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ABSTRACT
We describe and test the fiducial covariance matrix model for the combined 2-point
function analysis of the Dark Energy Survey Year 3 (DES-Y3) dataset. Using a variety
of new ansatzes for covariance modelling and testing we validate the assumptions and
approximations of this model. These include the assumption of Gaussian likelihood,
the trispectrum contribution to the covariance, the impact of evaluating the model
at a wrong set of parameters, the impact of masking and survey geometry, deviations
from Poissonian shot-noise, galaxy weighting schemes and other, sub-dominant effects.
We find that our covariance model is robust and that its approximations have little
impact on goodness-of-fit and parameter estimation. The largest impact on best-fit
figure-of-merit arises from the so-called fsky approximation for dealing with finite sur-
vey area, which on average increases the χ2 between maximum posterior model and
measurement by 3.7% (∆χ2 ≈ 18.9). Standard methods to go beyond this approxima-
tion fail for DES-Y3, but we derive an approximate scheme to deal with these features.
For parameter estimation, our ignorance of the exact parameters at which to evaluate
our covariance model causes the dominant effect. We find that it increases the scatter
of maximum posterior values for Ωm and σ8 by about 3% and for the dark energy
equation of state parameter by about 5%.
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1 INTRODUCTION

Our understanding of the Universe has become much more
accurate in the past decades due to a massive amount of
observational data collected through different probes, such
as the cosmic microwave background (CMB; see e.g. Planck
Collaboration 2020), Big Bang Nucleosynthesis (BBN; see
e.g. Fields et al. 2020), type IA supernovae (see e.g. Riess
2017; Smith et al. 2020), number counts of clusters of galax-
ies (see e.g. Mantz et al. 2014; Costanzi et al. 2019; Abbott
et al. 2020), the correlation of galaxy positions, and that
of their measured shape (see e.g. Abbott et al. 2018; Hey-
mans et al. 2020). From the study of that data a standard
cosmological model has emerged characterized by a small
number of parameters (see e.g. Frieman et al. 2008; Peebles
2012; Blandford et al. 2020). Current spectroscopic and pho-
tometric surveys of galaxies such as the Extended Baryon
Oscillation Spectroscopic Survey (eBOSS)1 and the previous
phases of the Sloan Digital Sky Survey (SDSS), the Hyper
Suprime-Cam Subaru Strategic Program (HSC-SSP)2, the
Kilo-Degree Survey (KiDS)3 and the Dark Energy Survey
(DES)4 have become instrumental in testing this standard
model at a new front: the growth of density perturbations in
the late-time Universe. And future surveys, such as the Dark
Energy Spectroscopic Instrument (DESI)5, the Vera Rubin
Observatory Legacy Survey of Space and Time (LSST)6,
Euclid7 and the Nancy Grace Roman Space Telescope 8 will
carry this test to a precision exceeding that provided by
other cosmological probes.

An important part of this program is the Dark En-
ergy Survey, a state-of-the-art galaxy survey that completed
its six-year observational campaign in January 2019 (Diehl
et al. 2019) collecting data on position, color and shape for
more than 300 million galaxies. This makes DES the most
sensitive and comprehensive photometric galaxy survey ever
performed. The main cosmological analyses of the first year
(Y1) of DES data have been concluded (Abbott et al. 2018;
Abbott et al. 2019b) and analyses of the first three years of
data (Y3) are under way. The study of the large-scale struc-
ture (LSS) of the Universe based on the DES-Y3 data set
has the potential to become the most stringent test of our
understanding of cosmological physics to date.

To achieve this goal the DES team is comparing differ-
ent theoretical models characterized by a range of cosmolog-
ical parameters to the measured statistics of the LSS in or-
der to determine the model and range of parameters that are
in best agreement with the data. The statistics of the LSS
considered in the main DES-Y3 analysis are 2-point corre-
lation functions of the galaxy density field (galaxy cluster-
ing), the weak gravitational lensing field (cosmic shear) and
the cross-correlation functions between these fields (galaxy-
galaxy lensing) in real space and measured in different red-
shift bins. These three types of 2-point correlation functions

1 www.sdss.org/surveys/eboss
2 hsc.mtk.nao.ac.jp/ssp
3 kids.strw.leidenuniv.nl
4 www.darkenergysurvey.org
5 www.desi.lbl.gov
6 www.lsst.org
7 www.euclid-ec.org
8 nasa.gov/content/goddard/nancy-grace-roman-space-telescope

are combined into one data vector - the so-called 3x2pt data
vector.

A key ingredient in analyzing these statistics is a model
for the likelihood of a cosmological model given the mea-
sured correlation functions. Under the assumption of Gaus-
sian statistical uncertainties (which is to be validated) this
likelihood is completely characterized by the covariance ma-
trix that describes how correlated the uncertainties of dif-
ferent data points in the 3x2pt data vector are. Validating
the quality of the covariance model for the DES-Y3 2-point
analyses is the main focus of this paper.

There are several methods to estimate covariance ma-
trices that can roughly be divided into four main categories:
covariance estimation from the data itself (e.g.through jack-
knife or sub-sampling methods, cf. Norberg et al. 2009;
Friedrich et al. 2016), covariance estimation from a suite
of simulations (e.g. Hartlap et al. 2007; Dodelson & Schnei-
der 2013; Taylor et al. 2013; Percival et al. 2014; Taylor &
Joachimi 2014; Sellentin & Heavens 2017; Joachimi 2017;
Avila et al. 2018; Shirasaki et al. 2019), theoretical covari-
ance modelling (e.g. Schneider et al. 2002; Eifler et al. 2009;
Krause et al. 2017) or hybrid methods combining both sim-
ulations and theoretical covariance models (e.g. Pope & Sza-
pudi 2008; Friedrich & Eifler 2018; Hall & Taylor 2019).

For the DES-Y3 3x2pt analysis we adopt a theoreti-
cal covariance model as our fiducial covariance matrix. This
fiducial covariance model is based on a halo model and in-
cludes a dominant Gaussian component, a non-Gaussian
component (trispectrum and super-sample covariance), red-
shift space distortions, curved sky formalism, finite angular
bin width, non-Limber computation for the clustering part,
Gaussian shape noise, Poissonian shot noise and fsky ap-
proximation to treat the finite DES-Y3 survey footprint (al-
though taking into account the exact survey geometry when
computing sampling noise contributions to the covariance).
In order to assess the accuracy of that model, we study the
impact of several approximations and assumptions that go
into it (and into 2-point function covariance models in gen-
eral):

• the Gaussian likelihood assumption, i.e. whether knowledge
of the covariance is sufficient to calculate the likelihood;
• robustness with respect to the modelling of the non-
Gaussian covariance contributions, i.e. contributions from
the trispectrum and super sample covariance;
• treatment of the fact that 2-point functions are measured
in finite angular bins;
• cosmology dependence of the covariance model;
• random point shot-noise;
• the assumption of Poissonian shot-noise;
• survey geometry and the fsky approximation;
• other covariance modelling details such as flat sky vs.
curved sky calculations, Limber approximation and redshift
space distortions.

We generate different types of mock data and/or analyt-
ical estimates to determine how each of these effects im-
pacts the quality of the fit between measurements of the
3x2pt data vector and maximum posterior models (quan-
tified by the distribution of χ2 between the two). We also
show how they impact cosmological parameter constraints
derived from measurements of the 3x2pt data vector. For
most of these tests we employ a linearized Gaussian like-

MNRAS 000, 000–000 (0000)
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lihood framework which allows us to analytically quantify
the impact of covariance errors on the χ2 distribution and
parameter constraints. This is complemented by a set of log-
normal simulations and importance sampling techniques to
quickly assess large numbers of mock (non-linear) likelihood
analyses.

This paper is part of a larger release of scientific results
from year-3 data of the Dark Energy Survey and our anal-
ysis is informed by the (in some cases preliminary) analysis
choices of the other DES-Y3 studies. In addition to carving
out the most stringent constraints on cosmological parame-
ters from late-time 2-point statistics of galaxy density and
cosmic shear yet, the year-3 analysis of the DES collabora-
tion is introducing and testing numerous methodological in-
novations that pave the way for future experiments. Details
of the DESY3 galaxy catalogs and the photometric estima-
tion of their redshift distribution are presented by Sevilla-
Noarbe et al. (2020); Hartley et al. (2020); Everett et al.
(2020); Myles et al. (2020); Gatti et al. (2020a); Cawthon
et al. (2020); Buchs et al. (2019); Cordero et al. (2020). The
measurements of galaxy shapes and the calibration of these
measurements for the purpose of cosmic weak gravitational
lensing analyses are detailed by Gatti et al. (2020b); Jarvis
et al. (2020); MacCrann et al. (2020). Krause et al. (2020)
develop and test the theoretical modelling pipeline of the
DES-Y3 3x2pt analysis, Pandey et al. (2020) outline how
galaxy bias is incorporated in this pipeline, DeRose et al.
(2020) validate this pipeline with the help of simulated data
and Muir et al. (2020) describe how we have blinded our
analysis to focus our efforts on model independent valida-
tion criteria and reduce the chance for confirmation bias.
The DESY3 methodology to sample high-dimensional like-
lihoods and to characterize external and internal tensions is
outlined by Lemos et al. (2020); Doux et al. (2020). Mea-
surements of cosmic shear 2-point correlation functions and
analyses thereof are presented by Amon et al. (2020); Secco
et al. (2020), the measurement and analysis of galaxy clus-
tering 2-point statistics is carried out by Rodríguez-Monroy
et al. (2020) and 2-point cross-correlations between galaxy
density and cosmic shear (galaxy-galaxy lensing) are mea-
sured and analysed by Prat et al. (2020), with additional
analyses of lensing magnification and shear ratios carried
out by Elvin-Poole et al. (2020); Sánchez et al. (2020) and
results for an alternative lens galaxy sample presented by
Porredon et al. (2020, prep). Finally, in DES Collaboration
et al. (2020) we present our cosmological analysis of the full
3x2pt data vector.

Our paper is structured as follows. We start by pre-
senting a discussion of our validation strategy in Section 2,
where we also summarize our main findings before plunging
into the details in the remaining of the paper. In Section
3 we review the modelling and structure of the 3x2pt data
vector. Section 4 describes our fiducial covariance model as
well as two alternatives to it that are used to validate sev-
eral modelling assumptions. In Section 5 we describe our
linearized likelihood formalism and derive analytically how
different covariance matrices impact parameter constraints
and maximum posterior χ2 within that formalism (including
the presence of nuisance parameters and allowing for Gaus-
sian priors on these parameters). In Section 6 we present the
details of each step in our validation strategy followed by a
short Section 7 presenting a simple test to corroborate some

of the results from the linearized framework. We conclude
with a discussion of our results in Section 8. Six appendices
describe in more detail some results used in this work.

2 COVARIANCE VALIDATION STRATEGY
AND SUMMARY OF THE RESULTS

How should one validate the quality of a covariance model
(and the associated likelihood model) for the purpose of con-
straining cosmological model parameters from a measured
statistic? A straightforward answer seems to be that one
should run a large number of accurate cosmological simula-
tions, then measure and analyse the statistic at hand in each
of the simulated data sets and test whether the true param-
eters of the simulations are located within the, say, 68.3%
quantile of the inferred parameter constraints in 68.3% of
the simulations. There are however at least 2 problems with
such an approach.

The first one is a conceptual problem. Consider a
Bayesian analysis of a measured statistic ξ̂ with a model
ξ[π] that is parametrised by model parameters π. For each
value of π the statistical uncertainties in the measurement
ξ̂ will have some distribution

L(π|ξ̂) ≡ p(ξ̂|π) (1)

which is also called the likelihood of the parameters given the
data. If this function is known, then a Bayesian analysis will
assign a posterior probability distribution to the parameters
as

p(π|ξ̂) =
1

N L(π|ξ̂) pr(π) . (2)

Here pr(π) is a prior probability distribution that
parametrises prior knowledge from other experiments (or
theoretical constraints) and the normalisation constant N
is fixed by demanding that p(π|ξ̂) be a probability distri-
bution. The 68.3% confidence region for the parameters π
would then e.g. be stated as a volume V68.3% in parameter
space that contains 68.3% of the probability. To unambigu-
ously define that volume one can e.g. impose the additional
condition that

min
π∈V68.3%

p(π|ξ̂) > max
π/∈V68.3%

p(π|ξ̂) (3)

or, more frequently, one would directly define one dimen-
sional intervals that satisfy the above conditions for the
marginalised posterior distributions on the individual pa-
rameter axes. Unfortunately, if one performs such an analy-
sis many times one is not guaranteed that the true parame-
ters (e.g. of a simulation) are located within V68.3% in 68.3%
of the times. This has recently been referred to as prior vol-
ume effect (this issue is discussed in, e.g. Raveri & Hu (2019)
and Abbott et al. (2019a)). One may argue that a Bayesian
posterior should not be interpreted in terms of frequencies
but that doesn’t help for the task of validating this posterior
on the basis of a large number of simulated data sets. 9

Another, more practical problem is the fact that it is

9 In order to deal with the prior volume effect Joachimi et al.
(2020) proposed to report parameter constraints through what
they call projected joint highest posterior density. This topic will
be addressed in a separate DES paper (Raveri et al. - in prep.).

MNRAS 000, 000–000 (0000)
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not (yet) feasible to generate enough sufficiently accurate
mock data sets to validate covariance matrices of large data
vectors with high precision. We recall that for the DES-
Y1 analysis, a total of 18 realistic simulated data sets were
available to validate the inference pipeline (MacCrann et al.
2018). At the same time, the main reason why N-body sim-
ulations would be required to test the accuracy of covari-
ance (and likelihood) models is to capture contributions to
the covariance coming from the trispectrum (connected 4-
point function) of the cosmic density field. But for DES-like
analyses it has been shown that this contribution is negli-
gible (see e.g. Krause et al. (2017); Barreira et al. (2018)).
The reason for this is twofold: first, very small scales (where
the trispectrum contribution to the covariance would matter
most) are often cut off from analyses because on these scales
already the modelling of the data vector, ξ[π], is inaccurate.
And secondly, on small scales the covariance matrix is often
dominated by effects coming from sparse sampling such as
shot noise and shape noise. These covariance contributions
are typically easy to model (although one has to be careful
when estimating effective number densities and shape-noise
dispersions or when estimating the number of galaxy pairs in
the presence of complex survey footprints, see Troxel et al.
2018a; Troxel et al. 2018b).

As a result of the considerations above we base our co-
variance validation strategy mostly on the use of a linearized
likelihood (where the model ξ[π] is linear in the parame-
ters π). In this framework the Bayesian likelihood allows
for an interpretation in terms of frequencies - both for total
and marginalised constraints. Also, this allows us to per-
form large numbers of simulated likelihood analyses very ef-
ficiently, without the need to run computationally expensive
Markov Chain Monte Carlo (MCMC) codes. In addition, any
leading order deviation from a linearized likelihood will be
next-to-leading order for the purpose of studying the impact
of covariance errors (i.e. errors on errors) on our analysis.

Within the linearized likelihood formalism we confirm
the findings of Krause et al. (2017); Barreira et al. (2018)
for the DES-Y3 setup: both super-sample covariance and
trispectrum have a negligible impact on our analysis. This
allows us to estimate the impact of other assumptions in our
covariance and likelihood model either analytically or by the
means of simplified mock data such as lognormal simulations
(as opposed to full N-body simulations, cf. Section 4.3).

We summarize our main findings in Figure 1 and Table
1 for the busy reader. For the combined data vector of the
DES-Y3 two-point function analysis (the 3x2pt data vector,
see details in Section 3) the left panel of Figure 1 shows
the impact of different assumptions in our likelihood model
on the mean and scatter of χ2 between maximum posterior
model and measurements. To obtain the maximum posterior
model we are fitting for all the 28 parameters listed in Table
3 within the linearized likelihood framework described in
Section 5.1. Since we assume Gaussian priors on 13 nuisance
parameters, the effective number of parameters in that fit
will be between 28 and 15. Within the linearized likelihood
approach we find that with a perfect covariance model the
average χ2 is expected to be about 507.6, i.e. the effective
number of degrees of freedom in the fit is Nparam,eff ≈ 23.4.
The right panel of Figure 1 shows the equivalent results
when cosmic shear correlation functions are excluded from
the data vector (the 2x2pt data vector). The green points in

both panels denote effects that have been already accounted
for in the previous year-1 analysis of DES.

What stands out in our analysis is the large effect of
finite angular bin sizes on the cosmic variance and mixed
terms of our covariance model (cf. Section 4 for this termi-
nology, where we also show that it is unavoidable to take
into account finite bin width in the pure shot noise and
shape noise terms of the covariance). In DES-Y1 this has
been dealt with in an approximate manner, by computing
the covariance model for a very fine angular binning and
than re-summing the matrix to obtain a coarser binning
(Krause et al. 2017). This time we incorporate the exact
treatment of finite angular bin size for all the three two-
point functions into our fiducial covariance model (cf. Sec-
tion 4). The blue points in Figure 1 denote improvements
that have been made in the year-3 analysis compared to the
year-1 covariance model. And the red points are estimates of
effects that are not taken into account in the fiducial DES-
Y3 likelihood - either because they are negligible, or because
an exact treatment is unfeasible (cf. Section 6 for details).
Adding these effects in quadrature, our results suggest that
the maximum posterior χ2 of the DES-Y3 3x2pt analysis
should be on average ≈ 4% (∆χ2 ≈ 20.3) higher than ex-
pected if the exact covariance matrix of our data vector was
known.

Table 1 summarizes the offsets in χ2 displayed in the
left panel of Figure 1 and also shows how parameter con-
straints based on the 3x2pt data vector are impacted by
assumptions of our covariance and likelihood model. We dis-
tinguish two effects here: the scatter of a maximum poste-
rior parameter π (which we denote by σ[π̂]) and the width
of posterior constraints inferred from our likelihood model
(which we denote by σπ). For our tests of likelihood non-
Gaussianity we state the changes in the difference between
the fiducial parameter values and the upper (high) and lower
(low) boundaries of the 68.3% quantile with respect to the
standard deviation of the Gaussian likelihood. For our tests
of the impact of covariance cosmology, we show the mean of
all σπ obtained from our 100 different covariances and also
indicate the scatter of these σπ values.

The effect that has the dominant impact on parame-
ter constraints is that of evaluating the covariance model
at a set of parameters that do not represent the exact cos-
mology of the Universe. When computing the covariance at
100 different cosmologies that were randomly drawn from
a Monte Carlo Markov chain (run around a fiducial model
data vector, see Section 6.8 for details) we find that the dif-
ferences between these covariances introduce an additional
scatter in maximum posterior parameter values. This scat-
ter increases by about 3% for Ωm and σ8 and by about 5%
for the dark energy equation of state parameter w. This
increased scatter is in fact the dominant effect, since the
width of the derived parameter constraints hardly changes
between the different covariance matrices. Note especially
that re-running the analysis with a covariance updated to
the best-fit parameters does not mitigate this effect.

In Figure 2 we take the two effects that had the largest
impacts on χ2 and show the resulting mismatch between
scatter of maximum posterior values and width of the in-
ferred contours for a wider range of parameters. All of our
results take into account marginalisation over nuisance pa-
rameters (and all other parameters).

MNRAS 000, 000–000 (0000)
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Our reason for exclusively investigating the impact of
covariance errors on χ2 and parameter constraints is that
those are the two measures by which our final (on-shot) data
analysis will be interpreted and judged10. In the remainder
of this paper we detail how the above results were obtained.

3 THE 3X2-POINT DATA VECTOR

The combined 3x2pt data vector of the DES-Y3 analysis
consists of measurements of the following 2-point correla-
tions:

• the angular 2-point correlation function w(θ) of galaxy den-
sity contrast measured for luminous red galaxies in 5 dif-
ferent redshift bins (see e.g. Rodríguez-Monroy et al. 2020;
Cawthon et al. 2020, as well as other relevant references
given in Section 1),
• the auto- and cross-correlation functions ξ+(θ) and ξ−(θ)
between the galaxy shapes of 4 redshift bins of source galax-
ies (see e.g. Amon et al. 2020; Secco et al. 2020; Myles et al.
2020; Gatti et al. 2020a) ,
• the tangential shear γ(θ) imprinted on source galaxy shapes
around positions of foreground redMaGiC galaxies (see e.g.
Prat et al. 2020).

At the time of writing this paper the exact choices for red-
shift intervals and angular bins considered for each 2-point
function are still being determined by a careful study of their
impact on the robustness of DES-Y3 parameter constraints
(Krause et al. 2020; DES Collaboration et al. 2020). For
the purposes of testing the modelling of the covariance ma-
trix we will use the most recent but possibly not final DES-
Y3 analysis choices. We do not expect that our tests and
conclusions will change in a significant manner with further
updated analysis choices. We assume that each of the corre-
lation functions are measured in 20 logarithmically spaced
angular bins between θmin = 2.5′ and θmax = 250′. Some
of these bins in some of the measured 2-point functions are
being cut from the analysis to ensure unbiased cosmological
results, resulting in a total of 531 data points when using
the preliminary DES-Y3 scale cuts.

Our starting point of modelling the different 2-point
functions in the 3x2pt data vector is the 3D nonlinear matter
power spectrum P (k, z) at a given wavenumber k and red-
shift z. We obtain it by using either of the Boltzmann solvers
CLASS 11 or CAMB 12 to calculate the linear power spec-
trum and the HALOFIT fitting formula (Smith et al. 2003)
in its updated version (Takahashi et al. 2012) to turn this
into the late time nonlinear power spectrum. From this 3D
power spectrum the angular power spectra required for our
three 2-point functions (cosmic shear (κκ), galaxy-galaxy
lensing (δgκ) and galaxy-galaxy clustering (δgδg)) in the
Limber approximation are given by (e.g. Krause et al. 2017;
Limber 1953):

Cijκκ(`) =

∫
dχ
qiκ(χ)qjκ(χ)

χ2
P

(
`+ 1

2

χ
, z(χ)

)
, (4)

10 Alternatively, one could investigate the distribution of p-values
(or probability to exceed, cf. Hall & Taylor 2019) as opposed to
the distribution of χ2.
11 www.class-code.net
12 camb.info

Cijδgκ(`) =

∫
dχ
qiδ

(
`+ 1

2
χ
, χ
)
qjκ(χ)

χ2
P

(
`+ 1

2

χ
, z(χ)

)
, (5)

Cijδgδg (`) =

∫
dχ
qiδ

(
`+ 1

2
χ
, χ
)
qjδ

(
`+ 1

2
χ
, χ
)

χ2
P

(
`+ 1

2

χ
, z(χ)

)
,

(6)

where χ is the comoving radial distance, i and j denote dif-
ferent combinations of pairs of redshift bins and the lensing
efficiency qiκ and the radial weight function for clustering qiδ
are given by

qiκ(χ) =
3H2

0 Ωmχ

2a(χ)

∫ χh

χ

dχ′
(
χ′ − χ
χ

)
niκ(z(χ′))

dz

dχ′
,

qiδ(k, χ) = bi(k, z(χ)) niδ(z(χ))
dz

dχ
. (7)

Here H0 is the Hubble parameter today, Ωm the ratio of to-
day’s matter density to today’s critical density of the Uni-
verse, a(χ) is the Universe’s scale factor at comoving dis-
tance χ and bi(k, z) is a scale and redshift dependent galaxy
bias. Furthermore, niκ,g(z) denote the redshift distributions
of the different DES-Y3 redshift bins of source and lens
galaxies respectively, normalised such that∫
dz niκ,g(z) = 1 . (8)

Note that on large angular scales the DES-Y3 analysis does
not make use of the Limber approximation for galaxy clus-
tering but instead employs the method derived in Fang et al.
(2020a).

The above angular power spectra are now related to the
real space correlation functions w(θ), γt(θ) and ξ±(θ) as

wi(θ) =
∑
`

2`+ 1

4π
P`(cos θ)Ciiδgδg (`) ,

γijt (θ) =
∑
`

2`+ 1

4π

P 2
` (cos θ)

`(`+ 1)
Cijδgκ(`) ,

ξij± (θ) =
∑
`>2

2`+ 1

4π

2(G+
`,2(x)±G−`,2(x))

`2(`+ 1)2
Cijκκ(`) .

(9)

Here P` are the Legendre polynomials of order `, Pm` are
the associated Legendre polynomials, x = cos θ and the
functions G+,−

`,2 (x) are given in appendix A (see also Steb-
bins 1996). Note that we only consider the auto-correlations
wi(θ) for each tomographic bin since in the Y1 analysis it
was shown that the cross correlations do not carry signifi-
cant information (Elvin-Poole et al. 2018).

The above relations between angular power spectra and
real space correlation functions can all be written in the form

ξAB(θ) =

∞∑
`=0

2`+ 1

4π
FAB` (θ)CAB` . (10)

This is particularly useful when deriving covariance expres-
sions and when performing averages over finite bins in the
angular scale θ. To achieve the latter, one can simply derive
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Figure 1. Impact of different covariance modelling choices on χ2 between measured 3x2pt (left panel) and 2x2pt (right panel) data
vectors and maximum posterior models. The dashed vertical lines and error bars indicate the 1σ fluctuations expected in χ2. See main
text for details.

analytic averages of the functions FAB` (θ). Both of these
points will be considered in the next sections.

For most of our tests we consider the 3x2pt data vec-
tor and its covariance matrix at the fiducial cosmology de-
scribed in section 5, where we also show the Gaussian priors
assumed on some of these parameters when assessing the im-
pact of covariance modelling on parameter constraints and
maximum posterior χ2.

4 COVARIANCE MATRICES FOR THE 3×2PT
DATA VECTOR

The covariance matrix of measurements of cosmological 2-
point statistics typically contains three contributions (cf.

Krause & Eifler 2017; Krause et al. 2017),

C = CG + CnG + CSSC . (11)

Here, CG is the contribution to the covariance that would
be present if the cosmic matter density and cosmic shear
fields where pure Gaussian random fields (see also Schnei-
der et al. 2002; Crocce et al. 2011), CnG are contributions
involving the connected 4-point function of these fields (the
trispectrum) and CSSC is the so-called super-sample covari-
ance contribution resulting from the fact that any survey
only observes a finite volume of the Universe and that the
mean density in that volume is subject to fluctuations due
to long wavelenght modes (Takada & Hu 2013; Schaan et al.
2014).

In the fiducial DES-Y3 analysis we model all of these
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Effect 〈χ2〉 σ[χ2] σ[Ω̂m] σΩm σ[σ̂8] σσ8 σ[ŵ] σw

Fiducial 507.6 31.8 0.0509 0.0509 0.0975 0.0975 0.244 0.244

angular
bin width

402.1 26.0 +0.8% +7.4% +0.8% +8.3% +1.0% +7.4%

connected
4-point
function

507.6 31.8 +0.1% -0.8% +0.1% -0.9% +0.1% -0.8%

curved sky 507.7 31.8 +0.0% -0.0% +0.0% -0.0% +0.0% -0.0%

non-
Limber &
RSD

511.4 32.1 +0.1% -0.6% +0.1% -0.6% +0.3% -1.4%

non-
Gauss.
likelihood

- 32.6 +0.8% (low)
-0.9% (high)

- +0.4% (low)
-0.4% (high)

- +0.5% (low)
+0.05% (high)

-

covariance
cosmology

508.6 32.4 +2.9% +(0.1± 0.06)% +2.8% +(0.1± 0.05)% +4.7% +(0.1± 0.06)%

random
point
shot-noise

511.3 32.0 +0.0% -0.5% +0.0% -0.6% +0.0% -0.2%

non-
Poisson
shot-noise

515.0 32.3 +0.0% -0.7% +0.0% -0.8% +0.0% -0.6%

masking
and survey
geometry

526.5 33.8 +0.6% -0.8% +0.7% -0.3% +0.3% -1.3%

Table 1. Summary of the impact of the different effect tested here on the distribution of χ2 between measurement and maximum
posterior model, on the scatter σ[π̂] of maximum posterior parameters π̂ and on the standard deviations σπ on these parameters inferred
from the likelihood. See text for details.

covariance contributions analytically. This fiducial model is
described in Section 4.1. In Section 4.2 we describe an alter-
native model for the non-Gaussian covariance contributions
that is used to test the robustness of our analysis with re-
spect to the modelling of the trispectrum contribution. Fi-
nally, Section 4.3 describes a set of log-normal simulations
(Xavier et al. 2016) and the covariance matrix of the 3x2pt
data vector estimated from them. These simulations also
allow us to test the accuracy of our Gaussian likelihood as-
sumption and the treatment of masking and finite survey
area in our fiducial covariance model.

4.1 Fiducial DES-Y3 Covariance

In our fiducial covariance matrix, we model the non-
Gaussian covariance contributions CnG and CSSC using a
halo model combined with leading-order perturbation the-
ory to approximate the trispectrum of the cosmic density
field and to compute the mode coupling between scales
larger than the considered survey volume with scales inside
that volume. These calculations are carried out using the

CosmoCov code package (Fang et al. 2020a) based on the
CosmoLike framework (Krause & Eifler 2017). Our mod-
elling of these contributions has not changed with respect
to the year-1 analysis of DES and we refer the reader to
Krause et al. (2017) as well as to the CosmoLike papers for
details. However, the modelling of the Gaussian contribution
has changed as described in the following.

4.1.1 Gaussian covariance

Our modelling of the Gaussian covariance part has changed
with respect to the year-1 analysis in the following ways:

• we use (and present for the first time13) analytic expression
for the angular bin averaging of the functions FAB` (θ) (cf.
Equation 10) for all 4 types of two point functions present in

13 We have shared our results with Fang et al. (2020a) who have
used them for their covariance calculations.
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Figure 2. Impact of covariance errors on the ratio of the standard deviation of maximum posterior parameters to the width of the
posterior derived from the erroneous covariance. Green triangles shot the effect caused by non-Poissonian shot-noise and orange circles
show the effect caused by the fsky approximation (cf. appendix C for our beyond-fsky treatment). These ratios have been calculated
purely on the base of different analytic covariance models and within the linearized likelihood framework discussed in Section 5.1. We
also show the ratio of maximum posterior parameter scatter observed from the 197 FLASK simulations to the statistical uncertainties
expected from a log-normal covariance matrix matching the FLASK configuration. Within the statistical uncertainties, these ratios are
consistent with 1.

our data vector (see Section 6.3, this is especially relevant for
the sampling-noise contribution to the covariance, cf. Troxel
et al. 2018b);

• we account for redshift space distortions (RSD) and also
use a non-Limber calculation to obtain the galaxy-galaxy
clustering power spectrum Cδgδg (`) (see Section 6.5);

• we do not make use of the flat-sky approximation anymore
(see Section 6.4).

To derive expressions for the Gaussian covariance part, let
us first consider an all-sky survey. If a 2-point function mea-
surement ξ̂AB(θ) could be obtained from data on the en-
tire sky, then for most types of 2-point correlations it would
be related to power spectrum measurements CAB` from a
spherical harmonics decomposition of the same all-sky data
through Equation 10, i.e.

ξ̂AB(θ) =

∞∑
`=0

2`+ 1

4π
FAB` (θ) ĈAB` . (12)

A notable exception to this are the cosmic shear 2-point
functions ξ̂± which obtain contributions from both the so-
called E-mode and B-mode power spectra (Schneider et al.
2002). For these functions equation (12) in the curved sky
formalism becomes

ξ̂ij± (θ)

=
∑
`>2

2`+ 1

4π

2(G+
`,2(x)±G−`,2(x))

`2(`+ 1)2

(
ĈE,ijγγ (`)± ĈB,ijγγ (`)

)
,

(13)

where in the absence of shape-measurement systematics
(and ignoring post-Born corrections) 〈ĈE,ijγγ (`)〉 = Cijκκ(`)

and 〈ĈB,ijγγ (`)〉 = 0.

Since this is a linear equation in C(`)’s, the covariance

of two different 2-point function measurements ξ̂AB and ξ̂CD

at two different angular scales θ1 and θ2 would be given in
terms of the covariance of the corresponding power spectrum
measurements by

Cov
[
ξ̂AB(θ1), ξ̂CD(θ2)

]
=
∑
`1,`2

(2`1 + 1)(2`2 + 1)

(4π)2
×

FAB`1 (cos θ1)FCD`2 (cos θ2) Cov
[
ĈAB`1 , ĈCD`2

]
.

(14)

Again, for ξ̂AB(θ) = ξ̂±(θ) one would have to use CAB` =
ĈEγγ(`)± ĈBγγ(`) in this sum.

For the auto-power spectrum of galaxy density contrast
in one of our redshift bins the harmonic space covariance
would be (Crocce et al. 2011)

Cov[Ĉiiδgδg (`1), Ĉiiδgδg (`2)] =
2δ`1`2

(2`1 + 1)

(
Ciiδgδg (`1) +

1

ng

)2

.

(15)

Here ng is the number density of the galaxies and δ`1`2 is
the Kronecker symbol. To account for partial-sky surveys
(such as DES) we simply divide this expression (and similar
ones for the other 2-point functions) by the observed sky
fraction fsky. This so-called fsky approximations leads to
the following harmonic space Gaussian covariances of ( see
also Krause et al. 2017):
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Figure 3. Ratio of the diagonal elements of the different covariance matrices introduced in this section. The left panel compares the
variances of measurements of ξ+(θ) while the right panel compares the variances of measurements of w(θ). To give a sense of the goodness
of fit between the covariance estimated from FLASK and our fiducial analytic matrix, we treat the diagonal elements of the FLASK
covariance as a multivariate Gaussian whose covariance can be inferred from the properties of the Wishart distribution (Taylor et al.
2013). The low p-value for the highest redshift bin of w(θ) most likely results from our incomplete treatment of the survey mask (cf.
discussion in Section 6 and appendix C).
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Cov[Ĉijgg(`1), Ĉklgg(`2)] =

δ`1`2

[(
Cikgg(`1) + δik

nig

)(
Cjlgg(`1) +

δjl

n
j
g

)
+
(
Cilgg(`1) + δil

nig

)(
Cjkgg (`1) +

δjk

n
j
g

)]
(2`1 + 1)fsky

(16)

Cov[ĈE,ijγγ (`1), ĈE,klγγ (`2)] =

δ`1`2

[(
Cikκκ(`1) +

δikσ
2
ε,i

nis

)(
Cjlκκ(`1) +

δjlσ
2
ε,j

n
j
s

)
+

(
Cilκκ(`1) +

δilσ
2
ε,i

nis

)(
Cjkκκ(`1) +

δjkσ
2
ε,j

n
j
s

)]
(2`1 + 1)fsky

(17)

Cov[ĈB,ijγγ (`1), ĈB,klγγ (`2)] =

δ`1`2

[
δikσ

2
ε,i

nis

δjlσ
2
ε,j

n
j
s

+
δilσ

2
ε,i

nis

δjkσ
2
ε,j

n
j
s

]
(2`1 + 1)fsky

(18)

Cov[Ĉijgκ(`1), Ĉklgκ(`2)] =

δ`1`2

[(
Cikgg(`1) + δik

nig

)(
Cjlκκ(`1) +

δjlσ
2
ε,j

n
j
s

)
+ Cilgκ(`1)Ckjgκ(`1)

]
(2`1 + 1)fsky

(19)

Cov[Ĉijgg(`1), ĈE,klγγ (`2)] =
δ`1`2

[
Cikgκ(`1)Cjlgκ(`1) + Cilgκ(`1)Cjkgκ(`1)

]
(2`1 + 1)fsky

(20)

Cov[Ĉijgg(`1), Ĉklgκ(`2)] =

δ`1`2

[(
Cikgg(`1) +

δikσ
2
ε,i

nis

)
Cjlgκ(`1) + Cilgκ(`1)

(
Cjkgg (`1) +

δjk

n
j
g

)]
(2`1 + 1)fsky

(21)

Cov[Ĉijgκ(`1), ĈE,klγγ (`2)] =

δ`1`2

[
Cikgκ(`1)

(
Cjlκκ(`1) +

δjlσ
2
ε,j

n
j
s

)
+ Cilgκ(`1)

(
Cjkκκ(`1) +

δjkσ
2
ε,j

n
j
s

)]
(2`1 + 1)fsky

(22)

Cov[Ĉijgg(`1), ĈB,klγγ (`2)] = 0 (as are all other covariances with only one ĈBγγ) . (23)

At this point let us introduce the following nomenclature:
we will denote the terms that contain two power spectra as
cosmic variance contribution to the covariance, the terms
that contain no power spectrum at all as the sampling noise
contributions (or shape noise and shot noise contributions)
and the terms that contain contribution from one power
spectrum and a sampling noise as the mixed terms. We test
the accuracy of the fsky-approximation that results in Equa-
tions (16-23) in Section 6.6 by comparing it to more accurate
expressions.

4.2 Analytic lognormal covariance model

To test the robustness of the CosmoLike covariance we also
employ an alternative model for the connected 4-point func-
tion part of the covariance - the lognormal model. Hilbert
et al. (2011) originally derived this as a model for the co-
variance of cosmic shear correlation function, assuming that
that the lensing convergence κ can be written in terms of a
Gaussian random field n as (see also Xavier et al. 2016)

κ = λ
(
en+µ − 1

)
, (24)

where it is assumed that 〈n〉 = 0. For given values λ >
0 and µ the power spectrum of n can be chosen such as

to reproduce a desired 2-point correlation function ξκ (see
Xavier et al. (2016) for caveats). Furthermore, for any given
value λ > 0 one can choose µ such that 〈κ〉 = 0. This makes
λ the only free parameter of the lognormal covariance model.
Hilbert et al. (2011) show that this model leads to a number
of correction terms to the Gaussian covariance model, and
identify the most dominant of these terms to be

CLN[ξ̂κ(θ1), ξ̂κ(θ2)]

≈ CG[ξ̂κ(θ1), ξ̂κ(θ2)] +
4 ξκ(θ1)ξκ(θ2)

ASλ2
VarS(κ) . (25)

Here AS is the area of the considered survey footprint
and VarS(κ) is the variance of κ when averaged over the
footprint. We generalise this to the covariance of 2-point
correlations ξ̂AB and ξ̂CD between arbitrary scalar fields
δA, δB , δC , δD as

CLN[ξ̂AB(θ1), ξ̂CD(θ2)]− CG[ξ̂AB(θ1), ξ̂CD(θ2)]

≈ ξAB(θ1)ξCD(θ2)

AS

{
CovS(δA, δC)

λAλC
+

CovS(δA, δD)

λAλD
+

+
CovS(δB , δC)

λBλC
+

CovS(δB , δD)

λBλD

}
. (26)

Here, CovS(δA, δC) is the covariance of δA and δC af-
ter the two fields have been averaged over the entire sur-
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vey footprint (and likewise for the other terms appearing
above). Following Hilbert et al. (2011) we use this expres-
sion even when considering non-scalar fields (i.e. the shear
field) by replacing ξXY (θ) by the appropriate 2-point func-
tions ξ+(θ), ξ−(θ), γt(θ) (or w(θ), for the scalar galaxy den-
sity contrast).

To choose the parameters λX (also called the lognormal
shift parameters, cf. Xavier et al. 2016) we follow a procedure
similar to the one outlined in Friedrich et al. (2018). There
it is shown how the value of λX can be adjusted in order to
match the re-scaled cumulant

S3(ϑ) ≡ 〈δX(ϑ)3〉
〈δX(ϑ)2〉2 (27)

of the random field δX smoothed with a top-hat filter of
angular radius ϑ to the value of S3 predicted by leading-
order perturbation theory for that same smoothing scale.
Since the focus in our paper is the covariance matrix of 2-
point statistics (hence a 4-point function), we modify their
method for match instead the value of

S4(ϑ) ≡ 〈δX(ϑ)4〉 − 3〈δX(ϑ)2〉2

〈δX(ϑ)2〉3 . (28)

The field δX here will be either projections of the 3D matter
density contrast along the line-of-sight distribution of our
lens galaxies or the lensing convergence fields correspond-
ing to our 4 source redshift bins. The smoothing scale ϑ at
which we use the λX to match S4 to its perturbation theory
value is chosen such that it corresponds to about 10Mpc/h
at the mean redshift of the line-of-sight projection kernels
corresponding to the different δX . This is approximately the
scale at which Friedrich et al. (2018) found the shifted log-
normal model to be a good approximation of the overall
PDF of density fluctuations in N-body simulations (cf. their
figure 5).

Our results are shown in Table 2 , where we present
the number density, galaxy bias (relevant for lenses only),
shape-noise dispersion (per shear component; relevant for
sources only) and the lognormal shift parameters obtained
from the procedure described above. Note that for the source
galaxy samples, the relevant line-of-sight projection kernel
used to derive the shift parameter is the lensing kernel (and
not the redshift distribution of the source galaxies). For the
lens galaxies, all shift parameters come out to be > 1. As a
consequence there will be pixels with negative density in our
lognormal simulations. However, the fraction of such pixels is
< 0.01 for all runs and all bins and setting δg = −1 in these
bins has an unnoticeable effect on the statistics measured in
these maps (e.g. for bin 4, which is affected most, the stan-
dard deviation of δg changes by 0.053%). Note further that
at the time of completing the simulation runs presented in
Section 4.3, the DES Y3 shear catalog and redshift distribu-
tion were not finalized. As a consequence, the shape noise
dispersion values used for simulations differ from the values
in this table.

4.3 Lognormal covariance from simulations

We also produce a test DES-Y3 covariance matrix from a set
of simulations. We use the publicly available code FLASK
(Full sky Lognormal Astro fields Simulation Kit) (Xavier
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Figure 4. Redshift distributions of lens galaxies (shaded regions)
and source galaxies (solid lines) in our fiducial test configuration.

z-bin ng [arcmin−2] bias σε log-normal shift

lenses 1 0.0221 1.7 − 1.089

lenses 2 0.0381 1.7 − 1.106
lenses 3 0.0583 1.7 − 1.047

lenses 4 0.0295 2.0 − 1.252

lenses 5 0.0251 2.0 − 1.177

sources 1 1.7971 − 0.2724 0.00453

sources 2 1.5521 − 0.2724 0.00885
sources 3 1.5967 − 0.2724 0.01918

sources 4 1.0979 − 0.2724 0.03287

Table 2. Number density, galaxy bias (relevant for lenses only),
shape-noise dispersion (per shear component; relevant for sources
only) and the lognormal shift parameters obtained from the pro-
cedure described in Section 4.2.

Figure 5. Validation of FLASK simulations. Each panel shows
the absolute difference of three 2-point correlations measured
on FLASK realizations and the predicted correlation functions
from input C(`)s normalized to the statistical error given by the
standard deviation along FLASK realizations (∆X/σX , where
X = w, γt, ξ+, ξ−). Gray dots are single realizations and blue
dots its mean.
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Figure 6. FLASK (lower diagonal) vs. CosmoLike halo model
(upper diagonal) correlation matrix.

et al. 2016) 14 to generate 800 DES-Y3 footprint sky maps
of density, convergence and shear healpix maps (Górski et al.
2005) with NSIDE=8192, as well as galaxy positions cata-
logs, used to reproduce the DES-Y3 properties. FLASK is
able to quickly produce tomographic correlated simulations
of clustering and weak lensing lognormal fields based on the
DES-Y3 lens and sources samples. The lognormal distribu-
tion of cosmological fields has been shown to be a good ap-
proximation (Coles & Jones 1991; Wild et al. 2005; Clerkin
et al. 2017) but much less computationally expensive to gen-
erate than full N-body simulations.

As input for the simulations, we used a set of auto
and cross correlated power spectrum and the lognormal
field shift parameters. The theoretical input power spec-
trum was generated using CosmoLike, and the lognormal
shifts are the ones listed in Table 2 . In order to repro-
duce the properties of shear fields, we added the shape-
noise term by sampling each pixel of the simulated maps
to match the correspondent shape-noise dispersion σε and
number density ng of the tomographic bin. At the time
of completing the simulation runs, the DES Y3 shear cat-
alog and redshift distribution were not finalized. For this
reason, the values used in the simulations are slightly dif-
feent from the values in Table 2 . For the simulations,
we set the number density for the five tomographic lens
bins as 0.0227, 0.0392, 0.0583, 0.0451, 0.0278 (arcmin−2).
The shape-noise dispersion values for the four tomographic
bins of sources were set to 0.27049, 0.33212, 0.32537, 0.35037.
The cosmology adopted for the theoretical power spectra is
set as Ωm = 0.3, σ8 = 0.82355, ns = 0.97, Ωb = 0.048,
h0 = 0.69, and Ωνh

2
0 = 0.00083.

14 http://www.astro.iag.usp.br/ flask/

We use the publicly available code TreeCorr15 (Jarvis
et al. 2004) to measure the 3x2 point correlation measure-
ments for 200 DES-Y3 realizations. For all measurements,
we used 20 log-spaced angular separation bins on scales be-
tween 2.5 and 250 arcmin. We set the bin_slop TreeCorr
parameter to zero, essentially setting all estimators to brute-
force computation. In Figure 5 we show the validation of the
measurements comparing with the theoretical input.

We will use the FLASK covariance mainly to estimate
the impact of the survey geometry.

4.4 Comparisons among covariances

Here we present some comparisons between the different co-
variance matrices. In Figure 3 we show the ratio of the diag-
onal elements of the different covariance matrices introduced
in this section displaying both the variances of the measure-
ments of ξ+(θ) of w(θ).

In Figure 6 we compare the covariance matrices ob-
tained from the FLASK simulations and the analytical halo
model covariance.

5 IMPACT OF COVARIANCE ERRORS ON A
LINEARIZED GAUSSIAN LIKELIHOOD

As discussed above a full assessment of the impact of using
different covariance matrices to parameter estimation be-
comes unfeasible due to the computational demand of run-
ning a large number of MCMC chains. Since the covariance
matrices studied in this work differ by subdominant effects
we do not expect large modifications in the results of the
estimation of the parameters. Therefore we will bypass this
difficulty by using a linearized approximation of the model
data vector as a function of the parameters. The measured
data is assumed to be a Gaussian multivariate variable char-
acterized by a covariance matrix and a given prior matrix.
This approach is called the Gaussian linear model (Seehars
et al. 2014, 2016; Raveri & Hu 2019).

Within this approach we study the following impacts of
different covariances:

• error in the parameter estimation, characterized by the
width of the contours;
• the scatter of the best fit (maximum posteriors) parame-
ters;
• change in the maximum posterior χ2 value;
• error in the maximum posterior χ2 value.

In the remainder of this section we detail this method.

5.1 Linearized likelihoods

To speed up our simulated likelihood analyses, we employ
a linearized model of the data vector ξ (e.g. the DES-Y3
3x2-point function data vector). This can be considered a
linear Taylor expansion of our full model around a fiducial

15 https://github.com/rmjarvis/TreeCorr
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Table 3. Fiducial cosmology and standard deviation of Gaussian
parameter priors used in our mock likelihood analyses. AIA,i is the
intrinsic alignment amplitude in the ith source redshift bin, mi is
the multiplicative shear bias and ∆zs,i parametrizes systematic
shifts in the photometric redshift distribution of that bin. ∆zl,i
parametrizes systematic shifts in the photometric redshift distri-
bution of the ith lens redshift bin. The Gaussian priors we choose
for the parameters follow the analysis choices of Abbott et al.
(2018) and we assume infinite flat priors for all other parameters.

Parameter Fiducial value σprior

Cosmology
Ωm 0.3 -
σ8 0.82355 -
h100 0.69 -
ns 0.97 -
w0 -1 -
Ωb 0.048 -
Ων 0.001743 -
ΩΛ 1− Ωm − Ων

b1 1.7 -
b2 1.7 -
b3 1.7 -
b4 2.0 -
b5 2.0 -

∆zl,1 0.0 0.04

∆zl,2 0.0 0.04
∆zl,3 0.0 0.04

∆zl,4 0.0 0.04

∆zl,5 0.0 0.04

∆zs,1 0.0 0.08

∆zs,2 0.0 0.08
∆zs,3 0.0 0.08

∆zs,4 0.0 0.08

AIA,1 0.0 -
AIA,2 0.0 -
AIA,3 0.0 -
AIA,4 0.0 -

m1 0.0 0.03
m2 0.0 0.03

m3 0.0 0.03

m4 0.0 0.03

set of parameters π0 which is summarized in Table 3. In this
approximation our model data vector becomes

ξ(π) = ξ(π0) +
∑
α

(πα − π0
α)

∂ξ(π)

∂πα

∣∣∣∣
π=π0

(29)

where the sum is over all components πα of the parameter
vector π (we will use latin indices for the components of
the data vector and greek indices for the components of the
parameter vector). Given a 2-point function measurement ξ̂
and abbreviating

ξ0 = ξ(π0)

δξ = ξ̂ − ξ0

δπ = π − π0

∂αξ =
∂ξ(π)

∂πα

∣∣∣∣
π=π0

our figure of merit χ2 as a function of the parameters be-
comes in the linearized approximation

χ2[δπ] =

(
δξ −

∑
α

δπα∂αξ

)T
C−1

(
δξ −

∑
α

δπα∂αξ

)

+
(
π − πprior

)T
P
(
π − πprior

)
. (30)

Here we have allowed for a Gaussian prior with covariance
matrix P−1 and central value πprior. To find the deviation
δπMP = πMP − π0 from our fiducial parameters that min-
imizes this function (the maximum posterior value of the
parameters is denoted by πMP) we have to solve

∂χ2

∂(δπβ)

∣∣∣∣
δπ=δπMP

= 0 . (31)

Defining a vector x such that xβ = δξTC−1∂βξ as well as
the Fisher matrix Fαβ = ∂βξ

TC−1∂αξ this becomes

(F + P) δπMP = x + P (πprior − π0)

⇒ πMP = π0 + (F + P)−1x + (F + P)−1P (πprior − π0) .
(32)

We now want to consider the situation when a model
covariance matrix Cmod is used to calculate the likelihood in
equation (30 which is different from the true covariance ma-
trix Ctrue of the statistical uncertainties in the data vector
ξ̂. In that case our linearized likelihood will be a Gaussian
centered around πMP and with parameter covariance matrix

Cπ,like = (Fmod + P)−1 , (33)

where Fmod,αβ = ∂βξ
TC−1

mod∂αξ is the Fisher matrix calcu-
lated from the model covariance.

The actual covariance matrix of πMP includes two
sources of noise. First, statistical uncertainties in the mea-
surement ξ̂ which are described by the covariance matrix
Ctrue and are represented by the first term in equation
(32) that is proportional to x. And secondly, statistical un-
certainties in our choice of the prior center which are de-
scribed by the prior covariance matrix P−1 and are repre-
sented by the second term in equation (32) that is propor-
tional to πprior. The latter term has the covariance matrix
(Fmod + P)−1P(Fmod + P)−1 (because the covariance ma-
trix of πprior is P−1). Hence, the total covariance matrix of
πMP can be written as

(Cπ,MP)αβ ≡ Cov[πMP
α , πMP

β ] =

= (Fmod + P)−1P(Fmod + P)−1 +

+
∑
κ,λ

(Fmod + P)−1
ακ (Fmod + P)−1

λβ ×

×
∑
i,k

∂κξi (C−1
modCtrueC

−1
mod)ik ∂λξk . (34)

For Cmod = Ctrue it is easy to see that this parameter co-
variance Cπ,MP equals the covariance Cπ,like that describes
the shape of our likelihood (as it should).

5.2 Impact on the width of the likelihood and
scatter of best fit parameters

We can use the above findings to study the impact of differ-
ent effects in covariance modelling on parameter constraints.
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If a covariance matrix C1 contains a noise contribution that
is missing in another covariance matrix C2, then we quan-
tify the difference between these matrices by considering two
effects:

• Width of likelihood contours:

Denoting the Fisher matrices obtained from C1 or C2 as F1

and F2 respectively, the width of likelihood contours drawn
from the different covariances are given by

Cπ,like, 1 = (F1 + P)−1

Cπ,like, 2 = (F2 + P)−1 . (35)

Hence, if the difference C1 − C2 = E represents noise
contributions missing from (or miss-estimated in C2), then
a comparison of Cπ,like, 1 and Cπ,like, 2 quantifies the
impact of this on the width of parameter contours.

• Scatter in the center of likelihood contours:

If the data vector ξ̂ had C1 as its true covariance matrix but
C2 would be used to derive the maximum posterior param-
eters πMP from it, then the maximum posterior parameter
covariance would be given by

(Cπ,MP, 2)αβ = (F2 + P)−1 P (F2 + P)−1 +

+
∑
κ,λ

(F2 + P)−1
ακ (F2 + P)−1

λβ ×

×
∑
i,k

∂κξi (C−1
2 C1 C−1

2 )ik ∂λξk . (36)

If the difference C1−C2 = E represents noise contributions
missing from (or miss-estimated in C2), then a comparison
of Cπ,MP, 2 and Cπ,MP, 1 ≡ Cπ,like, 1 quantifies the impact
of this on the scatter in the location of parameter contours.

An inaccurate covariance model will in general have a
different impact on the width and the location of parame-
ter contours. Hence, in order to quantify the importance of
different effects in covariance modelling for parameter esti-
mation, we compare both the pair Cπ,like, 1 / Cπ,like, 2 and
the pair Cπ,MP, 1 / Cπ,MP, 2.

5.3 Distribution of χ2 when fitting for parameters

Within the linearized likelihood model developed in the
previous section we now investigate how errors in the co-
variance model impact the distribution of χ2

MP between
measured data vector ξ̂ and a maximum posterior model
ξMP = ξ(πMP),

χ̂2
MP = (ξ̂ − ξMP)TC−1(ξ̂ − ξMP) . (37)

We start with the case that

(i) the true covariance C of ξ̂ is known
(ii) no parameter priors are used when determining the best

fitting model ξMP

(iii) the true expectation value ξ̄ ≡ 〈ξ̂〉 lies within our pa-
rameter space. I.e. there are parameters πtrue such that
ξ(πtrue) = ξ̄ .

We will show that, as expected, in this case χ̂2
MP should

follow a χ2-distribution with Ndata−Nparam degrees of free-
dom.

Using equations (29) and (32) (and setting again δξ ≡
ξ̂−ξ0) one can see that the maximum posterior data vector
is given by

ξMP = ξ0 +
∑
αβ

∂αξ (F−1)αβ
(
δξTC−1∂βξ

)
= ξ̄ +

∑
αβ

∂αξ (F−1)αβ
(

(ξ̂ − ξ̄)TC−1∂βξ
)

= ξ̄ +
∑
αβ

∑
kl

∂αξ (F−1)αβ (ξ̂k − ξ̄k)
(
C−1)

kl
∂βξl

≡ ξ̄ + P · (ξ̂ − ξ̄) . (38)

Here, the second line follows from the fact that ξ̄ = 〈ξ̂〉 =
〈ξMP〉 and we have defined the matrix

Pij =
∑
αβ

∂αξi
∑
l

(F−1)αβ
(
C−1)

lj
∂βξl . (39)

It can be shown that P is an idempotent matrix (P2 = P)
and furthermore that

Trace (P) = Nparam

C−1PC = PT . (40)

The residual between the measurement ξ̂ and the best fitting
model ξMP can be written in terms of P as

ξ̂ − ξMP = (ξ̂ − ξ̄)− (ξMP − ξ̄)

= (1 −P) · (ξ̂ − ξ̄) . (41)

Hence, the covariance matrix of ξ̂ − ξMP is given by

CP ≡ 〈(ξ̂ − ξMP)T (ξ̂ − ξMP)〉 = (1 −P)C (1 −P)T (42)

This makes it straightforward to find the expectation value

〈χ2
MP〉 =〈(ξ̂ − ξMP)TC−1(ξ̂ − ξMP)〉

= Trace
(
CP C−1)

=
∑
jk

Ckj
(
C−1)

jk
−
∑
k

Pkk

= Ndata −Nparam . (43)

Similarly, the variance of χ2
MP can be shown to be

Var(χ2
MP) = 〈(χ2

MP)2〉 − 〈χ2
MP〉2

= 2 Trace
([

CP C−1]2)
= 2(Ndata −Nparam) . (44)

So far, we have only re-derived textbook results (Anderson
2003). Now how do 〈χ2

MP〉 and Var(χ2
MP) change if the co-

variance model Cmod we use to find the best fitting model
ξMP and to compute χ2

MP is different from the true covari-
ance matrix C of ξ̂?

Following similar steps as Eqs. (38) and (39) one can
show that

ξMP = ξ̄ + Pmod · (ξ̂ − ξ̄) (45)

where

(Pmod)ij =
∑
αβ

∂αξi
∑
l

(F−1
mod)αβ

(
C−1

mod

)
lj
∂βξl (46)

and where the Fisher matrix Fmod is computed from the
model covariance Cmod. Equation 45 especially shows that
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ξMP is still an unbiased estimator of ξ̄ even when Cmod 6= C.
When deriving the moments of χ2

MP we will still come across
expectation values like (cf. Equation 43)

〈(ξ̂i − ξ̄i)(ξ̂j − ξ̄j)〉 ≡ (C)ij 6= (Cmod)ij . (47)

Hence the expectation value and variance of χ2
MP are given

by

〈χ2
MP〉 = Trace

(
CPmodC−1

mod

)
(48)

Var(χ2
MP) = 2 Trace

([
CPmodC−1

mod

]2)
, (49)

where

CPmod = (1 −Pmod)C (1 −Pmod)T (50)

Now we are left to investigate how Equations 48 and 49
change when a Gaussian parameter prior P is included in
the likelihood function (cf. Equation 30). A complication in
this case is, that now ξMP is not necessarily an unbiased es-
timate of ξ̄ anymore. This is because in Equation 30 we have
centered our prior around the model parameters πprior which
may be different from the true parameters πtrue. Inserting
the full expression for the maximum posterior parameters
(Equation 32) into our linearized model we now get

ξMP = ξ0 + Pmod · (ξ̂ − ξ0) + ζ (51)

with

(Pmod)ij =
∑
αβ

∂αξi
∑
l

(Fmod + P)−1
αβ

(
C−1

mod

)
lj
∂βξl

ζ =
∑
α

[
(Fmod + P)−1P (πprior − π0)

]
α
∂αξ

(52)

The residual between ξ̂ and ξMP hence becomes

ξ̂ − ξMP = (1 −Pmod) · (ξ̂ − ξ0)− ζ . (53)

Treating the prior center πprior again as a random vector
centered around πtrue, ζ also becomes a random vector with
covariance

(Cζ)ij ≡ Cov[ζi, ζj ]

=
∑
αβγδ

∂αξi (Fmod + P)−1
αβ Pβγ (Fmod + P)−1

γδ ∂δξj .

(54)

Hence, along lines similar to the case without a prior, we
can write the moments of χ2

MP for a given model covariance
as

〈χ2
MP〉 = Trace

(
{CPmod + Cζ} C−1

mod

)
(55)

Var(χ2
MP) = 2 Trace

([
{CPmod + Cζ} C−1

mod

]2)
. (56)

Notice that in the absence of priors Cζ = 0 and for the true
covariance C we recover equations (43) and (44) as expected.
Equations (55) and (56) are used to produce our main result
shown in Figure 1 for different covariance matrices.

6 EXPLORING DIFFERENT EFFECTS IN
THE COVARIANCE MODELLING

Our main goal is to study the impact of including differ-
ent effects in the covariance modelling on the estimation
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Figure 7. Top panel: Distribution of χ2 when drawing 3x2pt
data vectors from a Gaussian distribution (blue histogram), from
a shifted log-normal distribution where the skewness of each data
point was computed in the fsky approximation (red histogram)
and when assuming that the skewness of the data points is 5 times
that of the fsky approximation (green histogram). Bottom panel:
Distribution of maximum posterior σ8 when fitting the linearized
model to Section 5.1 Gaussian realisations of our fiducial data
vector , to lognormal realisations of our fiducial data vector (blue
histogram) and to lognormal realisations with 5 times the skew-
ness of the fsky approximation employed on Section 6.1 (orange
histogram).

of parameters. Several covariance matrices were generated
and tested under different assumptions and approximations.
The main results were already shown in Section 2. We now
present the details of each step in the validation strategy
that was outlined in Section 5.

6.1 Gaussian likelihood assumption

A basic assumption of our framework of testing different
covariance matrices is that the likelihood function of the
data is Gaussian. One simple reason of why the sampling
distribution of the correlation functions can not be an exact
multivariate Gaussian is that this violates the positivity con-
straint of the power spectrum (Schneider & Hartlap 2009).
There are also other reasons described below. The purpose
of this Subsection is to assess the impact of non-Gaussianity
of the likelihood of 2-point functions in the parameter esti-
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mation. In this sense checking this basic assumption is a test
of the whole framework and is different from the robustness
tests for the covariance matrix modelling described in the
remaining Subsections of this Section.

The impact of a non-Gaussian likelihood in parameter
estimation of weak lensing correlation functions has been
recently studied in Lin et al. (2020) where no significant
biases were found in one-dimensional posteriors of Ωm and
σ8 between the multivariate Gaussian likelihood model and
more complex non-Gaussian likelihood models. Also in Sel-
lentin et al. (2018) the skewed distributions of weak lensing
shear correlation functions are used to derive an analytical
expression for a non-Gaussian likelihood.

We first consider a full-sky survey such that each of our
2-point function estimators ξ̂AB(θ) is a harmonic transform
of a harmonic space estimator ĈAB` (cf. Equation 12), i.e.

ξ̂AB(θ) =

∞∑
`=0

2`+ 1

4π
FAB` (θ) ĈAB` . (57)

Each ĈAB` is given in terms of the spherical harmonics co-
efficients a`m, b`m of two Gaussian random fields as

ĈAB` =
1

2`+ 1

∑̀
m=−`

a`mb
∗
`m . (58)

The product of two Gaussian random variables does not
follow a Gaussian distribution. Therefore, in principle one
would not expect ĈAB` (and consequently ξ̂AB(θ)) to have
a Gaussian likelihood. However, at small scales, i.e. at high
multipoles ` , the sum of the random variables a`mb∗`m in
Equation 58 will approach a Gaussian distribution by means
of the central limit theorem, since there is a large number
(2` + 1) of independent modes. It should be pointed out
that at these small scales the galaxy density and shear fields
characterized by a`m and b`m are themselves non-Gaussian
due to the non-linear evolution of gravity.

It is hence our working hypothesis that non-Gaussianity
of ĈAB` only matters at the largest scales (small `’s) where
both a`m and b`m can be considered Gaussian random vari-
ables but not their product. In the full-sky case it can then
be shown that the second and third central moments of ĈAB`
are given by

〈
(
ĈAB` − CAB`

)2

〉 =

[(
CAB`

)2
+ CAA` CBB`

]
2`+ 1

(59)

〈
(
ĈAB` − CAB`

)3

〉 =
2
[(
CAB`

)3
+ 3CAA` CBB` CAB`

]
(2`+ 1)2

. (60)

If only a fraction fsky of the sky is being observed, these
moments get divided by fsky and f2

sky respectively.
Assuming different multipoles to be uncorrelated, the

corresponding moments of ξ̂AB(θ) can be computed as

〈
(
ξ̂AB(θ)− ξAB(θ)

)2

〉

=

∞∑
`=0

(
2`+ 1

4π
FAB` (θ)

)2

〈
(
ĈAB` − CAB`

)2

〉 (61)

〈
(
ξ̂AB(θ)− ξAB(θ)

)3

〉

=

∞∑
`=0

(
2`+ 1

4π
FAB` (θ)

)3

〈
(
ĈAB` − CAB`

)3

〉 . (62)

Equation 61 is of course nothing but the diagonal of the
covariance matrix (cf. Equation 14).

The dominant effect of the non-Gaussianity of the C`’s
is a positive skewness in the distribution of our data vectors
(Sellentin et al. 2018). To estimate its impact on our param-
eter constraints, we approximate the entire distribution of
our 3x2pt data vector by a multivariate lognormal distribu-
tion. The covariance of our data vector and the skewness of
each data point as given by Equation 62 are sufficient to fix
the parameters of a shifted log-normal distribution. We have
already discussed this in Section 4.3 (though with a concep-
tual difference: in that section we describe how to configure
lognormal simulations of the cosmic density field, while here
we assume measurements of the 3x2-point functions to have
a multivariate lognormal distribution).

In the top panel of Figure 7 we show the impact of
this non-Gaussianity on the distribution of maximum pos-
terior χ2. For that figure we generated 300, 000 random re-
alisations of our fiducial data vector from a multi-variate
Gaussian distribution, 300, 000 random realisations of that
data vector from a multi-variate lognormal distribution and
300, 000 random realisations from another lognormal distri-
bution, whose skewness in each data point was increased by
a factor of 5. For each of these random realisations we an-
alytically determined the maximum posterior model within
the linearized likelihood formalism of Section 5.1 and then
computed the χ2 between that model and the random re-
alisation. The blue histogram in the top panel of Figure
7 shows the distribution of these χ2 values for the Gaus-
sian random realisations and the red histogram corresponds
to the log-normal random realisations. The two histograms
are almost identical. Hence, within the fsky-approximation
employed above non-Gaussianity in the likelihood does not
seem to affect our analysis. And even in the extreme sce-
nario of enhancing the skewness of the data vector by a
factor of 5 (green histogram) the increase in the scatter of
χ2 remains smaller than about 3% of the average χ2 - which
still wouldn’t dominate over the other effects discussed in
subsequent sections (cf. Figure 1).

The impact of non-Gaussianity on the likelihood be-
comes even more negligible when directly considering the
distribution of maximum posterior parameters. We demon-
strate this in the bottom panel of Figure 7 for the best-fit
values of σ8 but find similar results for our other key cosmo-
logical parameters Ωm and w0. Therefore, we conclude that
it is safe to assume a Gaussian distribution for the statistical
uncertainties of the DES-Y3 2-point function measurements.

6.2 Modelling of connected 4-point function in
covariance

The connected 4-point contribution to the covariance is the
part that is most challenging to model analytically (Schnei-
der et al. 2002; Hilbert et al. 2011; Sato et al. 2011; Takada &
Hu 2013). This contribution is most relevant at small scales
and turns out to be a small one for current large-scale struc-
ture analyses (Krause et al. 2017; Barreira et al. 2018). This
is for two reasons: 1) such analyses typically cut away their
smallest scales because of uncertainties in the modelling of
their data vectors and 2) at small scales the covariance ma-
trix is often dominated by shape noise and shot noise which
are believed to be well understood.
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We test whether the non-Gaussian covariance parts (by
which we mean both the connected 4-point function and
super-sample covariance) are a relevant contribution to our
error budget by either

• replacing the non-Gaussian contributions from the fiducial
halo model with the lognormal covariance described in Sec-
tion 4.2
• or setting it to zero, i.e. using a Gaussian covariance matrix
only.

Figure 1 and Table 1 show that neither of these changes has
a significant impact on the distribution of χ2 and our param-
eter constraints. Assuming that our halo model and lognor-
mal recipes do not underestimate the non-Gaussian covari-
ance parts by orders of magnitude (see e.g. Sato et al. (2009);
Hilbert et al. (2011) for justifications of this assumption) this
demonstrates that we are insensitive to the exact modelling
of these contributions. At the same time, we want to stress
that this finding holds for the specific scale cuts, redshift
distributions and tracer densities of the DESY3 3x2pt anal-
ysis and cannot necessarily be generalized to other analysis
setups.

6.3 Exact angular bin averaging

Equation 14 holds when measuring the 2-point correlation
functions in infinitesimally small bins around the angular
scales θ1 and θ2. This is unfeasible in practice and in fact
also leads to divergent covariance matrices. This can for ex-
ample be seen for the galaxy clustering correlation func-
tions, where the constant term proportional to 1/n2

g in the
harmonic space covariance gives a contribution to the real
space covariance of

1

4π2n2
gfsky

lim
N→∞

N∑
`=1

(2`+ 1)

2
P` (cos θ)2

→ 1

4π2n2
gfsky

δD(cos θ − cos θ)

(=∞) .

The reason for this divergence is simply the fact that the
number of galaxy pairs found in an infinitesimal bin van-
ishes, leading to infinite shot-noise. This problem disappears
when considering finite angular bins.

To analytically average over a finite angular bin
[θmin, θmax], we assume that the number of galaxy pairs with
angular separation θ is proportional to sin θ (corresponding
to a uniform distribution of galaxies on the sky). We then
replace the functions FAB` (θ) in Equations 9 and 10 by

FAB` (θ)→ 1

cos θmin − cos θmax

∫ θmax

θmin

dθ sin θ FAB` (θ) .

(63)

For the galaxy clustering correlation function w(θ) this leads
to

P`(cos θ)→
[P`+1(x)− P`−1(x)]cos θmin

cos θmax

(2`+ 1)(cos θmin − cos θmax)
. (64)

The corresponding expressions for the galaxy-galaxy
lensing correlation function γt(θ) and for the cosmic shear

correlation functions ξ± are presented (together with deriva-
tions of all the bin averaged expressions) in appendix B.

We show below how the bin averaging solves the prob-
lem of diverging diagonal values of the covariance for w(θ).
This can be seen from

∑
`

(
[P`+1 (x)− P`−1 (x)]cos θmin

cos θmax

)2

2(2`+ 1)fsky(ngAbin)2

=

∫ cos θmin

cos θmax

dx1

∫ cos θmin

cos θmax

dx2

∑
`

2`+ 1

2

P` (x1)P` (x2)

fsky(ngAbin)2

=

∫ cos θmin

cos θmax

dx1

∫ cos θmin

cos θmax

dx2
δD(x1 − x2)

fsky(ngAbin)2

=
cos θmin − cos θmax

fsky(ngAbin)2

=
2

AsurveyAbinn2
g

=
1

Npair
, (65)

where Asurvey = 4πfsky is the total survey area, Abin =
2π (cos θmin − cos θmax) is the bin area and Npair the total
number of galaxy pairs used to estimate ŵ. The above ex-
pression is the usual formula for the shot-noise part of the
real space covariance.

The impact of the exact angular bin averaging for the
noise and mixed terms in the Gaussian part of the covari-
ance matrix is included for all 4 types of two point functions
present in the DES-Y3 data vector and the DES-Y3 fiducial
covariance.

6.4 Flat vs. Curved sky

For the Y1 analysis it was shown that the flat-sky approxi-
mation was valid for the galaxy-galaxy shear and shear-shear
2-point correlation function (Krause et al. 2017). In Y3 the
fiducial covariance computes the full sky correlations, see
equations (12) and (13). We show in Fig. (1) that the ef-
fect of including curved sky results has negligible impact on
the χ2 distribution. Table 1 shows that this is also true for
parameter constraints.

6.5 RSD and Limber approximation and redshift
space distortion effects

The modelling of the angular power spectrum of two tracers
involves a projection from the three dimensional power
spectrum that requires integrals with integrands containing
the product of two spherical Bessel functions, which are
highly oscillatory. The inclusion of redshift space distortion
(RSD) effects in a simple linear modelling (Kaiser 1987)
involves the computation of those integrals with derivatives
of the Bessel functions. These integrals are notoriously
difficult to perform numerically and it is usual to apply the
so-called Limber approximation (Limber 1953; LoVerde &
Afshordi 2008). An efficient computation of these integrals
without resorting to the Limber approximation was recently
implemented in the case of the angular power spectrum
for galaxy clustering in Fang et al. (2020b). We use their
approach to study the impact of taking into account both
non-Limber computations and RSD effects in the covariance
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matrix. Figure 1 and Table 1 show that not taking these
effects into account leads to an increase in average χ2 of
about 0.5% and an underestimation of uncertainties in key
cosmological parameters by 0.6% to 1.4%.

6.6 Effect of the mask geometry

The analytical covariance models described in Section 4
make use of the so called fsky approximation, i.e. they take
the covariance of an all-sky survey and divide this by the
sky fraction of DES-Y3 to approximate the covariance of our
partial sky data. In appendix C we show how to go beyond
this approximation. First, we note there that the covari-
ance of the 2-point function measurements between pairs of
scalar random fields (δa, δb) and (δc, δd) within angular bins
[θab− , θ

ab
+ ] and [θcd− , θ

cd
+ ] is given by

Cov
{
ξ̂ab[θab− , θ

ab
+ ], ξ̂cd[θcd− , θ

cd
+ ]
} Nab

pair[θ
ab
− , θ

ab
+ ] Ncd

pair[θ
cd
− , θ

cd
+ ]

nanbncnd

= (2π)2
∑
`1 `2

[P`1+1(x)− P`1−1(x)]
θab−
θab+

[P`2+1(x)− P`2−1(x)]
θcd−
θcd+
·

Cov
{
C̃ab`1 , C̃

cd
`2

}
. (66)

Here P` are again the Legendre polynomials and the an-
gular bin averaging was already evaluated. The factor
Nab

pair[θ
ab
− , θ

ab
+ ] (resp. N cd

pair[θ
cd
− , θ

cd
+ ]) is the average number

of pairs of random points that uniformly uniformly sam-
ple the footprint with densities na, nb (resp. nc, nd) and
whose separation falls into the angular bin [θab− , θ

ab
+ ] (resp.

[θcd− , θ
cd
+ ]). Hence, these factors describe how the exact sur-

vey geometry suppresses the number of pairs of positions in
the bins [θab− , θ

ab
+ ] and [θcd− , θ

cd
+ ] with respect to the fsky ap-

proximation. And finally, Cov{C̃ab`1 , C̃
cd
`2
} is the covariance of

pseudo-C` estimates of the power spectra between the fields
(δa, δb) and (δc, δd) (see appendix C for more details). Note
that the full survey footprint modifies the covariance with
respect to the fsky approximation used in Section 3 both
through the factorsNab

pair[θ
ab
− , θ

ab
+ ]/nanb,Ncd

pair[θ
cd
− , θ

cd
+ ]/ncnd

and by changing Cov{Ĉab`1 , Ĉ
cd
`2
} compared to Equations 16-

23.
One can determine the factors Nab

pair[θ
ab
− , θ

ab
+ ]/nanb and

Ncd
pair[θ

cd
− , θ

cd
+ ]/ncnd either by counting pairs in a set of ran-

dom points that trace the survey footprint homogeneously
or they can be calculated analytically from the power spec-
trum of the survey mask (see our appendix C as well as
Troxel et al. 2018b). This will generally lead to an enhance-
ment of statistical uncertainties (i.e. of the covariance ma-
trix) with respect to the fsky approximation. To calculate
Cov{C̃ab`1 , C̃

cd
`2
} one could e.g. follow approximations made

by Efstathiou (2004). We slightly modify their arguments in
appendix C to arrive at

Cov
{
C̃ab`1 , C̃

cd
`2

}
≈

1

4

(
Cac`1 C

bd
`2

+ Cac`2 C
bd
`1

+ Cac`1 C
bd
`1

+ Cac`2 C
bd
`2

(2`1 + 1)(2`2 + 1)
+

+
Cad`1 C

bc
`2

+ Cad`2 C
bc
`1

+ Cad`1 C
bc
`1

+ Cad`2 C
bc
`2

(2`1 + 1)(2`2 + 1)

)
M`1`2 . (67)

Here the mode coupling matrixM`1`2 again depends on the

power spectrum of the survey mask and is also detailed in
appendix C.

In practice, Equation 67 and the approximations pro-
posed by Efstathiou (2004) yield very similar results and
they are both valid on scales `1, `2 which are much smaller
than the typical scales of the mask W . Unfortunately, the
DES-Y3 analysis mask has features and holes over a large
range of scales. Hence, the angular scales of interest in the
3x2pt analysis are never strictly smaller than the scales of
our mask. Hence, Equation 67 is not sufficiently accurate in
our case and in fact significantly overestimates our statistical
uncertainties. In Figure 8 we explain a simple scheme that
can be used to correct for this. To motivate this procedure,
consider how one would compute the Gaussian covariance
model directly from the real space 2-point correlation func-
tions, i.e.without taking the detour to Fourier space that
was used in Section 3. For the covariance of ξ̂ab[θab− , θab+ ] and
ξ̂cd[θcd− , θ

cd
+ ] this would amount to integration over all pairs

of locations within our survey mask that fall into the angu-
lar bins [θab− , θ

ab
+ ] and [θcd− , θ

cd
+ ]. Schematically, this leads to

terms of the form

Cov ∝∫
(ab)∈mask,bin

dΩadΩb
∫

(cd)∈mask,bin

dΩcdΩdξac(θac)ξbd(θbd) + . . . .

(68)

Here Ωa . . .Ωd are fours locations inside the survey mask
such that the distance between Ωa and Ωb lies inside the
angular bin [θab− , θ

ab
+ ] and the distance between Ωc and Ωd

lies inside the angular bin [θcd− , θ
cd
+ ]. Now the approxima-

tion of Efstathiou (2004) assumes that the 2-point functions
ξac(θ), ξbd(θ) are negligible on scales θ comparable to the
smalles features in the mask. Schematically this amounts to
making the approximation∫

dΩa . . . W (Ωa)ξac(θac)

≈ ξ̄ac
∫

dΩa . . . W (Ωa)δ2
Dirac(Ωa − Ωc) (69)

where ξ̄ac is a suitable average of the 2-point function of
different scales. However, this approximation fails when the
mask contains features (e.g. holes) on scales where the 2-
point function has not yet decayed. Assuming that such
small scales holes cover a fraction of fmask of a more coarse
version of the footprint, then this can roughly be corrected
for with a multiplicative factor, i.e.by instead using the ap-
proximation∫

dΩa . . . W (Ωa)ξac(θac)

≈ fmask ξ̄
ac

∫
dΩa . . . W (Ωa)δ2

Dirac(Ωa − Ωc) . (70)

The right panel of Figure 8 visualizes this for the mixed
terms in the covariance, where one of the correlation func-
tions ξac or ξbd is due to sampling noise such as shape-noise
or shot-noise and is hence exactly proportional to a Dirac
delta function. In that case, the integration is over pairs that
share one end point. Now the approximation made e.g. in
Efstathiou (2004) or by our Equation 67 assumes that also
the correlation function between the other two end points
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Figure 8. The impact of masking on the DES-Y3 covariance. The blue histogram in the right panel shows the distribution of χ2 obtained
from our FLASK data vectors when using the fsky approximation. We restrict this figure to the 2x2pt function part of the data vector
since it is this part that suffers the most from masking effects (cf. Figure 1). Ansatzes in the CMB literature (e.g. Efstathiou 2004) are
not sufficient to correct for this, because the DES footprint has features down to very small scales. In the main text we have motivated
a possible way to correct for these small scale masking features and the orange histogram in the left panel shows that this ansatz indeed
significantly improves the χ2 obtained from our FLASK measurements. The sketch in the right panel visualises how small scale features
in the mask lead to an overestimation in the covariance when using common ways to treat the impact of survey geometry on the 2-point
function covariance (see main text for explanation).

effectively acts as a delta function with respect to the small-
est scale features in the survey mask (cf. Equation 69). We
find that this is not the case for the DES-Y3 mask and that
it contains features on all scales relevant to our analysis. But
as indicated in Equation 70, one can approximately correct
for this by multiplying the mixed terms in the covariance
by the fraction fmask of the coarser survey geometry that is
covered by small scale holes in the mask. This can be con-
sidered a next-to-leading order correction to our Equation
67.

By applying Equation 70 twice one can see that the
cosmic variance terms (terms where neither of the 2-point
functions ξac or ξbd are exactly proportional to delta func-
tions) can be corrected by multiplication with f2

mask. To im-
plement this correction in practice we draw circles within the
DES-Y3 survey footprint with radii ranging from 5arcmin to
20arcmin and measure the masking fraction in these circles.
We find that this fraction is ≈ 90% across the considered
scales. Multiplying the mixed terms in the covariance by
that fraction and the cosmic variance terms by the square
of that fraction (together with using Equation 67) we indeed
find significant improvement of the maximum posterior χ2

obtained for the FLASK simulations - as is shown in the left
panel of Figure 8 (as well as in Figure 1).

In Figure 9 we use our FLASK measurements together
with the technique of precision matrix expansion (PME,
from inverse covariance = precision matrix Friedrich & Ei-
fler 2018) and perform a consistency of the modelling ansatz
described above by investigating the impact of masking on
individual covariance terms. We find both with the PME
methods and with our analytic ansatz that masking effects
are most impactful in the covariance terms that depend on
shape-noise of the weak lensing source galaxies (i.e.in what

we called mixed terms in Section 3). This also agrees with
the findings of Joachimi et al. (2020) and it further mo-
tivates the modelling of masking effects that we have de-
scribed here. Nevertheless, we do not elevate this modelling
ansatz to our fiducial covariance model because its motiva-
tion remains rather heuristic. But we consider it a realistic
estimate for the error made by the fsky approximation and
can hence use it to estimate the impact of that approxima-
tion on parameter constraints. In Figure 2 we have already
shown that this impact below the 1% level, i.e. we under-
estimate the scatter of maximum posterior parameters by
less than 1% when making the fsky approximation in our
fiducial covariance model.

Note that Kilbinger & Schneider (2004); Sato et al.
(2011); Shirasaki et al. (2019) have devised an alternative
method to correct for masking, which amounts to direct
Monte-Carlo integration of expressions like Equation 68.
Given the large area of DES-Y3 and and its numerous com-
binations of redshift bins, we did not find this to be feasible.

6.7 Non-Poissonian shot noise

In the Poissonian limit and in a complete region of the sky
the power spectrum of shot-noise is scale-independent and
given by

Ncomplete
` =

1

n̄
, (71)

where n̄ is the galaxy density per steradian. As noted in the
previous subsection, in galaxy surveys not every region of
the sky is fully accessible, i.e., the presence of bright stars,
satellite trails, etc. lead to artificial changes in the measured
galaxy density. These density changes can potentially mod-
ify the observed galaxy power spectrum and bias any cos-
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Figure 9. The method of precision matrix expansion (Friedrich
& Eifler 2018) allows us to estimate the impact of individual co-
variance terms on χ2 even when only few simulated measurements
are available. The orange squares show the average χ2 between
our FLASK measurements and their mean (rescaled by a factor of
NFLASK/(NFLASK − 1) to account for the correlation of individ-
ual measurements and mean) when using either no PME at all or
when using PME estimates from shape-noise free sims or from the
full sims. The blue dots show the corresponding χ2 values when
using the heuristically motivated analytical treatment of masking
and survey geometry presented in the main text. The grey dashed
line represents the number of data points and should be the av-
erage χ2 if we had a perfect covariance model (note that for this
comparison we have not performed any parameter fitting).

mological analyses derived from them, and thus, they are
avoided by removing certain regions of the sky where arti-
facts may be found. These regions are usually smaller than
the resolution of the (pixelated) survey mask used to de-
termine whether a region of the sky is within the footprint
or not, since it is computationally expensive to increase the
resolution. This this can be described through a fractional
mask Wi = 1/fi, where i is a given pixel of the mask fi
is the fractional area of the pixel unaffected by the pres-
ence of artifacts. If we compute the galaxy overdensity as
δg,i = Ni/(N̄Wi) − 1, with N̄ =

∑
iNi/

∑
iWi, the mean

number of sources per pixel we can estimate the Poissonian
noise power spectrum as (Nicola et al. 2020)

N` = Ωpix
W̄

N̄
, (72)

where w̄ is the mean of the weights wi across the footprint,
and Ωpix is the area of the pixels from the mask in stera-
dians. In the case where all the pixels in the footprint are
fully complete we recover Equation (71) since n̄ = N̄/Ωpix,
and N̄ =

∑
iNi/

∑
i 1. However, in the case that any of

the pixels of the mask are not fully complete we obtain an
increased shot-noise contribution by a factor W̄ > 1 (since
0 6 fi 6 1).

In previous studies the DES-Y1 lens galaxies were
shown to prefer a super-Poissonian variance (Friedrich et al.
2018; Gruen et al. 2018) which might be a consequence
of their complex selection criteria or due to the nature of
their formation and evolution (see e.g. Baldauf et al. 2013;
Dvornik et al. 2018). This super-Poissonian variance leads
to an enhance in shot-noise. In order to test for this ef-
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Figure 10. Measured ratio r` =
C`−C`,rnd

N`
(crosses) compared

to predicted contribution of the galaxy power spectra over the
shot noise (solid line) for the fiducial parameters at Elvin-Poole
et al. (2018) allowing for a 20% uncertainty in the galaxy bias
(shaded regions) for 2 redshift bins (bin 4 in blue and bin 5 in
orange). Horizontal dashed lines are just to guide the eye. If the
shot-noise were to be completely Poissonian, the measured and
predicted ratios would agree, however we find an excess between
2% and 6%.

fect, we proceeded to estimate the angular power spectrum,
C` ≈ C`,galaxies +N` + δC`, of DES-Y1 redmagic galaxies
selected in Elvin-Poole et al. (2018) using NaMaster (Alonso
et al. 2019), where N` is the shot noise contribution from
equation (72), and δC` is the excess power which can be
due to a number of factors (variations in completeness not
captured by the mask, super-Poissonian shot noise, observa-
tional systematics, etc.). We also compute the power spec-
trum, C`,rnd of a random field with the same number of
objects as the galaxy sample considered, and the probabil-
ity of populating a pixel i is proportional to its weight, Wi.
We find that C`,rnd is statistically consistent with N`. We
then compute the ratio:

r` =
C` − C`,rnd

N`
≈ C`,galaxies

N`
+
δC`
N`

. (73)

In Figure 10 we show r` compared to the theoretical expec-
tation for C`,galaxies/N` = C`,th/N`, where C`,th is the the-
oretical power spectrum computed using the best-fit param-
eters found in Elvin-Poole et al. (2018). We also allow for a
20% variation in the linear galaxy bias, which is much larger
than the uncertainty found in Elvin-Poole et al. (2018). We
find that there is an excess power at ` > 3000 that cannot
be explained by an excess galaxy clustering (i.e., a larger
than measured linear bias or a non-linear bias component).
We identify this excess (between 2% and 6%) with δC`

N`
in

equation (73).
This excess will translate into an extra shot-noise-like

contribution to the covariance matrix (Philcox et al. 2020).
The way we include this is by fitting a correction to the
number density αn such that the excess power is compatible
with zero. In order to do so we minimize the following χ2:

χ2(αn) =
∑
`

(
C` − C`,th
αnN`

− C`,rnd
N`

)2 (
∆C`,th
αnN`

)−2

(74)

where ∆C`,th is varied in the range 1.22C`,th − 0.82C`,th
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Bin number α

1 1.042± 0.002
2 1.069± 0.003

3 1.072± 0.003

4 1.057± 0.003
5 1.021± 0.001

Table 4. Best-fit values of αn to correct for the excess shot-noise
with the DES-Y1 redmagic galaxies.

(so we are allowing for 20% uncertainty in the bias for the
fit). The resulting values for αn can be found in Table 4. In
Figure 1, Figure 2 and Table 1 one can see that depleting
the lens galaxy densities in our fiducial covariance model
by these factors has a negligible effect on both maximum
posterior χ2 and parameters constraints.

6.8 Cosmology dependence of the covariance
model

In order to evaluate our covariance model, we choose a par-
ticular set of cosmological parameters. We do not vary these
parameters when sampling our parameter posterior and this
may impact the width of our parameter constraints (Eifler
et al. 2009). Our main reason for not sampling the covari-
ance model along with the data model is that computing a
covariance matrix is computationally too costly for this to
be feasible. Recently, Carron (2013) have also indicated that
it may indeed be incorrect to vary the covariance cosmology
when running MCMC chains.

It is only after running the MCMC chains that we can
recompute the covariance at our best-fit parameters and re-
derive our parameter constraints - repeating this process un-
til our constraints have converged (cf. Abbott et al. 2018, for
the application of this procedure in DES Y1 data). There-
fore, the cosmology at which we compute our covariance is
expected to be off from the best-fit cosmology. In this sub-
section, we investigate how χ2, as well as cosmological pa-
rameter constraints, shift when computing the covariance at
cosmologies that are randomly drawn from the DESY3-like
posterior.

We test the robustness of our constraints against the
choice of cosmological parameters at which we evaluate the
covariance model by taking a set of 100 different cosmologies
drawn randomly from the simulated DES Y3 3x2pt poste-
rior and generating 100 lognormal covariance matrices. Us-
ing each of these covariances, we estimate posteriors for a
given realization of simulated DES Y3 3x2pt data with noise
drawn from a fiducial lognormal covariance.

Since it is prohibitively expensive to perform simulated
analyses running MCMC chains for each covariance matrix,
we use the technique of importance sampling. That allows us
to quickly evaluate how these different likelihood modeling
choices impact the derived parameter constraints without
repeatedly running expensive sampling algorithms. In our
importance sampling pipeline, we take a fiducial analysis
as a proposal distribution, re-evaluate the likelihoods using
the alternative covariance matrix, and compute importance

weights as:

wi =
L(πi|ξ̂,Calt)

L(πi|ξ̂,Cfid)
, (75)

where Cfid is the fiducial covariance in the analysis and Calt

the alternative one. If the changes induced by the new co-
variance matrix in the posterior are not too large, the re-
weighted samples represent the target distribution (i.e., the
posterior for the alternative covariance matrix). So we have:

Ep[f(Xi)] =
∑
i

pif(Xi) =
∑
i

qi
pi
qi
f(Xi) = Eq[wif(Xi)],

(76)

for a function f(Xi) of the posterior samples. Here, pi is the
probability of Xi under the target distribution p and qi is
the probability of of Xi under the proposal distribution q
(see e.g. Owen (2013) and MacKay (2002)).

To diagnose the performance of our importance sam-
pling estimates, we use the Effective Sample Size (ESS):

ESS =
〈wi〉2

〈w2
i 〉
Nsamples (77)

where Nsamples is the total number of posterior samples used
in the estimation. The ESS as defined above quantifies the
statistical power of the sample set after the re-weighting
process (assuming uncorrelated samples). It is equal to the
original sample size re-scaled by the ratio of the variances
under each of the distributions (Martino et al. 2017), such
that the error of the mean of a quantity x with standard
deviation σx under the target distribution can be estimated
as σx/

√
ESS. Additionally, since our proposal distribution is

itself a weighted sample set, we incorporate both the original
and the importance weights in our ESS estimate.

Using the fiducial lognormal covariance matrix we run
the nested sampling algorithm MultiNest (Feroz & Hobson
2008; Feroz et al. 2009, 2019), and perform the importance
sampling procedure to estimate parameters using each of
the 100 covariance matrices randomly sampled in parame-
ter space. The (S8,Ωm) contours can be seen in Fig. (11).
The effective sample sizes for the importance sampled esti-
mates range from 16446 to 18329 (implying a standard error
of the mean within 0.78% of the standard deviation for all
cases), and the contours show good statistics. As the impact
of covariance cosmology is barely noticeable for this range
of tested parameters, we repeat the analysis for a few more
extreme (and unlikely) cosmologies in appendix E.

These results all confirm that we can safely neglect the
impact of the choice of covariance cosmology in DES Y3
3x2pt analysis. One caveat of this conclusion is that we
have indeed only varied cosmological parameters (including
galaxy bias parameters) but not nuisance parameters (mul-
tiplicative shear bias, photometric redshift uncertainties) or
parameters that describe intrinsic alignment. However, the
DES-Y3 shear and photo-z calibration yield tight Gaussian
priors on the corresponding nuisance parameters. And in-
trinsic alignment is relevant only on small angular scales
where the covariance matrix is dominated by sampling noise
contributions. Hence, we do not expect the results of this sec-
tion to change significantly had all parameters been varied.
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Figure 11. (S8,Ωm) constraints for a given noisy realization of
the DES Y3 3x2pt data vector analyzed using 100 log-normal
covariance matrices, each computed from a different cosmology
drawn from a simulated DES Y3 3x2pt posterior. The 100 con-
tours are superimposed in the plot, showing very small change
in constraints. The points indicate the cosmologies at which the
covariances were evaluated.

6.9 Random point shot-noise

We also consider the effect of additional shot-noise in the
measurements of galaxy clustering resulting from the use of
finite numbers of random points. The Landy-Szalay estima-
tor (Landy & Szalay 1993) is estimating the galaxy clus-
tering correlation function inside an angular bin [θ1, θ2] as

ŵ[θ1, θ2] =
DD[θ1, θ2]− 2DR[θ1, θ2] +RR[θ1, θ2]

RR[θ1, θ2]
, (78)

where DD[θ1, θ2] is the number of galaxy pairs found within
the angular bin, RR[θ1, θ2] is the (normalised) number of
pairs of random points that uniformly samples the survey
footprint and DR[θ1, θ2] the (normalised) number of galaxy-
random-point pairs within the angular bin. If the number
density of random points nr is much larger than the number
density of the galaxies ng (as is recommended for reduce
sampling noise) then both RR and DR must be rescaled by
factors of (ng/nr)

2 and (ng/nr) respectively.
We stress that the Landy-Szalay estimator was devised

at a time of very limited computational resources, where it
was prohibitively costly to measure galaxy pair in a large
number of random points. Hence, it was vital to minimize
random point shot-noise. Nowadays, footprint geometries
of photometric surveys are typically characterised by high
resolution healpix maps. The most straightforward way to
calculate galaxy clustering correlation function is to simply
assign a value of galaxy density contrast to each of these pix-
els and then measure the scalar auto-correlation function of

the unmasked pixels. This way, one is avoiding random point
shot-noise completely.

Nevertheless, it is still very common to measure w(θ) by
means of Equation 78. So we also tested what impact a finite
number of random points would have on our analysis. To do
so we extended expressions of Cabré & Gaztañaga (2009,
see their appendix A) to the case where the same random
points are used to estimate w(θ) in each of our redshift bins
and also to subtract shear around random points from our
galaxy-galaxy lensing correlation functions. Note that this
causes a noise contribution to the 2-point function measure-
ments that is correlated among different redshift bins. We
assumed a random point density of 1.36/arcmin2, which is
more that 20 times larger than the density of our most dense
lens galaxy sample. From Table 1 it can be seen that not
accounting for the random point shot-noise in the covariance
leads to an increase in average χ2 of . 1% and to an un-
derestimation of parameter uncertainties by ≈ 0.5%. Hence,
this effect can be ignored for our analysis.

6.10 Effective densities and effective shape-noise

We are closing this section by spelling out an aspect of co-
variance modelling that may seem straightforward but which
has repeatedly came up in covariace discussions.

If the tracer galaxies used to estimate 2-point corre-
lation functions are weighted according to some weighting
scheme, then this may change the effective number densi-
ties and the effective shape noise that should be used when
evaluating the covariance expressions in Section 4. In the
following we will derive how this can be done for each of the
2-point functions in the DESY3 3x2pt data vector.

6.10.1 Galaxy clustering

We start with the galaxy clustering correlation function
w(θ). We assume a weighting scheme that is aimed at cor-
recting for non-cosmological density fluctuations resulting
from spatially varying observing conditions (as e.g. in Elvin-
Poole et al. 2018). This means that the weights assigned to
each galaxy in fact sample a weight map that spans the en-
tire footprint.

Instead of measuring w(θ) from the weighted galaxies by
means of, say, the Landy-Szalay estimator (Landy & Szalay
1993) it will be more convenient to think of the galaxy den-
sity contrast as a pixelized field on the sky. Further more, we
will assume that the weight map has been normalised such
that 〈w〉 = 1 (which can always be done without changing
the outcome of the weighted measurement). Consider pixel
i with galaxy count Ng,i and weight wi. If ng is the average
galaxy density of the unweighted sample, then by taking ex-
pectation values with respect to many Poissonian shot-noise
realisations (and hence ignoring fluctuations of the underly-

MNRAS 000, 000–000 (0000)



DES Y3: Covariance validation 23

ing matter density field) we get

〈Ng,i〉 =
Apixng
wi

(79)

Var(Ng,i) =
Apixng
wi

(80)

Var(wiNg,i) = wiApixng (81)

Var

(
wiNg,i
Apixng

− 1

)
≡ Var(δg,i)

=
wi

Apixng
, (82)

where Apix is the area of each pixel and the second to last
line serves as definition of δg,i and needs the fact that we
demanded 〈w〉 = 1. Note that these equation are only valid
for an ensemble of observations that shares the same weight
maps and differs only in their shot-noise realisations.

From the set of all pixels we can now estimate w(θ)
within a finite angular bin [θ1, θ2] as

ŵ[θ1, θ2] =

∑
pxls i>j ∆ij

[θ1,θ2] δg,i δg,j∑
pxls i>j ∆ij

[θ1,θ2]

, (83)

where the symbol ∆ij
[θ1,θ2] in the double sum over all pixels

is 1 when the distance of the pixel pair i, j is within [θ1, θ2]
and 0 otherwise. Note that we assume an enumeration of
the pixels and that we demand i > j in the sum in order to
not count any pair of pixels twice.

If shot-noise is the only source of noise, then it is
straight forward to calculate the variance of this measure-
ment as

Var(ŵ[θ1, θ2]) =

∑
pxls i>j ∆ij

[θ1,θ2] 〈δ
2
g,i〉 〈δ2

g,j〉[∑
pxls i>j ∆ij

[θ1,θ2]

]2
=

1

(Apixng)2

∑
pxls i>j ∆ij

[θ1,θ2] wi wj[∑
pxls i>j ∆ij

[θ1,θ2]

]2
=

1

Npair,g[θ1, θ2]

∑
pxls i>j ∆ij

[θ1,θ2] wi wj∑
pxls i>j ∆ij

[θ1,θ2]

.

(84)

In the last line, Npair,g[θ1, θ2] is the number of unweighted
galaxy pairs within the angular bin [θ1, θ2] . Note that in the
presence of clustering, this should be calculated from a set
of random points instead of from the actual galaxy catalog.

The first factor on the right side of Equation 84 is what
the shot-noise variance of ŵ should be in the absence of a
weighting scheme. The second term is a 2-point function
of the weight map itself. If the weight map has a white-
noise power spectrum, then this factor will be close to 1
in any angular bin that doesn’t include angular distances
of 0. This means that at large enough scales the last line
of Equation 84 looks like the covariance for plain Poissonian
shot-noise without any notion of an effective number density.
This maybe surprising, but it stems from the fact that the
weighting scheme we assumed does not simply multiply the
galaxy density contrast field. Instead it reverses an already
existing depletion of galaxy density from non-cosmological
density fluctuations.

In conclusion, the effective number density that should

be used to compute the covariance of ŵ[θ1, θ2] is

ng,eff [θ1, θ2] = ng

√√√√ ∑
pxls i>j ∆ij

[θ1,θ2]∑
pxls i>j ∆ij

[θ1,θ2] wi wj
. (85)

6.10.2 Galaxy-galaxy lensing

We move on to consider the galaxy-galaxy lensing corre-
lation function γt[θ1, θ2]. We assume that the lens galaxy
sample comes with weights derived from a weight map wl as
in the previous subsection while each source galaxy j has a
weight wsj which does not come from an entire weight map
but is instead the result of the individual quality of shape-
measurement for this galaxy. A measurement of γt can be
constructed as

γ̂t[θ1, θ2] =

∑
pxl i, source j ∆ij

[θ1,θ2] δl,i εt,j→i w
s
j∑

pxl i, source j ∆ij
[θ1,θ2] w

s
j

. (86)

Here, δl,i is the galaxy density contrast of the lenses defined
in analogy to the previous subsection, εt,j→i is the tangen-
tial component of the shear of source j with respect to lens
galaxy i and wj is the weight of source galaxy j. Note that
due to our definition of the lens galaxy density contrast this
estimator already includes subtraction of shear around ran-
dom points.

If shot-noise and shape-noise are the only sources of
noise, then it can be readily shown that

Var(γ̂t[θ1, θ2])

=

∑
pxl i, source j ∆ij

[θ1,θ2] 〈δ
2
l,i〉 〈(εt,j→i wsj )2〉[∑

pxl i, source j ∆ij
[θ1,θ2] w

s
j

]2
≈ 1

Npair,ls[θ1, θ2]

∑
pxl i, source j ∆ij

[θ1,θ2] 〈(εt,j→i w
s
j )

2〉∑
pxl i, sources j ∆ij

[θ1,θ2] w
s
j

≈ 1

2Npair,ls[θ1, θ2]

∑
source j〈|εj |

2 (wsj )
2〉

Ns
(87)

(only with 〈wsj 〉 = 1 = 〈wlj〉 !).

Here Npair,ls[θ1, θ2] is the number of unweighted lens-source
pairs in the angular bin [θ1, θ2], Ns is the total number of
source galaxies and εj = ε1,j + iε2,j is the complex intrinsic
ellipticity of source galaxy j.

Note that the final expression in Equation 87 explic-
itly allows for the possibility that the source weights wsj
are correlated with the intrinsic ellipticities εj of the source
galaxies. One can interpret Equation 87 as

Var(γ̂t[θ1, θ2]) =
σ2
ε,eff

Npair,ls[θ1, θ2]
(88)

with the effective dispersion of intrinsic ellipticity per shear
component given by

σ2
ε,eff =

1

2

∑
source j |εj |

2 (wsj )
2

Ns
. (89)

One subtlety here is that the above derivation requires
〈wsj 〉 = 1. The above expressions mus be modified is this
is not the case or when taking into account responses Rj
of a shape catalog generated with metacalibation (Sheldon
& Huff 2017). We detail what to do in the latter case in
appendix F.
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6.10.3 cosmic shear

For cosmic shear we follow Schneider et al. (2002) and con-
struct a measurement of ξ+ from a set of sources as

ξ̂+[θ1, θ2] =

∑
i>j ∆ij

[θ1,θ2] wiwj (ε1,iε1,j + ε2,iε2,j)∑
i>j ∆ij

[θ1,θ2] wiwj
. (90)

If shape-noise is the only source of noise and if the intrinsic
ellipticities of galaxies are not correlated with their weights,
then the variance of ξ̂+ is given by

Var(ξ̂+[θ1, θ2])

=

∑
i>j ∆ij

[θ1,θ2] 〈ε
2
1,iw

2
i 〉〈ε21,jw2

j 〉+ 〈ε22,iw2
i 〉〈ε22,jw2

j 〉[∑
i>j ∆ij

[θ1,θ2] wiwj
]2

≈
2σ4

ε,eff

Npair[θ1, θ2]
. (91)

Here Npair[θ1, θ2] is the number of source galaxy pairs in
the bin [θ1, θ2] and we have replaced each expectation value
〈ε21/2,iw2

i 〉 by σ2
ε,eff from Equation 89. Note that we again

assumed 〈wj〉 = 1 and that this may require re-scaling of
both weights and σε when using shape measurements from
metacalibration.

6.10.4 Testing validity of effective shape noise

To test the validity of our expression for effective shape-noise
in Equation 89 we run a sub-sample covariance estimator on
our data (see e.g. Friedrich et al. 2016). In particular, we di-
vide all of our source and lens galaxy samples into 200 ran-
domly chosen sub-samples and measure the galaxy-galaxy
lensing correlation function of each source-lens bin combina-
tion. As a result we obtain 200 measurements of γ̂t in each
source-lens bin combination. Since we employ completely
random sub-sampling, i.e.without any regard for e.g.a divi-
sion of our footprint into sub-regions, the sample covariance
of these 200 measurements will almost exclusively be dom-
inated by shape-noise and shot-noise. This is even more so,
because the lens and source densities of the sub-samples are
very low.

In Figure 12 we show the ratio of the variances of the
200 galaxy-galaxy lensing measurements γ̂t in the different
lens-source bin combinations to Equation 88. Assuming that
the sub-sample covariances follow a Wishart distribution we
find that these ratios are perfectly consistent with 1. This
indicates that Equation 89 indeed yields an accurate effec-
tive shape-noise dispersion, and that one should indeed use
the plain density of lens galaxies (as opposed to any notion
of effective density) when evaluating covariance expressions.

7 A SIMPLE χ2 TEST

In this short section we present a simple χ2 test that does
not rely on the linearized framework. However, it has the dis-
advantage of not addressing the impact on the estimation of
parameters. Here we generate a large number of “contami-
nated" data vectors (we use 1, 000) by a Gaussian sampling
of a given covariance matrix that includes different effects
and to compute a χ2 distribution from these data vectors us-
ing a fiducial covariance matrix. The resulting shifts in the

mean value of χ2 and their standard deviations give another
benchmark for the importance of the different effects consid-
ered here. We show the results of this test in Figure 13. Note
that the relative increases in χ2 follow closely what we ob-
tained within the linearized likelihood framework in Figure
1. This indicates that the dominant way in which covari-
ance errors cause χ2 offsets is not through the altered scat-
ter of maximum posterior parameter locations but simply
through using an erroneous inverse covariance when com-
puting χ2. That also justifies our usage of the linearized
likelihood framework since any impact of non-linear param-
eter dependencies on parameter fitting can be expected to
be even less relevant then linear fitting in the first place.

8 DISCUSSIONS AND CONCLUSIONS

In this paper we have presented the fiducial covariance
model of the DES-Y3 joint analysis of cosmic shear, galaxy-
galaxy lensing and galaxy clustering correlation functions
(the 3x2pt analysis). We then investigated how the assump-
tions and approximations of that model (including the as-
sumption of Gaussian statistical uncertainties) impact the
distribution of maximum posterior χ2 and maximum poste-
rior estimates of cosmological parameters.

The fiducial covariance matrix of the DES-Y3 3x2pt
analysis uses the formalism of Krause & Eifler (2017) to
model super-sample covariance as well as the trispectrum
contribution to the covariance. The model for the Gaussian
covariance part (i.e. the contributions from the disconnected
4-point function) correctly takes into account sky curvature
and includes analytical averaging over the finite angular bins
in which the 2-point functions are measured. Furthermore,
the galaxy clustering power spectra that enter our calcu-
lation of the Gaussian covariance part are computed using
the non-Limber formalism of Fang et al. (2020b) and also in-
clude modelling of redshift space distortions. The finite sur-
vey area of DES-Y3 is incorporated in the covariance model
via the fsky approximation (except in the pure shape-noise
and shot-noise terms where we follow Troxel et al. 2018b).

In order to perform our validation tests for the DES-Y3
covariance matrix we developed a plethora of new modelling
ansatzes and testing strategies which are applicable in gen-
eral. These new techniques are:

• We have motivated and devised a way of drawing realisa-
tions of the 3x2pt data vector from a non-Gaussian distribu-
tion in order to test the accuracy of our Gaussian likelihood
assumption.
• We have derived analytic expressions for angular bin av-
eraging of all four types of 2-point correlation functions in-
cluded in the 3x2pt vector (ξ+, ξ−, γt, w). These expressions
correctly account for sky curvature. To the best of our knowl-
edge, an analytic treatment of bin averaging for cosmic shear
2-point function has not been presented before (though we
have shared our results with Fang et al. 2020a who have
used them for the fiducial covariance computations).
• We have extended the lognormal analytical model for the
covariance of cosmic shear 2-point function of Hilbert et al.
(2011) to the other 2-point functions present in the 3x2pt
data vector.
• Within a linearized likelihood formalism we have analyt-
ically derived how covariance model inaccuracies influence
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Figure 12. Ratio between the sample variance of γ̂t measured in 200 randomly selected sub-samples of the DESY3 lens and sources
catalogs and Equation 88 for the shape-noise contribution to the covariance (again using Equation 89 to calculate the effective shape-noise
dispersion σε,eff ). Each row displays the variances measured for a different source redshift bin and vertical dashed lines separate points
belonging to different lens redshift bins (1-5 from left to right). Assuming that the covariances estimates have a Wishart distribution we
calculate the covariance matrix of these ratios (cf. Taylor et al. 2013) and find that they are consistent with 1 (both for the cosmic shear
and galaxy-galaxy lensing variances).

the distribution of maximum-posterior χ2 and of maximum-
posterior parameter estimates. The results we presented also
allow for the possibility of including the Gaussian priors on
certain model parameters and can be used to analytically es-
timate the impact of covariance errors on cosmological like-
lihood analyses.

• By fitting an effective number density to the high-` plateau
of galaxy clustering C` measurements we have estimated
how much the assumption of Poissonian shot-noise influ-
ences our likelihood analysis. This is similar in spirit to the
RASCALC technique presented by Philcox et al. (2020), and
we agree with those authors that non-Poissonian shot noise
can be viewed as an effective description of how short-scale
non-linearities in galaxy clustering influence the covariance.

• We calculated covariance matrices for 100 different sets of
cosmological and nuisance parameters randomly drawn from
a simulated likelihood chain. This allowed us to investigate
whether calculating our covariance model at a reasonable,
but wrong point in parameter space significantly impacts our
analysis. This was done both within our linearised likelihood
framework and by using importance sampling to quickly
evaluate the 100 non-linear likelihoods.

• We have derived how the 2-point correlation function of
weight maps influence the covariance of galaxy clustering 2-
point function measurements. In that context we have also
found that traditional ways of deriving an effective number

density for a given set of galaxy weights are erroneous when
those weights are aimed at undoing a suspected depletion
of galaxy density (e.g. due to variations in observing condi-
tions).
• We have derived an expression for the effective dispersion of
intrinsic source shapes for the situation when source galaxy
weights are correlated with galaxy ellipticity. We have also
shown how metacalibation responses (Sheldon & Huff 2017)
enter that expression for effective shape-noise.
• We have described a clean sub-sample covariance estima-
tion scheme that directly measures the sampling noise con-
tributions to the covariance from a given data set. We then
used the resulting covariance estimates to test the validity
of our assumed effective shape noise values.
• We have employed the hybrid covariance estimation tech-
nique PME (Friedrich & Eifler 2018) to efficiently evaluate
the importance of individual contributions to the covariance
from only a limited set of simulated data (in our case: 200
realisations of the 3x2pt data vector including shape-noise
and 100 realisations without shape noise).
• We have devised a treatment of survey geometry in covari-
ance modelling that improves upon existing approximations
(of e.g. Efstathiou 2004) and we have demonstrated how
to carry those approximations from harmonic space to real
space.

Using these results we perform several tests for the fidu-
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Figure 13. χ2 tests taking into account with different effects.
Colors follow the scheme of Figure 1.

cial DES-Y3 3x2pt covariance matrix and likelihood model,
with the following conclusions:

• The assumption of Gaussian statistical uncertainties is suf-
ficiently accurate (cf. Section 6.1). Hence, knowledge of the
covariance of the 3x2pt data vector is sufficient to model
our statistical uncertainties. The main assumption made to
arrive at this conclusion is that non-Gaussian error bars are
primarily a large-scale problem and that at small scales the
number of modes present within the DES-Y3 survey volume
converges to a Gaussian distribution via the central limit
theorem.
• The non-Gaussian part of the covariance has a negligible
impact on both maximum posterior χ2 and parameter con-
straints (cf. Section 6.2). This statement is not a general
one but only holds for the specific DES-Y3 3x2pt analysis
setup. The main assumption made to arrive at that conclu-
sion is that the CosmoLike model (Krause et al. 2016) or the
log-normal model (Hilbert et al. 2011) for the non-Gaussian
covariance do not vastly underestimate the true covariance.
Given the results of Sato et al. (2009); Hilbert et al. (2011)
we find this a safe assumption.
• Of all covariance modelling assumptions investigated in
this paper the fsky approximation (made in the mixed term
and cosmic variance term of our covariance model) has the
largest effect on maximum posterior χ2. On average it in-
creases χ2 between measurement and maximum posterior
model by about 3.7% (∆χ2 ≈ 18.9) for the 3x2pt data vec-
tors and by about 5.7% (∆χ2 ≈ 16.0) for the 2x2pt data
vector (cf. Table 1).
• However, neither fsky approximation nor any other covari-
ance modelling detail tested in this paper (cf. Table 1 ; with
the exception of finite bin width, see next point) has any

significant impact on the location and width of constraints
on the parameters Ωm, σ8, w.
• The only exception to this statement is finite angular bin
width which - if not taken into account in the mixed term
and cosmic variance term of the covariance model - signifi-
cantly increases the scatter of maximum posterior param-
eters (without increasing the inferred constraints accord-
ingly). However, finite bin width has been taken into account
in the past in an approximate manner - see e.g. Krause et al.
(2017).
• The fact that we do not know the true cosmological pa-
rameters of the Universe forces us to evaluate our covariance
model at a wrong set of parameters. Even when iteratively
adjusting those parameters to the maximum posterior pa-
rameters of the analysis, the parameters of the covariance
model will scatter around the ’true’ cosmological / nuisance
parameters. We consider this an irreducible covariance error
and find that it increases the maximum posterior scatter of
Ωm and σ8 by about 3% and that of the dark energy equa-
tion of state parameter w by about 5% (cf. Section 6.8 and
Table 1). At the same time, we find this effect to have a
negligible impact on maximum posterior χ2.

In summary, we have shown that our fiducial covariance
and likelihood model underestimates the scatter of maxi-
mum posterior parameters by about 3-5%, which is mostly
caused by uncertainty in the set of cosmological and nui-
sance parameters at which we evaluate that model. On av-
erage, the χ2 between maximum posterior model and mea-
surement of the 3x2pt data vector will be ∼ 4% higher than
expected with perfect knowledge of the covariance matrix.
This is mainly caused by our use of the fsky approxima-
tion. We have devised an improved treatment of the full
survey geometry (cf. Section 6.6) but for the reason men-
tioned above this was only used to test the impact of the
fsky approximation on parameter constraints.

Given the small impact that we estimated from the un-
accounted effects in the covariance modelling, we conclude
that the fiducial covariance model is adequate to be used
in the 3x2pt DES-Y3 analysis. While our validation of this
covariance model has been carried out with a preliminary
set of scale cuts and redshift distributions, we don’t expect
qualitative changes for the final DES-Y3 analysis setup.

While the DESY3 specific outcomes of our study can
not straightforwardly be transferred to other surveys and
analyses, our methodological innovations will be useful tools
in the covariance and likelihood validation of future experi-
ments.
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APPENDIX A: CURVED SKY FORMALISM

The angular clustering correlation function of galaxies w(θ)
is given in terms of the galaxy clustering power spectrum
Cgg` as

w(θ) =
∑
`

2`+ 1

4π
P` (cos θ)

(
Cgg` +

1

n

)
, (A1)

where n is the galaxy density per steradian. The term pro-
portional to 1

n
is usually ommited (cf. Ross et al. (2011))

since it sums up to16

1

2πn

∑
`

2`+ 1

2
P` (cos θ) =

1

2πn
δD(cos θ − 1)

=
δD(θ)

2πn sin θ
, (A2)

which has to be interpreted as a 2-dimensional Dirac delta
function on the sphere.

According to de Putter & Takada (2010) (see also Steb-
bins 1996) the galaxy-galaxy lensing correlation function
γt(θ) is given in terms of the galaxy-convergence cross-power
spectrum Cgκ` as

γt(θ) =
∑
`

2`+ 1

4π

P 2
` (cos θ)

`(`+ 1)
Cgκ` , (A3)

where Pm` are the associated Legendre Polynomials.
Finally, he cosmic shear correlation functions ξ±(θ) are

given by

ξ±(θ) =
∑
`>2

2`+ 1

4π

2(G+
`,2(x)±G−`,2(x))

`2(`+ 1)2
CE` ,

(A4)

where x = cos θ, CE` is the E-mode power spectrum of shear
and we assume B-modes to vanish. The functions G±`,2(x)

are defined in eq. 4.1817 of Stebbins (1996). Eq. A4 can be
expressed in terms of associated Legendre polynomials by
using eq. 4.19 of Stebbins (1996), which gives

G+
`,2(x)±G−`,2(x) = P 2

` (x)

{
4− `± 2x(`− 1)

1− x2
− `(`− 1)

2

}
+P 2

`−1(x)
(`+ 2)(x∓ 2)

1− x2
. (A5)

In appendix B we show how to obtain A4 from the notation
in Stebbins (1996).

It can be seen from above that each of the considered

16 from
∑
`

2`+1
2
P`(x)P`(y) = δD(x− y) - see N. Bronstein &

A. Semendjajew (1979) for this and other properties of Legendre
polynomials.
17 Note that a factor of 1/i sin(θ) is missing in the second line of
this equation.
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2-point correlation functions can be written in terms of the
corresponding power spectra as

ξA(θ) =
∑
`

2`+ 1

4π
FA` (cos θ) CA` . (A6)

APPENDIX B: AVERAGING CORRELATION
FUNCTIONS OVER FINITE BINS

The area average can be performed for γtby replacing
P 2
` (cos θ) with

∫ θmax

θmin
dθ sin θ P 2

` (cos θ)

cos θmin − cos θmax
=

∫ cos θmin

cos θmax
dx P 2

` (x)

cos θmin − cos θmax

=

∫ cos θmin

cos θmax
dx (1− x2) d2

dx2
P` (x)

cos θmin − cos θmax
.

(B1)

Using integration by parts and various recursion relations of
Legendre polynomials (cf. N. Bronstein & A. Semendjajew
1979), this becomes:

∫ θmax

θmin
dθ sin θ P 2

` (cos θ)

cos θmin − cos θmax

=
1

cos θmin − cos θmax

{(
`+

2

2`+ 1

)
[P`−1(x)]cos θmin

cos θmax

+ (2− `) [xP`(x)]cos θmin
cos θmax

− 2

2`+ 1
[P`+1(x)]cos θmin

cos θmax

}
. (B2)

In his equation 4.26 Stebbins (1996) defines the shear
correlation function Cγ(θ, φ1, φ2) which, by inspection of
equation 4.27 and figure 2 of this work, translates into the
shear correlation functions ξ±(θ) as

ξ±(θ) = Cγ(θ, 0, 0)± Cγ(θ, π/4, π/4) . (B3)

This way one directly arives at our expression for the shear
correlation functions, equation A4.

To account for finite bin width in equation A4 and in
the covariance of ξ̂± one has to perform the area-weighted
bin average of the functions

(
G+
`,2(cos θ)±G−`,2(cos θ)

)
. To

do so one can insert the relations∫ x2

x1

dx
x P 2

` (x)

1− x2
=

[
x

dP`(x)

dx

]x2
x1

− [P`(x)]x2x1∫ x2

x1

dx
P 2
` (x)

1− x2
=

[
dP`(x)

dx

]x2
x1

(B4)

into equation A5. In summary this means one has to ex-

change the functions
(
G+
`,2(cosθ)±G−`,2(cosθ)

)
as follows:

∫ cos θmin

cos θmax
dx

(
G+
`,2(x)±G−`,2(x)

)
cos θmin − cos θmax

=

{
−
(
`(`− 1)

2

)(
`+

2

2`+ 1

)
[P`−1(x)]cos θmin

cos θmax

− `(`− 1)(2− `)
2

[xP`(x)]cos θmin
cos θmax

+
`(`− 1)

2`+ 1
[P`+1(x)]cos θmin

cos θmax

+ (4− `)
[

dP`(x)

dx

]cos θmin

cos θmax

+ (`+ 2)

{[
x

dP`−1(x)

dx

]cos θmin

cos θmax

− [P`−1(x)]cos θmin
cos θmax

}

± 2(`− 1)

{[
x

dP`(x)

dx

]cos θmin

cos θmax

− [P`(x)]cos θmin
cos θmax

}

∓ 2(`+ 2)

[
dP`−1(x)

dx

]cos θmin

cos θmax

}
1

cos θmin − cos θmax
.

(B5)

These expressions can be very efficiently calculated and pre-
tabulated e.g. with the help of the gnu scientific library
(Galassi et al. 2009).

APPENDIX C: MASKING IN REAL SPACE
COVARIANCES

DES observations don’t cover the entire sky, but are located
within a survey mask, described by a function W (n̂) which
is = 1 if we have observed the sky at location n̂ and zero
otherwise18. In this appendix we derive how this masking
changes the covariance of any measured 2-point statistics.

We start by computing, how many galaxy pairs we ex-
pect to find within our mask (assuming that galaxies do not
cluster). If n1, n2 are the number densities of 2 different
tracer samples, then the expected number of pairs dNpair(θ)
with angular separation within [θ, θ + dθ] is given by (cf.

18 A map of the mask will come with a finally resolution, in which
case the fractional values 0 < W < 1 of the mask will describe
the completeness of observations within the map resolution.
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Troxel et al. 2018b)

dNpair(θ)

n1n2

= dθ

∫
dΩ1dΩ2 W (n̂1) W (n̂2) δD(arccos[n̂1 · n̂2]− θ)

= dθ

∫
dΩ1dΩ2 W (n̂1) W (n̂2)

√
1− x2

12δD(x12 − cos θ)

= dθ sin θ

∫
dΩ1dΩ2 W (n̂1) W (n̂2) δD(x12 − cos θ)

= dθ sin θ
∑
`

2`+ 1

2
P`(cos θ)

∫
dΩ1dΩ2 W (n̂1) W (n̂2)P`(x12) .

(C1)

Using the fact that

P`(n̂ · m̂) =
4π

2`+ 1

∑̀
m=−`

Y`m(n̂)Y ∗`m(m̂) (C2)

(
⇒ ξ(n̂ · m̂) =

∑
`

2`+ 1

4π
C` P`(n̂ · m̂) =

∑
`m

C`Y`m(n̂)Y ∗`m(m̂)

)
(C3)

this becomes

dNpair(θ)

n1n2

= 2π sin θ dθ
∑
`m

P`(cos θ) ∗

∗
(∫

dΩ1 W (n̂1) Y ∗`m(n̂1)

)(∫
dΩ2 W (n̂2) Y`m(n̂2)

)
= 2π sin θ dθ

∑
`m

P`(cos θ) |W`m|2

= 2π sin θ dθ
∑
`

(2`+ 1)P`(cos θ) CW`

= 8π2 sin θ dθ ξW (θ) , (C4)

where in the last steps we have defined the angular power
spectrum of the mask through (2` + 1)CW` =

∑
m |W`m|2

as well as the angular 2-point function of the mask, ξW (θ).
The total number of galaxy pairs in a finite angular bin
[θmin, θmax] is then

Npair[θmin, θmax] = (8π2n1n2)

∫ θmax

θmin

dθ sin θ ξW (θ)

= (8π2n1n2)
∑
`

[P`+1(x)− P`−1(x)]θmin
θmax

4π
CW` .

(C5)

The 2-point correlation function of 2 scalar random fields,
ξab(θ) = 〈δa(n̂a)δb(n̂b)|n̂a · n̂b = cos θ〉, is in practice esti-

mated within a finite angular bin as

ξ̂ab[θmin, θmax] · Npair[θmin, θmax]

nanb

=

∫ θmax

θmin

dθ sin θ

∫
dΩadΩb W (n̂a)W (n̂b)∗

∗ δD(xab − cos θ) δa(n̂a)δb(n̂b)

= 2π
∑
`m

∫ θmax

θmin

dθ sin θ P`(θ) ∗

∗
∫

dΩadΩb W (n̂a) W (n̂b) Y`m(n̂a) Y ∗`m(n̂b) δa(n̂a)δb(n̂b)

= 2π
∑
`

[P`+1(x)− P`−1(x)]θmin
θmax

∗

∗ 1

2`+ 1

∑
m

∫
dΩa W (n̂a)δa(n̂a)Y`m(n̂a) ∗

∗
∫

dΩb W (n̂b) Y ∗`m(n̂b)δb(n̂b) . (C6)

From the last line it can be seen that ξ̂ab - apart from the
normalisation by Npair[θmin, θmax]/nanb - is exactly the an-
gular space counter part of the Pseudo-Cells estimator in the
corresponding harmonic space (cf. Efstathiou 2004). Why
this is the case can be understood most easily in the limit
of an infinitesimal angular bin. In this limit

Npair(θ) ∝ sin θ ξW (θ)

Npair(θ) · 〈ξ̂ab(θ)〉 ∝ sin θ ξW (θ) ξab(θ) , (C7)

where the second line shows that the convolution of mask
and signal power spectrum in harmonic space (Efstathiou
2004) becomes a simple multiplication in angular space. Es-
pecially, normalisation by Npair(θ) is the angular analog of
multiplication with the inverse mode-coupling matrix that
appears in harmonic space.

Let Ĉab` be the pseudo-C` estimator we identified in
Equation C6, i.e. we write

ξ̂ab[θmin, θmax] · Npair[θmin, θmax]

nanb

= 2π
∑
`

[P`+1(x)− P`−1(x)]θmin
θmax

Ĉab` (C8)

with

Ĉab` ≡
1

2`+ 1

∑
m

(Wδa)`m (Wδb)
∗
`m . (C9)

Then the covariance of the 2-point function measurements
between the fields δa&δb and δc&δd within angular bins
[θab− , θ

ab
+ ] and [θcd− , θ

cd
+ ] is given by

Cov
{
ξ̂ab[θab− , θ

ab
+ ], ξ̂cd[θcd− , θ

cd
+ ]
} Nab

pair[θ
ab
− , θ

ab
+ ] Ncd

pair[θ
cd
− , θ

cd
+ ]

nanbncnd

= (2π)2
∑
`1 `2

[P`1+1(x)− P`1−1(x)]
θab−
θab+

[P`2+1(x)− P`2−1(x)]
θcd−
θcd+
·

Cov
{
Ĉab`1 , Ĉ

cd
`2

}
. (C10)

Assuming that δa, δb, δc, δd are Gaussian random fields and
defining the symbols

W`1`2m1m2 ≡
∫

dΩ W (n̂) Y`1m1(n̂) Y ∗`2m2
(n̂) (C11)

MNRAS 000, 000–000 (0000)



30 DES Collaboration

it is straight forward to show that Cov
{
Ĉab`1 , Ĉ

cd
`2

}
is given

by (cf. Efstathiou 2004)

Cov
{
Ĉab`1 , Ĉ

cd
`2

}
=

1

(2`1 + 1)(2`2 + 1)

∑
m1 m2

∫
dΩadΩbdΩcdΩd ∗

∗ W (n̂a)W (n̂b)W (n̂c)W (n̂d) ∗
∗ Y`1m1(n̂a)Y ∗`1m1

(n̂b)Y`2m2(n̂c)Y
∗
`2m2

(n̂d) ∗

∗
{
ξac(θac)ξbd(θbd) + ξad(θad)ξbc(θbc)

}
=

1

(2`1 + 1)(2`2 + 1)

∑
m1 m2

∑
`3 m3

∑
`4 m4

(
Cac`3 C

bd
`4 + Cad`3 C

bc
`4

)
∗

∗ W`1`3m1m3W`3`2m3m2W`2`4m2m4W`4`1m4m1

(C12)

At this point e.g. Efstathiou (2004); Varshalovich et al.
(1988) follow with the approximation

≈ 1

2

Cac`1 C
bd
`2

+ Cac`2 C
bd
`1

+ Cad`1 C
bc
`2

+ Cad`2 C
bc
`1

(2`1 + 1)(2`2 + 1)
∗

∗
∑
m1m2

∑
`3m3

∑
`4m4

W`1`3m1m3W`3`2m3m2W`2`4m2m4W`4`1m4m1 .

(C13)

We however find that for fixed values of `1 and `2 the ex-
pression∑
m1 m2 m3 m4

W`1`3m1m3W`3`2m3m2W`2`4m2m4W`4`1m4m1

(C14)

has four maxima at [`3 = `1, `4 = `2] , [`3 = `2, `4 = `1] ,
[`3 = `1, `4 = `1] and at [`3 = `2, `4 = `2] and that the area
around each of these maxima contributes a similar amount
to the sums over `3 and `4. Hence, we opt instead for the
approximation

Cov
{
Ĉab`1 , Ĉ

cd
`2

}
≈

1

4

(
Cac`1 C

bd
`2

+ Cac`2 C
bd
`1

+ Cac`1 C
bd
`1

+ Cac`2 C
bd
`2

(2`1 + 1)(2`2 + 1)
+

+
Cad`1 C

bc
`2

+ Cad`2 C
bc
`1

+ Cad`1 C
bc
`1

+ Cad`2 C
bc
`2

(2`1 + 1)(2`2 + 1)

)
∗

∗
∑

m1,m2,m3,m4

W`1`3m1m3W`3`2m3m2W`2`4m2m4W`4`1m4m1 .

(C15)

In practice, both approximations yield very similar results
and they are valid on scales `1, `2 which are much smaller
than the typical scales of the maskW (Efstathiou 2004; Var-
shalovich et al. 1988). Unfortunately, the DES-Y3 analysis
mask has features and holes over a large range of scales.
Hence, the angular scales of interest in the 3x2pt analy-
sis are never strictly smaller than the scales of our mask.
Hence, Equation C15 is not sufficiently accurate in our case
and infact significantly overestimates our covariance matrix.
In Figure 8 we explain a simple scheme that can be used to
correct for this: Calculating the covariance of ξ̂ab[θab− and
θab+ ], ξ̂cd[θcd− , θ

cd
+ ] within the Gaussian covariance model (see

also Section 3) requires integration over all pairs of loca-
tions within our survey mask that fall into the angular bins

[θab− , θ
ab
+ ] and [θcd− , θ

cd
+ ]. Schematically, the covariance then

depends on expressions of the form

Cov ∝∫
(ab)∈mask,bin

dΩadΩb
∫

(cd)∈mask,bin

dΩadΩbξac(θac)ξbd(θbd) + . . . .

(C16)

Figure 8 visualizes this for the mixed terms in the covari-
ance, where one of the correlation functions ξac or ξbd is
due to sampling noise such as shape-noise of shot-noise and
hence is proportional to a Dirac delta function. In that case,
the integration is over pairs that share one end point. Now
the approximation made e.g. in Efstathiou (2004) or by our
Equation C15 assumes that also the correlation function be-
tween the other two end points effectively acts as a delta
function - at least with respect to the smallest scale features
in the survey mask. We find that this is not the case for
the DES-Y3 mask and that it contains features on all scales
relevant to our analysis. But Figure 8 also indicates a sim-
ple way to fix this: approximating the integrand over the
distance of the two remaining endpoints by a delta function
roughly overestimates the integral by a factor equal to one
over the fraction of small scale hole in the survey footprint
compared to the average scale at which the 2-point function
between the 2 end points decays. And multiplying the the
mixed terms in the covariance by this fraction can serve as
a next-to-leading order correction to our Equation C15. By
similar arguments one can deduce that the cosmic variance
terms (terms where none of the end points must be joined)
can be corrected by performing this multiplication twice.

To implement this correction we draw circles within the
DES-Y3 survey footprint with radii ranging from 5arcmin to
20arcmin and measure the masking fraction in these circles.
We find that this fraction is ≈ 90% across the considered
scales. Multiplying the mixed terms in the covariance by that
fraction and the cosmic variance terms by the square of that
fraction (and using Equation C15) we indeed find significant
improvement of the maximum posterior χ2 obtained for the
FLASK simulations (cf. lower panel of Figure 8 as well as
Figure 1).

We end this appendix by further simplifying Equation
C15. Using the completeness of the Y`m as well as the fact
that W (n̂)2 = W (n̂) one can show that (Efstathiou 2004)∑

m1,m2,m3,m4

W`1`3m1m3W`3`2m3m2W`2`4m2m4W`4`1m4m1

= |W`1`2m1m2 |
2 . (C17)

Then re-writing W`1`2m1m2 as

W`1`2m1m2 =

∫
dΩ W (n̂) Y`1m1(n̂) Y ∗`2m2

(n̂)

=
∑
`m

W`m

∫
dΩ Y`m(n̂) Y`1m1(n̂) Y ∗`2m2

(n̂)

= (−1)m2
∑
`m

W`m

√
(2`+ 1)(2`1 + 1)(2`2 + 1)

4π
∗

∗
(
` `1 `2
0 0 0

)(
` `1 `2
m m1 −m2

)
. (C18)

and using orthogonality properties of Wigner 3j symbols one
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can see that∑
m1m2

|W`1`2m1m2 |2

(2`1 + 1)(2`2 + 1)
=
∑
`m

|W`m|2

4π

(
` `1 `2
0 0 0

)2

=
∑
`

2`+ 1

4π
CW`

(
` `1 `2
0 0 0

)2

.

(C19)

⇒ Cov
{
Ĉab`1 , Ĉ

cd
`2

}
≈

1

4

(
Cac`1 C

bd
`2 + Cac`2 C

bd
`1 + Cac`1 C

bd
`1 + Cac`2 C

bd
`2 +

+ Cad`1 C
bc
`2 + Cad`2 C

bc
`1 + Cad`1 C

bc
`1 + Cad`2 C

bc
`2

)
∗

∗
∑
`

2`+ 1

4π
CW`

(
` `1 `2
0 0 0

)2

≡ 1

4

(
Cac`1 C

bd
`2 + Cac`2 C

bd
`1 + Cac`1 C

bd
`1 + Cac`2 C

bd
`2 +

+ Cad`1 C
bc
`2 + Cad`2 C

bc
`1 + Cad`1 C

bc
`1 + Cad`2 C

bc
`2

)
M`1`2 .

(C20)

For an efficient numerical evaluation of the above sum
we point out the following useful relation of Wigner-
3j symbols (following from functions.wolfram.com/
HypergeometricFunctions/ThreeJSymbol/):(

` `1 `2
0 0 0

)2
/ (

`− 2 `1 `2
0 0 0

)2

=
(`2 − `1 + `− 1)(`1 − `2 + `− 1)(`1 + `2 − `+ 2)(`1 + `2 + `)

(`2 − `1 + `)(`1 − `2 + `)(`1 + `2 − `+ 1)(`1 + `2 + `+ 1)
.

(C21)

APPENDIX D: PRECISION MATRIX
EXPANSION TO INVESTIGATE THE IMPACT
OF MASKING ON INDIVIDUAL COVARINCE
TERMS

In this appendix we briefly summarize the PME method
that went into Figure 9. The covariance of the 2x2pt (i.e.
non-cosmic-shear) part of our data vector has contributions
from shape-noise because of the presence of the mixed term
described in Section 4. To pinpoint further which parts of our
analytic covariance contribute to the elevation in χ2 (and to
further motivate our heuristic modelling ansatz for masking
effect in the covariance presented in Section 6.6), we re-run
100 of the FLASK simulations with shape-noise turned off. We
then use the covariances estimated from the different FLASK
runs to derive corrections to our covariance model. This can
be done - even with only a limited number of simulations -
with the method of precision matrix expansion (PME) that
was described by Friedrich & Eifler (2018). At the 1st order
their expansion estimates the precision matrix Ψ (i.e. the
inverse covariance matrix) as

Ψ̂ = C−1
model −C−1

model(B̂−Bmodel)C
−1
model . (D1)

Here, the matrix Bmodel can be either the full covariance
model, in which case B̂ is the full covariance estimated from

FLASK or it could be the shape-noise free part of the covari-
ance, in which case B̂ will be the covariance estimated from
the shape-noise free FLASK simulations. Friedrich & Eifler
(2018) have also derived a 2nd order correction to Equation
D1, but given the small magnitude of our observed χ2 eleva-
tion we restrict ourselves to the 1st order expansions which
should also reduce the noise of the PME. Note that Equa-
tion D1 does not contain the inverse of any noisy matrix.
This is why PME works well even in the presence of only
few numerical simulations (a benefit that is even further
boosted because the matrix B can be chosen to represent
only sub-parts of the covariance).

For each FLASK measurement of the 2x2pt data vec-
tor we estimate the 1st order PME from the remaining 196
FLASK data vectors (respectively from the ∼ 100 shape-noise
free data vectors). The average resulting χ2 values between
each data vector and the mean of all data vectors are dis-
played in Figure 9 and compared to the χ2 values obtained
when applying the analytic masking corrections presented in
Section 6.6 to either the shape-noise free covariance terms
or the full covariance. The average χ2 when using the ana-
lytic, best-guess covariance matrix is ≈ 318.8 for a total of
302 data points in the 2x2pt data vector. This corresponds
to a bias in χ2 of about 5.5%. The PME estimate of the
inverse covariance manages to push this down to ≈ 307.9
(≈ 304.8 with our analytic ansatz) hence decreasing the bias
in χ2 to about 1.9% (< 1% for the analytic anasatz). If the
PME correction term is computed with the shape-noise free
FLASK covariance, then the bias is only slightly reduces to
〈χ2〉 ≈ 314.3 (≈ 316.6 with our analytic ansatz). Hence, the
shape-noise dependent mixed terms in the covariance in-
deed seem to be the main cause of our remaining χ2 offset.
This was also found by Joachimi et al. (2020) for the latest
analysis of the Kilo Degree Survey. These mixed terms do
not depent on the connected 4-point function of the density
field (cf. Section 3) and the only approximation we make
in their calculation is the treatment of our survey footprint
through the fsky approximation. Hence, we follow Joachimi
et al. (2020) in our conclusion that this approximation is the
main driver of the residual errors in our covariance model.

APPENDIX E: IMPACT OF EXTREME
COSMOLOGIES ON PARAMETER
CONSTRAINTS

To demonstrate that the importance sampling technique em-
ployed in Section 6.8 indeed manages to capture even strong
changes in the likelihood, we repeat the tests presented there
with covariance matrices that drastically differ from our
fiducial covariance model. In particular we shift the value
of σ8 for which the covariance model is evaluated by ±2σ
of the marginalised σ8 constraints expected from DES-Y3.
Note that is a radical change because it ignores parameter
degeneracies, i.e.such a shift of σ8 without changes in other
parameters would be detected at high significance. Figure
E1 shows the likelihood contours in the S8-Ωm plane ob-
tained from both our fiducial covariance and from impor-
tance sampling with the altered covariance matrices. One
can now clearly see a change in contour width. But as we
have show in Section 6.8, this effect is far less significant for
realistic parameter uncertainties in the covariance model.
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Figure E1. (S8,Ωm) constraints for a given noisy realiza-
tion of the DES Y3 3x2pt data vector analyzed using: a fidu-
cial covariance matrix (blue); a covariance matrix evaluated at
σ8 = σfiducial8 − 2σσ8 (green); a covariance matrix evaluated at
σ8 = σfiducial8 + 2σσ8 (red). The green and red posteriors were
obtained by importance sampling the fiducial samples.

APPENDIX F: EFFECTIVE SHAPE NOISE
WHEN USING METACALIBRATION

In Section 6.10 we have considered how the sampling noise
contribution to covariance of the galaxy-galaxy lensing 2-
point function can be expressed in terms of an effective
shape-noise when each source galaxy is weighted by a cer-
tain weight (e.g. weight wj for the jth galaxy, with the
average weight 〈wj〉j = 1). The expressions derived there
have to change when taking into account responses Rj of
a shape catalog generated with metacalibation (Sheldon &
Huff 2017). In that case a measurement of γ̂t[θ1, θ2] becomes

γ̂t[θ1, θ2] =

∑
pxl i, source j ∆ij

[θ1,θ2] δl,i εt,j→i w
s
j∑

pxl i, source j ∆ij
[θ1,θ2] w

s
jRj

. (F1)

One can re-write this to conform with the derivations of
Section 6.10 by defining

γ̂t[θ1, θ2] =

∑
pxl i, source j ∆ij

[θ1,θ2] δl,i
εt,j→i
Rj

wsjRj∑
pxl i, source j ∆ij

[θ1,θ2] w
s
jRj

≡
∑

pxl i, source j ∆ij
[θ1,θ2] δl,i ε̃t,j→i w̃

s
j∑

pxl i, source j ∆ij
[θ1,θ2] w̃

s
j

. (F2)

Now the transformed weights w̃sj should be normalised to
〈w̃sj 〉 = 1 and then be used together with the transformed
ellipticities ε̃j to calculate σε,eff from Equation 89. This is
what we have done for Figure 12.
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