obtained and analyzed
with the Coffey–Clem model [33] in order to obtain the complex vortex motion resistivity
ρ̃vm(T,H) of Nb3Sn. Assuming negligible thermal phenomena, ρ̃vm is only a function of
the real flux flow resistivity ρff , the depinning frequency νp and the measurement frequency
ν0 [18]. Thus, ρff and νp are obtained resorting to literature values of the London penetration
depth, which is a well known quantity in Nb3Sn [23, 34, 35]. The measured νp of bulk Nb3Sn
is remarkably high when compared with νp in thin Nb films.

The measured ρff is shown to exhibit a conventional Bardeen–Stephen behavior [36].
The scaling of the ρff with the applied magnetic field allowed us to evaluate the upper critical
field Hc2(T ) down to 4 K. The so obtained Hc2(T ) is well fitted by the Maki-de Gennes
approximation [37, 38], as expected from other works [39].

Following [40] we extended the analysis of the high frequency vortex pinning
characteristics in Nb3Sn considering the contribution of the thermal creep: based on analytical
constraints of the used equations and physical limits, a statistical approach is used to assess
probability intervals of the evaluated pinning parameters.

The paper is organized as follows: in Sec. 2 the high frequency vortex motion is briefly
described, in Sec. 3 the measurement method is presented, then the sample characteristics are
reported in Sec. 4. Finally the results are presented in Sec. 5 and in Sec. 6 a comparison of
the µw performances of Nb3Sn with those of MgB2 and YBa2Cu3O7-δ is performed.

2. Surface impedance of superconductors in the mixed state

The surface impedance Z is the complex physical quantity commonly used to describe the
electromagnetic (e.m.) response of good conductors [41]. It is defined as the ratioZ = E‖/H‖
[42], where E‖ and H‖ are respectively the electric and magnetic fields components parallel
to the surface of the conductor. Z contains interesting information about the dissipative and
energy storing effects of the material under study. For bulk materials, in the local limit,
Z =

√
iωµ0ρ̃ [42], where ω = 2πν is the angular frequency of the impinging e.m. wave, µ0

is the vacuum magnetic permeability and ρ̃ is the complex resistivity of the material. Since
in this work we deal with a Nb3Sn superconductive bulk sample in high magnetic field, ρ̃
contains both the super/normal fluid complex charge transport contributions and the vortex
flow characteristics as presented in [33]. The first contribution is modeled by the two-fluid
conductivity σ2f = σ1 − iσ2 and the second by the complex vortex motion resistivity ρvm,
thus ρ̃ = f (σ2f , ρvm). Far enough from the superconductive transition, where σ2 � σ1, the
normal fluid screening effect is weak enough to be neglected and Z is written as:

Z '
√
ωµ0

(
− 1

σ2
+ iρvm

)
; (1)

where σ2 = 1/ωµ0λ
2, with λ the London penetration depth. When no external magnetic field

is applied ρvm = 0 and Z '
√
−ωµ0/σ2 = iωµ0λ.
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With high frequencies (microwaves) excitation and low e.m. field amplitude the vortices
start oscillating around their equilibrium positions (the pinning centres) as damped harmonic
oscillators and their dissipative and reactive response depends on the pinning potential
characteristics. Within the harmonic oscillator formalism, we can describe the Lorentz force
due to the interaction between the microwave induced currents Jµw and the magnetic flux
quanta Φ0 as the driving force, the pinning effect as a linear elastic force Fp = −kpx (small
oscillation), the non-equilibrium conversion between quasi-particles and condensate during the
fluxons motion as a dissipative viscous drag force Fdrag = −ηv and finally the thermal creep
as a stochastic thermal force Fth [18–20,27,33,40]. Thus, assuming massless fluxons [43] the
dynamic equation of motion becomes:

Jµw ×Φ0 + Fth = kpx + ηv , (2)

with kp the pinning constant,x the fluxon displacement, η the viscous drag coefficient and v the
fluxon velocity. The Coffey-Clem (CC) vortex motion resistivity ρvm is then obtained [33,40]:

ρvm = ρff
ε+ iν/νc
1 + iν/νc

, (3)

where ρff = Φ0B/η is the flux-flow resistivity, B the magnetic flux density. In the London
limitB ' µ0H , withH the applied magnetic field strength. The thermal creep contribution is
taken into account by the adimensional creep factor 0 ≤ ε ≤ 1 [33,40]. νc is the characteristic
frequency of the vortexmotion, marking the crossover between an elastic vortexmotion regime
(ν � νc) and an highly dissipative regime (ν � νc). When ε → 0, no flux creep exists and
νc → νp with νp the depinning frequency, defined as νp = kp/(2πη). In the case of small
oscillations here relevant, kp is the pinning linear elastic constant which for rigid fluxons is a
measure of the pinning well steepness [40, 44]. The ε → 0 limit is known in literature as the
Gittleman-Rosenblum (GR) model [18]:

ρvm,GR =
Φ0B

η

1

1− i νp
ν

. (4)

In the high creep limit ε → 1 the fluxons behave as free fluxons due to thermal jumps and
a free-flux flow regime takes place. The ε(U0) and νc(νp, U0) dependences on the creep
activation energy U0 depend on the pinning potential shape and thus on the particular model
used to describe the pinning profile [33, 45].

Microwavemeasurements are particularly versatile since they allow to obtain ameasure of
both the pinning shape/steepness kp and of the free flux-flow resistivity ρff which, particularly
for bulk samples as in this case, would require high dc-current to be properly measured. In
the following we describe how we obtain the vortex motion parameters in Nb3Sn bulks.

3. Measurement system and method

In this section we briefly outline how Z is obtained with our measuring system based on a
dielectric loaded resonator (DR). Further information about the measurement technique with
an in-depth uncertainties analysis is reported in [32].
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DRs are a measurement standard for superconductors Z characterization (IEC 61788-
7:2020) [46] thanks to their high sensitivity. In the IEC standard twin SC samples are used
and both resonator bases are covered by a SC sample. As shown in [32] the double sample
configuration is not always the right choice for the high field measurements, because of a lack
of sensitivity in presence of high dissipations. For this reason, in this case, the single sample
configuration (see Figure 1) provides better performances [32]. Our set-up is composed by a
copper cylindrical cavity loaded with a sapphire crystal as represented in Figure 1. The choice
of the metallic enclosure is forced by the need to perform measurements in high magnetic
fields: the use of a SC cavity would add a magnetic background of difficult evaluation. The
used dielectric is a single-crystal sapphire cylinder (h = 5.00 mm, � = 8.00 mm). The
relatively high dielectric permittivity (ε‖ ∼ 11.5, ε⊥ ∼ 9.5) and the low losses of sapphire are
used to increase the measurement sensitivity by reducing the conduction losses on the lateral
wall of the resonator [32].

Figure 1: Sketch of the dielectric loaded resonator.

AnAnritsuVectorNetworkAnalyzer (VNA) 37269D, is used tomeasure the four complex
scattering parameters of the DR. The VNA and the DR are linked through a cryogenic and non-
magnetic K-type coaxial transmission line. The resonator is excited in the TE011 resonating
mode at∼ 15 GHz, and it is characterized in transmission. The acquired scattering parameters
are then fitted with a modified Fano resonance curve [47, 48] which is used to obtain the
unloaded quality factorQ and the resonance frequency ν0 of the resonator. Measurements are
performed at low µw power levels, the peak RF magnetic field impinging on the surface of the
sample is estimated to be < 10 µT, to characterize Z in the linear regime. We did not observe
any power dependence of the response in the range of temperature, fields and power level here
explored.

The sample under study is loaded into the cavity in order to substitute a base of the
resonator (end-wall perturbation method) and covered with a planar metallic mask, with a
central circular hole (� ∼ 6 mm), to preserve the cylindrical geometry.

When an external magnetic field H is applied at a temperature T ′ the variation
∆Z(T ′, H) = Z(T ′, H)− Z(T ′, 0) of Z is obtained as follows :

∆Z(T ′, H) = Gs∆
1

Q(T ′, H)
− 2iGs

∆ν0(T
′, H)

νref
−∆bckg(T ′, H); (5)

where Gs ≈ 2700 Ω is a geometrical factor evaluated with electromagnetic simulations and
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∆x(T ′, H) indicates a variation of x(T ′, H) parameter with respect to the reference value
obtained with no applied magnetic field x(T ′, 0). νref is the reference resonance frequency at
H = 0 T. Finally, bckg is a complex parameter which represents the response of the resonator
itself. Since both the DR and the measurement system were carefully designed to operate in
high magnetic fields, bckg is very weakly field dependent [32], with respect to the SC sample
variation ∆Z(T ′, H), thus we assume ∆bckg(T ′, H) ∼ 0 †.

Field cooling (FC) and zero field cooling (ZFC) measurements were performed and they
are discussed in the next Section. In FC condition the magnetic field was applied before
cooling. After cooling down to∼ 6 K, the temperature was raised at a constant rate 0.1 K/min.
In ZFC the sample was cooled without an externally applied magnetic field; when the target
temperature was reached and stabilized within ±0.05 K, the magnetic field was swept at
0.3 T/min up to 12 T then down to -12 T and back to 0 T and the reversible component
isolated.

4. The sample

The Nb3Sn sample platelet was obtained starting from a polycrystalline bulk piece sintered
by Hot Isostatic Pressure (HIP) technique (2 kbar Argon pressure at 1250 ◦C for 24h) at the
University of Geneva [49]. After HIP, the Nb3Sn bulk piece was cut into tiny platelets by
means of spark erosion and each platelet was then polished with SiC grinding papers and
submitted to "flash-anneal" heat treatment (900 ◦C/10 min) for stress release.

Microstructural and magnetization analyses reveal an average grain size of ∼ 20 µm, a
composition very close to stoichiometry (24.8 at.%Sn) and a sharp superconducting transition
at 17.9 K reflecting the high quality and homogeneity of these samples. Finally, from Rietveld
refinement the lattice constant and the Bragg-Williams long-range order parameter have been
estimated to be 5.291 Å and 0.98 respectively. Further details on the procedure and analysis
can be found in [50]. A sample of approximate area of 30 mm2 was chosen for the present
study.

5. Results

In this section we first show the Q and ν0 measurements to check the calibration process
through the comparison of the obtained normal state sample characteristics with literature
values. Then, we derive the vortex parameters under the common assumption of negligible
thermal creep (i.e. Gittleman-Rosenblum (GR) model [18]): the use of the GR model is the
standard analysis procedure [19, 20, 44, 51] so that it allows to easily compare the results on
Nb3Sn with other materials. Finally, in the last subsection, the contribution given by the flux
creep is evaluated with a statistical analysis of the obtained data.

†The weak magnetic contribution of the copper resonator was evaluated up to 12 T in the homogeneous
configuration (without any SC sample loaded) to be: ∆ν0 < 2.5 kHz T-1 and ∆Q < 40 T-1 with ν0 ∼ 15 GHz
and Q ∼ 17900.
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5.1. Normal state

In Figure 2 we show the measured variation ∆(1/Q) = Q(T,H)−1 −Q(T → 0, H = 0)−1

and∆ν0/νref = (ν0(T,H)− νref )/νref with νref = ν0(T = Tc) atµ0Ha = {0, 2, 4, 8, 12}T
in FC condition. Since below∼ 20K the copper and sapphire losses do not depend on the tem-
perature the height of the Q−1 transition (Figure 2a) can be assigned to ∆R of Nb3Sn. Thus,
from Eq. (5)Rn = 94.6 mΩ withRn the normal state surface resistance. FromRn, the normal
state resistivity is obtained from the normal skin effect as ρn = 2R2

n/ωµ0 = 14.8 µΩcm.
An estimation of ρn based on the long range order parameter S, yields

ρn = 147(1− S4) µΩcm [52]. The measured ρn corresponds to S = 0.97, perfectly in
agreement with the measurement obtained with X-ray diffractometry on a sample from the
same batch of our platelet [49].

Moreover, the obtained ρn matches well also with the atomic Sn content β of the sample,
since with ρn = 14.8 µΩcm and from [53], β = 0.25 to be compared to our data β = 0.248.
This excellent agreement between the measured ρn and the microscopic parameters measured
on the sample from the same batch as ours represents a validation of the Gs estimation.
Moreover, the composition of the bulk sample is also in agreement with the measured Tc and
the generally accepted Tc(β) relation presented in [54]. This confirms that the Devantay data
set is more descriptive of Nb3Sn bulk samples behavior thanMoore’s [55] as discussed in [53].

5.2. Microwave vortex motion in Nb3Sn

In order to isolate the fluxon motion response of Nb3Sn, Eq. (5) is applied to the data shown in
Figure 2. In this way the temperature background contribution, which is particularly evident
in ν0 measurements (Figures 2b), is removed. The same procedure is followed for the ZFC
measurements shown in Figure 3. In this case the variations of Q and ν0 are directly related
to the sample ∆Z since the resonator is made only with non magnetic materials. Then, the
vortex motion resistivity ρvm = ρ′vm + iρ′′vm is obtained from the measured ∆Z, using Eq. (1),
as:

ρ′vm(T,H) = 2∆R(T,H)

(
λ(T, 0) +

∆X(T,H)

µ0ω

)
, (6)

ρ′′vm(T,H) =
−∆R(T,H)2 + (∆X(T,H) + λ(T, 0)µ0ω)2

µ0ω
−µωλ(T,H)2 .(7)

In order to reliably obtain ρvm, we calculate λ from the well known values, as follows. It
is known [29] that λ in Nb3Sn closely follows a BCS behavior [27] although stoichiometric
Nb3Sn exhibits similarities to strong coupling superconductors. It is then safe, following the
common habit, to describe λwith the BCS expression in Eq.s (6), (7), with Debye temperature
ΘD = 230 K [56] and superconducting energy gap 2∆ = 3.77kBTc [57]. Finally, it must be
noticed that at high fluxons densities (in practice, just above the first penetration field), and in
our measurement frequency band, the main reactive contribution is given by the vortex motion,
thus Eq.s (6), (7) are very weakly sensitive to λ. This was tested using as an alternative a
simple two-fluid λ(T ) temperature dependence 1 − t2 and the discrepancies in the following
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Figure 2: (a) Variation ∆(1/Q) = Q(T,H)−1 −Q(T → 0, H = 0)−1 measured in field
cooling condition at different fields (i.e. 0 T, 2 T, 4 T, 8 T, 12 T). (b) Variation
∆ν0/νref = (ν0(T,H)− νref )/νref with νref = ν0(T = Tc) measured in field cooling
condition at different fields (i.e. 0 T, 2 T, 4 T, 8 T, 12 T). The temperature background
of the resonator, which gives rise to the ν0 hump, is evident requiring the calibration procedure
described in the text.



µw measurements of high field vortex parameters in Nb3Sn 9













     






















(a)













     



















(b)

Figure 3: Surface impedance variation∆Z = Z(H)− Z(H = 0)measured in ZFC conditions
at different temperatures (i.e. 4 K, 6 K, 10 K, 15 K). In (a) the surface resistance ∆R and in (b)
the surface reactance ∆X . The knee in the 15 K ∆R curve corresponds to the superconductive
phase transition: above that point the applied magnetic field µ0H > Hc2 and ∆R is almost
flat as expected in the normal state. On ∆X the transition is smoother thus less evident.
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analysis were well below 5 %. For the field dependence we used a 1 − b4 superfluid fraction
dependence with b = B/Bc2 the reduced field. Similarly to the T dependence, also the exact
field dependence does not give significant changes on the final results.

From ρvm, with Eq. (3), ρff (T,H) and νp(T,H) are directly obtained within the
Gittleman–Rosenblum (GR) model. As previously discussed, the GR model assumes
negligible thermal effects, thus it is more descriptive of the data far from the critical surface.
Nevertheless, when thermal creep is not negligible, the GR model provides a lower boundary
for νp and kp [40]. Thus, despite the model simplicity, the GR model is particularly useful for
an estimation of the pinning parameters, as presented in the next subsections.

5.2.1. Flux-flow resistivity and viscous drag coefficient. When a vortex moves, energy is
lost by the non-equilibrium conversion of the condensate in quasi-particle on the onward
vortex side and the restoring of the condensate in the back side [27, 44]. Figure 4 shows
ρff as obtained by combining Eq.s (6) and (7) and Eq. (4) as ρff =

(
ρ′vm

2 + ρ′′vm
2
)
/ρ′vm in

ZFC. A good overlap is found with ρff measured in FC conditions (see Figure 4). The









   






















Figure 4: The flux flow resistivity ρff of bulk Nb3Sn as a function of the applied magnetic
field µ0H ' B measured in ZFC at different temperatures (i.e. 4 K, 6 K, 10 K). The sparse
empty circles come from the FC measurements.

15 K ZFC curve is not analyzed here since near the transition the unavoidable presence of
flux creep prevents from performing the analysis here presented. For the same reason the
derivation of the vortex parameters is estimated as possible only for T < 0.8Tc2 where
Tc2 = Tc(H). Figure 4 correctly shows that ρff increases when T and H increase. This
is an expected behaviour since ρff ∝< τ >−1 with τ the quasiparticle scattering time in
vortices core (which decreases approaching the superconductive transition [27]) averaged on
the Fermi surface. Moreover, Figure 4 shows an almost perfect linear behavior ρff ∝ H . This
implies that η is field independent in agreement with both Tinkham [27] and Bardeen-Stephen



µw measurements of high field vortex parameters in Nb3Sn 11

(BS) [36] descriptions of the vortex dissipation phenomena. For T � Tc, both theories give
an equivalent description of the total viscosity [27, 36]:

η =
Φ0B

ρff
≈ Φ0µ0Hc2

ρn
. (8)

Equation (8) allows us to scale these curves with respect to Hc2 once ρn(T ) = 2Rn(T )2/ωµ0

is determined (Sec. 5.1). Figure 5 shows the obtained good ρff scaling that allows a reliable
determination of the upper critical field Hc2(T ) even above the maximum field reached.
The obtained temperature derivative µ0dHc2(T )/dT |Tc' 2.2 T/K and the Hc2(T ) data points











    
















Figure 5: Flux-flow resistivity ρff measured from ZFC H sweeps at 4 K, 6 K, 10 K and
normalized to the normal state resistivity ρn. The field values are normalized choosing
Hc2(T ) values in order to obtain unitary slope.

which were directly observed, and/or obtained by the scaling procedure, are well fitted with
the Maki-de Gennes (MG) approximation [37, 38] (see Figure 6) in agreement with the
literature [39]. The fact that the Hc2 points obtained by the scaling procedure are well
placed on the MG curve further validates the use of the BS model for Nb3Sn and the scaling
procedure. The MG model uses only two free parameters: Tc (measured) and the normal
electrons diffusion coefficient D. In particular, it can be shown [39] that within the MG
approximation µ0dHc2(T )/dT |Tc= −4Φ0kB/π

2h̄D, with kB the Boltzmann constant and h̄
the reduced Planck constant. Thus, the fit contains only experimentally determined parameters.
With the fit of the measuredHc2(T ) we obtainD ∼ 5.0×10−5 m2/s. We point out thatHc2(T )

does not depend on the electron-phonon coupling, thus even if the simple MG approximation
does not take the coupling strength into account (differently from the more complex Eliashberg
theory) it can be reliably used in this case: it is shown in literature [39] that the MG model
approximates well the Nb3Sn Hc2(T ) behavior in different samples (e.g. single crystal, thin
films, bulk, wires) and with different Sn contents [39].
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5.2.2. Pinning constant. The pinning constant, shown in Figure 7, is obtained by combining
Eq.s (6) and (7) and Eq. (4), kp = 2πΦ0Bνp/ρff . As presented in Sec. 2 this parameter in the
limiting case of rigid vortices is a measure of the steepness of the pinning potential wells. The
obtained kp correctly decreases when the temperature and the magnetic field are increased due
to a reduction of the pinning efficiency. Figure 7 shows that even at µ0H = 8 T and T ∼ 8 K,
kp > 10 kN/m2. This value indicates an enhanced pinning efficiency in Nb3Sn as compared to
that of Nb films. In fact, in the latter, the kp literature value is assessed to be about an order of
magnitude smaller than that of Nb3Sn at t = 0.5 in a 40 nm thick film [58] and even smaller
in a 30 nm thick film at t = 0.86 [59, 60]. A kp value similar similar to that of Nb3Sn was
also observed on pristine bulk MgB2, where at 1 T and at 10 K kp ∼ 11 kN/m2 [61]. Higher
kp are observed in cuprates, e.g. kp ' 75 kN/m2 at t = 0.5 and µ0H = 0.5 T in 100 nm
YBa2Cu3O7-δ thin film added with BaZrO3 inclusions [62], and kp up to 100 kN/m2 attained
even at much higher t ∼ 0.74, at µ0H = 0.5 T, in 200 nm YBa2Cu3O7-δ thin film added with
Ba2YNbO6+Ba2YTaO6 inclusions [63, 64].

The temperature dependence kp(T ) is shown in Figure 7: kp decreases steadily with
the temperature indicating that no matching-field effects take place. The temperatures for
which kp = 0, corresponding to the complete vanishing of the pinning effect, are obtained
through a linear extrapolation of the high temperature region of the curves in Figure 7. The
corresponding points are reported on the phase diagram of Figure 6. These points mark the
depinning line as obtained by the microwave technique. As it can be seen, the complete
flattening of the pinning potential arises very close to Hc2.









    





















Figure 6: Measured upper critical field µ0Hc2 temperature dependence. The full blue circles
are obtained from the field cooling temperature sweeps while the full red squares from the
field sweeps. The points at 4 K, 6 K, 10 K are obtained from the ρff scaling. The data are
fitted with the Maki-de Gennes model (MG) [37, 38]. The black triangles are obtained from
the linear extrapolation of kp(T ) to 0 (see Sec. 5.2.2).
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Figure 7: Measured pinning constant kp(H,T ) in FC condition at 2 T, 4 T, 8 T, 12 T. The
sparse empty cyrcles come from the ZFC measurements. In the inset kp(H) at 4 K is shown
in a log-log plot to highlight the power dependence kp ∝ Hα, with α = −0.47, typical of the
collective pinning regime.

The ZFC measured kp(H) at 4 K is shown in the inset of Figure 7 to follow the power law
dependence kp ∝ Hα with α = −0.47. This behavior is expected in the collective pinning
regime where for conventional superconductors one expects α = −0.5 [18,44,65]. In fact, this
field dependence indicates that, even at low temperature, vortices in Nb3Sn are not individually
pinned but a bunch of vortices is bounded around weak pins, thus the vortices concentration is
higher than that of the pinning centres. We indicate this pinning regime as collective pinning
according to [44]. In this configuration the fluxons interact with each other, and thus the
pinning properties are strongly dependent on the fluxons density and the pinning strength
decreases with the field. In this regime kp is no more a direct measure of the single pinning
centre strength but it is a statistical average of the contribution given by several pinning centres
and vortices. This means that in principle there is still room of improvement for enhanced
kp values in Nb3Sn samples engineered for high field and high frequency applications (e.g.
RF cavities for dark matter research [4]). In fact an upper limit for kp can be estimated in the
single-vortex pinning regime by assuming vortices individually pinned by cylindrical defects
of diameter 2ξ, being ξ the coherence length, oriented parallel to the applied magnetic field.
In this case the condensation energy (per unit length) in the vortex core 1

8
µ0H

2
c ξ

2, withHc the
thermodynamic critical field, is equal to the maximum pinning elastic energy (per unit length)
1
2
kpξ

2. Hence, the maximum kmaxp ≈ 0.25µ0H
2
c [44] can be assessed in this ideal core pinning

configuration. Using the literature value µ0Hc(0) ∼ 0.52 T [66] for stoichiometric Nb3Sn,
kmaxp ∼ 50 kN/m2 is obtained. This kp upper limit is near to that measured on 100 nm film
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pristine YBCO [62].

5.2.3. Depinning frequency. Finally, the depinning frequency νp = kp/(2πη) is discussed in
this section. We show in Figure 8a the depinning frequency νp measured in FC condition at
µ0H = {2, 4, 8, 12} T and obtained with Eq. (3). We can see that it is almost constant at low







  























(a)







   



















(b)

Figure 8: (a) The depinning frequency νp measured in FC condition at different fields (i.e.
2 T, 4 T, 8 T, 12 T) obtained with the GR model. The shown data are smoothed and the
standard deviation of the data scattering represented by the shadowed areas. The full dots are
obtained from the ZFC measurements. (b) The depinning frequency νp dependence to the
applied magnetic field µ0H at 6.0 K, 7.5 K, 9.0 K. The dashed line is a guide for the eye.
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enough temperature (i.e. for T/Tc2 < 0.7) and it sharply decreases approaching the depinning
line as described in Sec. 5.2.2. In Figure 8b the νp(H) field dependence at T = {6, 7.5, 9} K
is shown. We note that at the lower T νp(H) starts to decrease above µ0H = 4 T, while at
lower fields it tends to saturate at νp ∼ 6.5 GHz. The measured values are quite large also at
high fields, νp > 4 GHz at 12 T and low T which is larger than that exhibited by thin Nb films.
It is known that νp is strongly dependent on the sample thickness in Nb films: νp ∼ 20 GHz
in 10 nm Nb film at 0.2 T and 5 K [58], νp ∼ 5 GHz in 60 nm Nb film at 0.6 T [59] and it falls
to 1 GHz for 160 nm films in 0.2 T and 5 K [58]. In Nb the increase of νp with the lowering
of the film thickness was attributed to the dominant effect of the surface pinning centres [58].
This effect is masked in thicker samples due to the increased volume interested by the weaker
volume pinning in Nb [58]. Moreover, it is well known that the main contribution to pinning
in Nb3Sn [67–70] as in other intermetallic compounds [71, 72] and metals as Nb [73–75] is
given by the grain boundaries and that the pinning efficiency is inversely proportional to the
average grains size. Since in Nb3Sn the grain size can be reduced by lowering the sample
thickness [69], it is reasonable to expect that for thin Nb3Sn samples νp could reach very
high values. This opens the possibilities to interesting RF applications of Nb3Sn films also
in presence of high magnetic fields. Moreover, assuming a Nb3Sn sample engineered with a
sufficiently high defects density to firmly remain in the single vortex pinning regime, from the
previously calculated kmaxp , a theoretical upper limit νmaxp ∼ 16 GHz can be expected in bulk
samples.

Considering other superconducting materials, it comes out that the obtained values at 4 T
are comparable with those measured in a MgB2 thin film in the same H-T region [76]). On
the other hand, it must be noticed that FeSe0.5Te0.5 and YBa2Cu3O7-δ performances are still
far, in fact at 12 K and 0.6 T νp ∼ 22 GHz and > 40 GHz, respectively in 300 nm and 240 nm
thick FeSe0.5Te0.5 films [77, 78] while νp ∼ 50 GHz in 100 nm thick YBa2Cu3O7-δ films at
72 K [62]. For a more complete comparison, thin Nb3Sn films should be characterized in the
same conditions to experimentally verify the increase of νp with the reduction of the sample
thickness. Despite of this, from this study, it is shown that bulk Nb3Sn could remain a good
choice for applications that work at not too high frequencies (e.g. radio frequency cavities for
axions detection [79]) and for which the use of a metallic and wieldy material is an important
requirement.

5.2.4. Evaluation of the thermal creep contribution. We complete this work by providing an
estimate of the thermal creep contribution to the evaluation of the vortex parameters through
a statistical analysis according to [40]. We derive the maximum creep factor εmax and the
lower limit for the activation energy U0,min. We then derive a confidence interval for the
characteristic frequency νc (we recall that when creep is taken into account, the characteristic
frequency is no longer νp, but νc, see Eq. (3) and Eq. (4)).

The maximum creep factor εmax = 1 + 2r2 − 2r
√

1 + r2, with r = ρ′′vm/ρ
′
vm, is obtained

from analytical constraints [40]. Then, the corresponding minimum activation energy is
determined with the CC model, in the scenario of a periodic pinning potential, since
ε = (I0(U0(T,B)/(2kBT )))−2 [33] with I0 the modified Bessel function of first kind.
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The lower limit for the activation energy U0,min(T,H) is shown in Figure 9. The data







   

























  









Figure 9: Lower limit of the creep activation energy U0,min(T,H) in FC at
µ0H = {2, 4, 8, 12} T. We show an almost perfect scaling of the U0,min(T,H) curves in
the inset. The continuous line in the inset is the fit realized with the normalized U0 ∝ H2

c ξ
n.

show a non-monotonic temperature dependence with a peak height which becomes smaller,
and moves at lower T , as the field is increased. This behavior is expected for U0 since
at higher H values the pinning becomes less effective. Since U0 ∝ H2

c ξ
n, then the U0

temperature dependence can be evaluated from Hc = Φ0/(µ0

√
8πλξ) and using the BCS λ

previously used for the data analysis and ξ =
√

Φ0/(2πµ0Hc2) [27] with the measured Hc2

from Figure 6. The n = 0, 1, 2, or 3 parameter depends on the relevant length scale for the
pinning energy: it indicates the dimensions of the correlated volume of the fluxons bunch
that is thermally activated. From the theoretical behavior for U0, the observed non-monotonic
trend can be obtained only with n = 3. Keeping this value for n, a tentative comparison
between the theoretical curve and the experimental data, arbitrarily scaled with the constraint
U0min < U0 for each T , is reported in the inset of Figure 9. Assuming that the temperature
behavior U0,min(T ) reflects U0(T ), n = 3 is an indication that in this sample the vortices
correlated volume has a length scale ξ along the three spatial directions. It must be noticed
that the peak in U0,min is narrower than what expected from the theory and also that the lower
temperature U0,min dependence does not saturate to a finite value but it is a linear function
of T . The narrow peak and the increase of U0 with the temperature was already observed in
other superconductors [78, 80–82]. This discrepancy with respect to the theory was justified
introducing pinning models that included junctions and non-homogeneities [80, 83–86].

To evaluate the impact of finite flux creep on the estimate of the vortex parameters, one
should know the statistical distribution of the activation energies. Although we can set U0,min

from the data, a full knowledge of the statistical distribution is not available. We then model
the distribution of U0 as a rectangular (uniform) distribution, and we seek for an estimate of
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Figure 10: Characteristic frequency νc distribution obtained by evaluating Eq. (3) with 1000
randomly chosen ε values with the statistical distribution described in the text. In the inset the
percentage cumulative probability distribution. It shows that with a probability level of 90 %

6.5 < νc/GHz < 8.7 while 6.5 < νc/GHz < 7.7 at 68 %.

the maximum (cutoff) U0,max. The latter is determined consistently with the models used
in this analysis. In particular, in the ideal case one can assume that the measured kp is not
dependent to the fluxon displacement (i.e. that the pinning wells have perfectly parabolic
profiles) and that the wells maximum width is 2ξ. In this case the maximum elastic pinning
energy is U0,max = 1

2
kpξ

2l where l is the length of the effective pinning along the direction of
the applied magnetic field [44]. According to the indication n = 3 (Figure 9), l ∼ ξ, then we
set l ' ξ. The coherence length is obtained from the previously determined Hc2 (Figure 6),
ξ =

√
Φ0/(2πµ0Hc2) [27] and from the GR model kp a first estimation of U0,max is obtained.

Actually, since the creep is now taken into account, theU0,max estimation can be enhanced with
a recursive approach: once U0,max is obtained from the GR kp, it can be used to calculate the
creep factor ε to be used in Eq. (3), thus a new kp can be obtained with the CC model. This in
turns fixes ε, and a refined value for kp can be evaluated from the measured data and the fixed ε
with the CC model. In this way U0,max is evaluated several times until (ki+1

p − kip)/kip < 0.01,
with i the iteration number (e.g. at T = 9 K and µ0H = 2 T the problem converges in 5 steps).
The U0,max obtained from the last iteration is used for the statistical analysis now presented.

With U0 taken to follow a rectangular distribution between U0,min and U0,max, we
recalculate the pinning parameters using Eq. (3) with 1000 ε values randomly extracted from
the U0 distribution previously built. We show as an exemplary case the creep contribution
evaluated on νc(t = T/Tc = 0.5, µ0H = 2T). We focus on νc since it is the cross-
over frequency between the low frequency vortex elastic motion and the high frequency
dissipative region. Thus in case of creep νc is the parameter of interest for technological
applications. The characteristic frequency νc distribution, with its cumulative probability
distribution, is shown in Figure 10. The expected value E[νc]CC = 7.4 GHz is about 20 %
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larger than the numerical value for νp within the GR model in the same condition. At
t = 0.5 and µ0H = 2T, we evaluated with the CC model also the ρff distribution obtaining
(E[ρff ]CC − ρff,GR)/ρff,GR ∼ 3 %. Whereas, at t = 0.5 and µ0H = 12 T, where the creep
phenomenon is more intense, the discrepancy between the CC and GR valued parameters is
about 35 % on νc and 6 % on ρff .

As expected from [40], one can notice that the GR evaluation gives a lower boundary for
νp, ρff and kp. In particular, even if neglecting the thermal creep brings to an underestimation
of the material characteristic frequency νc, a drastic difference is not expected from that
obtained with the more complete CC model. Thus, it means that for the design of perspective
RF/high field applications of Nb3Sn the νp shown in Sec. 5.2.3 can be treated as the worst RF
performance of Nb3Sn but as an indication of a more realistic value of νc, the expected values
shown in this section can be used. Whereas, regarding ρff it can be assessed that the GR
determination can be considered reliable since even at the highest creep rate its shift is modest
(i.e. ≤ 6 %).

6. Vortex parameters comparison with other SCs

In this section a brief comparison between the mixed-state microwave properties of Nb3Sn
and those of other technologically interesting superconductors (i.e. MgB2 and YBa2Cu3O7-δ )
is provided.

In order to keep the comparison as meaningful as possible, we compare data obtained
mainly by our group on MgB2 and YBCO with the same technique and with the use of the
same physical model (e.g. the GR model). The MgB2 data were obtained on bulk pristine
and doped samples at 16.5 GHz and 26.7 GHz up to 1.2 T. Further details on the MgB2

characterization are shown in [61]. For what concern the YBCO, the parameters used for
the comparison come from several literature results on thin films [21,22, 62–64], commercial
coated conductors [87, 88] and single crystals [89]. The vortex parameters are linked to each
other by νp = kp/(2πη) and η ∝ ρ−1ff Eq. (8). It is then useful to investigate the parametric
plots as reported in Figures 11 and 12. In Figure 11 the comparison at µ0H = 1 T and
T = 10 K is shown on the plane ρff − νp. From this, one can notice that Nb3Sn shows the
lowest νp of the three SC materials. Despite of this, it must be noticed that the large MgB2

νp comes from its particularly large ρff as shown in [61]. Thus, despite the larger νp, the µw
losses are smaller in Nb3Sn with respect to those in MgB2, even above νp. In particular, in
MgB2 ρff exhibits a non conventional Bardeen-Stephen behavior [61,90] due to the presence
of the weak superconductive π−band. This makes MgB2 advantageous for µw applications in
the mixed state only in particular conditions, e.g. below the field values for which the smaller
gap is suppressed. Finally, as shown in the previous sections, YBCO performances are still
better than those of metallic SCs. On the other hand, the practical use of YBCO in large-scale
µw applications like cavities is hindered by the difficulties in the deposition on continuous,
and possibly non-planar, surfaces. It must be noticed that in Nb3Sn νp is high enough for
applications like the dark matter cavity detectors [79], thus despite its lower νp it retains its
importance for µw applications.
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Figure 11: Comparison between the µw vortex parameters (ρff and νp) of Nb3Sn MgB2 and
YBa2Cu3O7-δ at µ0H = 1 T and T = 10 K.

From the technological point of view Figure 11 shows a useful comparison of the µw
most interesting parameters of these SCs at fixed working conditions (i.e. at µ0H = 1 T and
T = 10 K). However, it can be useful to compare the different SCs also with a more physical
approach, evaluating kp and η at the same reduced temperature t = T/Tc and field b = B/Bc2.
This comparison is shown in Figure 12. The higher kp in YBCO is caused by the single fluxon
pinning in this kind of SC [44], while in both Nb3Sn and MgB2 it was shown that the vortex
system is in the collective pinning regime [61]. However, it must be noticed that the kp,max
here theorized for Nb3Sn corresponds to the lower limit for kp in YBCO. Thus, in theory if it
would be possible to optimize Nb3Sn with artificial pinning centres effective at microwaves,
the high frequency performances of Nb3Sn could be expected to be near that of YBCO. Finally,
the viscous drag coefficient η = Φ0B/ρff ∝< τ > shows that the quasi-particles scattering
time τ in the fluxons cores is particularly reduced in MgB2 because of the high normal carriers
density coming from the suppressed π-band [61,91]. In Nb3Sn η is about 3 times smaller than
the lower η value in YBCO, thus even if for kp and νp there is still room for improvement, the
Nb3Sn microscopic properties would still limit the high frequency dissipation in this material.

The comparison between the Nb3Sn, MgB2 and YBa2Cu3O7-δ µw vortex parameters
shows that Nb3Sn exhibits intermediate performances between those of the other two SCs.
However, the possibility of increasing kp, with artificial pinning centres optimized to work at
µw in order to extend the single pinning regime in Nb3Sn, can be particularly interesting to
obtain a metallic superconductor with improved µw pinning characteristics, close to that of
YBCO.
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Figure 12: Comparison between the pinning constant kp and the viscous drag coefficient η of
Nb3Sn MgB2 and YBa2Cu3O7-δ at t = 0.5 and b = 0.2.

7. Summary

A polycrystalline bulk Nb3Sn sample was characterized at 15 GHz in order to study the high-
frequency vortex motion in highmagnetic fields up to 12 T. Themeasurements were performed
with a dielectric loaded resonator both in field cooling and zero field cooling conditions. The
obtained normal state material parameters matched with the literature values. The upper
critical field Hc2(T ) was evaluated at the higher temperatures directly up to 12 T while at
the lower temperatures Hc2(T ) was obtained by the scaling of the flux flow resistivity ρff in
a self-consistent way: the scaling procedure based on the Bardeen-Stephen (BS) model [36]
ρff/ρn ∼ H/Hc2 gave a Hc2(T ) in agreement with the expected, from literature [39], Maki-
de Gennes (MG) behavior [37, 38] confirming both the validity of the scaling itself and the
conventional BS behavior of bulkNb3Sn. The Nb3Sn depinning frequency νp reached rather
high values, above 4 GHz even at 12 T and low T , indicating that Nb3Sn is suitable for radio
frequency low loss applications up to few GHz in bulk form. Since νp strongly decreases with
the film thickness, as shown in Nb, higher νp values can be expected in Nb3Sn thin films.
The pinning constant kp(T,H) was found to decrease when the temperature and the field are
increased due to the reduction of the pinning efficiency. In particular, a field dependence
typical of the collective pinning scenario (i.e. kp ∝ H−0.5) was shown. Despite the collective
pinning, kp > 10 kN m-2 for H ≤ 8 T and T ≤ 8 K which is about 10 times greater the
values found in thin Nb films [58]. An estimation of the maximum kp,max ∼ 50 kN/m2,
corresponding to single-vortex core pinning, shows that an alternative path to higher νp (from
higher kp) might arise from appropriate defect engineering. In fact, only in the last years the
necessity to operate at high frequencies and high magnetic fields emerged, while no particular
material studies were undertaken for optimizing the superconductive properties in these harsh
working conditions.
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Finally, we provided an analysis of the impact of the thermal activation on the vortex
motion parameters through a statistical method and using the Coffey-Clem (CC) model [33].
The creep activation energy U0 distribution was modeled with a uniform distribution with
upper and lower bound estimated consistently with the models and results already obtained.
Although the results obtained with the Gittleman-Rosenblum (GR) model [18] (assuming
negligible creep) represent a lower limit for both ρff and νc, we obtained that ρff , evaluated
with the GR model, can be considered a reliable determination while for t = 0.5 the expected
value E[νc]CC ∼ 1.2νp,GR at 2 T and E[νc]CC ∼ 1.4νp,GR at 12 T.

This work represents, to our knowledge, the first report of the microwave response in
Nb3Sn at high fields. The results here obtained are encouraging for the use of Nb3Sn in RF
in high fields, although further optimization of the pinning can be needed for the specific
requirements of high-frequency applications.
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