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ABSTRACT

We perform the first simultaneous Bayesian parameter inference and optimal reconstruction of the
gravitational lensing of the cosmic microwave background (CMB), using 100 deg2 of polarization obser-
vations from the SPTpol receiver on the South Pole Telescope. These data reach noise levels as low as
5.8µK-arcmin in polarization, which are low enough that the typically used quadratic estimator (QE)
technique for analyzing CMB lensing is significantly sub-optimal. Conversely, the Bayesian procedure
extracts all lensing information from the data and is optimal at any noise level. We infer the amplitude
of the gravitational lensing potential to be Aφ = 0.949± 0.122 using the Bayesian pipeline, consistent
with our QE pipeline result, but with 17% smaller error bars. The Bayesian analysis also provides a
simple way to account for systematic uncertainties, performing a similar job as frequentist “bias hard-
ening,” and reducing the systematic uncertainty on Aφ due to polarization calibration from almost half
of the statistical error to effectively zero. Finally, we jointly constrain Aφ along with AL, the amplitude
of lensing-like effects on the CMB power spectra, demonstrating that the Bayesian method can be used
to easily infer parameters both from an optimal lensing reconstruction and from the delensed CMB,
while exactly accounting for the correlation between the two. These results demonstrate the feasibility

of the Bayesian approach on real data, and pave the way for future analysis of deep CMB polarization
measurements with SPT-3G, Simons Observatory, and CMB-S4, where improvements relative to the
QE can reach 1.5 times tighter constraints on Aφ and 7 times lower effective lensing reconstruction
noise.

Keywords: cosmic background radiation - cosmological parameters - gravitational lensing

1. INTRODUCTION

Gravitational lensing of the cosmic microwave back-

ground (CMB) occurs as CMB photons traveling to us
from the last scattering surface are deflected by the grav-
itational potentials of intervening matter. This effect
has been detected with high significance, allowing infer-

ence of the line-of-sight projected gravitational field of
the intervening matter and of the late-time expansion
history and geometry of the universe (Lewis & Challi-

nor 2006; Planck Collaboration et al. 2018). Better mea-
surements of the lensing effect are one of the main goals
of nearly all future CMB probes, and can help constrain
dark matter, neutrinos, modified gravity, and a wealth of
other cosmological physics (Benson et al. 2014; Abaza-
jian et al. 2016; The Simons Observatory Collaboration
et al. 2019).

Traditionally, analysis of lensed CMB data has re-
lied on the so-called quadratic estimate (QE) of the
gravitational lensing potential, φ (Zaldarriaga & Seljak

1999; Hu & Okamoto 2002). The QE is a frequentist
point estimate of φ formed from quadratic combina-
tions of the data. It is conceptually simple and near
minimum-variance at noise levels up to and including
many present day experiments. However, it was real-
ized by Hirata & Seljak (2003a,b) and Seljak & Hirata
(2004) that when instrumental noise levels drop below

∼ 5µK arcmin, where lensing-induced B-modes begin to
be resolved with signal-to-noise greater than one, the QE
ceases to be minimum-variance and better analysis can

extract more information from the same data. Hirata &
Seljak (2003b) were the first to construct a better esti-
mator, using a method based on the Bayesian posterior

for CMB lensing. This included a maximum a posteri-
ori (MAP) estimate of φ which has lower variance than
the QE1, and a maximum likelihood estimate (MLE)
of the power spectrum of gravitational lensing poten-

tial, Cφφ` . These results used a number of simplifying
approximations, including perfectly white noise and pe-
riodic flat-sky boundaries with no masking in the pixel
domain. Extending this original work, Carron & Lewis
(2017) upgraded this MAP φ procedure to work without
these approximations, rendering it applicable to realistic
instrumental conditions.

Although estimates of the φ maps are useful, here we
are interested in reconstructing not only φ but its the-
ory power spectrum as well. A common misconception

1 The MAP φ estimate from Hirata & Seljak (2003b) has some-
times been called the “iterative quadratic estimate,” but because
several methods exist which involve iterating something akin to
a quadratic estimate, we do not use this term and instead more
precisely refer to individual methods.
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is that once one has a better estimate of φ (e.g. a MAP
φ estimate), one can take its power spectrum, subtract
a noise bias, and obtain the desired estimate of Cφφ` .
While this does work for the QE, it is only because the
QE can be analytically normalized and its power spec-
trum analytically noise debiased (up to some usually
minor Monte Carlo corrections), yielding an unbiased
estimate of the theory lensing spectrum. However, this
is not generically the case for MAP estimates, for which
analytic calculations of normalization and noise biases
do not exist. In theory, one could try computing these
entirely via Monte Carlo, but this can only be done at
a single fiducial cosmological model, and it is unknown
to what extent these could be cosmology-dependent or
how one might deal with this. If a frequentist estimate
is nevertheless desired, a more promising approach may
be something akin to the Cφφ` MLE proposed by Hi-
rata & Seljak (2003b). However, this has not yet been
demonstrated on realistic data.

An alternate approach is based on direct Bayesian in-
ference of cosmological quantities of interest, without
the need for explicit normalization and debiasing of any
intermediate power spectra. Recent progress was pre-

sented in Anderes et al. (2015), who developed a Monte
Carlo sampler of the Bayesian posterior of unlensed
CMB temperature maps and φ maps given fixed cos-

mological parameters. Millea et al. (2019) began the
process of incorporating polarization into this proce-
dure, resulting in a joint MAP estimate of both the φ

map and the CMB polarization fields. Finally, Millea
et al. (2020) (hereafter MAW20) extended this to a full
Monte Carlo sampler and included cosmological param-
eters in the sampling, giving the key ingredients needed

for the work here. By virtue of directly mapping out
the Bayesian posterior for these quantities, this method
achieves the goal of fully extracting cosmological infor-

mation from lensed CMB data and is optimal at all noise
levels.

Instrumental noise levels which are low enough at the
relevant scales to necessitate anything beyond the QE
have only recently been attained. The POLARBEAR
collaboration performed the first (and to-date only)
beyond-QE analysis of real data (Adachi et al. 2019).
This used the Carron & Lewis (2017) MAP φ estimate
to internally “delense” the data, removing the lensing-
induced B-mode polarization. Unlike generic Cφφ` esti-

mation, B-mode delensing does not require renormaliz-
ing the φ estimate, and noise biases can be mitigated
via the “overlapping B-mode deprojection” technique.

In this work, we go a step further and perform an opti-
mal lensing reconstruction and full parameter extraction
from the lensing potential and from internally delensed

bandpowers. Although similar in spirit, our methodol-
ogy is quite different, however, and based on the MAW20
Bayesian sampling procedure rather than on any point
estimates. We use the deepest 100 deg2 of South Pole
Telescope polarization data obtained with the SPTpol
receiver, restricting ourselves to just this deepest patch
since we are mainly interested in the low-noise regime
where the Bayesian procedure will outperform the QE.
We infer cosmological parameters Aφ and AL, along with
a host of systematics parameters. The Aφ parameter is
a standard parameter scaling the theory lensing spec-
trum as Cφφ` →AφC

φφ
` . Aφ can be considered a proxy

for any physical parameter that is constrained by the
lensing potential, such as the matter density or the sum
of neutrino masses. We choose to estimate Aφ here for
simplicity, but in the future the method could easily be
extended to estimate more physical parameters instead.

The AL parameter scales the lensing-like contribution
to the model CMB power spectrum, and is defined such
that AL = 1 if the underlying cosmological model is cor-

rect. Unlike frequentist estimates, the Bayesian proce-
dure requires a self-consistent data model which includes
both Aφ and AL, and we develop one here. Finally, we
include several systematics parameters, noting that it is

particularly easy to incorporate systematic errors in the
Bayesian approach. The final output of this procedure
is a Monte Carlo Markov Chain (MCMC) composed of

samples of these parameters along with samples of the φ
maps and unlensed CMB polarization maps, for a total
of 202,808 dimensions sampled. Ultimately, we demon-

strate a 17% improvement of the Bayesian constraint on
Aφ as compared to the QE.

The results here are new in three regards:

• First time a parameter (Aφ) is estimated from an
optimal lensing reconstruction.

• First joint inference of parameters controlling the
lensing potential (Aφ) and controlling the CMB
bandpowers (AL), while fully and exactly account-
ing for correlation between the reconstruction and
the delensed CMB.

• First application of a fully Bayesian method to
CMB lensing data.

These demonstrate important pieces of the type of fully
optimal beyond-QE analysis which will be a require-
ment if next-generation experiments such as SPT-3G,
Simons Observatory, and CMB-S4 are to reach their full
(and expected) potential (Benson et al. 2014; Abazajian
et al. 2016; The Simons Observatory Collaboration et al.
2019).
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The organization of the paper is as follows. The reader
who wishes to skip the details of the MCMC sampling
procedure and simply trust that it yields samples from
the exact CMB lensing posterior can jump to the main
results in Sec. 6 and discussion in Sec. 7. The earlier
sections give the technical details of the data model-
ing and sampling. In Sec. 2, we describe the data and
simulations used in this work. These data have been
previously vetted in Story et al. (2015) and Wu et al.
(2019), and we refer the reader to these works for var-
ious null tests, here choosing instead to concentrate on
the lensing analysis. Most of the focus of this work is on
the Bayesian pipeline in particular, and Sec. 3 lays out
the forward model necessary to construct the posterior
for CMB lensing given the SPT data. Sec. 4 describes
the Bayesian and QE lensing pipelines, and Sec. 5 pro-
vides validation of the procedures, including on a suite
of realistic simulations of the actual data.

2. DATA AND SIMULATIONS

2.1. Data

In this work, we use data from the 150 GHz detec-
tors from the SPTpol receiver on the South Pole Tele-

scope (Padin et al. 2008; Carlstrom et al. 2011; Bleem
et al. 2012). SPTpol has employed three different scan
strategies for the observations which comprise our final
dataset.

From March 2012 to April 2013, SPTpol observed a
100 deg2 patch of sky (10◦ × 10◦) centered at right as-
cension (R.A.) 23h30m and declination (dec.) −55◦.

All observations of this field were made using an az-
imuthal “lead-trail” scan strategy, where the 100 deg2

field is split into two equal halves in R.A., a “lead” half-

field and a “trail” half-field. The lead half-field is ob-
served first, followed immediately by a trail half-field
observation, such that the lead and trail observations
occur in the same azimuth-elevation range. Each half-
field is observed by scanning the telescope in azimuth
right and left across the field and then stepping up in
elevation. This lead-trail strategy enables removal of

ground pickup. We will refer to these data as the 100d
observations.

From April 2013 to May 2014, SPTpol observed a
500 deg2 patch of sky, extending from 22h to 2h in R.A.
and from −65◦ to −50◦ in dec. Observations during this
time were also made using the “lead-trail” scan strategy,
and we will refer to them as the 500d-lt observations.

From May 2014 to Sep 2016, while observing the same
500 deg2 field, SPTpol switched to the “full-field” scan
strategy in order to increase sensitivity to larger scales
on the sky. In this case, constant-elevation scans are

made across the entire range of R.A. of the field. We
will refer to these data as the 500d-full observations.

Our final dataset comprises 6262 100d observations,
858 500d-lt observations, and 3370 500d-full obser-
vations. Each observation records the time-ordered data
(TOD) of each detector, and these TOD are filtered and
calibrated before being binned into maps. Our data re-
duction largely follows previous TE/EE power spectrum
analyses, namely Crites et al. (2015) for the 100d ob-
servations, and Henning et al. (2018) for the 500d-lt
and 500d-full observations. Here we only highlight
relevant aspects for this analysis.

For the 100d observations, we use slightly different
TOD filters compared to previous analysis of these data
in Crites et al. (2015). We subtract a 5th-order Legendre
polynomial from the TOD of each detector, and then
apply a high-pass filter at 0.05 Hz, in order to match the

filter choices for 500d observations. Based on the size
of our map pixels, we apply a low-pass filter at a TOD
frequency corresponding to an effective `= 5000 for anti-

aliasing along the scan direction. Electrical cross-talk
between detectors could bias our measurement, and in
Crites et al. (2015) we applied the cross-talk correction
to the power spectra at the end of the analysis. However,

in this analysis we correct cross-talk at the TOD level
by measuring a detector-to-detector cross-talk matrix,
in the same way as described in Henning et al. (2018).

For the 500d-lt observations, we slightly modify the
filters as compared to Henning et al. (2018) as well.
We subtract a 3rd-order Legendre polynomial from each

detector’s TOD, and then apply a high-pass filter at
`= 100 to further suppress atmospheric noise. We also
apply a low-pass filter at `= 5000 for anti-aliasing. For
the 500d-full observations, while using the same high-

pass and low-pass filters, we subtract a 5th-order Leg-
endre polynomial instead, due to each scan being twice
as long in the scan direction. Electrical cross-talk is

corrected as described in Henning et al. (2018).
The TOD of each detector are calibrated relative to

one another using an internal thermal source and obser-
vations of the Galactic HII region RCW38. The polar-
ization angles of each detector are calibrated by observ-
ing an external polarized thermal source, as described
in Crites et al. (2015). We bin detector TOD into
maps with square 1′ pixels using the oblique Lambert
azimuthal equal-area projection, centered at the 100d
field center. Because the Bayesian analysis is computa-
tionally intensive and scales with the number of pixels,
it is advantageous to reduce the number of pixels in the
final data map as much as possible. Since our analysis
does not use modes above `max = 3000, we can losslessly

downgrade the data maps to 3′ arcmin pixels, for which
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the Nyquist frequency is `nyq = 3400. Downgrading is
performed by first applying an anti-aliasing isotropic
low-pass at `nyq, averaging pixels together, then decon-
volving the pixel-window function to match the original
1′ map (the remaining 1′ pixel-window function is ac-
counted for in our forward model for the data). The
reason for not making maps directly at 3′ resolution is
because the anti-aliasing filter is most easily applied to
the intermediate 1′ maps, rather than at the TOD level.

Because we are interested in a low-noise data set where
the improvement over the QE is most evident, we only
run the analysis on data within the 100d footprint, and
only on polarization data. The final data product is a set
of coadded 260×260 pixel Q and U maps. The effective
noise level of the 100d-deep dataset inside the mask
used in the analysis is 6.0µK-arcmin in polarization over
the multipole range 1000<`< 3000, dipping to 5.8µK-
arcmin in the deepest parts of the field.

3. MODELING

To compute the Bayesian posterior for CMB lensing,

we require a forward data model and a set of priors.
The data, d, which is used as input to the Bayesian
pipeline, is a masked and “noise-filled” version of the

QU data produced by the map-making described in the
previous section (we will describe the masking and what
we mean by noise-filled later in this section). The model
we assume for d and later demonstrate is sufficiently

accurate is

d = Mf Mp Robs×[
Pcal R(ψpol)TB(βi)L(φ) f + εQtQ + εUtU

]
+ n (1)

where

• f are the unlensed CMB polarization fields,

• φ is the gravitational lensing potential,

• n is the instrumental and/or atmospheric noise,

• L(φ) is the lensing operation,

• B(βi) is the beam smoothing operation, controlled
by a set of beam eigenmode amplitudes, βi,

• T are the transfer functions,

• R(ψpol) is a global Q/U rotation by an angle ψpol,
representing the absolute instrumental calibration,

• Robs is a fixed but spatially dependent Q/U ro-
tation which aligns the flat-sky Q/U basis vectors
to the data observation basis, the inverse of the

operation sometimes referred to as “polarization
flattening”,

• Pcal is the polarization calibration parameter,

• tQ/U are temperature-to-polarization monopole
leakage templates and εQ/U are their amplitude
coefficients,

• Mp and Mf are pixel-space and Fourier-space
masking operations, respectively.

We use the notation that lower-case regular letters rep-
resent maps, and double-struck upper-case letters rep-
resent linear operators on the Npix-dimensional abstract
vector space spanned by all possible maps. Later in the
paper, we also use the notation that Diagonal(x) refers
to a diagonal matrix with the vector x along the diag-
onal, and diag(A) returns the vector along the diagonal
of the matrix A.

We adopt Gaussian priors on the fields f , φ, and n

f ∼ N
(
0,Cf (Af )

)
(2)

φ ∼ N
(
0,Cφ(Aφ)

)
(3)

n ∼ N
(
0,Cn

)
, (4)

where Cf (Af ), Cφ(Aφ), and Cn denote the covariance
operators for unlensed CMB polarization, the lensing
potential, and the experimental noise. The first two

depend on parameters which control the amplitude of
the overall power spectra,

Cf (Af ) = AfC0
f (5)

Cφ(Aφ) = C0
φ + (Aφ − 1)VC0

φ. (6)

where C0
f and C0

φ are evaluated at the best-fit Planck
cosmology. The lensing amplitude parameter, Aφ, is
the main cosmological parameter of interest in this work,

and scales the amplitude of the fiducial lensing potential
within some window, V. The window allows us to esti-
mate the amplitude just within a given multipole range,
which here we take to be ` = (100, 2000) to match previ-
ous SPT lensing analyses. This parameter is sometimes
denoted as A100→2000

φ , but throughout this work, unless
otherwise stated or included for clarity, we will drop the
superscript and simply refer to

Aφ≡A100→2000
φ . (7)

The unlensed CMB amplitude parameter, Af , functions
as a proxy for the Planck absolute calibration, and al-
lows us to marginalize over the uncertainty in this quan-
tity. Incorporating the AL parameter is slightly less
straightforward than either Aφ or Af , and this discus-
sion is delayed until Sec. 6.1. All other cosmological pa-
rameters not explicitly sampled are assumed to be per-
fectly known and fixed their true value given the fiducial

model.
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Figure 1. To help orient the reader, a visualization of the various linear operators which enter the CMB lensing posterior
in Eq. (8). The operators B and T are the beams and transfer functions, W and N together form the noise covariance as
Cn =WNW†, and Mp and Mf are the pixel-space and Fourier-space masks, respectively (see Sec. 3 for a full description). These
operators correspond to Npix×Npix matrices which act on the Npix-dimensional vector space of spin-2 (i.e. polarization) 2D
maps or 2D Fourier transforms (here Npix = 2 · 2602). The quantities plotted above are the Q component of the diagonal of
these matrices when represented in the basis labeled in each plot. For B, Mp, and Mf , the Q and U components are taken to
be identical, while for T, W, and N, they are allowed to be different (but qualitatively end up very similar, and hence only Q is
shown).

We assume uniform priors on the cosmological and
instrumental parameters: Af , Aφ, Pcal, ψpol, εQ, and εU,
and unit normal priors on the βi (discussed in Sec. 3.4).

This set of choices fully specifies the posterior distri-
bution over all variables, given in Eq. (8):

P
(
f, φ,Aφ, Af , Pcal, ψpol, εQ, εU, βi | d

)
∝

exp

{
−
[
d−Mf Mp Robs

(
Pcal R(ψpol)TB(βi)L(φ) f + εQtQ + εUtU

)]2
2Cn

}
detC1/2

n

exp

{
−

f2

2Cf (Af )

}
detCf (Af )1/2

exp

{
−

φ2

2Cφ(Aφ)

}
detCφ(Aφ)1/2

P(βi)

where we use the shorthand x2/N ≡ x†N−1x here and throughout the paper. (8)

Following the terminology of MAW20, we refer to this
as the “joint posterior,” in contrast to the “marginal
posterior” which would analytically marginalize out f .

3.1. Calibration

Performing a change-of-variables from f → f/
√
Af

in Eq. (8) makes it clear that the posterior constrains



7

only the product Pcal

√
Af . Thus, without loss of gener-

ality, we fix Af = 1 in our sampling and only explicitly
sample the Pcal parameter. The resulting constraints
on Pcal can be interpreted as a constraint on Pcal

√
Af ,

or equivalently as a constraint on the SPT polarization
calibration when calibrating to a perfectly known theory
unlensed CMB spectrum given by the Planck best-fit.

An estimate of Pcal can be obtained by comparing
SPTpol E maps with those made by Planck. For the
500d data, Henning et al. (2018) measured Pcal = 1.06,
and for the 100d data, Crites et al. (2015) measured
Pcal = 1.048. A weighted combination of the two pre-
dicts Pcal∼ 1.055 for the 100d-deep data.

This external estimate of Pcal, however, is not directly
used, because we do not correct the raw data by a best-
fit Pcal. Instead, we include Pcal in the forward model
for the data and sample its value in our MCMC chains.
Note that this approach is unique for a lensing analysis,
because it means that the calibration is jointly estimated

at the same time as other systematics, at the same time
as cosmological parameters, and even at the same time
as the reconstructed φ maps themselves. We will see
in Sec. 6.3 that this has concrete benefits, mainly that

it reduces the impact of the uncertainty on Pcal on the
final cosmological uncertainty. As a consistency check,
we will also show that the range of Pcal values allowed

by the MCMC chain is consistent with Pcal∼ 1.055.
For the QE pipeline where there is no analogous ap-

proach, we do correct the data, however we correct by

the best-fit value from the Bayesian pipeline for eas-
ier comparison between the two. All of the systematics
parameters described in the following sub-sections are
handled in the same way as Pcal, by sampling in the

Bayesian case and by applying a best-fit correction in
the QE case.

3.2. Global polarization angle

Assuming negligible foregrounds and a non parity-
violating cosmological model, we expect the cross-
spectra between TB and EB to be consistent with zero.
A systematic error in the global polarization angle cali-
bration of the instrument, ψpol, can also create a signal
in these channels. A typical approach is to determine
ψpol by finding the value that nulls the TB and EB
channels (Keating et al. 2012). This was the approach
taken in Wu et al. (2019) for a subset of the same data
used here, which found ψpol = 0.63◦± 0.04◦.

We include the global polarization rotation in the for-
ward data model in the form of the operator R(ψpol),
and jointly infer ψpol along with the other systematics
and cosmological parameters. Because the prior on f

assumes no correlation between EB (i.e. Cf is diagonal
in EB Fourier space), the MCMC chain will implicitly
try to find the ψpol which nulls the EB channel. As we
will see in Sec. 6.4, the value we find is consistent with
the determination from Wu et al. (2019).

3.3. Temperature-to-polarization leakage

Because the measured polarization signal effectively
comes from differencing the measured intensity along
two different polarization axes, any systematic mismatch
affecting just one of the axes can leak the CMB temper-
ature signal into polarization. Depending on the na-
ture of the mismatch, different functions of the temper-
ature map can be leaked into Q and U . For example, a
gain variation between detectors will leak a copy of the
T map directly, whereas pointing errors, errors in the
beam width, or beam ellipticity will leak higher-order
gradients of the T map (Ade et al. 2015). Because the

temperature map is measured with very high signal-to-
noise, the presence of leakage can be detected by cross
correlating temperature and Q or U maps (this correla-

tion should be zero on average for the true CMB, given
a Fourier mask with appropriate symmetries). Addi-
tionally, if any correlation is detected, it can simply be
subtracted given an appropriate amplitude.

For the 100d-deep data, cross correlating with the
appropriate templates demonstrates that only gain-type
leakage exists at appreciable levels in the maps. This

type leads to a leakage of the form,(
Q

U

)
→

(
Q

U

)
+

(
εQT

εUT

)
(9)

where εQ and εU are coefficients which capture the total

leakage to each channel. Minimizing the TQ and TU
cross-correlation yields best-fit values of

εQ = 0.010 εU = 0.006. (10)

As for the other systematics, these values are only used
as a consistency check, and instead the leakage tem-
plates are included in the forward model and εQ and εU
are sampled. For convenience, we also define the spin-2
polarization fields, tQ≡ (T, 0) and tU≡ (0, T ), which al-
low writing the leakage contribution in the form seen in
Eq. (8). Finally, we note that the coefficients are small
enough that no T noise is introduced in the deprojection
or marginalization over the leakage templates, thus the
T field can be taken as a fixed truth given by the mea-

surement and does not need to be additionally sampled.
As we will see in Sec. 6.4, the values preferred by the
chain are in agreement with Eq. (10).
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3.4. Beams

For the 100d field, the beam window function and
error covariance are measured using eight independent
observations of Mars. The beam in the field observa-
tions are further broadened by pointing jitter, which
we estimate by making a second beam measurement us-
ing bright point sources in the 100d field, and convolv-
ing it with the Mars-derived beam. Full details can be
found in Crites et al. (2015). For the 500d field, the
beam is measured using seven independent Venus ob-
servations, and pointing jitter is convolved in the same
way as above. Full details can be found in Henning et al.
(2018), where a cross-check is also performed by com-
paring with Planck beams and maps. The 100d-deep
beam is computed by averaging over beam-convolved
simulations of the 100d and 500d fields, combined given
the appropriate weights.

The forward data model includes the beam uncer-
tainty in the form of a beam operator parameterized

by free beam eigenmode amplitudes:

B(βi) = B0 + β1B1 + β2B2 + ... (11)

where B0 is the best-fit beam, the βi are beam eigen-
mode amplitudes, and the Bi are the perturbations to
the beam operator determined from an eigenmode de-
composition of the beam covariance matrix. An image

of B0 is shown in the top left panel of Fig. 1. We nor-
malize the Bi such that the βi have unit normal pri-
ors, which are included in the sampling. We keep three

eigenmodes in the chain. As we will see in Sec. 6.3, none
are appreciably constrained beyond their prior, indicat-
ing that the data is consistent with the fiducial beam
determination.

3.5. Masking

Our analysis applies a pixel mask, Mp, which selects

the 100d-deep field and masks bright discrete sources.
The mask border is built by thresholding the noise pixel
variance at 5 times its minimum value, straightening the
resulting edge with a smoothing filter, and finally ap-
plying a 1 deg2 cosine apodization window. The source
mask is composed of known galaxy clusters (Vander-
linde et al. 2010), and point sources detected in tem-
perature with fluxes greater than 50 mJy (Everett et al.
2020). In total, the effective sky fraction left unmasked
is 99.9 deg2. This pixel mask is shown in the top-right
panel of Fig. 1.

We note that neither Bayesian nor QE pipelines re-
quire that the mask be apodized. However, while the
Bayesian pipeline remains optimal for any mask, hard
mask edges can lead to larger Monte Carlo corrections

and slight sub-optimalities in the QE pipeline. To facili-
tate a fairer comparison, we have chosen to use apodiza-
tion in the baseline case, but also present results with
an unapodized mask in Sec. 6.4.

In the Fourier domain, we apply a Fourier-space mask,
Mf , shown in the bottom-right panel of Fig. 1. The cen-
ter part of the mask is built by thresholding the 2D
transfer function at 0.9 to remove modes, mainly in the
`x direction, which are significantly affected by the TOD
filtering and for which the approximation that T is diag-
onal in QU Fourier space breaks down. We additionally
apply an `max = 3000 upper bound to limit the possi-
ble contamination from polarized extra-galactic point
sources. Although there is not much information be-
yond `= 3000 at these noise levels, we note that this
choice is likely quite conservative and can probably be
significantly relaxed in the future.

The total masking operator is chosen as M=Mf Mp,
i.e. pixel masking happens first. To produce the data
which is input to the Bayesian pipeline, d, we apply M
to the raw data map that is output by the map mak-
ing procedure. We then also self-consistently include M
in the data model itself. Because Mf and Mp do not

commute exactly, there is some small leakage of masked
Fourier modes into d. Our analysis features a fairly con-
servative Mf and it is not a problem that the effective
Fourier mask leaks slightly into the region which is for-

mally masked by Mf , specifically by around ∆`∼ 10 (set
by the width of the mask kernel window function). For
future analyses where a more precise cut might be de-

sired, one could fully remove any leakage by directly
deprojecting the undesired modes from the data and in-
cluding the deprojection operator in the data model.

3.6. Transfer functions

The filters applied to the TOD during map making
imprint an effective transfer function on the data maps,
dependent on the scanning strategy and filtering choices
made for each type of observation. We approximate
these transfer functions, T, as diagonal in QU Fourier
space, and estimate them, as well as validating the
approximation, with a set of full pipeline simulations.
The full pipeline simulations are fairly computationally
costly, and we take two steps to reduce the cost of this
step of the analysis: 1) we simplify each simulation by
reducing the number of individual observations which
are included, and 2) we reduce the total number of sim-
ulations needed from ∼ 400 to only 20 using a variance

canceling technique.
The full pipeline simulations start with a Gaus-

sian realization of the CMB given the best-fit 2015
Planck plikHM TT lowTEB lensing lensed power spec-
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Figure 2. Validation of the approximations underlying our
estimate of the transfer function, T (see Sec. 3.6). The top
plots shows the Q and U components of the difference be-
tween 1) a full 100d-deep TOD-level noise-free pipeline sim-
ulation and 2) a simple projection of the same realization
then multiplication by T. The differences arise from mode
coupling induced by the TOD filtering and Monte Carlo error
in the transfer function estimation procedure. The bottom
plot shows the power spectrum of these difference maps, av-
eraged over several realizations, as well as of the QQ signal
and noise for comparison. Differences are 1-4 orders of mag-
nitude below the noise power spectrum, hence negligible. We
note that in both top and bottom plots, the full Fourier and
pixel mask, M, has been applied, so as to pick out the modes
which are actually relevant in the analysis.

tra (Planck Collaboration et al. 2016). A small expected
galactic and extra-galactic Gaussian foreground contri-
bution is also added, and then a smoothed version of
the SPTpol beam window function is convolved. Note
that because the TOD filtering is linear by construc-
tion and approximately diagonal in QU Fourier space,
it is not crucial that these simulations exactly match the
true sky power, nor that they contain the right level of
lensing or foreground non-Gaussianity.

From these, we generate mock TOD by virtually scan-
ning the sky using the recorded pointing information
from actual observations. For each scan strategy (100d,

500d-lt, and 500d-full), we mock-observe the simu-
lated sky into TOD, process TOD into maps, and then
coadd these maps in the same way as the real data. The
first of the two improvements mentioned above is that we
only use a subset of the actual observations (in practice,
20), since many observations have identical scan strate-
gies and would have effectively identical transfer func-
tions. In parallel to these full pipeline simulations, we
also perform a simple projection of the beam-convolved
CMB+foregrounds to the flat-sky, with no other filter-
ing applied.

We can achieve sufficient accuracy on T with only 20
simulations by using a new variance canceling technique.
This method computes the transfer function as,

T = Diagonal

〈
Re

[(
Mp ffull−pipeline

)
QU,l(

Mp fprojected

)
QU,l

]〉
20 sims

(12)

where the f in the numerator and denominator are the
mock-observed and projected maps, respectively, and

Mp is the pixel mask. The presence of the projected
map in the denominator cancels sample variance in the
estimate leading to much quicker Monte Carlo conver-
gence. However, this comes at the cost that Eq. (12) is

actually a biased estimate of the true effective transfer
function.

With a simple test, we can verify 1) that this bias is

small, 2) that our approximation that T is diagonal in
QU Fourier space is sufficient, 3) that there is negligible
Monte Carlo error due to using only 20 pipeline simu-
lations, and 4) that our usage of only 20 observations

per simulation is valid. For a set of simulations separate
than those used to estimate T and using a different set of
20 observations within each simulation, we compare the

result of the full pipeline simulation versus simply apply-
ing T to the projected map for the same realization. In
the top panel of Fig. 2, we show these difference maps,

and in the bottom panel we show their power spectrum
averaged over a few realizations. In both top and bot-
tom panels, we multiply by the full mask, M, so as to
pick out only modes relevant for the analysis. We see
that the difference is 1–4 orders of magnitude below the
noise spectrum, hence T is a very accurate representa-
tion of the true transfer function, particularly at smaller
scales which drive the lensing constraint. The final es-
timate of T used in the analysis is shown in the bottom
left panel of Fig. 1.

We note that the variance canceling technique em-

ployed here may be of wider use, but only if full pipeline
simulations are not required to quantify uncertainty,
otherwise a larger set of simulations is needed anyway.
Here we did not need such a larger set because the
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Figure 3. Validation of the approximations underlying our
estimate of the noise covariance, Cn (see Sec. 3.7). The top
panel shows the mean power spectra of 400 real noise real-
izations and 104 model noise realizations which have been
masked by M. The bottom is a fractional difference between
the two (note the change from linear to log scaling at 10−2).
The dark shaded band is the expected scatter due to having
only 400 real noise realizations, and the lighter shaded band
gives the total CMB + noise error bars in the bins plotted
here. The good agreement between the two indicates our
model noise covariance is an accurate representation of the
real noise.

Bayesian pipeline does not use simulations to quantify
uncertainty at all, and because for the QE pipeline we
have used simulations from the forward data model, as
this model is demonstrated sufficiently accurate for our
purposes.

3.7. Noise covariance

The noise covariance is inferred from noise realizations
which come directly from the real data using the “sign-
flipping” method also used by previous SPT and BI-
CEP analyses (e.g. BICEP2 Collaboration et al. 2014;
Wu et al. 2019). This method works by multiplying a
random half of the N = 10490 observations which enter

the final data co-add by −1 before summing them. This
cancels the signal but leaves the statistical properties
of the noise unchanged, as long as no observation-to-
observation correlations exist (which is expected to be
the case). This is repeated M = 400 times yielding M

nearly independent noise realizations. We will refer to
these as real noise realizations and the distribution from
which they are drawn as the real noise.

As we will describe in Sec. 4.2, the QE pipeline only
requires the average 2D power spectrum of the noise as
well as an approximate white-noise level. This is suffi-
cient because the noise only enters the QE pipeline for
the purposes of Wiener filtering the data, where an ap-
proximate Wiener filter is computed and the impact of
this approximation is captured in a Monte-Carlo correc-
tion applied at the end of the pipeline. This does not
lead to any bias, only a small sub-optimality of the fi-
nal result. The Bayesian pipeline does not apply any
Monte-Carlo corrections, and thus needs to perform the
Wiener filter (which also arises in the Bayesian case)
more exactly. This in turn necessitates a full model for
a noise covariance operator, Cn, which needs to be as
accurate as possible. We will refer to this as the model
noise, and samples from this covariance as model noise
realizations.

The real SPT noise is non-white, as instrumental and
atmospheric 1/f noise dominates at large scales. It is
anisotropic, as spatial modes in the scan-parallel and

scan-perpendicular directions map onto different tempo-
ral modes, and are affected differently by TOD filtering.
Finally, it is inhomogenous, as some spatial regions are

observed slightly deeper than others; in particular, the
lead-trail scanning strategy used in the 100d and 500d-
lt observations causes some regions near the center and
right edges of the final 100d-deep field to have noise

levels a few tens of percent lower than the rest of the
field.

With only M = 400 real noise realizations, but the

most generic Cn corresponding to an Npix×Npix ma-
trix where Npix = 2 · 2602, some form of regularization
is needed to choose a unique Cn. The choice we make

here is motivated by retaining the flexibility to model the
complexity of the real noise just described while keep-
ing Cn fast to invert and to square-root2, as both are
needed to sample Eq. (8). Specifically, we define the
model noise covariance, Cn, as

Cn ≡WNW† (13)

where W is diagonal in QU pixel space and N is diag-
onal in QU Fourier space. That is to say, we model
the noise as having an arbitrary non-white anisotropic
power spectrum which is spatially modulated in pixel

2 We note that for our purposes, the matrix square-root is any G
for which Cn =G†G.
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space. With this choice, we have that

C−1
n = W−† N−1 W−1 (14)√
Cn =

√
NW†, (15)

where both operators can be easily applied to vectors
with only a few FFTs. We solve for W and N by requir-
ing that the variance in each individual 2D Fourier mode
and the variance in each individual pixel be identical for
noise realizations drawn from Cn and for the real noise
realizations. These are 2Npix constraints for the 2Npix

combined degrees of freedom in W and N, yielding the
following solution for the diagonal entries of these ma-
trices

W = Diagonal
(

std ({n})QU,x
)

(16)

N = Diagonal
(

var
(
{MW−1n}

)
QU,l

)
(17)

where the standard deviation and variance are taken

across the M noise realizations.
We note that the noise realizations used in these aver-

ages are the raw sign-flipped combinations of the actual

data, with no extra operators deconvolved or masks ap-
plied. Hence, the noise term, n, is not multiplied by any
extra factors in Eq. (1). Additionally, we smooth both
W and N with small Gaussian kernels, since we do not

expect the noise properties to vary significantly across
neighboring pixels or across neighboring Fourier modes.

We plot W and N in the middle two panels of Fig. 1.

The top panel shows the spatially varying pixel variance
pattern in W, and the bottom panel shows the non-white
anisotropic Fourier noise pattern. To verify that model

noise realizations drawn from Cn are largely indistin-
guishable from real noise realizations, we show in Fig. 3
the mean Q, U , E, and B power spectra of the 400
real noise realizations along with the mean power spec-
tra of 104 model noise realizations. We find excellent
agreement, the difference between the two completely
explained by the scatter expected due to having only 400

real noise realizations (dark shaded band). Additionally,
any systematic difference between them is less than 1%
of the total Q sample variance error bars (lighter shaded
band; note the switch from linear to log scaling at 10−2).
As a further check, in Sec. 5.2 we will use the model noise
covariance to analyze simulated data which includes real
noise realizations, finding no evidence for biases to Aφ
due to any difference between these two.

3.8. The noise-fill procedure

The fact that Cn is not diagonal in either Fourier or
map bases presents a challenge for exactly Wiener fil-
tering the data in the presence of a masking operation

which is also not diagonal in either space. Whether ex-
plicitly stated or not, computing such Wiener filters usu-
ally involves approximating the noise as diagonal in one
of the two bases. Instead, here we develop and present
the following procedure which can perform the operation
exactly. To our knowledge, this has not been described
before, and could be of general use.

The challenge can be understood by considering the
following toy problem. Suppose we observe some map
which is the sum of some signal s and noise n, both
defined on the full pixel/Fourier plane, then apply a
mask, M, which is a rectangular matrix mapping the
full set of pixels/Fourier modes to a smaller subset of
just the unmasked ones. The data model is thus given
by d = M(s+ n). The residual between data and signal
model is (d−M s), and the covariance of this quantity is
MNM†, where N is the noise covariance. Defining the

signal covariance as S, the log-posterior for this problem
is thus

logP(s | d) ∝ − (d−M s)2

2MNM†
− s2

2 S
. (18)

Evaluating the posterior or its gradients with respect

to s requires inverting MNM†. Maximizing the poste-
rior (i.e., Wiener filtering) requires this as well, as the
solution is given by

ŝ =
[
S−1 + M†(MNM†)−1M

]−1M†(MNM†)−1d.
(19)

However, since M is not a square matrix, these inverses
cannot be simplified away or trivially computed. Some-

times, as a simplifying assumption, M and N are taken
to be diagonal in the same basis (e.g., N is assumed to
be white noise). In this case, the inverse can be com-
puted explicitly (often in practice by setting the noise to

infinity or to a very large floating point number). Since
in our case we wish to not make this simplification, we
cannot take this approach.

The more general solution we use instead involves ar-
tificially filling in the masked data with extra noise, n̄,
such that the new data model is

d′ = d+ n̄ = M(s+ n) + n̄, (20)

where we are now considering M as a square operator
but with some rows which are zero. Note that the extra
noise does not shift the mean of the data. However, the
covariance of the data residual becomes

MNM† + N̄, (21)

where N̄ denotes the covariance for n̄. Since we are free
to choose N̄, we can choose it such that the new data
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residual covariance is easy to invert, in particular, such
that it is equal to N. This happens when

N̄ = N−MNM†. (22)

We can draw a sample from N (0, N̄) by computing N̄1/2ξ
where ξ is a unit random normal vector. This can in
turn be computed by evolving the following ordinary
differential equation (ODE) from t= 0 to t= 1,

dy

dt
= −1

2

[
N̄t+ (1− t)1

]−1
(1− N̄)y(t) (23)

starting from y(0) = ξ (Allen et al. 2000). The quantity
in brackets in Eq. (23) can be inverted with the conju-
gate gradient method. The ODE itself is requires a stiff
solver (we use CVODE BDF from the Sundials.jl pack-
age; Hindmarsh et al. 2005; Rackauckas & Nie 2017).
The computation is not particularly costly and only
needs to be done once at the beginning of any analy-

sis. Once d′ is computed, the new posterior is given by
the much simpler

logP(s | d′) ∝ − (d′ −M s)2

2N
− s2

2 S
. (24)

Note that, when generating simulated data, it is not

necessary to actually perform this procedure. Instead,
it is equivalent to simply generate data from a model
d = M s + n, i.e., to leave the noise unmasked. It is
only on the real data, where one does not have access

to s and n separately, that one needs to explicitly per-
form the noise-fill. An added benefit of this approach
is that the likelihood term in the posterior becomes a

full Npix-dimensional χ2, thus its expectation value and
scatter are easy to compute; we use this in the later sec-
tions to ascertain goodness-of-fit. Finally, note that n̄
is generally zero “inside” the mask and only non-zero

“outside” the mask, thus the degradation in constraints
due to the filled in noise is negligible. We have verified
this by filling in our real data with several different noise
realizations, finding no shift in the resulting constraints
on Aφ. In Figure 4, we plot example data and noise-fills
for the 100d-deep dataset.

3.9. Negligible effects

To conclude this section, we mention a few effects
which are expected to be negligible for this data set and
are thus not modeled. Both Bayesian and QE pipelines
ignore sky curvature, instead working in the flat-sky ap-

proximation, which is very accurate for the modestly
sized 100 deg2 patch considered here. The lensing opera-
tion is implemented with LenseFlow (MAW20), which
assumes the Born approximation. Post-Born effects are
not detectable until much lower noise levels and are thus
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Figure 4. A demonstration of the “noise-fill” procedure
described in Section 3.8, which makes it much easier to ex-
actly Wiener filter the data even in the presence of pixel and
Fourier space masking and a noise covariance model which is
not diagonal in either space. The top-left panel shows 100d-
deep data with the mask applied, including Fourier and pixel
masks. The top-right panel additionally has the noise-fill, n̄,
added in; this panel is exactly the data, d, which is used
in the posterior in Eq. (8). The bottom-left panel shows
just n̄, and the bottom-right panel is n̄ multiplied by the
Fourier mask. In this last panel, one can see that in the re-
gion interior to the mask and in the range of Fourier modes
which are not masked by the Fourier mask, no extra noise is
added (hence this procedure does not degrade constraints).
Here we have plotted just the Q-polarization component; U -
polarization behaves qualitatively the same.

ignored (Pratten & Lewis 2016; Fabbian et al. 2018;
Böhm et al. 2018; Beck et al. 2018). Finally, we do
not model galactic or extra-galactic foregrounds. The

100d-deep field is in a region of sky particularly free
of galactic contamination, and we conservatively mask
modes below `∼ 500, thus we expect negligible polarized

galactic dust foregrounds (Planck Collaboration et al.
2020). Extra-galactic foregrounds are expected to be
much smaller in polarization than in temperature, and
here we only use polarization. Given that we also conser-
vatively mask modes above `= 3000, we follow Wu et al.
(2019) in concluding extra-galactic foregrounds can be
ignored in this analysis.

4. LENSING ANALYSIS

4.1. Bayesian lensing

The Bayesian sampling pipeline very closely follows
the methodology described in MAW20, and uses the
same code, CMBLensing.jl�. Conceptually it is ex-
tremely straight-forward: it is simply a Monte-Carlo

https://github.com/marius311/CMBLensing.jl
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sampler of the full posterior given in Eq. (8). Beyond
this, there are a few practical details which we describe
in this section.

First, we perform the standard change-of-variables
from (f, φ)→ (f ′, φ′) and sample the posterior in terms
of (f ′, φ′) instead. In this parameterization, the pos-
terior is less degenerate and better conditioned, yield-
ing much better performance of the sampling algorithm.
This was extensively discussed in MAW20, and we apply
the same reparametrization as described there almost
without change. Specifically, we take

φ′ ≡ G(Aφ)φ (25)

f ′ ≡ L(φ)D f. (26)

The operator D is defined to be diagonal in EB Fourier
space, and G(Aφ) is diagonal in Fourier space, with

D ≡
[
Cf + 2Nf

Cf

]1/2

(27)

G(Aφ) ≡
[
Cφ(Aφ) + 2Nφ

Cφ(Aφ)

]1/2

(28)

where Nf should approximate the sum of instrumental
noise and lensing-induced excess CMB power, and Nφ
should approximate noise in the φ reconstruction. Here,

we find a sufficient choice is to set Nf to isotropic 12µK-
arcmin white noise, and Nφ to the 2D QE N (0) bias. We
note that the optimal choice of these operators is not

precisely defined, and poor choices do not affect results,
instead only lead to slower convergence.

With the reparametrized target posterior in hand,

we now describe the sampler. For both convenience
and efficiency, the sampling is broken up into separate
Gibbs steps where we sample different conditional slices
of Eq. (8). The Gibbs procedure ensures that after a

sufficiently long time, the chain of conditional samples
asymptotes to draws from the joint distribution.

The first Gibbs step samples the conditional distribu-
tion of f given the other variables. The advantage of
splitting this off as its own Gibbs step is that this con-
ditional is Gaussian and can be sampled exactly by run-
ning one conjugate gradient solver. This solver involves
inverting the operator shown below in Eq. (29), where
we have left out instrumental parameters and beam and
transfer functions for clarity.3 We use a nested precon-
ditioner wherein we precondition Eq. (29) with Eq. (30),
which itself involves a conjugate gradient solution using

3 The exact operator to be inverted can be derived by taking the
derivative d/df of Eq. (8), setting it equal to zero, and solving
for f .

Eq. (31) as a preconditioner. In Eq. (31) we use a noise
operator, Ĉn, which is an approximate EB Fourier-
diagonal version of Cn, making the final preconditioner
explicitly invertible.

C−1
f + L(φ)†M†p M

†
f C
−1
n Mf Mp L(φ) (29)

C−1
f + M†p M

†
f C
−1
n Mf Mp (30)

C−1
f + M†f Ĉ

−1
n Mf (31)

The advantage of this scheme is that it minimizes the
number of times we need to compute the action of
Eq. (29), which involves two lensing operations and
hence is much costlier than the others. With the nested
preconditioning, only a few applications of Eq. (29) are
necessary per solution.

The second Gibbs step samples the conditional distri-
bution of φ given the other variables. This sample is
drawn via Hamiltonian Monte Carlo (Betancourt 2017),
which involves sampling a random momentum, pφ, from

a chosen mass matrix, and then performing a symplec-
tic integration to evolve the Hamiltonian for the system.
Poor choices of mass matrix or large symplectic integra-

tion errors yield a slower converging chain, but do not
bias the result asymptotically. We find that 25 leap-frog
symplectic integration steps with step size ε= 0.02 per
Gibbs pass yield nearly optimal convergence efficiency.

We note that to control symplectic integration error,
we also need at least a 10-step 4th-order Runge-Kutta
ODE integration as part of the LenseFlow solver (in

MAW20, only 7 steps were needed, likely due to sim-
pler masking). Finally, the mass matrix should ideally
approximate the Hessian of the log-posterior; here we

use,

Λφ(Aφ) = G(Aφ)−2
[
N−1
φ + Cφ(Aφ)−1

]
(32)

The final Gibbs passes sample the conditionals of
each of the remaining scalar parameters in turn: Aφ,
Pcal, ψpol, εQ, εU, and the βi. Since these are one-
dimensional distributions, we sample by evaluating the
log-posterior along a grid of values, interpolating it, then

using inverse-transform sampling to get an exact sam-
ple. Importantly, in all cases except Aφ, these parame-
ters are “fast” parameters because L(φ)f remains con-
stant along the conditional slice and can be computed
just once at the beginning of the pass. Indeed, sam-
pling these parameters accounts for < 5% of the total
runtime of a chain, and one could imagine adding many
other instrumental parameters like these at almost no
computational cost. Sampling Aφ is somewhat costlier
because Eq. (25) couples Aφ and φ, meaning that each
grid point of Aφ requires lensing a new map (however,
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the decorrelating effect of the reparametrization far out-
weighs this increased computational cost).

4.2. Quadratic estimate

The QE analysis closely follows those of the 100 deg2

and 500 deg2 SPTpol analyses (Story et al. 2015; Wu
et al. 2019). It uses the standard SPT QE pipeline, and
so is completely independent from the Bayesian code.
We give a brief review of the QE pipeline here and take
note of aspects particular to this analysis, referring the
reader to the previous works for a more comprehensive
treatment.

The QE uses correlations between Fourier modes in
pairs of CMB maps to estimate the lensing poten-
tial; here we use the same modified form of the Hu &
Okamoto (2002) estimator as in Wu et al. (2019),

φ̄XYL =

∫
d2` X̄`Ȳ

∗
`−LW

XY
`,`−L, (33)

where X̄ and Ȳ are inverse-variance filtered data maps
and WXY is a weighting function with XY ∈{EE, EB}.

The inverse-variance filtering used for the QE does

not employ the noise-fill procedure outlined in Sec. 3.8,
opting instead to leave the existing pipeline unmodified.
Here, the noise is approximated as the sum of two com-

ponents. The first is a pixel-space diagonal component,
Cn,p =M−1

p ZM−1
p , where Mp is the pixel mask and Z

is a homogeneous white noise covariance specified by

the noise levels at the end of Sec. 2. The second is a
Fourier-space diagonal component, Cn,f , which includes
the power spectrum of atmospheric foregrounds and ex-
cess instrumental 1/f noise not captured in the first

component, and is determined empirically from the real
noise realizations. Inverse variance filtering can then be
performed by solving the following equation for X̄ with

conjugate gradient:[
S−1 + F† C−1

n,p F
]
S X̄ = F† C−1

n,p dQE, (34)

where S = Cf + Cn,f and F = TB.
We then correct each estimator, φ̄XYL , by 1) subtract-

ing a mean-field bias, φ̄XY,MF
L , computed from an av-

erage over simulations, 2) normalizing by the analytic
response, RXY,Analytic

L , and 3) summing the debiased
and normalized estimates. We account for the impact
of the pixel mask, not captured by the analytic re-
sponse, with an isotropic Monte Carlo correction, RMC

L .
This is computed by fitting a smooth curve to the ra-

tio C φ̄×φtrue

` /Cφφ,theory
` , averaged over simulations. This

gives a normalized unbiased estimate

φ̂L =
1

RMC
L

∑
XY φ̄XYL − φ̄XY,MF

L∑
XY R

XY,Analytic
L

. (35)
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Figure 5. Bandpowers and noise terms from the quadratic
estimate (QE) pipeline. The top panel shows the normal-
ized but noise-biased QE power spectrum, along the typical
N

(0),RD
L and N

(1)
L noise biases which are subtracted. The

blue curve is the average cross spectrum between input φ
maps and φ̄XYL across a suite of simulations, and is used
to compute RMC

L . The bottom panel shows the noise-bias-
subtracted QE and error bars (from simulations), as well as
a cloud of blue lines denoting the noise-debiased simulations
used to compute fPS.

To obtain constraints on Aφ, we take the autospec-

trum of φ̂L to form biased lensing power spectra, C̄φφ` .

We then estimate the typical N
(0),RD
L and N

(1)
L biases

using simulations, and apply a final multiplicative MC
correction fPS as in Wu et al. (2019). No foreground
correction is applied, so the final expression for the de-
biased bandpowers is

Ĉφφ` = fPS

[
C̄φφ` −N

(0),RD
L −N (1)

L

]
. (36)

We calculate the covariance between the bandpowers,
Σ, by running a Monte Carlo over the entire procedure.

Fig. 5 shows the bandpowers of ĈκκL ≡L4ĈφφL /4, along
with error bars computed from the diagonal of Σ.
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Since the bandpower errors are assumed Gaussian, the
resulting Aφ constraints are also Gaussian, and are given
by

ÂQE
φ =

Ĉφφ` (Σ−1)``′ C
φφ
`′

Cφφ` (Σ−1)``′ C
φφ
`′

(37)

σ(AQE
φ ) =

1√
Cφφ` (Σ−1)``′ C

φφ
`′

, (38)

where the summation over ` is implied. For this cal-
culation, we truncate Σ at the third off-diagonal, be-
yond which we do not resolve any non-zero covariance to
within Monte Carlo error, consistent with the expecta-
tion that the correlation should be small for very distant
bins. We note, however, that correlation between neigh-

boring bins can be as large as 10% and has a significant
impact on the final uncertainties.

5. VALIDATION

5.1. Chain convergence

One of the main challenges of the Bayesian procedure

is ensuring the Monte Carlo chains are sufficiently con-
verged and are thus yielding stationary samples from
the true posterior distribution. A large body of work

exists on verifying chain convergence, and many meth-
ods of varying sophistication exist. Our experience has
been that the most robust and accurate check is actually
the simplest, namely just running multiple independent

chains in parallel starting from different initial points,
and ensuring that the quantities of interest have iden-
tical statistics between the different chains. Here, we

are in a fortunate position where this is possible, largely
because: 1) it is computationally feasible to run many
chains and to run existing chains for longer if there is any
doubt, and 2) we find no evidence for complicated multi-
modal distributions, so convergence is not about finding
multiple maxima but rather simply a matter of getting
enough samples to smoothly map out the (mildly) non-
Gaussian posteriors of interest.

Checking for convergence usually begins by visually
inspecting the samples from a chain. For the baseline

100d-deep chain, we show the sampled values of the
cosmological and systematics parameters comprising θ
in Fig. 6. Our default runs evolve 32 chains in parallel
(batches of 8 chains per Tesla V100 GPU) and hold θ
fixed for the first 100 steps to give the f and φ maps
a chance to find the bulk of the posterior first, which
reduces the needed burn-in time. Note that the starting

point for our chains are a sample from the prior, not just
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Figure 6. The top 8 plots show the trace of the sampled
cosmological and systematics parameters, θ, at each step in
the Monte Carlo chain. The very bottom plot shows the
trace of the χ2 of the current model point, along with a gray
shaded band indicating the expectation based on the number
of degrees of freedom. Note that 202,800 other parameters
are jointly sampled in this chain (not pictured), correspond-
ing to every pixel or Fourier mode in the CMB polarization
and φ maps. To aid convergence, the θ are not updated for
the first 100 steps in the chain. These 32 independent chains
ran across 4 Tesla V100 GPUs in roughly 5 hours.

for θ but also for the φ and f maps themselves.4 Despite
this, Fig. 6 shows that all θ converge to the same regions
in parameter space, and no “long wavelength” drift is
seen in the samples.

4 Note that due to the “curse of dimensionality”, these random
starting points are much further apart in the high-dimensional
parameter space than might seem from looking at any 1D pro-
jection.
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Figure 7. Constraints on sampled parameters, θ, from our baseline 100d-deep chain. The two-dimensional plots show 1, 2, and
3σ posterior contours as black lines, with binned 2D histograms of the samples shown inside of the 3 σ boundary and individual
samples shown beyond that. The first column is the main cosmological parameter of interest A100→2000

φ , and the remaining
columns are systematics parameters. The ability to easily and jointly constrain cosmological and systematics parameters in
this manner, while implicitly performing optimal lensing reconstruction and delensing, is a unique strength of the Bayesian
procedure. Here, we find < 5% correlation between A100→2000

φ and any systematics, meaning σ(A100→2000
φ ) is increased by < 2%

upon marginalizing over systematic uncertainty. For the systematics parameters, the blue lines denote an estimate from an
external procedure, and the agreement in all cases is an important consistency check. The 1D histograms also include the
posterior from a separate independent chain as a dashed line, indicating the distributions are sufficiently well converged. More
quantitatively, the numbers in parenthesis in the titles give an estimate of the standard error on the last digit of the posterior
mean and of the posterior standard deviation.
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Figure 8. Posterior mean maps, computed by averaging over the Monte Carlo samples in our chains. The quantities φ and
κ ≡ −∇2φ/2 are the lensing potential and convergence maps, and Ẽ and B̃ are the lensed E and B mode polarization maps.
The posterior of any quantity can be computed by post-processing the chain and averaging; for example, the bottom right panel
shows the posterior mean of (Ẽ − E), i.e. the lensing contribution to the E mode map. These maps are in some sense only a
byproduct of the Aφ inference, but if a single point estimate of any of these quantities is required elsewhere, these are the best
estimates to use. As expected, these maps qualitatively resemble Wiener filtered data, wherein low signal-to-noise modes are
suppressed. The Monte Carlo error in these maps is more quantitatively explored in Fig. 9.
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φ .
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We also check convergence by splitting the 32 chains
into two sets of 16 and estimating parameter constraints
from each set. The 1D posteriors from two sets of the
baseline 100d-deep case are shown in Fig. 7. Here we
remove a burn-in period of 200 samples from the begin-
ning of each chain. We find that all contours overlap
closely and no conclusions would be reasonably changed
by picking one half over the other.

To make the convergence diagnostics more quantita-
tive, we use the following procedure throughout this pa-
per whenever quoting any number derived from a Monte
Carlo chain. We first compute the effective sample size
(ESS) of the quantity of interest given the observed
chain auto-correlation (Goodman & Weare 2010). We
then use bootstrap resampling to estimate the Monte
Carlo error, wherein 1) we draw N random samples with
replacement from the chain where N is the ESS, 2) we
compute the quantity in question using these samples,
then 3) we repeat this thousands of times and mea-

sure the scatter. The scatter gives a 1 σ Monte Carlo
error which we report using the typical notation that
M digits in parentheses indicate an error in the last
M digits of the quantity, i.e. 1.23(4) is shorthand for

1.23± 0.04. We use this not only for the posterior mean,
but also standard deviations, correlation coefficients, or
any other quantity estimated from the chain.

For example, skipping ahead to the results presented
in the next section, the constraint on Aφ from the 100d-
deep chain is

Aφ = 0.949(8)± 0.122(5) (39)

This is to say, the standard error on the mean is 0.008,
which is an acceptable 6% of the 1 σ posterior uncer-
tainty of 0.122(5), and could be reduced further by run-

ning the chain longer if desired.
If we are interested only in constraints on Aφ, then

Eq. (39) gives us what we need to know about how accu-
rate our posterior inference on this quantity is. It is the
case, however, that not all modes in the corresponding
φ samples in the chain are necessarily converged to this
same level. This will not affect Aφ since not all modes

are informative for Aφ, and the errors in Eq. (39) tell
us about the convergence of the sum total of all modes
which are informative. In other applications, however,
we might care about other modes, for example for de-
lensing external datasets or for cross correlating with
other tracers of large scale structure. We can check the
convergence for all modes at the field level by computing
posterior mean maps and comparing the power spectrum
of the difference when estimated again from two inde-
pendent sets of 16 chains. Fig. 8 shows posterior mean
maps and Fig. 9 shows the power spectrum differences
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Figure 10. Validation of the Bayesian pipeline on simu-
lations. Colored lines in each panel denote the posterior
distributions from each of 100 simulated 100d-deep data
sets (these include real noise realizations). The shaded black
curve is the product of all of these probability distributions.
Note that, for clarity, all distributions have been normalized
to their maximum value. The true value of the systemat-
ics parameters in these simulations comes from the best-fit
100d-deep results, and are denoted by vertical dashed lines.
The shaded black curve bounds possible systematic errors in
the Bayesian pipeline due to mismodeling of the instrumen-
tal noise or pipeline errors, and we find no evidence for either
to within the 10% of the statistical error afforded by the 100
simulations.

from the two independent sets. Across a wide range of
scales in φ, E, and B, the power of the difference maps
is 1–2 orders of magnitude below the signal. The only
exception is very small scales in φ; indeed, this is an
example of modes for which the standard error is larger
than the mean, but which are not informative for Aφ. If
one uses these samples for a downstream analysis, one
could use the bootstrap resampling procedure with the
maps themselves to estimate the Monte Carlo error in
whatever final quantity was computed from these sam-
ples.
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5.2. Simulations

Having verified in the previous section that Monte
Carlo errors in our chains are sufficiently small, we now
verify the pipeline itself, as well as our noise covariance
approximation. This is done by running chains on simu-
lated data and checking that, on average, we recover the
input truth. Crucially, the simulations we use include
real noise realizations, while the posterior itself uses the
model noise covariance. If the statistics of the real noise
were different in a way not captured by the model noise
covariance, we would expect to see some bias against the
input truth in these simulations.

Fig. 10 shows these posterior distributions. The sim-
ulation truth uses the same fiducial Planck cosmology
used in the baseline model (Sec. 3). Additionally, we in-
clude simulated systematics at a level given by the best-
fit values of the 100d-deep analysis itself, to confirm
that we recover non-zero values of the systematics pa-
rameters. The colored lines are the posteriors from each

of the N = 100 simulations performed, and the shaded
black curve is the product of all N . Because the sim-
ulated data are independent (ignoring the very small

correlations between our sign-flipped noise realizations)
and because the θ shown in this figure have a uniform
prior, the product can also be interpreted as a single
posterior given N data,

P(θ |d1)P(θ |d2)...P(θ |dN ) = P(θ |d1, d2, ..., dN ) (40)

This indicates that the black shaded contour should also,

on average, cover the input truth. If there were any sys-
tematic biases affecting the inference of θ, either from
noise mis-modeling or from errors in the pipeline, we
would expect to find a noticeable bias, which we do not.

With N= 100 simulations, we have formally checked
against biases at the level of 1/

√
N = 10% of the 1σ

error bar for any single realization.

6. RESULTS

6.1. Joint Aφ and AL constraints

The Aφ constraint obtained from the QE explicitly
does not use information from the power spectrum of

the data because the weights WXY
`,`−L in Eq. (33) are zero

when L= 0. The Bayesian constraint, however, extracts
all information, including whatever may be contained in
the power spectrum, as well as in all higher-order mo-
ments (bispectra, trispectra, etc...). To facilitate a more
fair comparison between the two, and as a consistency
check, it is useful to separate out the power spectrum
information in the Bayesian case.

A natural way to do so is by adding a correction to
the noise covariance operator such that,

Cn → Cn + ∆AL AClen A†, (41)

where ∆AL is a new free parameter, A≡MTB, and

Clen = Diagonal
(
C`(A

100→2000
φ = 1)

−C`(A100→2000
φ = 0)

)
. (42)

This is similar to the effect of marginalizing over an ex-
tra data component which is Gaussian and has a lensing-
like power spectrum with amplitude controlled by ∆AL,
but which does not have the non-Gaussian imprint of
real lensing. The similarly is only partial, however, be-
cause the correction is sometimes negative (lensing re-
duces power at the top of peaks in the E-mode power
spectrum), while an extra component could only have

a positive power contribution. Directly modifying the
noise covariance remedies this, and can add or subtract
power as long as the sum of noise and lensing-like con-
tributions still yields a positive definite total covariance

(which is the case for the range of ∆AL explored by the
MCMC chains here).

With this modification, both non-zero ∆AL and non-

zero Aφ can generate lensing-like power in the data. The
sum of the two parameters thus gives the total lensing-
like effect on the data power spectrum, and most closely

matches the typical definition of the AL or Alens param-
eter, which in our case is a “derived” parameter,

AL = Aφ + ∆AL. (43)

If no residual lensing-like power beyond the actual lens-
ing generated by Aφ is needed to explain the data, one
expects to find ∆AL = 0 and AL = 1.

Because the power spectrum of the data could be just
as well explained by ∆AL = 1 and Aφ = 0, the extent
to which we infer non-zero Aφ when ∆AL is a free pa-
rameter confirms that not just power spectrum informa-
tion is contributing to the constraint, but also quadratic
L 6= 0 modes and higher-order moments. Correspond-
ingly, marginalizing over ∆AL is equivalent to remov-
ing power spectrum information from the Aφ constraint,
giving us the tool needed to separate out this informa-
tion.

A consequence of the modification to the Cn opera-
tor in Eq. (41) is that it is no longer easily factorizable
in any simple basis. This presents three new numeri-

cal challenges for our MCMC chains: 1) applying the
inverse of Cn, 2) drawing Gaussian samples with co-
variance Cn, and 3) computing the determinant of Cn.
Inversion turns out to be fairly easily performed with
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a negligible O(10) iterations conjugate gradient. Sam-

pling is performed by computing C1/2
n ξ with the same

ODE-based solution used in Eq. (23). The determi-
nant (as a function of ∆AL) is the most difficult piece,
but can be computed utilizing the method described in
Fitzsimons et al. (2017). This involves swapping the log
determinant for a trace

log det
[
Cn + ∆AL AClen A†

]
=

=
∞∑
k=1

tr
{[
−∆ALAClen A†Cn

]k}
+ C, (44)

where C is a constant that is independent of ∆AL

and can thus be ignored. The trace is then evalu-
ated stochastically using a generalization of Hutchin-
son’s method (Hutchinson 1990) to complex vectors

(Iitaka & Ebisuzaki 2004), which evaluates the trace of
some matrix M as 〈z†Mz〉 where z are vectors of unit-
amplitude random-phase complex numbers, here in the

EB Fourier domain. The summation in Eq. (44) con-
verges since our matrix is positive definite, and only 20
terms are needed to give sufficient accuracy in the ∆AL

region explored by the chain. Note also that because the

powers of ∆AL factor out of the trace, the traces can be
pre-computed once at the beginning of the chain. In
terms of sampling, ∆AL is a “fast” parameter and does

not significantly impact chain runtime.
In the top panel of Fig. 11, we show joint constraints

on ∆AL and Aφ from the 100d-deep data. Here we
find,

∆AL = 0.024(9) ± 0.170(7) (45)

A100→2000
φ = 0.955(14) ± 0.135(10) (46)

The two parameters are visibly degenerate, with cross-
correlation coefficient ρ=− 0.40(5). One can calculate
by how much σ(Aφ) is degraded due to marginaliz-
ing over ∆AL as 1/

√
1− ρ2, which here gives a 9(3)%

degradation. Thus, relatively little information on Aφ
comes from the power spectrum of the data, instead
most of the constraining power originates from lensing
non-Gaussianity. Because of this small impact and for
simplicity, we fix ∆AL = 0 for the remaining results in
this paper. However, we note that the 9(3)% contri-
bution from the power spectrum is important to keep
in mind when comparing to the QE result in the next
section.

The degeneracy between the two parameters arises be-
cause both Aφ and ∆AL modify the power spectrum of
the data model in (intentionally) identical ways. The
plotted samples in the top panel of Fig. 11 are colored

by their corresponding value of AL, demonstrating that

0.5

0.0

0.5

∆
A

L

100d-deep
0.5

1.0

1.5

A
φ
+

∆
A

L

0.0 0.5 1.0 1.5
Aφ

0.0

0.5

1.0

1.5

A
φ
+

∆
A

L

100d-deep

Figure 11. (Top panel) Joint constraints from the 100d-
deep dataset on the amplitude of the lensing potential,
A100→2000
φ , and the residual lensing-like power, ∆AL. The

correlation coefficient between the two is ρ=−0.40(5),
demonstrating only about 9(3)% of the A100→2000

φ constraint
originates from the power spectrum of the data. (Bottom
panel) The same posterior as in the top panel but in terms
of the AL = A100→2000

φ + ∆AL parameter, which controls
the total lensing-like power in the data model. These re-
sults demonstrate the unique ability of the Bayesian lensing
procedure to infer parameters from an optimal lensing re-
construction and from delensed bandpowers while easily and
exactly accounting for correlations between the two.

the degeneracy direction is indeed mostly aligned with
AL. This is consistent with the physical intuition that
the total lensing-like power should be a well-constrained
quantity, regardless of how much of the power is at-
tributed to non-Gaussian lensing or not. The bottom
panel shows the same posterior in terms of Aφ and AL.
As compared to Aφ and ∆AL, the correlation coefficient

switches sign and reduces slightly to ρ= 0.38(5).
Correlations between Aφ and AL have been negligible

in all previous lensing results from data, but are of con-
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siderable interest moving forward as it is likely they will
need to be accurately quantified in the future. Previous
work on this topic includes Schmittfull et al. (2013),
who computed the correlation between Aφ estimated
via the QE and AL estimated via a traditional power
spectrum analysis, finding at most a 10% correlation for
temperature maps at Planck-like noise levels. Peloton
et al. (2017) extended similar calculations to polariza-
tion, finding correlations in the 5%–70% range for CMB-
S4-like polarization maps, depending on the exact mul-
tipole ranges considered, if a realization-dependent noise
subtraction is performed, and whether T , E, and/or B
are used to estimate AL. The correlation is largest when
using B, since B is entirely sourced by lensing and thus
contains much of the same information as φ. For the
100d-deep data, there is twice the Fisher information
for AL in B as compared to E, which means our ob-
served correlation should be on the higher end. This is
counteracted by the fact that our data is noisier than the

CMB-S4 noise levels assumed in Peloton et al. (2017),
meaning we should see a lower correlation. Ultimately,
although we have not repeated their calculation for our
exact noise levels, our observed correlation has the same

sign and reasonably agrees in amplitude with their pre-
diction, despite the fairly different analysis.

It is useful to consider what it would take for fre-

quentist methods such as the ones used in these previ-
ous works to reach equivalence with the Bayesian ap-
proach in terms of quantifying Aφ-AL correlations, or

more generally, quantifying correlations between the re-
constructed lensing potential and the CMB. First, they
would need to be extended beyond the QE, which would
introduce computational cost and conceptually com-

plexity. Second, they would need to be extended to com-
pute not just correlations of the lensing reconstruction
with the raw (lensed) data, but also with delensed data

as well. Although not immediately obvious, this is au-
tomatically handled in the Bayesian approach. This is
because, despite that the Bayesian procedure does not
constrain AL by way of explicitly forming a delensed
power spectrum, it exactly accounts for the actual pos-
terior distribution of the lensed data maps. For exam-
ple, if φ were perfectly known such that there were no
scatter in the MCMC φ samples, this would yield no
excess lensing variance when estimating AL, simply an
anisotropic but perfectly known lensed CMB covariance,

corresponding to perfect delensing. Whether it is as easy
to estimate such correlations in the frequentist approach
is unclear, but we highlight the relative simplicity with
which it was attained here. It required no additional
costly simulations or complex analytic calculations, only
the introduction of ∆AL into the posterior.

Although outside of the scope of this paper, this ap-
proach can be used not just for ∆AL but any other cos-
mological parameter which controls the unlensed power
spectra. It thus serves as a Bayesian analog to exist-
ing frequentist methods for parameter estimation from
delensed power spectra (Han et al. 2020), immediately
allowing inclusion of lensing reconstruction data, and
giving a path to the type of joint constraints from both
that will be important for optimally inferring cosmolog-
ical parameters from future data (Green et al. 2016).

6.2. Improvement over quadratic estimate

One of the main goals of this work is to demonstrate an
improvement in the Bayesian pipeline when compared to
the QE result. This improvement arises because the QE
ceases to be approximately minimum-variance around
5µK-arcmin, close to the noise levels of the 100d-deep
observations.

The baseline 100d-deep Bayesian constraint is

Aφ = 0.949(8)± 0.122(5) (Bayesian) (47)

For the exact same data set, the QE constraint yields

Aφ = 0.995± 0.154 (QE) (48)

This represents an improvement in the 1 σ error bar of
26(5)%, summarized in Fig. 12.

The shift in the central value between the two re-

sults is ∆Aφ = 0.046(8). Note that these results are
“nested” because the QE uses only quadratic combi-
nations of the data while the Bayesian result implic-
itly uses all-order moments. Because of this, one can

follow Gratton & Challinor (2019) (hereafter GC19) to
calculate the standard deviation of the expected shift
as σ∆Aφ

= (σ2
QE−σ2

Bayesian)1/2 = 0.10(6). The observed

shift therefore falls within the 1 σ expectation.
Of this improvement, we have ascertained in the

previous section that 9(3)% percent stems from the
power spectrum of the data, which is not used by the
QE, but could be included if we combined with tradi-
tional power spectrum constraints on AL. This leaves
a 17(6)% improvement as the most fair comparison be-

tween Bayesian and QE results. To ascertain whether
this is in line with expectations, we have performed
a suite of generic mask-free 100 deg2 simulations with
varying noise levels and `max cutoffs for the reconstruc-
tion. For each of these sims, we compute the QE or joint
MAP φ estimate, compute the cross-correlation coeffi-
cient, ρL, with the true φ map, then compute the ef-
fective Gaussian noise, given by Nφφ

L = CφφL (1/ρ2
L − 1).

From this noise, we compute Gaussian constraints on
Aφ without including the power spectrum of the data,
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such that these should be compared to the 17(6)% re-
sult. Improvements in Aφ and in Nφφ

L=200 are shown in
Fig. 14. Near the noise levels of the 100d-deep field,
we find around a 10% expected improvement on Aφ.

To what do we attribute the remaining ∼ 7% improve-
ment we find empirically on top of this expectation? In
the absence of a pixel mask, the QE is uniquely de-
fined, e.g. as in Hu & Okamoto (2002), and it can be
shown analytically that it is the minimum-variance es-
timator among all which are quadratic in the data. In
such a mask-free case, the 10% expected improvement
of the Bayesian result arises purely through the use of
higher-order moments of the data. The masked case
becomes messier, because no analytic and minimum-
variance result actually exists, and there is essentially no
unique definition of “the” quadratic estimator. Instead,
there are various choices and approximations which dif-
ferent groups are free to make at various steps in their
pipeline. Although the final result can always be made

unbiased at a fiducial theory model (by computing bi-
ases via Monte Carlo and subtracting them), approxi-
mations along the way introduce small amounts of ex-
tra variance. In our pipeline in particular, we take the

standard approach of using the mask-free QE weights
(because only the mask-free case has an analytic solu-
tion), and do not attempt to optimally spatially weight

the reconstructed φ map before taking its power spec-
trum. Both are expected to lead to slight sub-optimality
at these noise levels (Mirmelstein et al. 2019), and are
an expected contribution of the remaining 7%. Finally,

Monte Carlo error in the estimate of the standard de-
viation as well as chance realization-dependence of the
posterior may contribute a few percent as well.

6.3. Joint systematics and cosmological constraints

A unique feature of the Bayesian approach is the
ability to jointly estimate cosmological and systemat-
ics parameters by simply adding free parameters to

the posterior and sampling them in the chain. Here,
we have added parameters for the polarization calibra-
tion, Pcal, the global polarization angle calibration, ψpol,
temperature-to-polarization monopole leakage template
coefficients, εQ and εU, and three beam eigenmode am-
plitudes, β1, β2, and β3.

Fig. 7 shows constraints on all of these parameters
jointly with the main cosmological parameter of inter-
est, Aφ. For Pcal, ψpol, εQ and εU, the blue lines indicate
the best-fit value obtained from the external estimation

procedures described in Secs. 3.1, 3.2, and 3.3. The
chain results agrees with these in all cases, which is an
important consistency check. The beam amplitude pa-
rameters, βi, are sampled with unit Gaussian priors cen-
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Figure 12. (Top panel) Posterior distribution of A100→2000
φ

as determined by the Bayesian and QE procedures. The blue
bars are a histogram of the samples in the chain from the
Bayesian procedure and the solid blue line is the Blackwell-
Rao posterior. The orange curve removes information from
the power spectrum of the data by marginalizing over AL,
and the green curve is the Gaussian estimate from fitting the
QE bandpowers. The 17% improvement in error bar in the
AL-marginalized Bayesian case over the QE is a main result
of this work. (Bottom panel) Comparison of the Bayesian
result with other measurements of Aφ in the literature. The
result here achieves the lowest-yet effective noise level on φ,
although other results achieve better Aφ constraints with a
larger observation region.

tered at zero. If the data is not sensitive to them, we
expect the posterior is also a unit Gaussian centered at
exactly zero, which is indeed what we find.

If our main cosmological result significantly depended
on knowledge of any of these systematics, we would find
a correlation between these parameters and Aφ. Instead,
we find that no parameter is correlated at more than

the 5% level. Using the measured covariance across all
parameters, Σij , we can calculate the fractional amount



23

by which σ(Aφ) decreases if the systematics were fixed
to their best-fit in the 100d-deep chain as5√

Σ11/(Σ−1)11 . 0.01, (49)

where i= j= 1 is the entry corresponding to Aφ. Thus,
the systematic error contribution to the Bayesian Aφ
measurement is less than 1% of the statistical error.

Although in this paper we do not propagate any sys-
tematic errors through the QE pipeline, for some of the
same data used here, this has already been done by Story
et al. (2015) and Wu et al. (2019). The approach there
is to modify the input data, for example multiply it by
1 + σ(Pcal) to mimick a 1 σ error in the Pcal parameter,
where σ(Pcal) is determined from some external calibra-
tion procedure. The resulting change to Aφ is then taken
as the 1σ systematic error on Aφ due to Pcal, and the
errors from several systematics are added in quadrature

(hence assuming that they are all Gaussian and uncor-
related). For Pcal, because the quadratically estimated
lensing potential power spectrum depends on the fourth
power of the data, the systematic error on Aφ scales

as 4×σ(Pcal) to linear order, and can become signifi-
cant even for modest calibration error. Indeed, using
the above procedure, Wu et al. (2019) found the sys-

tematic error on Aφ from polarization was nearly half of
the statistical uncertainty.

Why then is the impact of calibration errors so much

smaller in the Bayesian case here? The answer is not
because Pcal is more tightly constrained; σ(Pcal) for the
100d-deep data is almost 1% (see Fig. 7), which would
translate into a 4% error on Aφ if the above intuition

held, representing about 30% of the statistical error on
Aφ. Instead, the reason is that the Bayesian procedure
provides an optimal inference of Aφ, in particular one

which automatically reduces sensitivity to Pcal. As dis-
cussed in Wu et al. (2019), such a reduction is possi-
ble in the QE case as well, where one could in theory
construct an alternate version of the QE with weights
modified such that much of the dependence on Pcal is
canceled. This would fall into a class of modifications
called bias-hardened quadratic estimators, and several
have been proposed to mitigate against various system-
atics (Namikawa et al. 2013; Namikawa & Takahashi
2014; Sailer et al. 2020). The advantage of the Bayesian

approach is that an equivalent to bias-hardening is per-
formed automatically (for all of the systematics param-
eters that we have introduced, not just Pcal), and with-

5 We could also calculate this by running a separate chain with
these explicitly fixed, which we have done as a consistency check,
but using Σij directly is easier and is less affected by Monte Carlo
error.
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Figure 13. Constraints on Aφ given various changes to the
analysis as compared to the baseline result, as described in
Sec. 6.4.

out the need to reason about the types of modifications
which might be needed to mitigate each effect.

6.4. Consistency checks

Having presented our baseline results in the previous
subsections, we now perform a number of consistency

checks to see if various analysis choices have any impact
on the final results. The corresponding constraints on
Aφ for each case discussed here are pictured in Fig. 13.

Our baseline case constrains A100→2000
φ . As a first

check, we extend this range to encompass A50→3000
φ .

Here, we find

A50→3000
φ = 0.957(8)± 0.114(5), (50)

which is an additional 7(7)% tighter than the baseline re-

sult, and consistent with the shift expected from GC19.
We next check if mask apodization has significant im-

pact. Although the QE produces an unbiased answer re-

gardless of mask, hard mask edges lead to larger Monte
Carlo corrections and slightly larger sub-optimality of
the final estimator. Conversely, the Bayesian pipeline,
in theory, always produces both an unbiased and op-
timal result. This can be an advantage because, de-
pending on the point source flux cut, adding a large
number of apodized holes to the map can reduce the ef-
fective sky area of the observations by a non-negligible
amount. One solution sometimes used in the QE case
is to inpaint point source holes rather than leave them
masked, and then demonstrate on simulations that neg-

ligible bias is introduced due to the inpainting (Benoit-
Lévy et al. 2013; Raghunathan et al. 2019). The in-
painting is often performed by sampling a constrained
Gaussian realization of the CMB within the masked re-
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gion, given the data just outside of the masked region.
The Bayesian pipeline corresponds to simultaneously in-
painting all point source holes with a different realiza-
tion at each step in the MCMC chain, while accounting
for the non-Gaussian statistics of the lensed CMB given
the φ map at that chain step. In practice, one could
imagine that the ringing created by hard mask edges
induces large degeneracies in the posterior and leads to
poor chain convergence. It is thus useful to verify that
the Bayesian pipeline works with an unapodized mask,
meaning point sources can simply be masked without
apodization, and the pipeline can be used as-is without
extra steps.

To keep the apodized and unapodized cases nested,
we take the original mask and set it to zero everywhere
in the apodization taper. The result is the green curve
in Fig. 13, which gives

A100→2000
φ = 0.937(15)± 0.124(9), (51)

consistent with the GC19 expected shift. The slightly
looser constraint is consistent with the unapodized case
not using the data within the apodization taper, al-

though longer chains would be needed to exactly con-
firm this. We do not observe a significantly worse auto-
correlation length for this chain as compared to the

apodized case, demonstrating that mask apodization
has little effect on the Bayesian analysis.

The point source mask serves to reduce foreground
contamination. Here, we have used a mask built from

point sources detected in temperature, but have not at-
tempted to cross-check if these same point sources are
bright in polarization. As a simple check, we consider

leaving point sources completely unmasked. In this case,
we find the red curve in Fig. 13. This result and the base-
line case are also nested. However, this time the shift

in central value is inconsistent at 2.8 σ given GC19. Vi-
sually inspecting the reconstructed κ map (not pictured
here) reveals obvious residuals at the locations of a few
of the brightest previously masked sources. Evidently,
some level of point source masking is necessary to mit-
igate foreground biases even in polarization. Our mask
is based on a 50 mJy flux cut in temperature. For future
analyses, it will be important to determine the flux-cut
which is a good trade-off between reducing foreground
biases but not excising too much data.

7. CONCLUSION

We conclude with a summary of the main results along
with some remarks about the Bayesian procedure and
future prospects for this type of analysis. One of the
main goals of this work was to apply, for the first time,
a full Bayesian reconstruction to very deep CMB polar-
ization data, and observe an improvement over the QE.

This work is the second optimal lensing reconstruction
ever applied to data, and the first to actually infer cos-
mological parameters that control the lensing potential
itself. Doing so is particularly natural in the Bayesian
framework, as extra parameters can always be added
(sometimes trivially) and sampled over. We found a
26% improved error bar on Aφ in the Bayesian case as
compared to the QE, and a 17% improvement after re-
moving power spectrum information.

As instrumental noise levels continue to improve in
the future, we expect this relative improvement will in-
crease. In Fig. 14, we forecast the relative improvement
in Aφ, as well more generically the relative improve-
ment in the effective noise level of the φ reconstruction
at L= 200 (the choice of particular L here is arbitrary,
and we note that the result is only moderately sensitive
to scale). By the time noise levels of the deep CMB-

S4 survey are reached, the relative improvement will
be around 50% for Aφ. The full story is even more
optimistic, however, as Aφ is not the best parameter

to reflect the lower-noise reconstruction possible in the
Bayesian case. This is because once a mode becomes
signal dominated, Aφ is no longer improved by further

reducing the noise for that mode (only more sky can
help). If we instead consider directly the effective noise
level itself, which will be more indicative of the types of
improvements one can achieve on parameters which are

determined from noise-dominated regions of the spec-
tra, we see that improvements of up to factors of 7 are
possible.

Another important conclusion from this work is the
efficacy with which systematics can be modeled in the
Bayesian framework. If a forward model for a given sys-
tematic can be devised, it can easily be included in the

full posterior and estimated jointly with everything else.
Doing so ensures the systematic is optimally estimated
and has minimal impact on cosmological parameters.

This was evident in our estimation of the Pcal parame-
ter, which would cause a large contribution to the sys-
tematic error budget of non-bias-hardened estimators,
but had negligible impact here at almost no extra work.
Additionally, systematics often affect only the likelihood
term, thus are “fast” parameters in the Gibbs sampler
and more of them can be added almost for free.

Looking towards the future, the main challenges we
foresee for the Bayesian approach are twofold. The first
is related to a fundamental difference between Bayesian
and QE (or any frequentist) method. In the frequentist
case, one is free to use various approximations in the
process of computing an estimator, or to null various
data modes, as long as the final result is debiased (usu-

ally via Monte Carlo simulations) and this bias can be
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Figure 14. Forecasted improvement of Bayesian lensing
reconstruction over the quadratic estimate, computed from
a suite of map-level mask-free simulations. The x-axis gives
the noise level in polarization and the y-axis gives the largest
` used in the reconstruction. The top panel shows the im-
provement in the error bar on A100→2000

φ . The bottom panel
shows the improvement in the effective noise in the lensing
reconstruction, Nφφ

` , at `= 200. This work achieves a slightly
better improvement in A100→2000

φ than predicted from these
simulations due to minor sub-optimalities present in our (and
typical) QE pipelines when masking and other analysis com-
plexities exist. Forecasts for the deep CMB-S4 survey, SPT-
3G, and Simons Observatory LATs are shown as diamonds.
The latter lies almost directly on top of the star denoting
the current work, but is offset only for visual clarity. These
simulations cover roughly 100 deg2, although the relative im-
provements are not expected to scale appreciably with fsky.

demonstrated to be sufficiently cosmology-independent.
The Bayesian approach does not have any notion of de-
biasing, instead a forward model for the full data must

be provided and guaranteed sufficiently accurate so as
to ensure biases in the final answer are small. The solu-
tion we have employed here is to build the forward model
with approximations to things like the transfer function,

T, or the noise covariance, Cn, which are as accurate as
more sophisticated full pipeline simulations, but not pro-
hibitive to compute at each step in the MCMC chain.
Pushing to larger scales, larger sky fractions, and more
complex scanning strategies will require upgrading these
approximations, while keeping them fast to compute.
The toolbox for these types of improvements include
things like machine learning models (e.g. Münchmeyer
& Smith 2019, for a CMB application), sparse operators
such as the BICEP observation matrix (Ade et al. 2015),
or other physically motivated analytic approximations.

The second challenge of the Bayesian approach is com-
putational. For reference, the Monte Carlo simulations
needed to compute the QE here take around 10 min-
utes across a few hundred CPU cores. Conversely, the
Bayesian MCMC chains take about 5 hours on 4 GPUs,
with interpretable results returned within around an
hour.6 Ignoring the mild total allocation cost of these
calculations, the main difference is the longer wall-time
of the MCMC chain. Since the computation is roughly

dominated by FFTs, a naive scaling to e.g. the full
SPT-3G 1500 deg2 footprint along with an upgraded 2′

pixel resolution (to reach scales of `∼ 5000) gives around

one week for a chain. Because the MCMC chains do
not appear to require a long burn-in time, the total
run-time can be reduced fairly efficiently by running

more chains in parallel on more GPUs, or potentially on
TPUs. Along with some planned code optimizations, we
expect it will be possible to obtain results for a full SPT-
3G dataset in under a day. Additionally, much of the

runtime will be dominated by Wiener filtering, where
our current algorithm can likely be improved, making
scaling to even larger datasets possible. It may be note-

worthy to highlight that the computational tools in play
here, GPUs, linear algebra, and automatic differentia-
tion, are the identical building blocks of machine learn-

ing, and are the subject of rapid technological improve-
ments.

The overall experience of Bayesian lensing in this work
is encouraging, solving and side-stepping many difficul-
ties which arise in other procedures. While some devel-
opment is needed to extend beyond the dataset consid-
ered here, this approach appears to be a viable option
for future CMB probes which will depend on methods
such as these for the next generation of lensing analyses.

6 The same code can run on CPUs by switching a flag, although is
factors of several slower and mainly useful for debugging.
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Benoit-Lévy, A., Déchelette, T., Benabed, K., et al. 2013,

Astronomy and Astrophysics, 555, A37,

doi: 10.1051/0004-6361/201321048

Benson, B. A., Ade, P. A. R., Ahmed, Z., et al. 2014,

arXiv:1407.2973 [astro-ph], 91531P,

doi: 10.1117/12.2057305

Betancourt, M. 2017, arXiv:1701.02434 [stat].

https://arxiv.org/abs/1701.02434

BICEP2 Collaboration, Ade, P. A. R., Aikin, R. W., et al.

2014, Physical Review Letters, 112, 241101,

doi: 10.1103/PhysRevLett.112.241101

Bleem, L., Ade, P., Aird, K., et al. 2012, J Low Temp Phys,

167, 859, doi: 10.1007/s10909-012-0505-y
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