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ABSTRACT

Determining the distribution of redshifts of galaxies observed by wide-field photometric
experiments like the Dark Energy Survey is an essential component to mapping the matter
density field with gravitational lensing. In this work we describe the methods used to assign
individual weak lensing source galaxies from the Dark Energy Survey Year 3 Weak Lensing
Source Catalogue to four tomographic bins and to estimate the redshift distributions in these
bins. As the first application of these methods to data, we validate that the assumptions made
apply to the DES Y3 weak lensing source galaxies and develop a full treatment of systematic
uncertainties. Our method consists of combining information from three independent likeli-
hood functions: Self-Organizing Map p(z) (SOMPZ), a method for constraining redshifts from
galaxy photometry; clustering redshifts (WZ), constraints on redshifts from cross-correlations
of galaxy density functions; and shear ratios (SR), which provide constraints on redshifts from
the ratios of the galaxy-shear correlation functions at small scales. Finally, we describe how
these independent probes are combined to yield an ensemble of redshift distributions encap-
sulating our full uncertainty. We calibrate redshifts with combined effective uncertainties of
0 (zy ~ 0.01 on the mean redshift in each tomographic bin.
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1 INTRODUCTION

The matter density fluctuations present in the Universe, and their
evolution over time under the impact of gravity and cosmic expan-
sion, are sensitive to cosmological physics, including the nature of
dark energy, neutrino masses, and the nature of dark matter. Galaxy
surveys like the Dark Energy Survey (DES, Troxel et al. 2018; Ab-
bott et al. 2018), the Kilo-Degree Survey (KiDS, Heymans et al.
2020), Hyper Suprime-Cam survey (HSC, Hikage et al. 2019), the
Legacy Survey of Space and Time (LSST, LSST Dark Energy Sci-
ence Collaboration 2012), or the Euclid mission (Laureijs et al.
2011) use this to achieve competitive constraints on cosmological
parameters from observable proxies of the matter density field. In
particular, the DES first three years of observation data are used,
among other purposes, to measure three two-point (3 X 2pt.) corre-
lation functions (DES Collaboration et al. 2020):

(1) Cosmic shear: the correlation function of the shapes of
"source" galaxies divided into four tomographic bins (Gatti & Shel-
don et al., 2020b; Amon et al. 2020; Secco, Samuroff et al. 2020).

(i) Galaxy clustering: the auto-correlation function of the po-
sitions of luminous red "lens" galaxies selected by the RedMaGiC
algorithm (Rozo et al. 2016; Rodriguez-Monroy et al. 2020), or al-
ternatively the positions of an optimized magnitude-limited sample
(Porredon et al. 2020, prep).

(iii) Galaxy-galaxy lensing: the cross-correlation function of
source galaxy shapes around lens galaxy positions (Prat et al. 2020).

The use of gravitational lensing signals is indispensable in this
approach: In a photometric survey, while the positions of galaxies
can be used as tracing matter density, the only direct connection
to the underlying density field is through its effect on the images
of distant galaxies by means of gravitational lensing. In order to
draw conclusions on the physical density fluctuations from obser-
vations of gravitational lensing, however, the distances to the lensed
background sources must be known.

Any gravitational lensing measurement, including the inter-
pretation of the cosmic shear and galaxy-galaxy lensing correlation
functions, therefore relies on a robust characterization of the distri-
bution n(z) of redshifts z of the respective source galaxy samples
(Huterer et al. 2006; Hildebrandt et al. 2012; Benjamin et al. 2013;
Huterer et al. 2013; Samuroff et al. 2017; Joudaki et al. 2019; Tes-
sore & Harrison 2020). While ideally this could be accomplished
by measuring the spectrum of each galaxy in a given catalogue,
it is so far only feasible to gather spectra for small, possibly non-
representative subsets of galaxies. As a consequence, large optical
imaging surveys with measurements of tens or hundreds of millions
of galaxies must rely on relatively few, noisy photometric bands to
constrain redshifts. The key challenge in doing this is the presence
of degeneracies in the statistical colour-redshift relation, making
it commonly impossible to uniquely determine the redshift of any
given galaxy from wide-band photometry. One can address this
challenge by determining a prescription for reweighting the n(z) of
a sample with credible, known redshifts according to those galax-
ies’ relative abundance in the overall sample detected and selected
by a photometric survey (e.g. Lima et al. 2008; Cunha et al. 2012;
Bonnett et al. 2016; Speagle & Eisenstein 2017a,b; Hoyle & Gruen
et al., 2018; Tanaka et al. 2018; Hildebrandt et al. 2020a; Wright
et al. 2020a; Euclid Collaboration 2020; Schmidt et al. 2020). The
problem of degeneracies in the statistical colour-redshift relation in
this case manifests as uncertainty on the measured redshift distri-
bution, often quantified in terms of uncertainties on the moments of
the measured n(z). Much of the work in estimating redshift distri-

butions is dedicated to understanding how measured n(z) are biased
due to sample variance and selection biases in the sample of galax-
ies with credible redshifts (Gruen & Brimioulle 2017; Hartley &
Chang et al., 2020b). In this work, we describe the analysis used to
characterize the redshift distributions of the DES Year 3 (the first 3
seasons of observations) source galaxy sample from their photome-
try, validate this methodology on realistic simulations of the survey
data, and present the results of the analysis on the DES data.

A challenge to determination of n(z) is the combination
of incompleteness in the spectroscopic samples and inaccuracies
in many-band photometric redshifts used to calibrate the colour-
redshift maps. Our work ameliorates this challenge by weighting
the redshift-calibration sample to match the abundance of the target
sample in a high-dimensional colour space (Buchs & Davis et al.,
2019). Differences in reweighting procedures are known to result in
scientifically meaningfully different constraints on the matter clus-
tering parameter og (Troxel & MacCrann et al., 2018; Joudaki &
Hildebrandt et al., 2019), highlighting the critical importance of
properly accounting for the impact of selection biases on redshift
distribution measurement.

A robust redshift analysis should be validated on simulations,
rely on multiple independent data sets and methodologies, and have
well-characterized uncertainties. Besides the work presented in this
paper on photometric redshifts, we accomplish this by combining
photometric information with galaxy clustering and shear ratios to
constrain redshift distributions. Clustering redshifts (WZ) and shear
ratios (SR) play the essential role of providing additional, indepen-
dent constraining power to validate and further constrain photomet-
ric redshift distributions (Gatti, Giannini et al. 2020a; Sanchez, Prat
et al. 2020a).

We describe this overall DES Year 3 redshift inference scheme
in §2. In §3 we describe the data used in this analysis. We develop
the methodology for determining n(z) from galaxy magnitude and
colours and the uncertainty on those n(z) in §4 and §5, respectively.
We present our results in §6 and discuss their implications in §7.

2 DES Y3 REDSHIFT SCHEME

The overarching DES Year 3 redshift inference scheme uses multi-
ple, independent analyses to robustly characterize the weak lensing
source galaxy redshift distributions. As illustrated in Fig. 1, the three
likelihood functions computed rely on three independent methods
and data: SOMPZ, clustering redshifts, and shear ratios.

(i) Self-Organizing Map p(z) (SOMPZ) leverages the Y3 DES
Deep Fields (Hartley, Choi et al. 2020a) to accurately determine
the number density of galaxies in deep ugrizJHK; colour space.
Since redshifts are well-constrained at a given ugrizJHKg colour,
this number density can be used to properly weigh galaxies within a
sample of credible redshifts in a way that is not subject to selection
biases. In brief, this method relies on determining the p(z) ata given
cell in 8-band colour space from galaxies with deep 8-band cover-
age, the probability of each cell in 8-band colour space contributing
to the galaxies in a given cell in noisy 3-band colour-magnitude
space, and the abundance of galaxies in 3-band colour-magnitude
space, to compute the overall redshift distribution of the Year 3
lensing source galaxy sample. The validation of this method and
the characterization of its sources of uncertainty are outlined in
detail in this work.

(i) Clustering redshifts constrain the distances to source galax-
ies from their angular galaxy clustering with samples of reference
galaxies within narrow redshift ranges (Newman 2008; Ménard et al.
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Figure 1. Flowchart illustrating the weak lensing redshift distributions calibration scheme. The three main n(z|model) likelihood functions of the analysis,
shown in gray, are SOMPZ, clustering redshifts, and shear ratios. Note that the parameter constraint plot is only an illustration and is not a result from real

measurements.

2013; McQuinn & White 2013; Johnson et al. 2017; Morrison et al.
2017; Davis & Gatti et al., 2017; Gatti & Vielzeuf et al., 2018;
Cawthon et al. 2017; van den Busch et al. 2020; Hildebrandt et al.
2020a). This method is based on the fact that the amplitude of this
correlation function is proportional to the fraction of source galax-
ies in physical proximity to those reference galaxies. Clustering red-
shifts validate and refine photometric n(z) with the key benefit of
avoiding any reliance on the statistical colour-redshift relation and
bypassing the completeness issues associated with spectroscopic
survey coverage. The details of this analysis are described fully in
Gatti, Giannini et al. (2020a).

(iii) Shear ratios (Jain & Taylor 2003; Mandelbaum et al. 2005;
Heymans et al. 2012; Prat & Sdnchez et al., 2018; Prat & Baxter
et al., 2019; Hildebrandt et al. 2020b) provide additional constrain-
ing power and validation by measuring the galaxy-galaxy lensing
signal of a lens galaxy redshift bin at small scales. The ratio of
this signal from two source bins reflects the ratio of mean lens-
ing efficiencies of objects in those source bins with respect to the
lens bin redshift. This, in turn, depends on the redshift distribution
of the sources. Because this methodology utilizes lensing signals,
it is virtually independent from SOMPZ and clustering redshifts.
The methodology of this analysis is described fully in Sdnchez,
Prat et al. (2020a). Both the clustering and shear ratio redshift con-
straints are derived from data on small angular scales, which allows
the redshift constraints to remain largely statistically independent
of cosmological constraints based on larger-scale signals.

In summary, we use galaxy photometry to constrain n(z) with
SOMPZ, galaxy positions to constrain n(z) with clustering red-
shifts, and galaxy shapes to constrain n(z) with shear ratios. As in
past work, we assess consistency of these measurements. We fur-
ther subsequently combine these measurements. The final result of
this analysis is an ensemble of redshift distributions whose vari-
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ation encodes the combined uncertainties on the n(z) due to all
sources of information. Any DES Y3 lensing likelihood that uses
the same redshift bins can be estimated by sampling from this en-
semble. Specifically, the n(z)s in this ensemble are ordered with
an algorithm called HYPERRANK, which facilitates sampling and
marginalization over the n(z) ensemble within the cosmological
likelihood Markov chains (Cordero et al. 2020).

3 DATA
3.1 DES Wide Field Survey

This work presents tomographic redshift distributions for the DES
Year 3 weak lensing source catalogue, described in Gatti & Sheldon
et al., (2020b). The source catalogue is a subset of the DES Year 3
Gold catalogue of photometric objects (Sevilla-Noarbe et al. 2020).
After the applied selections, it consists of 100,208,944 galaxies
with measured r, i, and z METACALIBRATION photometry and shapes
(Sheldon & Huft 2017). We note that a subset of the selections de-
fined in Gatti & Sheldon et al., (2020b) were motivated by achieving
a more homogeneous photometric catalogue, and therefore more
accurate redshift calibration. These cuts on METACALIBRATION pho-
tometry are as follows:

(i) 18 <m; <23.5
@) 15 <m, <26
(iii) 15 <my <26
(iv) =1.5<myp —m; <4
) 4d<mz—m; <15

The bright limits of selections (i), (ii), and (iii) remove nearby
galaxies for which no lensing signal is expected. They also remove
some remaining stars that were incorrectly included in the source
galaxy sample. The faint limit of these selections excludes the region
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of magnitude space where COSMOS-30 thirty-band photometric red-
shifts are found to be more biased (Laigle et al. 2016; Joudaki et al.
2019). Selections (iv) and (v) remove unphysical colors which are
assumed to be caused by catastrophic flux measurement failures.

In this work, we frequently refer to this sample and its pho-
tometry as wide (field) data. For further details on this catalogue,
we refer the reader to Gatti & Sheldon et al., (2020b).

For the DES Y3 weak lensing analysis, we exclude DES wide-
field g-band data due to biases caused by difficulties in modeling
the g-band point-spread function (PSF). In particular, METACALI-
BRATION requires an accurate PSF model to deconvolve (and sub-
sequently reconvolve) a galaxy image from the PSF in order to
determine how a galaxy image responds to artificial shear. Inade-
quate modeling of the PSF would lead to an imprecise constraint
on the shear response R of each galaxy. In the g-band, such model
inaccuracies are expected to result e.g. from chromatic effects on
the PSF (Plazas & Bernstein 2012). Our diagnostics indeed show
that PSF models are significantly less accurate in the g-band than
in the redder DES filters. As a result, we do not use g-band data
for any purpose that requires accurate PSF deconvolution, including
the METACALIBRATION correction for selection biases. This problem
precludes the use of g-band for defining redshift bins, since selec-
tion biases can only be corrected within METACALIBRATION when
all selections (including the selection into a redshift bin) are made
based on properties also measured on artificially sheared images,
which are not available in the g-band. For further details on this
challenge, see Gatti & Sheldon et al., (2020b).

3.2 DES Deep Field Survey and Artificial Wide Field
Photometry

The DES Y3 Deep Fields and mock wide-field photometry for the
deep-field detections are the cornerstone of SOMPZ. Full charac-
terization of these data products are provided in Hartley, Choi et al.
(2020a) and Everett et al. (2020), respectively, and we summarize
requisite details here. Our inference method relies on extracting
source density information from four deep fields named E2, X3,
C3, and COSMOS (COS) covering areas of 3.32, 3.29, 1.94, and
1.38 square degrees, respectively, as shown in Fig. 2. After mask-
ing regions with artefacts such as cosmic rays, artificial satellites,
meteors, asteroids, and regions of saturated pixels, 5.2 square de-
grees of overlap with the UltraVISTA and VIDEO near-infrared
(NIR) surveys (McCracken et al. 2012; Jarvis et al. 2013) remain.
This yields 2.8M detections with measured ugrizJ HK photometry
with limiting magnitudes 24.64, 25.57, 25.28, 24.66, 24.06, 24.02,
23.69, and 23.58, substantially fainter than the faintest galaxies in
the sample of source galaxies. In this work we frequently refer to
this sample and its photometry as deep (field) data.

In order to relate galaxies with given deep photometry to ob-
served lensing sources with wide photometry, we rely on the BaL-
ROG (Suchyta et al. 2016) software which injects simulated galaxies,
based on the deeper photometry from the DES deep fields, into real
images. For this analysis, BALROG was used to inject model profiles
fit to deep-field galaxies into the broader wide-field footprint (Ev-
erett et al. 2020). After injecting galaxies into images, the output
is passed into the DES Y3 photometric pipeline. Each deep-field
galaxy is injected multiple times at different positions, and injected
galaxies are detected equivalently to real galaxies, yielding multi-
ple realisations of each deep-field galaxy. The output matched cata-
logue of 2,417,437 injection-realisation pairs containing both deep
and wide photometric information is a key part of our redshift cali-
bration inference method. This catalogue is called the Deep/BaLroG
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Figure 2. The four DES deep fields used for our redshift analysis. Each
field has overlapping deep DES ugriz bands and archival JHK bands from
the VIDEO or UltraVISTA surveys. Green points indicate DES deep-field
galaxies with no spectroscopic or many-band photometric redshifts. Yel-
low (S), blue (C), and red (P) indicate deep-field galaxies with redshifts
from spectroscopy, COSM0S2015, or PAUS+COSMOS, respectively. Missing
rectangular regions are DECam CCDs on which scattered light hampered
precision deep photometry.

Sample. Note that this sample contains a total of 267,229 unique
deep-field galaxies having > 1 BALROG realisation that passes the
wide-field selection criteria.

3.3 Redshift samples

Our analysis relies on the use of galaxy samples with known redshift
and deep-field photometry. To this end, we use catalogues of both
high-resolution spectroscopic and multi-band photometric redshifts
and develop an experimental design that allows us to test uncertainty
in our redshift calibration due to biases in these samples. The spec-
troscopic catalogue we use contains both public and private spectra
from the following surveys: zZCOSMOS (Lilly et al. 2009), C3R2
(Masters et al. 2017, 2019), VVDS (Le Fevre et al. 2013), and
VIPERS (Scodeggio et al. 2018). We use two multi-band photo-
z catalogues from the COSMOS field (Scoville et al. 2007): the
COSM0S2015 30-band photometric redshift catalogue (Laigle et al.
2016), which includes 30 broad, intermediate, and narrow bands
covering the UV, optical, and IR regions of the electromagnetic
spectrum, and the PAUS+COSMOS 66-band photometric redshift cat-
alogue (Alarcon et al. 2020a) from the combination of PAU Survey
data (Padilla et al. 2019; Eriksen et al. 2019) in 40 narrow-band
filters and 26 COSMOS2015 bands excluding the mid-infrared.
Fig. 2 shows the DES deep-field footprints (Hartley, Choi et al.
2020a) and highlights the footprint of each of the different redshift
catalogues. While the two photo-z catalogues are limited to the
COSMOS field, our spectroscopic compilation partially covers the
COSMOS, X3 and C3 fields. Fig. 3 shows the DES i-band magni-
tude distribution for all galaxies with ugrizJHK photometry and
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Figure 3. Top: Distribution of redshift samples as a function of DES i-
band magnitude. Each galaxy in this histogram is weighted by all weights
used in the cosmological analyses: probability of detection from BALROG,
METACALIBRATION response, and lensing weight (see § 4.1). For details on
the definition of the ‘Bulge Plus Disk, Fixed Ratio’ (BDF) galaxy profile
see Hartley, Choi et al. (2020a). Bottom: Distribution of redshifts used in
our analysis, for one of our redshift samples SPC. This sample is defined to
preferentially use redshift from spectroscopy, then PAUS+COSMOS, then COS-
M0S2015. Each galaxy in this stacked histogram is weighted by all weights
used in the analysis: probability of detection from BALROG, METACALIBRA-
TION response, and lensing weight (see § 4.1).

for each of the redshift samples (for a definition of BDF magnitude
see Hartley, Choi et al. 2020a). Each galaxy has been weighted by
the same weight used in the cosmological analysis, which includes
the galaxy detection probability from BALROG, the METACALIBRA-
TION response and a lensing weight (see section 4.1 for more details
on these weights). While the spectroscopic compilation spans the
largest area among the redshift catalogues, it is also the shallowest.
The COSM0S2015 catalogue is the deepest, but also has the lowest
redshift precision. Finally, the PAUS+COSMOS catalogue is more pre-
cise than COSM0S2015 and, unlike spectroscopic samples, is nearly
complete in the highly relevant magnitude range of up to i ~ 23 but
has the lowest areal coverage at faint magnitudes.

To estimate the redshift distribution of each tomographic bin,
we compose three main redshift samples for which we rank the
redshift information differently, meaning that for an object with
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redshift information from multiple origins, we choose the estimation
from the highest ranked one. These redshift samples are:

e SPC: This sample ranks first the spectroscopic catalogue (S),
then PAUS+COSMOS (P), and finally COSM0S2015 (C). This sam-
ple is designed to inform an understanding of cosmological results
that is minimally reliant on the COSM0S2015 data without introduc-
ing potential selection biases such as those discussed by Gruen &
Brimioulle (2017).

e PC: This sample ranks first the PAUS+COSMOS catalogue be-
fore COSM0S2015, and does not include spectroscopic redshifts.
This sample is designed to inform an understanding of cosmolog-
ical results that are maximally reliant on many-band photometric
redshifts, and thus not affected by selection effects resulting from
spectroscopic survey selection functions.

e SC: This sample ranks first the spectroscopic catalogue before
C0SM0S2015, and does not include the PAUS+COSMOS catalogue.
This sample is designed to inform an understanding of cosmological
results that are not reliant on PAU multi-band photometric redshifts.

The fiducial ensemble of redshift distributions is generated by
marginalizing over all three of these redshift samples (SPC, PC, SC)
with equal prior, which in practice is achieved by simply concate-
nating the n(z) samples produced from these three redshift samples.
In addition to the three samples used for our fiducial analysis, we
define the following alternative redshift samples that we deem less
reliable. These samples are used to test the robustness of our redshift
information:

e C: This sample includes only information from the COS-
M0S2015 catalogue and would therefore suffer most strongly from
systematic biases in these photometric redshifts.

e SPC-MB: The redshift information used in the fiducial n(z)
still preserves 10 per cent of the effective information from COS-
M0S2015, primarily at the faintest magnitudes, due to the relative
paucity of spectroscopic redshifts of galaxies at these fainter mag-
nitudes. To test the impact of this, our SPC-MB (SPC, Magnitude-
Biased) sample is artificially constructed to bias the COSMOS galaxies
that are not matched to spectroscopic information with a magnitude-
and-redshift-dependent prescription. The prescription is as follows:
we bin galaxies for which we have a spectroscopic/PAU redshift
and COSM0S2015 photometric redshift into magnitude-redshift bins
with lower magnitude bin limits [18,21,22.4] and a redshift bin
width of 0.01. For each of these galaxies, we compute the redshift
bias A = zspc — zcosmos2015. We remove all outlying galaxies with
A > 0.15. For each magnitude-redshift bin, the mean bias (A) is
applied to all COSM0S2015 galaxies for which we do not have a spec-
troscopic/PAU redshift, to yield a realistic mock spectroscopic/PAU
redshift. In this way, we generate a sample of redshifts which is
maximally different than a purely COSM0S2015 sample.

These variant samples are detailed in Table 1. The impact of
using these respective samples to produce redshift distributions is
discussed in § 5.2. Note that we do not attempt a calibration of the
DES Y3 lensing source redshift distribution that is solely informed
by spectroscopic redshifts. The sample of available spectroscopic
redshifts in the deep fields does not span the full ugrizJHKj color-
space of the DES data. If any cell in deep color space were to only
include the subset of galaxies with successful spectroscopic redshift,
we expect the resulting estimates of the redshift distributions would
suffer from unquantified selection biases. However, comparisons of
redshift calibration between the samples used, some of which are
almost a 1:1 mixture of spectroscopic and high-quality photometric
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Name % Spectra | % PAUS+COSMOS | % COSM0S2015
SC 47 0 53
PC 0 87 13
SPC 47 43 10
C 0 0 100
SPC-MB 47 43 10%*

Table 1. Redshift samples used in our analysis, both in the fiducial case (SC,
PC, and SPC) and in the less reliable cases (C and SPC-MB) and their relative
contribution from spectroscopic data, PAUS+COSMOS and COSM0S2015. The
relative contribution includes all galaxy weights used in the analysis: prob-
ability of detection from BALROG, METACALIBRATION response, and lensing
weight (see § 4.1)

redshifts, should provide robust indications of any relevant biases
in the PAU or COSM0S2015 photometric redshift samples.

3.4 Simulated Galaxy Catalogues

We use the Buzzarp cosmological simulations to validate aspects
of our analysis. These simulations are briefly described here, and
discussed comprehensively in DeRose et al. (2020a), as well as
additional validation tests of the photometry in these simulations in
DeRose et al. (2019).

The Buzzarp simulations are galaxy catalogues that have been
populated in N-body lightcones by applying the AppcaLs algo-
rithm. They make use of a set of 3 independent N-body light-
cones with box sizes of [1.05, 2.6, 4.0] (h~3 Gpc3), with mass
resolutions of [0.33, 1.6, 5.9] x 10'! 7~ M, and spanning red-
shift ranges in the intervals [0.0, 0.32, 0.84, 2.35] respectively.
This produces a simulation that spans 10, 313 square degrees. We
use the L-GADGET2 N-body code, a memory-optimized version of
GaDpGeT2 (Springel 2005), with initial conditions generated using
2LPTIC at z = 50.

ApbbGALs provides simulated galaxy positions, velocities, ab-
solute magnitudes, spectral energy distributions (SEDs), elliptic-
ities and half-light radii for each galaxy. Positions and absolute
magnitudes are assigned such that the simulated galaxies reproduce
projected clustering measurements in the Sloan Digital Sky Survey
Main Galaxy Sample (SDSS MGS). Likewise, SEDs are assigned
from SDSS MGS using a conditional abundance-matching model
DeRose et al. (2020b), that reproduces the color-and-luminosity-
dependent clustering in SDSS MGS. Broad band photometry is
produced from these SEDs by k-correcting them to each galaxy’s
rest frame, and integrating over the DES and VISTA bandpasses to
produce ugrizJ HK photometry. While we find reasonably good
agreement between the Buzzarp photometry and that observed in
our deep and wide fields, the match is by no means perfect, partic-
ularly in bluer bands and for redshifts z > 1.2, as illustrated in fig.
1 of DeRose et al. (2020a).

The simulations are ray-traced using CALCLENS using an
Ngige = 8192 HearLPix grid (Becker 2013), and angular deflec-
tions, shear, and magnification quantities are computed for each
galaxy. The DES Y3 footprint mask is applied to the ray-traced
simulations, resulting in a footprint with an area of 4305 square de-
grees. We apply a photometric error model to the mock wide-field
photometry in our simulations based on a relation measured from
BaLroa. A weak lensing source selection is applied to the simu-
lations using the PSF-convolved sizes and i-band SNR in order to
match the non-tomographic source number density, 5.84 arcmin”2,
in the METACALIBRATION source catalogue. In order to simulate a
lens galaxy catalogue, we also apply the REDMAGIC selection al-

gorithm on the simulations using the same configuration as used in
the Y3 data.

4 SOMPZ METHODOLOGY

We aim to determine the redshift distribution n(z) of the weak lens-
ing galaxy sample, proportional to the probability p(z) of a galaxy
in that sample to be at a given redshift z, by reweighting the distri-
bution of redshifts of a sample with reliable redshift information in
a suitable way that prevents selection bias and reduces sample vari-
ance. A sample of galaxies with both well-constrained redshift and
deep photometry in several bands, and an additional, larger sample
of galaxies with deep photometry in the same set of bands provide
crucial information on how to accurately perform that weighting. In
this section, we provide details of the methodology and, in addition,
brief descriptions of the additional steps of DES Y3 redshift dis-
tribution calibration related to clustering redshifts (Gatti, Giannini
et al. 2020a), image simulations (MacCrann et al. 2020), and shear
ratios (Sanchez, Prat et al. 2020a).

4.1 Redshift Distribution Inference Formalism

Extracting the redshift information from deep, several-band pho-
tometry to estimate the redshift of an observed wide-field galaxy
amounts to marginalizing over deep photometric information
(Buchs et al. 2019). The probability distribution function for the
redshift of a galaxy, conditioned on observed wide-field colour-
magnitude & and covariance matrix £, and on passing a selection
function §, can be written by marginalizing over deep photometric
colour x as follows:

A

Pz, £, 8) = / dx p(z|x, %, £, 9)p(x|%, £, ). 1))

The large number of dimensions of the variables on the right-
hand side of Equation 1 make these probabilities unfeasible to eval-
uate directly. We instead must discretize the smooth colour and
colour-magnitude spaces spanned by x and (%, £) into categories
c and ¢. These ¢ and ¢, which we call cells, define a set of galaxy
photometric phenotypes (Sdnchez & Bernstein 2018; Buchs et al.
2019). While any of the many existing unsupervised classification
or clustering algorithms can be used to categorize galaxies in this
way, we use the Self-Organizing Map because it allows for a two-
dimensional representation of the data set whose continuity facili-
tates interpolation and easily interpretable visualizations (Kohonen
1982, 2001; Carrasco Kind & Brunner 2014; Greisel et al. 2015;
Masters et al. 2015). With this compressed information, we can
marginalize over deep-field information c to write the p(z) for the
ensemble of galaxies associated with a particular cell ¢ as:

p(2le,§) = Y p(ale.é.)p(elé, 9). @

After associating ¢ with tomographic bins according to a given
binning algorithm (discussed in detail in §4.3), the n(z) in each
tomographic bin b can be constructed by marginalizing over (i.e.
summing) the constituent cells ¢ € b of the tomographic bin:

p(alb,$) = Y p(alé, $)p(els.b) 3
eeb
= D 2, p(e e 9)p(elé. Hp(els. b). @
éeb ©
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Each galaxy is assigned to exactly one wide SOM cell and each
wide SOM cell ¢ is assigned to exactly one tomographic bin.

The redshift probability conditioned on both ¢ and ¢ is statisti-
cally difficult to estimate because very few galaxies will meet both
conditions simultaneously. In other words, because the number of
pairs (c, ¢) is so large, each pair will have very few, if any, galaxies.
However, under the assumption that the p(z) for galaxies assigned
to a given deep photometric cell ¢ should not depend sensitively on
the noisy wide photometry of that galaxy, we can relax the selection
condition ¢ to b (as in Equation 5) or remove this selection entirely
(as in Equation 6):

p(elb,8) ~ D" " plale. b, 9)p(clé, H)p(Els) )
eeb €

= > > ple, 8)p(clé, Hp(Els). ©)
éeb €

We use the approximations in Equations 5 and 6 for our fiducial
measurement on the Y3 weak lensing source catalogue. In particu-
lar, for each tomographic bin, we use Equation 5 when possible (i.e.
in cases for which at least one galaxy satisfies both ¢ and ), and
Equation 6 otherwise. For our tests on the equivalent simulated cat-
alogue, we use Equation 5 exclusively, discarding cases for which
there is no galaxy satisfying both ¢ and b. We illustrate each fac-
tor in this equation in Fig. 4 and show the fiducial Self-Organizing
Maps in Fig. 5. The validity and impact of these assumptions are
discussed in §5.1.1.

The terms in this equation are estimated from the following
different samples of galaxies:

(i) p(¢|8) is computed from our Wide Sample, which consists of
all galaxies in the DES Year 3 weak lensing source catalogue.

(ii) p(cl|é,$) is computed from our Deep and BALROG Samples,
which consist of all detected and selected BALROG realisations of the
galaxies in the Deep Sample. We call this term the transfer function.

(iii) p(zle, b, $) is computed from the Redshift Sample subset of
the Deep Sample, for which we have reliable redshifts, 8-band deep
photometry, and wide-field BALROG realisations. !

4.2 Weighting Redshift Distributions for Lensing Analyses

Under weak lensing shear v, the measured galaxy ellipticity trans-
forms as e — e + Ry with a shear response R. Average quantities
like mean tangential shear or two-point correlation functions are
thus implicitly weighted by R.

Additionally, each galaxy has an explicit lensing weight w
defined to reduce the variance of the measured shear (for more
detail, see Gatti & Sheldon et al., 2020b). When predicting any
shear signal, the n(z) must be weighted by the product of response
and explicit weight, R X w (see §3.3 in MacCrann et al. 2020 for
details and blending-related limitations of this approach).

4.2.1 Lensing Weighted Wide SOM Cell Occupation

The contribution of a wide cell ¢ to the lensing signal measured by
some selection § of galaxies needs to take into account the response
and lensing weights of individual galaxies in ¢. Thus, the weight

I This term could, in principle, be computed from the overlapping photom-
etry of the deep and wide fields, but is much more well sampled by making
use of BALROG.
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of wide SOM cell ¢ is computed with the following sum over all
galaxies i assigned to that cell:

Al wiR;
pld) =) ———. @)
; 2jesWiR;

4.2.2  Lensing Weighted p(z|c, b, 3)

In addition to the response and lensing weightings, each selected
galaxy in the BALROG Sample must be weighted by the number of
times it was detected, passed the selection §, and was assigned to
the same bin b; this weight must also be normalized by the number
of times Njy; it was injected with BaLroG.

The lensing weighted p(z) for a galaxy i in the Deep Sample
given its assignment to a deep cell ¢ and a wide bin b is:
plebos e > %”(Z) ®)

|~ i,inj
i€(c,b)

where the sum runs over BALROG realisations i of Redshift Sample
galaxies that are assigned to deep-field cell ¢ and tomographic bin
b, and p;(z) is either the spectroscopic or many-band photometric
redshift posterior for that galaxy.

4.2.3 Lensing Weighted Transfer Matrix

Finally, the lensing weighted transfer matrix p(c|é, ) is found by
similarly weighting the counts of (c, ¢) pairs among BALROG reali-
sations:

p(clé,§) = ———=. ©)

The respective sums over BALROG realisations i to compute the
numerator and denominator of this term are:

pe,éls) o " 8c.ci0e.e,wiRi /Ny ing (10)
i€s

p(Cl8) o Z de,0,WiRi [Nj jinj- (11)
ies

Note that the transfer function is computed from BALrOG real-
isations, not the full wide galaxy sample, since only for the former
are both wide-field and deep-field photometry available.

4.2.4  Smooth Response Weights

As a consequence of using response to weight on a per-galaxy
basis, the derived redshift distribution can carry the noise inherent
in the responses themselves. This may even generate a non-physical
negative distribution at some redshifts. To remedy this, the response
weights are smoothed over a grid of galaxy size and signal-to-
noise according to the treatment in MacCrann et al. (2020, see their
appendix D). As demonstrated there on the simulated sample, this
introduces an error in mean redshift (per tomographic bin) of the
order of |AZ| ~ 1073, By contrast, the effect of response weighting
overall is an order of magnitude larger at |AZ| ~ 0.01. Therefore,
we can conclude that the uncertainty introduced due to smoothing
the response weights is negligible with respect to the other effects
at play, and that the resulting redshift distributions benefit from the
reduced noise in response.



8 J. Myles, A. Alarcon et al.

Wide SOM

Tomographic Bin p(z)

Ag)

— plzlb=2)

~

Wide SOM Cell p(z)

~

p(z]é =109)

Deep SOM

Deep SOM Cell p(z)

s

=z,

=

=
=
S

T T T
050 0.75 1.00 1.25 1.50
Redshift

o
e
34

Figure 4. Visual representation of each term in the SOMPZ inference methodology. Top left: Wide SOM cells assigned to the second tomographic bin. Middle
left: Transfer Function p (c|é) for the selected wide SOM cell ¢. Lighter color indicates higher values of p(c|é), which corresponds to deep SOM cells with
a larger number of BALROG draws in the selected ¢. Bottom left: Three selected deep SOM cells ¢ with non-zero p(c|¢é). Different colors indicate different
deep SOM cells. Top right: The redshift distribution of a tomographic bin. Middle right: One wide SOM cell in that bin. Bottom right: Three deep SOM cells

associated with the highlighted wide SOM cell.

4.3 Construction of Tomographic Bins

Once galaxies have been categorized into phenotypes based on
their photometric observations, we construct tomographic bins and
assign each phenotype ¢ to a bin. For our fiducial result, we construct
these bins according to the following procedure:

(i) To construct a set of n tomographic bins b, begin with an
arbitrary set of n + 1 bin edge values ¢;.

(ii) Assign each galaxy in the Redshift Sample to the tomo-
graphic bin b in which the best-estimate median redshift value of
its p(z) (or its spectroscopic redshift z) falls. This yields an inte-

gral number of galaxies N, spec, (¢,5) satisfying the dual condition

of membership in a wide SOM cell ¢ and a tomographic bin b.

This can be written as a sum over BALROG realizations i of redshift
galaxies:

Nspec,(é,l;) = Z 65»51' 61;,13,— : (12)
i

(iii) Assign each wide cell ¢ to the bin b to which a plurality of
its constituent Redshift Sample galaxies are assigned:

b= {6|arg1}1astpeC’(é’5)}. (13)
b

(iv) Adjust the edge values e; post hoc such that the numbers
of galaxies in each tomographic bin b are approximately equal and
repeat the procedure from step (ii) with the final edges e.

This procedure yields bin edges of [0.0, 0.358, 0.631, 0.872, 2.0]
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Figure 5. Visualization of the wide (top panel) and deep (bottom panel) field Self-Organizing Maps. Shown here are the total number of unique galaxies
assigned to each SOM (left), the mean redshift of each cell (middle), and the standard deviation of the redshift distribution of each cell (right). White cells in
the deep SOM are parts of color space for which there are no galaxies in the COSM0S2015 sample.

for the Y3 weak lensing source catalogue. As an inconsequential
result of the slight differences in the Y3 source galaxy catalogue and
the simulated equivalent, the bin edges in the equivalent Buzzarp
catalogue are [0.0, 0.346, 0.628, 0.832, 2.0].

4.4 Clustering redshift information

Fully independent information on the redshift distribution of the
tomographic bins of our source sample is provided by its angular
cross-correlation with galaxy samples of known redshift (Newman
2008; Ménard et al. 2013). Previous experiments have used this
type of information to validate and/or further constrain the mean
redshift of their sources (e.g. Hildebrandt et al. 2017; Davis et al.
2017; Hildebrandt et al. 2020a). A dominant confounding factor
in this approach is the redshift evolution, within the tomographic
bin, of the clustering bias of the source galaxies, which is highly
degenerate with the mean redshift of a tomographic bin (e.g. Gatti
et al. 2018; van den Busch et al. 2020).

The full description of the DES Y3 source galaxy clustering
redshift analysis is given by Gatti, Giannini et al. (2020a). In brief, as
reference galaxies we use the combination of redMaGiC luminous
red galaxies with high quality photometric redshifts (Rozo et al.
2016; Rodriguez-Monroy et al. 2020) and spectroscopic galaxies
from BOSS and eBOSS (Smee et al. 2013; Dawson et al. 2013,
2016; Ahumada et al. 2019) where they overlap the DES survey
area.

There are two ways in which the clustering redshift data is
used to validate and inform the redshift calibration. From compar-
ing the clustering signal to the signal expected for a fiducial redshift
distribution within a redshift range where the former exists, and
assuming that clustering bias is constant as a function of source
redshift, one can determine the best shift Az of the fiducial redshift

MNRAS 000, 1-29 (2020)

distribution and compare it to zero within its statistical and sys-
tematic uncertainty. This first method is only used as cross-check
to validate the photometric estimate of n(z). Alternatively, one can
include the clustering redshift information in a likelihood analysis,
jointly with sample variance and shot noise, that returns samples
of probable redshift distributions, while marginalizing over a flexi-
ble model of source clustering bias redshift evolution. This second
method is used to generate the ensemble of redshift distributions in
this paper (see § 5.1.1 and § D5), and it is shown to vastly improve
the accuracy of the shape of n(z) derived from photometric data
alone. For details of both approaches, we refer the reader to Gatti,
Giannini et al. (2020a).

4.5 Image simulations and the effect of blending

The calibration as described thus far is aimed at recovering the
distribution of redshifts of the dominant galaxies associated with an
ensemble of detections in the DES Y3 METACALIBRATION catalogue,
weighted by the individual detections’ shear response. However,
the measurement of a detection’s shape commonly depends not
just on the shear of the dominant associated galaxy, but also on
the shear applied to galaxies blended with it. As MacCrann et al.
(2020) show, this leads to significant response to the shear of light
at other redshifts. This is best accounted for by a modification of
the redshift distribution to be used for predicting lensing signals.
In MacCrann et al. (2020), such a modification is derived for the
DES Y3 source galaxy bins defined here. This modification reduces
the mean redshift of the bins (see §2) and is calibrated with an
uncertainty shown in Table 2.

We note that this correction to the n(z) calibrated by photom-
etry and clustering is expected to have non-zero shifts on the mean
redshift in each tomographic bin. Additionally, several aspects of our
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photometric calibration strategy are validated in image simulations
(see MacCrann et al. 2020, e.g. recovered true redshift distributions
and their appendix D).

4.6 Shear ratio information

For physically separated pairs of a gravitational lens with sources
from two bins, the ratio of the shear signals is indicative of the
redshift distributions of the sources for fixed parameters of the cos-
mological model. In the DES Y3 lensing analyses, we use this infor-
mation as an additional term in the likelihood of the lensing signals.
We provide a brief summary here and refer readers to Sdnchez, Prat
et al. (2020a) for details of the methodology.

Gravitational shear signals on small to moderate scales are
calculated for the source bins defined here around samples of red-
MaGiC lens galaxies. The ratio of these signals between pairs of
source bins is used as the data over which likelihoods are calculated.
The use of a ratio removes sensitivity of the measured shear sig-
nal to the mean matter overdensity profile around the lens galaxies
but magnification, intrinsic alignments of sources relative to physi-
cally nearby lenses, and a mild dependence of the geometric shear
ratio to cosmology require the likelihood to be evaluated along-
side the cosmological and nuisance parameters of the Y3 lensing
analyses. The shear ratio information provides constraints on this
multi-dimensional parameter space in addition to, and somewhat
degenerate with, the source redshift information.

For consistency tests in this paper, we use constraints from a
shear-ratio-only chain to judge the consistency of the n(z)s with the
lensing signals, from a free parameter with flat prior for the shift of
the fiducial redshift distribution, at fixed cosmological parameters
(see Sanchez, Prat et al. 2020a, for details). Note that for the reasons
described in § 4.5, perfect agreement of the shear ratio constraint
and the redshift distribution derived by means of photometry and
clustering is not expected.

5 CHARACTERIZATION OF SOURCES OF
UNCERTAINTY IN PHOTOMETRIC N(Z)

In this section we will characterize the uncertainties in our mea-
surement of redshift distributions from galaxy photometry. In brief,
our method consists in using secure redshifts to determine p(z) in
8-band colour-space, and using the DES deep fields to determine
the abundance of galaxies in 8-band color-space in the 3-band mag-
nitude and colour-space of the lensing source galaxy sample. As a
result, we must incorporate uncertainties in the redshifts used and in
the estimated abundances of galaxies in each region of colour-space.
The fully enumerated list of contributing sources of uncertainty is
thus:

(i) Sample Variance: fluctuations in the underlying matter den-
sity field determine the abundance of observed deep field galaxies
of a given 8-band colour and at a given redshift (§5.1)

(i) Shot Noise: shot noise in the counts of deep field galaxies of
a given 8-band colour and at a given redshift (§5.1)

(iii) Redshift Sample Uncertainty: biases in the redshifts of the
secure redshift galaxy samples used (§5.2)

(iv) Photometric Calibration Uncertainty: uncertainty in the 8-
band colour of deep field galaxies (§5.3)

(v) BALROG uncertainty: imperfections in the procedure of sim-
ulating the wide field photometry of deep field galaxies (§5.4)

(vi) SOMPZ Method Uncertainty: bias in the estimated redshift
distributions relative to truth inherent to the methodology (§5.5)

‘We now turn to developing the formalism necessary to describe
each of these uncertainties and how they affect our measured n(z).
Our ultimate goal is to characterize the uncertainty in our
estimation of the redshift distribution of each tomographic bin
p(z]b, ). It is useful to rewrite this probability (following Equa-
tion 5 and Equation 9) explicitly as a function of the four galaxy
samples involved in its estimation:
b~ S peele) pe) 2 ey, (14)
EE[; C ~——— P(C)P(C) N——
Redshift Deep ’ Wide
Balrog
where the right-hand-side terms are implicitly conditioned on the
selections b, § (not shown in Equation 14 for clarity). Note that the
BaLroc Sample does not inform the marginal distributions of either
the deep nor the wide SOM cells, i.e. the BALROG Sample is not
used to compute p(c) or p(¢é).

First, there is uncertainty because the galaxy samples involved
are finite in both number and area. The finite area and size of the
Redshift and Deep samples introduce shot noise and sample vari-
ance, which we model analytically, as explained in § 5.1. Moreover,
as mentioned in § 4.1, the current finite size of the combined Red-
shift and BaALroG Samples makes it difficult to empirically estimate
p(z]c, €) for all (c, ¢) pairs, so we implement an approximate es-
timate for this term (Equations 5 & 6). We describe and explore
the effects of this approximation on the n(z) in § 5.1.1, where we
validate the methodology using simulated mock catalogues.

Second, the z values of the Redshift Sample carry uncertainty.
In § 5.2 we compare the redshift information that we have available
from different sources in the deep fields (from spectroscopy and
many-band photometry) and discuss the limitations of each. Third,
the cell assignments are stochastic and thus their rate estimates
are subject to shot noise as well as systematic biases. In § 5.4 we
test the robustness of the BALROG transfer function against variable
observing conditions across the footprint and by comparing to an
alternative transfer function estimated directly with actual wide and
deep photometry. Finally, in § 5.3 we examine the photometric zero-
point uncertainty across the deep fields which introduces noise in
the deep field colours, and we describe the method used to propagate
that noise to each estimated p(z|f), §).

5.1 Sample Variance and Shot Noise

The SOMPZ Bayesian formalism described in § 4.1 makes it very
explicit how we estimate the redshift distribution of our four source
weak lensing tomographic bins. As highlighted by Equation 14,
we use the sample with the best statistics to infer each particular
probability that is needed to determine the n(z). Therefore, quanti-
fying the n(z) uncertainty means describing the limitations of each
sample at determining each of these probabilities.

In this subsection we discuss some of the limitations of the
Redshift and Deep Sample in estimating the redshift and color
probability p(z, ¢). Common limitations in redshift calibration sam-
ples are: shot noise due to finite sample size; sample variance due
to large scale structure fluctuations; photometric selection effects;
photometric calibration errors; spectroscopic selection effects and
incompleteness; and photometric redshift errors. We explore sys-
tematic errors due to spectroscopic redshift biases or photometric
redshift biases in § 5.2, and discuss errors in the deep field photo-
metric zero-point calibration in § 5.3. We match the photometric

MNRAS 000, 1-29 (2020)



selection effects from the wide field by injecting deep field galax-
ies into wide-field images using BaLroG (Everett et al. 2020) and
calculating the rate at which deep field galaxies would be detected
and selected for the weak lensing sample. Since the deep fields are
~ 1.5 magnitudes deeper than the wide field (Hartley, Choi et al.
2020a), deep-field depth variations are negligible.

Here we focus on how to estimate the shot noise and sample
variance uncertainty in our deep-field samples. Typically this has
been achieved by performing the same redshift estimation analysis
on mocked realisations of the redshift calibration samples at differ-
ent line-of-sight positions. Then, the variance and correlations in
the mean redshift of the tomographic bin rn(z) are obtained from the
variations across simulated versions of the data (e.g. Hildebrandt
etal. 2017, 2020a; Hoyle et al. 2018; Buchs et al. 2019; Wright et al.
2020a). While we also run all methods in multiple simulated deep
field realisations (§ 5.1.1), we do so as a validation and to verify
if there are any remaining systematic uncertainties intrinsic to the
methods themselves, but not to get an estimate of sample variance
for real data. Instead, we build an analytical model of sample vari-
ance that predicts the distribution of the redshift-colour distribution
in the deep fields given the data that we have observed, i.e. we write
the distribution of a distribution: P(p(z, c)|data). Given this, one
can propagate this distribution of uncertainties with Equation 14
and calculate the distribution of plausible n(z) shapes allowed by
sample variance and shot noise.

To analytically model sample variance we use a model involv-
ing three-step Dirichlet sampling, labelled 3sDir in this work. This
approximate model of sample variance was introduced in Sdnchez
et al. (2020b), and is the product of three independent Dirichlet dis-
tributions. Sanchez et al. (2020b) showed in simulations that 3sDir
predicted well the levels of uncertainty due to sample variance and
shot noise in the first two moments of the n(z) for a non-tomographic
galaxy sample. We explore its performance at describing the sample
variance of our four tomographic bins using the Buzzard simula-

tions and discuss the results in § 5.1.1. We give extensive technical
details of the model’s mathematical formalism and application to
DES Y3 in Appendix D.

In short, the 3sDir model describes the probability that galax-
ies belong to a redshift bin z and colour phenotype ¢, given that
a number of galaxies have been observed to be at redshift bin z
and colour phenotype c. We describe the probability in redshift and
deep color p(z,c¢) with a finite set of coefficients {f;.} indicat-
ing the probability in redshift bin z and color phenotype ¢, where
2zcJze = land 0 < fzc < 1. If each Redshift Sample galaxy
were representative and independently drawn, then a Dirichlet dis-
tribution parameterized by the Redshift Sample counts N, would
fully characterize p({fzc}). Sample variance correlates the red-
shifts, however, and the more complex 3sDir model incorporates
this, i.e. p({fzc}H{Nzc¢}) = 3sDir.

5.1.1 Methodology Validation

In order to validate the methodology we use the suite of Buzzarp
simulations (§ 3.4), where we simulate the DES Y3 Wide, Deep,
BaLrog and Redshift Samples. First, we want to test the accuracy
of the SOMPZ methodology in estimating the wide field n(z) using
the 8-band colour and complete redshift information available in
the DES deep fields, in the same spirit as the Buchs et al. (2019)
and Wright et al. (2020a) analyses. Secondly, we want to test the
accuracy of the 3sDir method in describing the sample variance un-
certainty in the estimated n(z) within the SOMPZ framework. Buchs
et al. (2019) validated the SOMPZ methodology in the context of
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DES, but here we use a more realistic set of simulated samples, and
we also introduce ‘bin conditionalization’ (see Equation 5), which
reduces the intrinsic bias in mean redshift of the estimated n(z).
Sénchez et al. (2020b) validated the 3sDir method but in a different
context: for a non-tomographic sample with a different selection
than the DES Y3 source sample, where all galaxies in the deep
fields had redshift information, and without a transfer function to
reweight the colours in the deep field.

The effect of sample variance in our estimated n(z) is of partic-
ular interest. To this end we generate 300 versions of the four DES
Deep Samples (where one of the four has perfect redshift infor-
mation) at different random line-of-sight positions in the Buzzarp
simulations. For each of the 300 realisations of the deep fields, we
run the SOMPZ algorithm and we obtain a n(z) estimate for each
tomographic bin by fixing the probabilities to the observed redshift
and colour phenotype number counts. Fig. 6 shows the 300 n(z)s
estimated by SOMPZ for each tomographic bin (light solid lines),
together with their average (dark dashed lines) and the true wide
field n(z) in the simulation (dark solid lines with colour). We find
the average simulated n(z) to be extremely close to the truth. For
comparison, we show the estimated n(z) from data (grey dashed
lines), which shows a reasonable agreement to the simulated ones.
Note that the averaged n(z) in simulations looks much more smooth
than that from data as we are averaging out sample variance, while
the n(z) from data corresponds to a single realisation observed in
the DES deep fields, which is affected by sample variance. In ad-
dition, to test the performance of the 3sDir method, we calculate
multiple samples of n(z) in each Buzzarp realisation by drawing
from the 3sDir likelihood; with the range of n(z) samples spanning
the sample variance uncertainty allowed by the 3sDir model in the
redshift-colour probability.

‘We show technical details and specific figures of the methods
validation in Appendix E, and highlight the main findings here.
We find the average mean redshift (average Z or (Z)) across the
300 Buzzard realisations to be consistent between the SOMPZ and
3sDir methods. However, when compared to the truth we find a
residual offset of A; = [0.0051, 0.0024, —0.0013, —0.0024] in each
bin, where A, = (zSOMPZy _ ztrue,

We take this nonzero offset as a systematic error intrinsic to
the method and due to the assumption of bin conditionalization
(Equation 5); we describe how we propagate this uncertainty in
§5.5.

Using the 3sDir model one can compute, in each Buzzard
realisation, a distribution of mean redshift values, or Z, with the
values allowed by sample variance and shot noise uncertainty. We
find the expected value of that distribution to be unbiased with the
mean redshift value from SOMPZ in individual Buzzarp realisa-
tions, and in each tomographic bin. We also compare the width of
the 7 distribution from 3sDir in each Buzzard realisation, and the
width across the 300 zZ from SOMPZ in all realisations. We find the
width predicted by 3sDir to be within 10 per cent from the width
estimated with SOMPZ in the 3 lower redshift tomographic bins,
but 50 per cent wider in the last tomographic bin. This is a feature of
the 3sDir model, which gives an unbiased likelihood at the expense
of slightly underestimating the uncertainty due to sample variance
at lower redshifts, and overestimating it at higher redshifts.

We have taken great care to validate that 3sDir provides a
likelihood of n(z) whose mean redshift is fully compatible with the
mean redshift from SOMPZ. The mean redshift serves as the lead-
ing order statistic of the n(z) affecting the cosmological constraints
of cosmic shear analysis, and historically the n(z) has been param-
eterized with a fiducial n(z) fixed from galaxy counts and a shift
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Figure 6. Estimated n(z) in four tomographic bins from the Buzzarp simulations using an ensemble of 300 different sets of deep fields on the Buzzarp sky
(colourful fine dashed lines). The similarity of the mean of the estimated n(z) (colourful broad dashed lines) relative to the truth (colour broad solid lines) is
a basic illustrative validation of the method. The Redshift Sample used here has 100000 galaxies drawn from 1.38 deg?, the Deep Sample in each realisation
is drawn from three fields of size 3.32, 3.29, and 1.94 deg?, respectively from the Buzzarp simulated sky catalogue. The variation in estimated 7 (z) reflects
the uncertainty of the SOMPZ method primarily due to sample variance in the deep fields. The similarity of the n(z) from simulations to the fiducial result in
data (gray broad dashed line) reflects the similarity of the simulated catalogue to the data.

parameter incorporating the uncertainty information (e.g. Bonnett
etal. 2016; Hoyle et al. 2018; Troxel et al. 2018; Tanaka et al. 2018;
Wright et al. 2020a,b; Hildebrandt et al. 2020a). However, here we
present a change of paradigm and write a full likelihood function
for the redshift distribution. Therefore, we want to make sure that no
intrinsic biases are introduced in Z with respect to the mean redshift
of the SOMPZ methodology. There are a number of advantages to
preferring a full likelihood function to a fixed n(z) with a shift to
its mean: it more accurately represents our uncertainty from pho-
tometry and the redshift-colour relation, it propagates higher order
moment uncertainties of the redshift distribution, and it is more
suitable to be combined with other sources of redshift information
like clustering redshifts. As shown in van den Busch et al. (2020)
and Hildebrandt et al. (2020a), combining a clustering redshift like-
lihood function with a fixed n(z) from photometry parametrized
with a shift can introduce a bias in the values of the shift parameter
when the n(z) is inaccurate. However, having a full likelihood over
n(z) presents the full set of possible n(z) distributions spanning

our uncertainty from photometry, with variable shapes, which can
be combined, for example, with a clustering redshifts likelihood
function.

In order to combine the 3sDir likelihood with a clustering
redshifts (or WZ) likelihood, one can draw 3sDir n(z) samples
and importance sample them by the value of their WZ likelihood
with each n(z) draw. Even though drawing from 3sDir is very fast,
this is an extremely inefficient process as the drawn n(z) samples
very often contain sample variance fluctuations that deliver a low
WZ likelihood. By contrast, a Hamiltonian Monte-Carlo (HMC)
sampler has the ability to draw from the joint combination of both
likelihoods and, although drawing individual samples is slower,
sampling the joint space becomes much more efficient and fast. We
have defined a modified version of the 3sDir likelihood that we
use in a HMC chain to sample together with the WZ likelihood.
For further details on this HMC chain, see Bernstein (2020). This
modified likelihood, or 3sDiIr-MFWZ, is defined in Appendix D5,
and is by construction more sensitive to sample variance. In short,
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it is using less information of the colour distribution observed in the
deep fields. As a result, the width of Z values from 3sDir-MFWZ
is larger in all redshift bins — [78, 31,23, 39] per cent larger than
3sDir in each bin, respectively (see Appendix E for further details).

5.2 Redshift Sample Uncertainty

If all galaxies with redshift information were selected independently
and representatively from the source population, with no system-
atic uncertainties on z, then we could simply merge them all into
a single sample regardless of their origin. In reality, we have over-
lapping redshift information from several surveys, each with unique
selection criteria and biases, as described in § 3.3. We label the
different redshift surveys (or combinations thereof) with R. There
are different ways that we could combine information from multiple
surveys. One limit is to state that one combination R is correct, but
we only have some prior guess p(R) about which one it is. Sampling
the Bayesian posterior for n(z) under this assumption is simple: we
simply produce samples of f;. from each survey independently by
the methods of the previous subsections; and then make a final set
of samples for which a fraction p(R) comes from each survey. In
our case we do not know that any of R is correct, but we none the
less execute this marginalization over R under the principle that it
is still likely to now contain the truth and also span the range of un-
certainty that we have from our ignorance of the quantitative errors
in different surveys.

As each of P=PAUS+C0OSMOS, C=C0SM0S2015, S=SPEC do
not span the same region of colour space (or deep SOM cells c),
as detailed in § 3.3, we define three redshift samples (SPC, PC,
SC) to maximize the completeness of the redshift coverage in any
sample by combining information from different sources, but as a
consequence the different samples also become correlated. We still
sample them separately, assigning them an equal prior probability,
p(R) = % We note that for those cells ¢ that only have redshift
information from one catalogue, we assume that information to
be correct. Although the spectroscopic samples SPEC technically
span a larger area than the COSMOS field, and are therefore not
completed by photometric data outside this area, they are comprised
of several catalogues with different selection functions in redshift
and different footprints. For simplicity, we use a sample variance
theory prediction which assumes an area equal to the COSMOS
area in all redshift samples, which is a conservative approach.

Both COSM0S2015 and PAUS+COSMOS multi-band photometric
redshift catalogues report an individual redshift function g(z) for
each galaxy, which is not a proper posterior, but a marginalized
likelihood function for different templates of galaxies. If the full
likelihood of redshift, templates, and ¢ were known, one could
simultaneously and hierarchically infer the underlying f;. and the
redshift posterior for each galaxy (note that f;. is at the same time
the prior for each galaxy). However, we have found that the width
of these ¢(z) is so small compared to the redshift resolution that
we have with the DES riz bands that the SOMPZ mean redshift
changes by less than 1073 in all tomographic bins if we treat g(z)
as a delta function centred at the mode of the distribution. This is
also a much smaller effect than both the uncertainty from different
redshift samples R and that from sample variance, so we decide
to completely neglect it and treat g(z) as a delta function when
generating the 3sDir f;. samples.

Fig. 7 shows the distribution of mean redshift values predicted
by 3sDir-MFWZ for each of the samples SPC, PC, SC; which we
find to be generally in agreement. We find a lower mean redshift for
samples coming from SC, while samples from SPC and PC agree
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Figure 7. The distribution of mean redshift values z from 3sDir-MFWZ
for each of the three redshift samples — SPC, PC and SC- on real data.
We assume that their combination (shown as black histograms) contains the
truth and also spans the range of uncertainty that we have from biases of the
redshift samples.

very well with each other. This is in agreement with Alarcon et al.
(2020a), which finds PAUS+COSMOS to be unbiased compared to
spectra, but finds COSM0S2015 to be systematically biased towards
lower redshifts.

The small differences between SPC and PC (Fig. 7 and 8)
show that our best photometric redshift and spectroscopic redshift
information produce n(z) samples that are largely in agreement.
We check for additional robustness using the SPC-MB sample, to
test the impact of the faintest galaxies whose redshift information is
dominated by C. We find the Z shift between SPC-MB and SPC to be
smaller than ~ 0.006, adding confidence that our faintest galaxies,
for which we do not have redundant redshift information, are not
significantly biasing our mean redshift. This test is limited in that the
applied bias as a function of magnitude (described in §3) is inferred
from the available overlap between S, P and C, which is limited
for faint galaxies. Fig. 8 shows the difference in z values between
several samples: SPC, PC, SC, C, SPC-MB; and the average 7 value
of SPC, PC and SC. The size of the offset in mean redshift due
to using these different underlying redshift samples, as shown in
Fig. 8, illustrates the value of additional follow-up spectroscopic
and narrow-band photometric observational campaigns. As shown
in Fig. 10, this uncertainty is a significant contributor to our overall
error budget, however we find a smaller uncertainty due to this
effect than Joudaki et al. (2019), who report mean offsets due to
varying the redshift sample of [0.014, —0.053, —0.020, —0.035] (see
their table 1) in a reanalysis of the Dark Energy Survey’s Year
1 analysis Hoyle et al. (2018). We attribute these differences to
uncertainty on their method when applied to few-band data, as
indicated by systematic offsets of 0.01-0.03 found in their MICE2
simulated analysis (see their appendix), with spectroscopic selection
effects primarily responsible. In this work, we mitigate these with the
inclusion of multi-band data from the Deep Fields and by creating
redshift samples that are complete. The use of a larger number of
bands on its own is likely to significantly reduce the systematic error
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Figure 8. Mean redshift difference A_ in each tomographic bin for each
Redshift Sample being tested: SPC, SC, PC, SPC-MB, C, relative to the
average mean redshift of SPC, SC and PC. Spectroscopic catalogues are
labelled as S, the PAUS+COSMOS catalogue as P and the COSM0S2015 as C.
SPC, SC and PC (solid lines) are the three redshift samples used in this
work. SPC-MB shows the effect of extrapolating the bias between S and C
to all galaxies that are still using redshift information from C in SPC (mainly
faint galaxies) (see section 3.3 for a definition of the different samples used
in this figure). The mean redshift is obtained by computing the n(z) with
SOMPZ using each sample.

due to spectroscopic selection effects (Masters et al. 2015; Gruen
& Brimioulle 2017; Wright et al. 2020a).

5.3 Photometric Calibration Uncertainty

We now turn to testing the sensitivity of our measured n(z) to the
uncertainty in the photometric zero-points of the deep fields.

These are uncertain in large part due to field-to-field variations
in photometry (for more detail see §6.4 of Hartley, Choi et al.
2020a). Consistent colours across the four deep fields to assign
galaxies to deep SOM cells ¢, and to set the fluxes of their artificial
wide field renderings in the BALROG procedure, are assumed by our
SOMPZ formalism. We must propagate this uncertainty into our
resulting n(z).

We draw samples of deep-field magnitude zeropoint offsets
from a Gaussian with standard deviation equal to the photometric
zero point uncertainty in the Y3 deep fields catalogue in the rel-
evant band as measured by Hartley, Choi et al. (2020a). For each
zeropoint-error realization, we perturb all magnitudes in the mock
BaLrog catalogue with these zeropints and rerun the SOMPZ pro-
cedures to generate a perturbed n(z). In this way we generate a
full ensemble of n(z)s reflecting the uncertainty of our redshift
calibration due to the photometric calibration.

It then remains to transfer the variation among the n(z)s in this
simulation-based ensemble to a corresponding data-based ensemble
of n(z) distributions. We implement a novel application of Proba-
bility Integral Transforms (PITs) to achieve this. This PIT method
transfers the variation encoded in the ensemble from simulated 7n(z)
(ensemble A) to our fiducial data result to ultimately yield a second
ensemble (ensemble B). In brief, we achieve this by transferring
the difference between the values of the quantile function of each
realisation. For the details of this implementation, see Appendix C.
The impact of this source of uncertainty is shown in Fig. 9 and 10
and documented in Table 2.

5.4 BaLrog Uncertainty

Recall that we use the BALROG software (see § 3.2) to empirically
estimate the relation between wide and deep field colours, p29 (c, é).
The marginal distributions pB (¢) and pB (¢) from BALROG are not
important, (they are measured from the Deep and Wide Samples),
but the transfer function, pZ (c, &)/ (pZ(c)pB (&), is a potentially
important source of uncertainty. The probability of observing cer-
tain wide colours ¢ given deep colours ¢ depends in general on
the observing conditions present in the wide field. Observing con-
ditions vary across the DES Y3 wide-field footprint, but for our
cosmic shear analysis we are interested in the average n(z) across
the footprint. Since BALROG injects galaxies with tiles placed at ran-
dom across the DES Y3 wide-field footprint (covering about ~ 20
per cent of it), we are fairly sampling the distribution of observing
conditions present in the wide field.

To verify that the average transfer function from BALROG is
well-estimated, we bootstrap the BALROG galaxies by their injected
position in the wide field. First, we create 100 subsamples by group-
ing the injected position using the KMEANS_RADEC? software. Then,
we draw the same number of subsamples with replacement, use them
to recompute the average transfer function and calculate the SOMPZ
n(z). We repeat this process 1000 times and find the dispersion in
mean redshift to be smaller than 10~3 in all tomographic bins.
Therefore, we conclude that the internal noise in the average BAL-
ROG transfer function is negligible, and consider fczz =N ﬁ /N® to

be true (with fcfz from Equation D2).

Three of the DES deep fields (C3, E2, X3) overlap with the
DES Y3 wide field, which we can use to construct a galaxy sam-
ple of position-matched wide-deep photometry pairs. We refer to
this galaxy sample as wipe-pEEP. We can empirically estimate the
transfer function using the deep and wide colours observed in this
catalogue. We do not use this transfer function for our fiducial result
because it is computed from one realisation of the deep and wide
mapping that happens with the particular wide-field observing con-
ditions found in the deep fields, which are a much smaller area than
the overall wide-field footprint. However, we can compare the BAL-
rROG and WIDE-DEEP transfer functions and their impact on the mean
redshift to see if they are reasonably in agreement, subject to the
limitations just mentioned.

For this test, we estimate the BALrROG transfer function us-
ing only injected deep field galaxies that are also present in the
WwIDE-DEEP Sample. We can simulate the uncertainty due to vary-
ing observing conditions of the wiDE-DEEP transfer function using
BALRrROG subsamples similar to the wipe-pEep Sample. However,
BaLroG galaxies are injected at one-fifth of the density of real
galaxies, so we can either reproduce a wipe-Deep-like Sample with
the same number of objects and five times the area, or the same area
but one fifth of the number of objects. The uncertainty of the first
will be smaller than the real uncertainty of the wipe-DEEP, while
the uncertainty of the second case would be larger. We choose the
former, which yields a lower limit on the uncertainty due to variable
observing conditions.

We find the difference in mean redshift Az between using the
BALROG or the wiDE-DEEP transfer functions to be within ~ 20z of
the distribution of simulated wipe-pEEP Samples: (Az +05) x 103 =
[-2.8 £ 1.8; 3.6 + 1.4; 3.1 £ 1.4; 8.2 + 4.8]. Since the estimated
value of 0 is a lower limit, we conclude the difference is consistent
with the expected variance from observing conditions.

2 https://github.com/esheldon/kmeans_radec
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Figure 9. Mean redshifts of each tomographic bin for each of the fiducial redshift samples at each stage of the analysis. Vertical dotted lines indicate the mean
redshift in each bin from the n(z) output of SOMPZ, given a particular Redshift Sample. The horizontal intervals indicate the 68 per cent confidence intervals
on the mean as estimated according to the methods described in §5, some of which shift the mean redshift. The larger uncertainty on the mean from the SOMPZ
+WZ ensemble relative to the SOMPZ ensemble can be attributed to the different sample variance model used to combine SOMPZ with WZ (3sDir-MFWZ,
rather than 3sDIR, see §D5). For details on the modification to incorporate the effect of blending as measured by image simulations see MacCrann et al. (2020).

5.5 SOMPZ Method Uncertainty

As shown in § 5.1.1, we find an intrinsic error on the mean redshift
predicted by SOMPZ when we compare it to the true mean redshift
across 300 Buzzarp realisations. This inherent method uncertainty,
like our zero-point calibration uncertainty, is incorporated into our
n(z) ensemble using the PIT method, albeit in a much simpler way:
we can incorporate this uncertainty by shifting each probability
integral transform by a value drawn from a Gaussian with zero
mean and a standard deviation equal to the root-mean-square of
these mean offset values, 0.003.

We note that this ensemble is made with an assignment of
wide SOM cells to tomographic bins that is fixed for all realiza-
tions. Additionally, this method uncertainty is necessarily produced
from runs with finite sample sizes, meaning there is some statistical
contribution to the resulting estimate of systematic uncertainty.

5.6 Summary of sources of uncertainty

In summary, we incorporate uncertainties due to the following
sources into a final ensemble of redshift distributions. These re-
sults are summarized in Table 2 and illustrated visually in Fig. 9
and 10. We note that the individual contributing sources of uncer-
tainty do not combine linearly. We report our best estimate of the
uncertainty due to each factor considered in this section in Table 2,
but note that the combined uncertainty is less than the quadrature
sum of these individual approximations. Fig. 10 illustrates the rela-
tive magnitude of each source of uncertainty for each bin, and the
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relative importance of each source of uncertainty as a function of
redshift.

(i) Sample Variance: This uncertainty is estimated and incorpo-
rated into our result as part of the 3sDir formalism. This uncertainty
is a main contributor to the uncertainty budget in all of our tomo-
graphic bins.

(i) Shot Noise: This uncertainty is estimated and incorporated
into our result as part of the 3sDir formalism.

(iii) Redshift Sample Uncertainty: This uncertainty is estimated
by performing our inference with multiple different underlying red-
shift samples, and marginalizing over these choices by compiling
their resultant n(z) samples into a single ensemble. The uncertainty
added by this marginalization is non-negligible in the third and
fourth tomographic bins and dominant in the third tomographic bin.

(iv) Photometric Calibration Uncertainty: This uncertainty is es-
timated by running many times in simulations with offsets intro-
duced to the galaxy photometry, and is incorporated into our result
using PIT. This uncertainty is non-negligible in the first tomographic
bin.

(v) BaLroc Uncertainty: This uncertainty is estimated by replac-
ing the transfer function p(c|¢) with an equivalent term estimated
directly from galaxies for which we have independent deep and wide
photometry, rather than using BALroG. This uncertainty is found to
be negligible in all bins and is thus not propagated into our final
resulting ensemble.

(vi) SOMPZ method uncertainty: This uncertainty is estimated
by running many times in simulations, and is incorporated into
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Bin 1 Bin 2 Bin 3 Bin 4
ZP7 range 0.0—0.358 0.358—0.631  0.631—0.872  0.872—2.0
(z) SOMPZ 0.332 0.520 0.750 0.944
(z) SOMPZ + WZ 0.339 0.528 0.752 0.952
Effective (z) SOMPZ + WZ + Blending ? 0.336 0.521 0.741 0.935
Effective (z) SOMPZ + WZ + SR + Blending ® 0.343 0.521 0.742 0.964
Uncertainty Method
Shot Noise & Sample Variance 3sDir 0.006 0.005 0.004 0.006
Redshift Sample Uncertainty Sampling 0.003 0.004 0.006 0.006
BavLroc Uncertainty None <0.001 <0.001 <0.001 <0.001
Photometric Calibration Uncertainty PIT 0.010 0.005 0.002 0.002
Inherent SOMPZ Method Uncertainty PIT 0.003 0.003 0.003 0.003
Combined Uncertainty: SOMPZ (from 3sDir) - 0.012 0.008 0.006 0.009
Shot Noise & Sample Variance 3sDir MFWZ 0.011 0.007 0.005 0.010
Combined Uncertainty: SOMPZ (from 3sDir-MFWZ) - 0.015 0.010 0.007 0.012
Combined Uncertainty: SOMPZ + WZ - 0.016 0.012 0.006 0.015
Effective Combined Uncertainty: SOMPZ + WZ + Blending ? - 0.018 0.015 0.011 0.017
Effective Combined Uncertainty: SOMPZ + WZ + SR + Blending ° - 0.015 0.011 0.008 0.015

2 These values correspond to the n(z) prior used in subsequent cosmological analyses.
Y These values correspond to the n1(z) posterior from a SR-only chain with fixed cosmology parameters. SR information is included in the cosmology

analysis as an additional modelled data vector (see §4.6 for more details).

Table 2. Values of and approximate error contributions to the mean redshift of each tomographic bin at each stage of the analysis. We find that Sample Variance
in the deep fields is the greatest contributor to our overall uncertainty for our fiducial result. The Shot Noise & Sample Variance term here is computed with the
SPC sample. At low redshifts, the photometric calibration uncertainty is also significant, motivating improved work on the deep field photometric calibration.
As expected, the uncertainty due to choice in Redshift Sample is a leading source of uncertainty for the third and fourth bins, motivating follow-up spectroscopic
and narrow-band photometric observations. Note, the uncertainties combine non-linearly, so the combined uncertainties are not necessarily the quadrature sum
of the contributing factors. Note, we label all results that incorporate blending as ‘Effective’ because we expect non-zero shifts on the mean redshift due to
blending (as discussed in §4.5), but we do not expect non-zero shifts on the mean redshift between SOMPZ and WZ.

our result using PIT. This uncertainty is found to be negligible in
all tomographic bins but it nevertheless propagated into our final
resulting ensemble.

6 RESULTS

6.1 Redshift Distribution Ensembles

The results of the combined redshift calibration techniques are
shown in Fig. 11. We show the ensemble produced by SOMPZ
as well as the ensemble constrained by the addition of WZ and SR.
Notably, our knowledge of the uncertainty on our measurement is
not limited to the mean redshift, or any other finite set of moments
of the distributions. Rather, the ensemble of redshift distributions
effectively defines a full probability distribution function for the
p(z) of each histogram bin, as illustrated by the violin plots of Fig
11. Visual inspection of the SOMPZ-only distributions show that
they are often not smooth functions of z. This is expected because
the 3sDir likelihood (and similar 3sDir-MFWZ likelihood) aims
to raise the uncertainties to the levels expected from sample vari-
ance, but does not force the resultant distributions to be smooth.
The filled violins include WZ information, which heavily favors
smooth n(z) in the 0.1 < z < 1.0 region where WZ data are avail-
able. The smoother nature of the ensemble after incorporating WZ
demonstrates the valuable independence of that probe and its lesser
reliance on biased redshift samples. SR information is included in
the ensemble at the level of shifts on the mean redshift.

6.2 Consistency Of Independent Redshift Distribution
Measures

Fig. 12 demonstrates consistency among the distinct sources of
information used to determine n(z), namely SOMPZ (colour-
magnitude), WZ (clustering), and SR (shear ratios). A formal con-
sistency check is complicated by the fact that the methods do not
constrain common directions in the space of all possible n(z)’s. We
choose to compare Z, the mean of n(z), and define Az here as the
shift of Z relative to the mean z of the SOMPZ +WZ ensemble.
Even with this simplification there are complications, e.g. WZ can
only constrain n(z) (and hence its mean) as restricted to the range in
z where adequate reference samples exist. Similarly, SR data mea-
sure redshift with an implicit weight related to lensing efficiency
functions. The Az values are plotted by always applying matching
redshift windows to both SOMPZ and the sample under study.

On this basis, we find consistency between the three meth-
ods, as well as the combinations thereof. While the constraints on
the mean redshift in each tomographic bin from shear ratios are
broader than from SOMPZ, the relative independence of this infor-
mation yields significantly more precise combined constraints on
these means. The WZ constraints on 7 are weaker than those from
SOMPZ, but as detailed in Gatti et al. (2020a), the WZ data are
much more powerful in constraining the shape and smoothness of
n(z) than in constraining the mean. This is illustrated directly by
comparing the SOMPZ ensemble to the SOMPZ +WZ ensemble in
Fig. 11.

Further, because the shear signals measured in the SR analysis
are subject to systematic observational effects described in Mac-
Crann et al. (2020), we expect a certain degree of inconsistency
between SR and SOMPZ. Overall, however, within the reported
uncertainties we find that these three likelihood functions can be
combined. As described in §4.6, the SR information is included in
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Figure 10. Variance of each source of uncertainty in each tomographic
bin. Note, the bar symbols indicating contributions from 3sDir and 3sDir-
MFWZ start at the same value for each bin, but 3sDIR-MFWZ extends to a
larger total uncertainty. The larger uncertainty estimated by 3sDirR-MFWZ
is an artefact of the likelihood we must use to combine n(z) constraints
from SOMPZ and WZ (see §D5). As shown here the Redshift Sample
uncertainty becomes a larger contributor to the uncertainty for higher redshift
tomographic bins. Note, the contributing sources of uncertainty combine
non-linearly. As a result, to illustrate the relative magnitude of each source
of uncertainty in each bin, and the relative importance of each contributing
source of uncertainty as a function of redshift, we rescale the total variance
in this figure to match the combined uncertainty (see Table 2).

the cosmology chains as an additional data vector, where the SR
model is evaluated alongside the cosmological and nuisance pa-
rameters of the Y3 lensing analyses. As a result, the uncertainty
we report in Table 2 is not a prior on the uncertainty in the mean
directly used in the cosmological Markov chains, but the posterior
from a SR only chain where SOMPZ+WZ is used as the n(z) prior,
the cosmological parameters are fixed, and the nuisance parameters
are varied within their priors.

7 DISCUSSION

We derive constraints on the redshift distributions of the DES Y3
lensing source sample from the combination of wide field photom-
etry (Sevilla-Noarbe & Bechtol et al., 2020; Gatti & Sheldon et al.,
2020b), deep field photometry (Hartley, Choi et al. 2020a), artificial
DES wide field photometry (Everett et al. 2020), and high qual-
ity photometric and spectrocopic redshifts, using and updating the
methodology of Buchs et al. (2019). When quantifying the full un-
certainty, including sample variance, the choice of Redshift Sample,
calibration uncertainty of the photometric deep fields, and necessary
assumptions made in the method, we find small errors (o7¢,y ~ 0.01)
on the mean redshift of each of the four tomographic bins. Within
their joint errors, these redshift distributions are consistent with es-
timates from cross-correlation of galaxies with high-quality redshift
reference samples (Gatti, Giannini et al. 2020a) and with the ratios
of small-scale galaxy-galaxy lensing signals (Sdnchez, Prat et al.
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2020a), which we incorporate for a joint estimate of n(z)s. We also
quantify the full uncertainty in n(z) shape which, while for many
applications being subdominant to the uncertainty in mean redshift,
can now be fully propagated to parameter constraints from DES Y3
lensing analyses (Cordero et al. 2020).

While these results are encouraging, it is useful to consider the
limiting factors of our analysis to inform future work. There is not
one single effect. Rather, we find that our uncertainty is dominated
by photometric calibration uncertainty of the deep fields at the
low redshift end of our sample, and that sample variance in the deep
fields and biases in the redshift samples dominate at higher redshifts.
Future work should address these sources of uncertainties with
targeted observing campaigns and development of new methods.
In particular, the LSST science requirement specification for error
on the mean redshift below 0.003 will require improvements on all
counts. As discussed by Speagle & Eisenstein (2017a,b), the overlap
of LSST photometry with NIR photometry from the Euclid survey
(Laureijs et al. 2011), especially over joint deep fields, will enable
methods like those used in our work for future lensing surveys (see
also Capak & Cuillandre et al., (2019); Rhodes & Nichol et al.,
(2017)). We enumerate several opportunities for improving weak
lensing redshift calibration below:

(i) Spectroscopic follow-up targeting SOM cells: The deep
SOM constructed for this work defines a map of 8-band colour space
which can be used to design future spectroscopic surveys. Many,
but not all, cells defined by this SOM are populated with spectro-
scopic redshifts. Particularly for the 8-band or 9-band (including the
NIR Y band, for example) colour space spanned by deeper lensing
samples, the fraction of cells covered by spectroscopy is expected to
decrease, the number of spectroscopic redshifts per cell is expected
to decrease, and the magnitude range, at fixed colour, spanned by
spectroscopic observations is expected to not match the magni-
tude range of the lensing sources. Follow-up observations should
prioritize deep SOM cells with few redshifts, or with highly dis-
crepant redshifts, as done by Masters et al. (2019). Larger samples
per cell will be required to address any degeneracies remaining at
fixed colour, and to calibrate the effects of magnitude-dependent
incompleteness at fixed colour.

(ii) Narrow-band imaging: Narrow-band imaging can serve as
a valuable complement to broadband imaging and spectroscopic
surveys. Narrow-band imaging offers the benefit of measuring rel-
atively high wavelength resolution data for surveys of large fields
without selection biases. Given the intractable nature of selection
biases in spectroscopic redshift samples, narrow-band imaging can
serve a key role in breaking degeneracies of the colour-redshift
relation for the large regions of colour-magnitude space sampled
by weak lensing surveys. Given the dominance of redshift sample
uncertainty in the most cosmologically constraining bins, redshifts
informed by narrow-band imaging may prove key to meeting the
LSST redshift calibration requirements. (see e.g. Alarcon et al.
(2020a); Benitez et al. (2014))

(iii) Improved transfer function: A key innovation of this work
is the construction of a transfer function encoding the probabilis-
tic relation between deep and wide field photometry. While this
transfer function was validated to be a negligible contribution to
our uncertainty, it could be improved by injecting across a larger
fraction of the wide-field survey footprint to probe more variation
in survey properties. Further, as described in Everett et al. (2020),
the BALROG injection procedure itself could be improved by using
galaxy image cutouts, rather than CModel fits, to account for the full
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Figure 11. Visualization of the ensemble of redshift distributions in four tomographic bins, as inferred from SOMPZ only (open), and from SOMPZ combined
with WZ (filled). Each violin symbol shows the 95 per cent credible interval of the probability of a galaxy in the weak lensing source sample and assigned to a
given tomographic bin to have redshift z. The width at any part of a violin indicates the relative likelihood of p(z) in that histogram bin. The uncertainty on
p(z) is due to biases in the secure redshifts used in the analysis, sample variance and shot noise in the galaxies in the DES deep fields, photometric calibration
uncertainty for the DES deep fields, and the inherent uncertainty of the methods applied. SR information is included in the ensemble at the level of shifts on
the mean redshift. The low probability region of SOMPZ-only near z ~ 0.75 is due to an imprint of large-scale structure in the COSMOS field, as illustrated
by the abundance of spectroscopic and photometric redshifts available in that region in Fig. 3.

diversity in galaxy image properties that exceeds what the CModel
galaxy profile is able to describe.

(iv) Photometric calibration uncertainty leads to redshift un-
certainty that, at low redshift, is dominated by the DES deep field
u-band calibration. Reducing the uncertainty on the u-band zero
point can significantly aid redshift calibration. Additional u-band
data collected after the DES Y3 Deep Fields effort will enable an
improved photometric calibration in future work.

(v) Improved optimization schemes for incorporating mag-
nitude to the photometric information used in the Deep SOM:
We construct the deep SOM with colour only, rather than colour-
magnitude, following the finding by (Buchs et al. 2019) that the
addition of total flux (or magnitude) to the deep SOM does not
improve the performance of SOMPZ (see their section 5.1). De-
pending on the survey photometric noise, it is in principle possible
for there to be residual correlation between redshift and magnitude
at fixed 8-band colour, as shown in fig. 4 of Speagle et al. (2019),
but also possible for the addition of total flux (or magnitude) to
worsen results because magnitude correlates more weakly with red-

shift than colour. We leave it to future work to perform additional
tests including magnitude in the information used in the Deep SOM.

(vi) In our analysis, the sample variance on the abundance of an
8-band colour in our Deep Field Sample is propagated throughout,
but the abundance is not updated from wide-field information. A
hierarchical Bayesian model can significantly reduce the Sample
Variance on p(c) by using p(¢) and the transfer function p(c|é) to
update and constrain p(c) (Leistedt et al. 2016; Sanchez & Bern-
stein 2018). Likewise, p(z|c) can be further constrained with a
hierarchical Bayesian model that includes clustering information
from wide field galaxies (Alarcon & Sanchez et al., 2020b).

(vii) Modeling n(z) with dependence on observing conditions:
variations in observing conditions over surveys remains a barrier to
using the full non-homogeneous photometric data set collected by
a given galaxy survey. To enable analysis of cosmic shear two-point
functions in a survey with non-uniform depth, future work may re-
quire modeling lensing survey n(z) from non-uniform catalogues
(see e.g. Hoyle & Gruen et al., 2018, appendix B; Heydenreich
et al. 2020). Our formalism, by explicitly evaluating the observing-
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Figure 12. Consistency of the measured mean redshift in each tomographic bin from the three inference likelihoods on data. Each axis represents the difference
Az in mean redshift Z for a particular bin relative to the mean value of Z in the SOMPZ +WZ ensemble. As noted in the text, Z can only be calculated from
WZ and SR information using a windowed (or weighted) average over z, so this plot makes use of such windows where necessary. As shown by the light-blue
contour, the inclusion of information from the ratios of the shear-position correlation functions at small scales significantly reduces the uncertainty on the mean
redshift in each tomographic bin. Note the contours including SR information have additional uncertainty due to incorporating the effect of blending, thus
leading to the false appearance that our combined SOMPZ +WZ+SR constraint is less constraining than SOMPZ, WZ, and SR individually.

condition-dependent transfer function p(c|¢) naturally extends to-
ward this goal. Future work can use BALrROG to mock galaxies at
varying levels of survey depth to match non-uniform surveys.

DES Y3 has developed several new redshift calibration meth-
ods to facilitate advanced quantification of our uncertainties. Given
our results, we conclude that future work for deeper lensing sur-
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veys such as DES Y6 and Stage-IV experiments such as the Legacy
Survey of Space and Time (LSST) (LSST Dark Energy Science
Collaboration 2012) must address these challenges to achieve the
stated LSST science goal of uncertainty on the mean redshift below
0.003. In particular, we highlight the need for targeted spectroscopic
and narrow-band photometric observations overlapping the LSST
footprint. We emphasize the utility of our constructed SOMs to fa-
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cilitate effective experimental design for such observations. Work
to achieve these goals is underway, see e.g. Euclid Collaboration
(2020); Masters et al. (2017).
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APPENDIX A: APPENDIX ON SOM

Fig. Al and Fig. A2 show the i-band magnitude and colours of
each wide and deep SOM cell, respectively. Given that the SOM
training algorithm attempts to construct a smooth map in the full
parameter space of the training inputs, we can interpret stark differ-
ences in adjacent cells as indirect indicators of degeneracies in the
colour-redshift relation. Comparison with the upper right panel of
Fig. 5 indicates that the wide SOM cells with the broadest p(z|¢)
tend to be cells with overall fainter galaxies, supporting the intu-
itive conclusion that our redshift constraints are weaker for fainter
galaxies.

APPENDIX B: SOMPZ IMPLEMENTATION DETAILS

We enumerate here several technical details about the implementa-
tion of SOMPZ:

B1 SOM Training

We note a few details about the SOM training algorithm here and
refer the reader to Buchs et al. (2019) for a full treatment. We
use the magnitude scale defined by Lupton et al. (1999) for our
SOM training, which we call ‘luptitude’. The input vector of the
Deep SOM is chosen to be a list of lupticolors with respect to the
luptitude in i-band:

X = (fox; —Hi» -er K7 —Hi)

where the bands x| to x7 are ugrzJHK. For the input vector of
the Wide SOM, we also use lupticolors with respect to the luptitude
in i band, and we add the luptitude in i band:

R = (Wi fr—pis Hz=Hi)-
In the case of the wide field, where only few colors are mea-

sured, Buchs et al. (2019) find empirically that addition of the
luptitude improves the performance of the scheme.

B2 Deep SOM Training Sample

We find that training the deep SOM only on deep galaxies whose
BaLRroG realisations are detected and selected by the weak lensing
source selection function leads to a SOM with more precise p(z).

B3 Smoothing

The n(z) output from SOMPZ includes extreme unphysical differ-
ences in n(z) between adjacent redshift bins due to shot noise in
the sample of redshifts used. While this accurately reflects our esti-
mate of the n(z) given the information available, it inconveniently
increases the computation time needed to integrate over the n(z) in
cosmological likelihood Markov chains. As a result, we smooth the
SOMPZ output n(z) with a Savitzky—Golay filter.

B4 High Redshift Pile-up

The redshift samples used contain galaxies with p(3 < z < 6) > 0.
Although the resulting SOMPZ n(z) with probability density at
redshifts greater than three accurately reflect our estimate of the n(z)
given the information available, the relatively small probability in
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Figure Al. Visualization of the wide Self-Organizing Map. Shown here are the mean i-band magnitude (left), the mean r — i colour (middle), and the mean
z — 1 colour (right) of each cell in the wide SOM. The implementation of SOMs used in our analysis generates a toroidal map; in other words, the left and right
edges of each map correspond to the same region of colour-magnitude space, as do the upper and lower edges.
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Figure A2. Visualization of the deep field Self-Organizing Map. Shown here are the mean i-band magnitude (upper left) of each cell of the deep SOM, as well
as each colour used in the deep SOM training. The implementation of SOMs used in our analysis generates a toroidal map; in other words, the left and right
edges of each map correspond to the same region of colour-magnitude space, as do the upper and lower edges.

this high redshift region inconveniently increases the computation
time needed to integrate over the n(z) in cosmological likelihood
Markov chains. To mitigate this effect, we shift all probability greater
than a cut-off value of three to the final redshift bin at 3. The amount
of probability beyond redshift 2 is less than one per cent in all cases:
[0.0096, 0.0062, 0.0021, 0.0077].

BS Ramping

The DES Y3 3 x 2pt. cosmological analyses sample over this en-
semble in cosmological likelihood inference Markov chains. Impor-
tantly, we find that non-zero probability density near zero redshift
(p(z = 0) > 0) significantly increases the computation time neces-
sary to efficiently sample parameter space due to high sensitivity of
the intrinsic galaxy alignment (IA) model. This effect is most pro-
nounced for the lowest redshift bin because this bin has the greatest
p(z = 0). Given the relatively little cosmological information in
this bin, we alter the ensemble of redshift distributions post hoc to
manually reduce p(z ~ 0) by multiplying the p(z) up to z = 0.055
with a linear function that serves as an effective prior.

B6 Deep Field Noise Differentiation

We note a test run on simulations in which the deep field photometric
noise is set to different levels in COSMOS and the other DES
deep fields. As for all runs in simulations, we set the noise levels
by measuring the median noise levels in the corresponding data
catalogues. We find no measurable difference on the mean redshift
with this added realism relative to previous work.

APPENDIX C: PIT IMPLEMENTATION

This subsection (5.3) is dedicated to describing this novel method
for transferring the variation in n(z) as a result of our photomet-
ric calibration uncertainty and how we implement this method in
practice.

The conceptual procedure for achieving this is described below
and described in greater detail in Myles et al. in prep. We begin by
computing the inverse cumulative distribution function (i.e. quantile
function) F i_l for each simulated realisation 7;(z) in the ensemble
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labelled A. For a tomographic bin b, this can be written as

z
Fi_’,;(P)={z:Fiﬁ(z)=p} with Fi’é(z):‘[mni’é(z’)dz"
(C1)

We construct each PIT by computing the difference of the
inverse CDF of a given realisation F~ }17 with the average inverse

i
CDF of the ensemble:

-1 -1
PITZ.J; = Fi,]; - (F]; ). (C2)

Subtracting the average inverse CDF ensures that the mean
redshift is not changed by the PIT. This is necessary because each
realisation, in addition to having some zero-point offset introduced,
is drawn from a noisy distribution due to (i) deep field photometric
noise and (ii) mock-BALROG realisation noise in simulations. As a
result of (i) and (ii), there would be a non-zero mean shift of the
mean z shifts of the ensemble of PITs if not for subtracting (Fgl).

We apply these transformations to the data by simply adding
each PIT to the inverse CDF of the fiducial data n(z), Fd_alta’ fiducial
The PIT due to one draw of zero-point offsets is determined and
applied jointly to all tomographic bins:

FL =F! PIT

i,b,data ~  b,data, fiducial + (€3

ib
Given this ensemble of inverse CDFs of the data n(z), we construct
the corresponding ensemble of data n(z) by taking the inverse to
yield CDFs, then differentiating:

d
nib (2) = d_z (Fi,l;,data) : (C4)

Implementing the PIT offers two insights into our calibration
uncertainty: first, our uncertainty is driven by the u-band calibra-
tion, and second, we find n(z) uncertainty increases at wavelengths
corresponding to photometric filter transitions of the 4000A break,
as shown in Fig. C1.

APPENDIX D: 3sDir MODEL

Here we describe the formalism we use to model shot noise and sam-
ple variance in the redshift-colour probability from the deep fields
to propagate it through to the redshift distribution of a tomographic
bin.

Regarding the notation for the probability of redshift and colour
space, note that ¢ and ¢ are discrete variables, denoting regions in
a partitioning of colour space. Following Leistedt et al. (2016, see
Eq.1-2 and §2), we will also adopt a piece-wise constant represen-
tation of probabilities in redshift space (essentially a probability
histogram). In other words, we define any probability of a galaxy in
our sample having redshift z, p(z), with a finite set of coefficients
fi of step functions ©,

i — Zi-1

p()= )] L X O(z = zi-1)0(zi = 2). (DD

In the remainder of the work, we will use the symbol z to represent
the discrete index of redshift bins divided at the z; bin edge values.
Given this notation, we can represent the joint probability of colour
and redshift with the set of coefficients { f;.}.

We denote each dataset D as: ‘W for Wide, D for Deep, B
for BALroG and R for Redshift. Note that R c 9, and that B
contains several mock realisations of galaxies from 9 which have
been injected and measured as in ‘W using BALrOG (see § 3). We
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Figure C1. Impact of the deep field photometric zero-point offset on es-
timated n(z). The spread in values of n(z) for any given histogram bin
here reflect the propagated impact of the photometric zero-point uncertainty
on n(z). We determine the offset used in each band for each realisation
by sampling a multivariate Normal distribution with standard deviations set
to the zero-point uncertainty in each band. As shown here, some redshifts
have much larger spread in n(z) than others. The uncertain region in the
interval 0 < z < 0.2 corresponds to a redshifted 4000A-break between
400 and 480nm, which is in the DES g-band filter. Likewise, the interval
0.4 < z < 0.6 corresponds to a redshifted 4000A-break between 560 and
640nm, which is in the DES r-band filter, and the transition to the i-band
filter occurs at z ~ 0.75.

denote a set of coefficients f that has been inferred from a dataset D
as 2. For example, the coefficients of the joint redshift and colour
distribution inferred from the Redshift Sample is denoted by fjﬁ.

D1 Sheot Noise

We begin by rewriting Equation 14 using the f coeflicients notation,
indicating which sample is used to infer each of the coefficients:

o Roo f%
p(Z|b, S) ~ Z Z RJC B B fLA > (Dz)
66}; c fC fC ‘fCA

where fR = 3 fR, 8 = %o f5 and ff = . £, Following
Leistedt et al. (2016, see Section 3.1), we want to infer the pa-
rameters ({ fgg}, { fézz o fCD }) from the following sets of galaxy
data

o DR ={zg,cq}Rforg=1...N%,
o DB ={¢q,cq}Bforg=1...N5,
° DD:{cg}D forg=1...N?, and
. Dwz{ég}wforgzl...Nw,

Let’s start by assuming that the properties of these galaxies are
known (i.e. they are noiseless). Consider a scenario in which we
ignore line-of-sight density variance, redshift errors, zero-point er-
rors and other systematic uncertainties. In this scenario, a sufficient
statistic for inferring the coefficients ({ fzqg}, { fg o fCD }), is the
count of galaxies in each of the joint bins of redshift and SOM cells.
Let’s take for example the Redshift Sample, which we can reduce to
the counts DR — {N ;R;} of galaxies detected in redshift bin z and
deep SOM cell c.

From Bayes’ Theorem, the probability of these coefficients
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f R = { fZE.} given the observed galaxy counts can be written as

p(fRIDR) o p(DR|fR) p(f7)
= pUNZH R ()

o [1(2)

and similarly for the other two sets of coefficients. The likelihood
function of the binned data p({NZRC}| f 7z) is a multinomial distri-
bution by definition, under the assumption of independent selection
of each galaxy. The conjugate prior for a multinomial likelihood
function is a Dirichlet distribution, so if we choose our prior p f%
to be a Dirichlet distribution with rate parameters @ . = €, then the
posterior is also a Dirichlet distribution which depends only on the
galaxy number counts (which makes the posterior analytical and
easy to sample from). The Dirichlet distribution is also a natural
prior because it enforces the constraints that fﬁ. > 0 for all zc,
> fgf. = 1 (required for any probability), and is invariant under any
rearrangement of the f’s (it is agnostic to the meaning of the bins).
The posterior Dirichlet distribution is

PFRINED) = Dir (R {azc))

- Dir (fR; {aze = NR + e})

6 (Z 1R - 1) [ TorRynze-tee,
zc zc

where € is a positive, small number to ensure that the Dirichlet
distribution cannot get zero or negative counts as input (some of the
z, ¢ counts will be zero).

For a large number of galaxies, the marginalized mean and vari-
ance of ff; reduce to N 5 /N R which is the classical approximate
histogram estimator (note that Dirichlet is the correct posterior dis-
tribution for a histogram, but a Gaussian distribution with N Zi /NR
mean and variance become a good approximation). Equivalent ex-
pressions arise for the f 8 and f D coefficients. We note that, for
the wide sample, we can consider fé(W = N;W /N W to be an exact
result (not stochastic), because we are interested in the p(z) for the
realisation of the wide-field survey that we have, not the redshift
distribution for a hypothetical infinite survey.

D3)

(D4)

D2 Sample Variance

Both Deep and Redshift Samples span a much smaller area than
that of the DES Y3 wide source sample. Therefore, the underlying
redshift distribution measured in the deep fields — and since they
are correlated, the measured colour distribution — contain random
large-scale structure fluctuations particular to that volume, com-
monly referred to as sample variance. We can describe the observed
redshift distribution in the deep field as

NZD = Poisson [NDfZW(l + A?) R (D5)

with fz(w as the underlying redshift distribution in the wide field,
and A? the particular redshift fluctuation found in the deep field
with respect to the wide field, with Var(Ag) ) the sample variance.
The Dirichlet sampling (Equation D4, Dir( f R, aze =N ﬁ +
€)) described in § D1 only reproduces the variance expected from
Poisson noise, but does not account of the additional uncertainty due
to sample variance. In order to increase the variance of the Dirichlet
sample, one can perform the transformation ¢; — «; /A, which does

not change the expected value of f; in the Dirichlet distribution, but
does change its variance roughly as Var(f;) — AVar(f;), for those
coeflicient indices i/ for which @; < ; @;. When the value of 2 is
the ratio between total noise (sample variance and shot noise) over
shot noise we obtain samples of f; with the larger, correct variance.
However, for equally spaced redshift bins Var(A? ) is a function
of redshift (i.e. sample variance becomes larger at lower redshift
where the volume is smaller). A constant value A cannot increase
the variance as a function of redshift as needed, but a value of A that
changes as a function of redshift would bias the expected value of
fi-

However, we do not sample in the f, space, but in f,. space.
Two phenotypes (different deep SOM cells ¢) that overlap in redshift
have correlations due to the same underlying large-scale structure
fluctuations. We will work under the assumption that different phe-
notypes at the same redshift have the same sample variance. As
phenotypes are defined in observed colour space we do not expect
large differences in their galaxy bias when they overlap in redshift,
and we defer a more detailed study to future work. Sdnchez et al.
(2020b, S20 hereafter) introduced a three-step Dirichlet sampling
method (3sDir) which produces samples of f,. that can incorpo-
rate the correct level of sample variance as a function of redshift
and correlate phenotypes that overlap in redshift. S20 validated in
simulations that 3sDir correctly reproduces the amount of sample
variance expected in both the mean redshift and width of the red-
shift distribution of a wide field estimated from a smaller patch of
the sky.

D2.1 3sDir method

The 3sDir method from S20 assumes the coefficients f;. are in-
ferred from a single Redshift Sample, fz'li The 3sDir method in-
troduces the concept of a superphenotype T as a group of deep
SOM cells that are close in redshift, such that the superphenotypes
become nearly disjoint in redshift space. This allows us to introduce
a redshift dependent parameter A (one A for each T') and correlate
phenotypes that are close in redshift (different ¢ in the same T are
correlated). Following S20, we can write the probability of redshift
and colour, with the superphenotypes 7', as

p(z.0) = Y plelz, T)p(IT)p(T) (D6)
T

fee= D FEF fr. (D7)
T

To produce a sample of the coefficients { f;.} we need to produce
a sample of the coefficients ({szT } {fZT L {fr}), which we infer
from the observed Redshift Sample number counts in each zcT bin,

N?;T. Note that { sz } are independent from { fr }, since the former

is conditioned on 7T (indicated by the superscript). Similarly, {fCZT }
are independent from both { fZT } and {fr}). Therefore, we can
sample them separately from the observed counts. 3sDIr consists
of drawing, in sequence, values of {fr} , then of { fZT }, then of
{ szT} with individual Dirichlet distributions from the appropriate
galaxy counts, {N;ﬁ}, {NfT} and {NZRCT }, respectively. However,
we will rescale the counts used to infer the samples of both { fr}
and { fZT }. This process increases the variance of the final {f;.}
sample to the level expected for the sum of shot noise and sample
variance, while keeping its expected value. In other words, we draw
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from the following distributions

NR
p{fr YANFY) ~Dir [{fr}: {ar = TT +e}); (D8a)
NR
PN T}) ~Dir [{f] }: {a; = ) for each T
(D8b)
PUSETHHNR 1) ~Dir ({787 Vi {oe = NR +€})  foreachz,T
(D8c)
where
i} NR
1= ZZ: /IZN—fR, (DY)
N‘R
r=> 4, 2L, (D10)
2ty
R
A, = % =1+ NRvar(aR). (D11)

Z

Equation D11, A, is the ratio of the total variance (shot noise and
sample variance) to only the shot noise variance. When we infer
{ fZT }. the redshift counts for each superphenotype, {NfT }, are
rescaled by a constant value equal to the average A, ratio weighted
by the superphenotype’s redshift distribution: A7 (Equation D10).
When we infer { f7 }, the counts {N;@ } getrescaled by the average A,
weighted by the sample redshift distribution, A (Equation D9). Over-
all, this noise-inflated Dirichlet sampling scheme (Equation D8) is
an approximate model of how sample variance affects the joint red-
shift and colour redshift distribution, which allows one to increase
the variance as a function of redshift without introducing any bias
(as noted in S20).

Finally, we estimate the sample variance term, Var(Af) (Equa-
tion D11), from theory following the same assumptions as in S20,
which assumed a circular footprint of the same area as the Red-
shift Sample, which gives a prediction which is good at the 10 — 20
per cent level, mostly due to the galaxy bias modeling (see S20
for more details, including small dependence of the prediction on
cosmology). S20 validated the method in simulations, and then ap-
plied 3sDir to the COSMOS field, which is the field of our Redshift
Sample, so we directly use the sample variance prediction from S20.

D2.2  Sample variance in the Deep Sample

In this analysis the Redshift Sample spans a smaller area than the
whole deep field area, which carries additional information of the
marginal distribution of colours, p(c). We have four deep fields,
F = {COSMOS=COS, C3, E2, X3}, so we can write the probability
of f, conditioned on the counts from the four fields as
PN O8NS NG NTD) cp(NEOS NG N2 NP £2)p(f2)
~p(NEPIf)p (NG I f2)
x p(NE | f)p (N2 £2)p (f2)
NF +¢
oDir @, = Z ﬁ ,
7 1+ Nz Var(A7)
D12)
where in the second line of Equation D12 we approximate that the

observed redshift number counts of each field Nf are independent
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of each other. However we do not have complete redshift information
in all fields: we have complete high-quality photometric redshift
information in the COSMOS field, while we have incomplete and
inhomogeneous spectroscopic coverage in all fields. For the purpose
of modeling sample variance, one limit is to ignore the redshift
information in the C3, E2 and X3 fields; and assume that the Redshift
Sample is self-contained in the COSMOS field. Then, one can define
the redshift number counts in any field by re-weighting the redshift
information in the COSMOS field. In other words, we use

( NCOS

F
S NCOS T ycos Ve
z/

F _
NF =

for F € {COS, C3, E2, X3}.

(D13)

The N f are independent from each other in the limit where there is a
tight relation between redshift and deep color (i.e. p(z|c) is narrow)
that is well determined in the Redshift Sample; and when the noise
is dominated by the sample variance in the color distribution in each
field, NF.

We define the effective ratio of the total variance to only the
shot noise in all the deep fields, A5, from Equation D12 as

Sp NE NF

r ———
Az Fe{cos.c3,p2.x3y |+ Nz Var(A7)

(D14)

where Var(Af ) is defined by using the correct area of each field.
We define 1 as

- NF
Jeft = Z,leffZF—Z. (D15)
¢ YFNF

In practice, the value of A and A5 js similar, since the decrease in
sample variance (roughly inversely proportional to the area) is in
part compensated by the increase in number counts (proportional to
the area).

D2.3  Application of 3sDir to DES Y3

From Equation D2, we want to sample the following coefficients

IR
Y. R

First, we sample the coefficients { fZS.} using only the Redshift
Sample with the same 3sDir formalism from § D2.1. Then, we
separately sample the coefficients { fCD } using only the Deep Sample
with the formalism that we now describe. Finally, we can compute
the sample of coefficients { f; } using Equation D16, which replaces
the sample from Equation D7.

To sample the coefficients {2}, we write the probability of
colour with the superphenotypes T as

p(e) =) p(cMp(D); (D17)
T

fZC =

2. (D16)

fo= ) S frs (D18)
T

similar to Equation D7. Then, we sample the coefficients { j?} and
{fr} with

p({frY{NP}) ~Dir (D19a)

/leff

NP
{fryar = )

p({fc HH{N T}) DlI‘({fL b ae =ND T +e) foreach T.
(D19b)
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with A°F from Equation D15.

D3 Bin conditionalization

The sampling process described so far consists of drawing values

R
for f;. (Equation D16) which represents the term f,. = fz,‘; CD

from Equation D2 because it includes information from both the
Deep and Redshift Samples. We already include the probablity that
a galaxy is selected into the weak lensing sample in the counts NZ%
and Ng) that we input to the 3sD1r method (i.e. each galaxy counts
as a fraction equal to its BALROG detection probability). We draw
one sample of f;. for all four tomographic bins, and we add the
bin conditionalization (Equation 5) by multiplying the fractional
probability g, that each (z, ¢) bin is assigned to a tomographic bin
b as measured from the counts:

= P x f2, (D20)
where g LZ is the fractional probability that galaxies from the Red-
shift sample end up in each tomographic bin according to BALROG,

> NR
Rb_ och OO° Rb _ R
gl =S —,  ad Y P =R (D21)
INS e b

é

Similarly, we can also define for the deep sample
z N,

D,b 1)13 eb . D.b
fC _g(, XfC > g(, Z 2 ch :fCZ)
b

(D22)
We define an effective tomographic bin weight that we can apply to
our sample f;., gé’c, as
. R.b .
b _  8zc Db
zc = —[;g c

2z8 zc’

Whenever there are no Redshift galaxies measured in a bin and cell,
we set the redshift distribution to the non-tomographic one (follow-
ing Equation 6 and the discussion in section 4.1). To summarize,

g and then f2. =gl x frc. (D23)

we draw one sample of f;. and use the weight gi’c to compute the

four tomographic bin samples fzbc (Equation D23).

D4 Lensing weights

Similarly, to include the lensing and response weights from § 4.2
we define an averaged weight for each (z,¢) pair in the Redshift
sample:

<szi> “:g :E:

ie(z,c)

Z wij |, (D24)

where w;; is the lensing welght for the j-th detection that passes
METACALIBRATION selection of the i-th deep field galaxy with red-
shift information; M; is the number of times galaxy i has been

injected into BALROG; g?c’b is the conditioned probability of each
tomographic bin (Equation D21). We are also interested in the lens-
ing averaged weight for each deep cell in the Redshift Sample:

<W§>°C(Zg§55) Z ﬁzwzj . (D25)
z Ly

i€(c)

Analogously, we define an averaged lensing weight for the Deep
Sample:

Z Z wij |, (D26)

i€(c)

w2) o g2

with gg) " from Equation D22. Finally, we define the effective
weight as

(Wi
w&)
with fz[’c from Equation D23.

In summary, we obtain a sample of f,. from Equation D16

from BaLrog-weighted counts of the Redshift and Deep fields, to
which we apply a tomographic bin selection probability weight

WD), sothat fb — (w,)fb. (D27)

Wee) =

to obtain the coefficients for each tomographic bin, fzbc, (Equa-
tion D23) and finally apply the lensing and response weight (Equa-
tion D27).

D5 3sDir Modified for WZ (MFWZ)

To jointly sample from the 3sDir likelihood from photometry from
this paper and the clustering redshifts (WZ) likelihood from Gatti,
Giannini et al. (2020a) we have implemented a Hamiltonian Monte
Carlo (HMC) algorithm, which is far more efficient than importance
sampling 3sDir samples with the WZ likelihood (see Gatti, Giannini
etal. (2020a) for details). However, we have implemented a modified
version of the 3sDir likelihood (MFWZ) for the HMC algorithm
that we describe here.

The 3sDir MFWZ likelihood samples using the equations for
the Redshift Sample, Equation D7 and Equation D8, and only in-
corporates the information from the deep-field colour counts during
step 1 (Equation D8a). Accordingly, we also update the value of A in
Equation D9 with 2°f from Equation D15. We sample { fr-} from
the colour counts from the deep field {N%) } with

p{fr}{NPY) ~ Dir

ND
{fryer = Ae—Tﬁ + e) . (D28)

The samples of { ffT} and { fZT } are obtained from Equation D8b
and Equation D8c. Finally one obtains the {f;.} sample from
({FE" AT} A fr}) using Equation D7.

Although 3sDir MFWZ is using less information from the
deep fields, we find it easier to implement in a HMC together with
the WZ likelihood.

D6 Known errors

During the processing of the 3sDir and 3sDir-MFWZ samples the
following error was made. In bin conditionalization, when there
is no Redshift galaxy that satisfies both ¢ and b, we instead use
the redshift information from any tomographic bin in that cell. In
other words, we use Equation 6 instead of Equation 5 as discussed
in section 4.1. When implementing the lensing responses in 3sDir
we did not properly implement this last change, and in practice we
always used Equation 5. This produces a shift in the n(z) average
mean redshift equal to A, = [0.003, 0.003, ~ 0, —0.004] (difference
between the correct implementation minus the actual implementa-
tion). We note that the effect of this error is small compared to all
other uncertainties included in the analysis.
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APPENDIX E: VALIDATION OF SOMPZ AND 3sDir

In order to validate the methodology of SOMPZ and 3sDir we
use the suite of Buzzarp simulations. We note that the Buzzarp
simulations do not include simulated images, so we cannot test the
lensing and response weight methods from § 4.2 in SOMPZ, nor
§ D4 in 3sD1r. The validation of such weights is explored in (Mac-
Crann et al. 2020), and we have verified that both the SOMPZ and
3sDir weight implementations are consistent: the SOMPZ weights
are applied individually to galaxies, while in 3sDIr they are applied
as averaged quantities to f.. We have verified this change does not
introduce biases larger than 1073 in the mean redshift in any of the
tomographic bins.

We generate 300 versions of the four DES Deep Samples
(where one of the four has perfect redshift information) at differ-
ent random line-of-sight positions in the Buzzarp simulations. For
each of the 300 realisations of the deep fields, we run the SOMPZ
algorithm and estimate the different simulated number counts, N, CD R
N. Z‘; and N i_, while the wide field remains constant. Then we obtain
an n(z) estimate for each tomographic bin by fixing the probabilities
to the observed number counts.

To test the performance of the 3sDir method we perform
the following procedure in each of the 300 Buzzarp realisations
of the deep fields. We draw 104 samples from Equation D16,
{ fzic; i = 1,...,10%} to which we apply the bin conditionaliza-
tion using Equation D23, and use Equation D2 to obtain the 10*
{ fz’: vi=1,..., 104} samples for each tomographic bin. From it, we
estimate the mean redshift of each fzi sample, 7=y z2 fzi , and its
average value 7P = (7%} in each Buzzarp realisation. We also
compute the 75OMPZ yalue of the single n(z) from SOMPZ in each
realisation, which we obtain by fixing the probabilities to the num-
ber counts. In summary, we have 300 values of 750MPZ apq 73sDr
and a total of 300 x 10* values of z' whose variance reflects the
uncertainty on the mean redshift per tomographic bin as estimated
from 3sDir.

Figure E1 shows the distribution of the 300 values of 7SOMPZ
73DIR gpd Z3SDIRMFWZ o mpared to the true ™ (shown as dotted
lines). First, we find the 75OMPZ igtribution to be centred offset
from the truth by A, = [0.0051, 0.0024, —0.0013, —0.0024] in each
bin, where A, = (zSOMPZy _true A discussedin § 5.1.1, we expect
a nonzero offset due to the bin conditionalization approximation,
and we include this nonzero offset as an intrinsic systematic error
to the mean redshift (see § 5.5). On the other hand, we find the
averages over 300 realisations, (z3P®) and (z3OMPZy 0 be within
0.001 of each other in redshift in Figure E1, meaning that 3sDir
is on average unbiased with respect to the SOMPZ mean redshift.
We also find the width of both distributions to agree. However, we
find the distribution of Z3PRMFWZ ¢, have more scatter than the
7SOMPZ 4nd 73DIR (gistributions. This is a consequence of 3sDir-
MFWZ not fully exploiting the information available in the Deep
Sample on the colour abundance p(c), since we only use it to inform
the superphenotype distribution p(7) (§ D5). The 3sDir-MFWZ
likelihood is more suitable to be sampled efficiently together with
the clustering redshifts likelihood using an HMC (Gatti, Giannini
et al. 2020a).

To test if the predicted distribution on Z values from 3sDIRr is
consistent with 750MPZ we compute in each Buzzarp realisation
the pull distribution as Aé = (7 — 7SOMPZy /7 (71) | with o (Z7) the
standard deviation of the z' values from 3sDir. Fig. E2 presents
the stacked pull distributions from all 300 Buzzarp realisations.
We find this distribution to be centred at zero and very similar to a
Gaussian distribution with zero mean and unit variance, illustrating
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3sDir

3sDir MFWZ

Figure El. Distribution of mean redshift, Z, values in each of the 300
realisations of the deep fields in Buzzarp compared to the truth (cross-
hatches). In each deep field realisation we run the SOMPZ code, obtain an
n(z) by fixing the probabilities to the number count measurements, and
calculate the mean redshift of each tomographic bin. Similarly, we draw 10*
samples of f;. with the 3sDir and 3sDir-ArLt method, compute the redshift
distribution of each tomographic bin for each sample, their mean redshift,
and we finally compute the average Z value. The Z distribution from 3sDir
is wider because it is not using all the colour information from the deep
fields.

more rigorously that 3sDir predicts samples of Z which are fully
compatible with the SOMPZ mean redshift. We also do the same
test with 3sDir-MFWZ, finding the same conclusion.

Fig. E3 addresses the width predicted by 3sDir or 3sDir-
MFWZ in each Buzzard realisation, compared to the scatter in Z
from SOMPZ across the 300 Buzzard realisations. The vertical line
in each panel shows the spread of 7SOMPZ across the 300 Buz-
zARD realisations (i.e. the spread of SOMPZ in Figure E1). While
SOMPZ only produces one estimate of Z in each realisation, the
3sDir and 3sDir-MFWZ models produce a distribution of 7 values
in each Buzzarp realisation. In each realisation, we compute the
standard deviation of Z for both 3sDir and 3sDiR-MFWZ, and we
show the histogram of these 300 values. As expected, the predicted
o (Z) values from 3sDiR-MFWZ are [78, 31,23, 39] per cent larger
than 3sDir in each bin, since the former is using less information
from the deep fields. We find the o (Z) from 3sDir to be in reason-
able agreement with SOMPZ, although we find them to be slightly
underestimated at lower redshift and overestimated at higher red-
shift, finding [—11,4, 8, 53] per cent difference in each bin. This is
in agreement with Sanchez et al. (2020b) (see their fig. 12) which
shows that 3sDir tends to underpredict the variance at low redshift,
and the opposite at high redshift.
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Figure E2. Distribution of residual 3sDir or 3sDir-ALT samples across 300
realisations of the deep fields on Buzzarp. A residual sample is defined
as A; = (z — z5OMPZy ) - (z1), with o (Z) the standard deviation of the
z! values from 3sDir in each realisation. The distributions agree with a
Gaussian distribution with zero mean and unit variance (shown as dashed
lines), which shows that the mean redshifts from 3sDir and 3sDir-ALT are

statistically in agreement with z5°MPZ across the 300 Buzzarp realisations.
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with 3sDir or 3sDir-ALT in each of the 300 realisations.
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