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ABSTRACT
As the statistical power of galaxy weak lensing reaches percent level precision, large, realistic
and robust simulations are required to calibrate observational systematics, especially given
the increased importance of object blending as survey depths increase. To capture the coupled
effects of blending in both shear and photometric redshift calibration, we define the effective
redshift distribution for lensing, 𝑛𝛾 (𝑧), and describe how to estimate it using image simulations.
We use an extensive suite of tailored image simulations to characterize the performance of
the shear estimation pipeline applied to the Dark Energy Survey (DES) Year 3 dataset. We
describe the multi-band, multi-epoch simulations, and demonstrate their high level of realism
through comparisons to the real DES data. We isolate the effects that generate shear calibration
biases by running variations on our fiducial simulation, and find that blending-related effects
are the dominant contribution to the mean multiplicative bias of approximately −2%. By
generating simulations with input shear signals that vary with redshift, we calibrate biases in
our estimation of the effective redshfit distribution, and demonstrate the importance of this
approach when blending is present. We provide corrected effective redshift distributions that
incorporate statistical and systematic uncertainties, ready for use in DES Year 3 weak lensing
analyses.

Key words: gravitational lensing: weak – cosmology: large-scale structure of Universe

† E-mail: nm746@cam.ac.uk
Affiliations are listed at the end of the paper.

1 INTRODUCTION

While weak gravitational lensing of galaxies has enormous poten-
tial as a cosmological probe (e.g. Weinberg et al. 2013; Albrecht
et al. 2006), measurements of the weak lensing shear have proven
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to be extremely difficult in practice (e.g. Mandelbaum et al. 2014).
The shear manifests as a small distortion in the observed shape of
a galaxy. Its measurement is subject to numerous biases, and re-
quires accurate calibrations of many properties of the input images.
Typically, these biases have been quantified by assuming a linear
relation between component 𝑥 of the measured shear 𝑔̄obs

𝑥 (averaged
over an ensemble of galaxies), and component 𝑦 of the true shear
𝑔true
𝑦 (e.g. Heymans et al. 2006)

𝑔̄obs
𝑥 = (1 + 𝑚𝑥𝑦)𝑔true

𝑦 + 𝑐𝑥 , (1)

where 𝑚𝑥𝑦 is known as the multiplicative bias, and 𝑐 is known as
the additive bias. This linear relation is expected to hold in the weak
lensing regime, where 𝑔true

𝑦 is small (and so contributions of order
(𝑔true

𝑦 )2 can be neglected). One can also consider the multiplicative
term as quantifying the linear response, 𝑅𝑥𝑦 ≡ 1+𝑚𝑥𝑦 of the shear
estimate to a change in the input shear i.e.

𝑅𝑥𝑦 ≡ 𝜕𝑔̄obs
𝑥

𝜕𝑔true
𝑦

. (2)

The off-diagonal elements of 𝑚𝑥𝑦 (and 𝑅𝑥𝑦) are often assumed
(and empirically found) to be zero, allowing for the more common
notation where𝑚𝑥 ≡ 𝑚𝑥𝑥 . In the following we will usually drop the
shear component subscripts for brevity, with expressions involving
𝑔̄obs and 𝑔true generally holding for either component of the shear.

The most thoroughly studied biases in weak lensing measure-
ments have mainly been performed with simulations of isolated ob-
jects. These include noise bias (e.g. Refregier et al. 2012; Kacprzak
et al. 2012, model bias (e.g. Voigt & Bridle 2010), selection biases
(e.g. Kaiser 2000; Bernstein & Jarvis 2002; Hirata & Seljak 2003),
and biases from miscorrecting for the image point-spread function
(PSF) (e.g. Paulin-Henriksson et al. 2008). These problems were
tackled by community-driven efforts like the STEP (Heymans et al.
2006; Massey et al. 2007) and GREAT (Bridle et al. 2010; Kitch-
ing et al. 2013; Mandelbaum et al. 2015) challenges, and aided by
the development of the widely used GalSim1 software for simu-
lation of astronomical images (Rowe et al. 2015). For isolated ob-
jects, the aforementioned biases have largely been solved by meth-
ods like Metacalibration (Huff & Mandelbaum 2017; Sheldon
& Huff 2017) and “Bayesian Fourier Domain” (BFD) (Bernstein
et al. 2016), at least for sufficiently well understood data (i.e. with
accurately-characterized noise and background levels and PSF). The
Metacalibration method is particularly powerful because it does
not rely on calibration simulations, which inevitably rely on as-
sumptions about the properties of the faint, often poorly resolved
galaxies used in weak lensing analyses.

More recently, some studies have begun to study shear calibra-
tion biases in the context of multiple objects and blending. It has
generally been assumed that in this case the use of image simula-
tions will be essential, and these have been used for the calibration
of recent weak lensing cosmology analyses, for example by Fenech
Conti et al. (2017); Kannawadi et al. (2019) (for the Kilo-Degree
Survey2), Mandelbaum et al. (2018) (for the Hyper Suprime-Cam
Subaru Strategic Program3), and Samuroff et al. (2018); Kacprzak
et al. (2020) (for DES Year 1 analyses). Works such as Hoekstra
et al. (2017) and Euclid Collaboration (2019), with an eye to deeper
upcoming datasets, have used image simulations to study effects
such as the impact of undetected galaxies on the shear calibration.

1 https://github.com/GalSim-developers/GalSim
2 http://kids.strw.leidenuniv.nl/index.php
3 https://hsc.mtk.nao.ac.jp/ssp/

In parallel to these simulation-based calibration efforts, Shel-
don et al. 2020 developed new measurement methodology, metade-
tection, which corrects for much of the impact of blending, in
particular the significant shear biases imparted by detection and de-
blending algorithms, as well as the impact of blending at the shape
measurement stage. The metadetection method does not require
simulation-based calibration, and exhibits extremely low levels of
shear calibration bias even on (constant shear) simulations designed
to match the depth of Rubin Observatory Legacy Survey of Space
and Time4 (LSST) data.

Current and future surveys will have large amounts of blending
of objects at different redshifts (e.g. Dawson et al. 2016). The com-
ponent galaxies in blended systems will therefore often experience
different shears. As we will discuss in Section 2, the impact of this
on weak lensing statistics cannot be fully accounted for by the use
of simplified constant shear simulations used thus far in the field to
calibrate shear measurements, or corrections from shear estimation
methods like metadetection. In order to gain intuition into the
possible effects, consider the following simplified situation, shown
in Figure 1. In both panels we input a pair of galaxies at different
redshifts; for the sake of illustration we arbitrarily set one at low
redshift (𝑧 = 0.25) and one at high redshift (𝑧 = 0.75). The high
redshift galaxy is placed at the center of the stamp in both panels.
For simplicity, we have fixed both galaxies to be round before lens-
ing. In the top panels, the galaxies are not blended together, and in
the bottom panels they are. In both cases we assume we can un-
ambiguously detect two separate objects and precisely know their
centroids.

Let us consider the response to shear of the central (𝑧 = 0.75)
object in each stamp. We can apply shear separately at the two
redshifts from which the light in the image is sourced (which in this
case just means applying shear separately to the two galaxies present
in the stamp). The right-hand panels of Figure 1 show the response to
shear of the measured shape of the central galaxy, as a function of the
redshift of the applied shear. The response is defined here as above,
as 𝑅 =

(
𝜕𝑔̄obs/𝜕𝑔true

)
. We estimated these responses numerically from

our simple simulations using the Metacalibration method. In the
top right panel, we see that the high redshift object does not respond
to the shear of the low redshift one (it is zero at 𝑧 = 0.25) and has
a unit response to a shear applied at its own redshift (the peak
at 𝑧 = 0.75). This result makes sense since Metacalibration is
known to be unbiased at high precision for idealized cases such as
this, and the objects do not overlap.

The more interesting case is when the galaxies are blended,
shown in the lower panels of Figure 1. In this case we see that the
high redshift object responds to the shear of the low redshift object
(the small peak at 𝑧 = 0.25). It also has an apparent greater than
unity response to the shear applied at its own redshift (the peak at
𝑧 = 0.75 that is greater than one). Both of these effects are due to
the galaxy being blended with the low redshift neighbor. The latter
effect is likely due to the positioning of the neighboring galaxy in
the positive 𝑔1 direction, which is the shear component for which
we compute the response.

However, the response of the high redshift object to a low
redshift shear is a qualitatively different effect, distinct from standard
multiplicative biases due to blending or detection; it is a bias that
depends not only on the presence of the neighbor, but also on
the shear applied to the neighbor. This indicates that the shape

4 https://www.lsst.org/
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measurement of the high redshift object is carrying information
about the low redshift shear.

In fact, we assert that it is the response to shear that defines how
we should weight the redshifts to which we assign the shear infor-
mation for a given object in a weak lensing analysis. This insight is
a key subject of this work, where we will definitively measure these
effects in simulations of the DES Year 3 (Y3) analysis (note that
“Year 3” includes the first three years of DES observations). There
are also important implications for analysis of future surveys. As
the amount of blending increases with increased depth, inferring the
redshift distribution relevant for lensing and the shear calibration
biases will be a joint analysis task. In the example above, we have de-
scribed how a single detected object can have a (non-unity) response
to shear at multiple redshifts. This effect cannot be fully described
by the traditional multiplicative bias, 𝑚. The shear calibration and
the effective redshift distribution cannot be fully decoupled.

In this work, we expand upon the ideas from this simple exam-
ple and apply them to the DES Year 3 shear analysis. We introduce
our formalism for accounting for blending in Section 2. In Section 3
we describe realistic simulations of the DES Year 3 survey, vali-
dating them against the data. Then in Section 4 we describe and
investigate the source of the traditional shear calibration biases es-
timated from constant shear simulations. In Section 5 we show that
the biases described above, due to blended sources with different
applied shears, are present in these DES Y3 simulations. We then
present a method to combine mean shear measurements from the
simulations with estimated redshift distributions in order to jointly
infer corrections to both the shear calibration and the redshift dis-
tributions. We apply this method to the DES Year 3 simulations,
producing a parameterized model of these effects that can be used
to interpret the DES Year 3 shear catalogs, which we describe in
Section 6. We summarize and discuss directions for future work in
Section 7.

2 QUANTIFYING SHEAR CALIBRATION BIASES FOR
WEAK LENSING SHEAR STATISTICS

In the following, we describe our formalism and methodology of
using image simulations to calibrate gravitational lensing measure-
ments. To this end it is useful to distinguish galaxies from detec-
tions. We take a galaxy to be emitting light of fixed redshift 𝑧, with
a particular surface brightness profile local to a position 𝜽 on the
sky. A detection on the other hand is, simply put, a thing identi-
fied by an algorithm designed to detect and deblend astronomical
sources, such as that employed by SExtractor (Bertin & Arnouts
1996). Due to blending, measurements made on a detection may
be affected by light from multiple galaxies or stars and therefore
multiple redshifts. We only have access to detections in an imaging
survey, and we measure statistics averaged over ensembles of detec-
tions. We thus must determine how effects such as blending affect
weak lensing shear statistics of ensembles of detections, rather than
individual galaxies.

In the following, we will work with the simplest such statistic,
𝑔̄obs (𝜽), the mean measured shear over all detections within some
pixel at some angular position 𝜽 . This is sufficient for our purposes
since more cosmologically interesting 2-point statistics can be writ-
ten as functions of such pixel-averaged mean shears, allowing the
straightforward propagation of shear calibration biases, at least in
the case that spatial correlations of the biases can be neglected
(see e.g. Kitching et al. 2019 for an investigation of higher-order
effects from relaxing this assumption). We assume there is some

true, redshift-dependent shear field 𝑔true (𝜽 , 𝑧). We can assume that
in the weak lensing regime, where contributions of order (𝑔true)2
or higher can be neglected, the mean measured shear is some linear
function of the true shear field,

𝑔̄obs (𝜽) =
∫ ∞

0
d𝑧 𝑛𝛾 (𝑧)𝑔true (𝜽 , 𝑧) + 𝑐 + 𝜂, (3)

where 𝑐 is an additive bias, and 𝜂 is some measurement noise
(due to e.g. the intrinsic shapes of galaxies, or pixel noise, that
averages to zero over many such measurements). In the following
we will often drop 𝜂 for compactness, such that 𝑔̄obs (𝜽) is really the
expectation value of the mean measured shear. The response of the
mean measured shear to the true shear field, which has traditionally
been described as the multiplicative bias, 𝑚, is now described by
the function 𝑛𝛾 (𝑧), which we call the effective redshift distribution
for lensing, or effective redshift distribution for short. In the next
sections, we consider what this function is in idealized conditions,
and how to estimate it from image simulations under less idealized
conditions.

2.1 Isolated galaxies

It is useful to begin by considering the simplified case where each
detection corresponds to a single galaxy. The image of each galaxy,
and thus each detection, is subject to a gravitational shear field
𝑔true (𝜽 , 𝑧), which depends only on its position 𝜽 in the sky and
on its redshift 𝑧. Consider an ensemble of detections, e.g. a sin-
gle photometric redshift bin in a gravitational lensing analysis. If
each detection’s shear is measured without bias, and each detection
contributes to the mean with equal weight, then we have

𝑔̄obs (𝜽) =
∫ ∞

0
d𝑧 𝑛(𝑧)𝑔true (𝜽 , 𝑧). (4)

Here 𝑛(𝑧) is the derivative of the number of detections per unit area
with respect to redshift

𝑛(𝑧′) ∝ d𝑁
d𝑧

����
𝑧=𝑧′

(5)

and is normalized to unity, such that no denominator is required in
equation 4. Hence in this case, as expected the effective redshift dis-
tribution is simply what is usually called the redshift distribution i.e.
𝑛𝛾 (𝑧) = 𝑛(𝑧). One can estimate 𝑛(𝑧) as a finely sampled histogram
of redshifts of individual galaxies associated with the detections,

𝑛(𝑧)Δ𝑧 ≈
# of galaxies with 𝑧 < 𝑧 𝑗 < 𝑧 + Δ𝑧

𝑁
, (6)

where 𝑁 is the total number of galaxies, or

𝑛(𝑧) ∝
∑︁
𝑗

𝛿(𝑧 − 𝑧 𝑗 ) . (7)

2.2 Isolated galaxies with shear measurement biases

Now suppose that for detections in the shear catalog (which we as-
sume still have a one-to-one correspondence to galaxies) at redshift
𝑧, there is a mean multiplicative bias (𝑚̄(𝑧) ≠ 0), or equivalently
non-unity mean response to shear (𝑅̄(𝑧) ≠ 1). This could be due to
any imperfect correction of the biases discussed in Section 1 in the
measurement of observed shear. The mean measured shear is now
given by

𝑔̄obs (𝜽) =
∫ ∞

0
d𝑧 𝑅̄(𝑧)𝑛(𝑧)𝑔true (𝜽 , 𝑧). (8)

MNRAS 000, 1–28 (2020)
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Figure 1. Simple example of the interplay between blending, shear calibration, and photometric redshift distributions. In both rows, the left panel shows an
image of a pair of simulated galaxies, with the central object at higher redshift, 𝑧 = 0.75, and a neighboring object at low redshift, 𝑧 = 0.25. The right-hand
panels show the response of the shape measurement of the central (𝑧 = 0.75) object, to applied shear, as a function of the redshift at which that shear is applied.
In the top-row, where the objects are not blended, the the high-redshift object only responds to a shear at its own redshift, and since we use Metacalibration
shear estimation, the response is unity (i.e. the shear estimation is unbiased) to very high precision. In the bottom right panel, we show the response when
the objects are blended. We see two effects here. First, due to blending, the Metacalibration estimator is now biased (the right peak at z=0.75 has non-unit
height). Second, the high-redshift object now responds to input shears at other redshifts (the small peak at z = 0.25). We show in this work that these responses
define the effective redshift distribution for lensing predictions, in addition to quantifying the multiplicative bias of the measurements.

The effective redshift distribution is now given by

𝑛𝛾 (𝑧) = 𝑅̄(𝑧)𝑛(𝑧) ∝ 𝑅̄
d𝑁
d𝑧

(9)

and accounts not only for the fraction of galaxies in an ensemble at a
given redshift, but also for how sensitive to shear our measurements
of the shapes of those galaxies are (this will depend on the shape
measurement method). For example, all galaxies at redshift 𝑧′ could
be unresolved. Our catalog could contain some number of detections
corresponding to them, whose shapes (and thus the shear they are
subject to) we cannot measure. The mean observed shear of our
catalog (or any other weak lensing statistic) would not respond to
any true shear applied to light from 𝑧′. Thus, while these galaxies
contribute to 𝑑𝑁/𝑑𝑧 |𝑧′ , they should not contribute to 𝑛𝛾 (𝑧).

The Metacalibration method provides estimates of the shear
response for each detection, so it is straightforward to generalize

equation 7 to the case of non-unity response:

𝑛𝛾 (𝑧) =
∑

𝑗 𝑅 𝑗𝛿(𝑧 − 𝑧 𝑗 )∑
𝑗 𝑅 𝑗

, (10)

where 𝑅 𝑗 is the Metacalibration shear response for detection 𝑗 ,
and the use of

∑
𝑗 𝑅 𝑗 in the denominator ensures 𝑛𝛾 (𝑧) is normal-

ized to unity.

2.3 Blended galaxies and the general case

The definition of 𝑛𝛾 (𝑧) of equation 9 seems natural and has been
used not only in DES Year 1 (Hoyle & Gruen et al., 2018), but
in some form by most other weak gravitational lensing analyses to
date. It is accurate under the assumptions made – that each detection
corresponds to light from a single redshift, and that while response
to shear may be imperfect, it can be described by its mean as a

MNRAS 000, 1–28 (2020)
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function of the redshift, or estimated based on some properties
of the images of actual detections, each associated with a single
redshift.

Let us now consider the less idealized, ubiquitous case of
blending. Here, a detection is not always associated with a single
galaxy. Rather, measurements on a single detection may be influ-
enced by the light of multiple galaxies at different redshifts along the
line of sight. The observed shape may respond to shear applied to
any of these multiple galaxies. It is not clear which galaxy’s redshift
to associate with the detection in order to estimate its contribution to
𝑑𝑁/𝑑𝑧 and 𝑅̄(𝑧). While methods exist for inferring distinct redshift
components in blended systems (Jones & Heavens 2019; Padman-
abhan et al. 2019), in theory allowing the assignment of a detection
to multiple redshifts, we still would not know the relative weight
to assign to each redshift component in the ensemble 𝑛(𝑧). For a
detection 𝑗 , with components 𝑘 at redshift 𝑧𝑘 , the correct weight 𝑅𝑘

𝑗

is the linear response of the measured shape of the detection, 𝑔̄obs
𝑗

,
to a shear applied to component 𝑘 only, or equivalently at redshift
𝑧𝑘 only i.e.,

𝑅𝑘
𝑗 =

𝜕𝑔̄obs
𝑗

𝜕𝑔(𝑧𝑘 )
. (11)

The effective redshift distribution 𝑛𝛾 (𝑧) for the ensemble would be
formed by summing over components 𝑘 for each detection 𝑗 i.e.

𝑛𝛾 (𝑧) =
∑

𝑗

∑
𝑘 𝑅

𝑘
𝑗
𝛿(𝑧 − 𝑧𝑘 )∑

𝑗

∑
𝑘 𝑅

𝑘
𝑗

. (12)

Here 𝑅𝑘
𝑗

is a generalization of the response used by Metacalibra-
tion, which is the response of the measured shape of a detection
to a constant (i.e. redshift independent) shear. Unfortunately, unlike
the Metacalibration response which can be computed numeri-
cally by applying an artificial shear to galaxy images, we cannot
measure this generalization on real galaxy images, since it would
require deblending the redshift components in order to shear them
individually, which is impossible to do perfectly.

In the presence of blending, we can thus no longer assume a
separable effective redshift distribution 𝑛𝛾 (𝑧) = 𝑅̄(𝑧)𝑛(𝑧). Blend-
ing however does not invalidate equation 3, which assumes only
that in the weak lensing regime, the observed mean shear 𝑔̄obs can
always be approximated as some linear function of the true shear
field 𝑔true (𝑧). Equation 3 in fact provides a definition of 𝑛𝛾 (𝑧) via
a functional derivative

𝑛𝛾 (𝑧) =
d𝑔̄obs

d𝑔true (𝑧) . (13)

One can also define 𝑛𝛾 (𝑧) in the limit Δ𝑧 → 0,

𝑛𝛾 (𝑧)Δ𝑧 =
Δ𝛾̄obs

Δ𝛾true (𝑧, 𝑧 + Δ𝑧) . (14)

We will later also use 𝑁𝛾 (𝑧1, 𝑧2), the integral of 𝑛𝛾 (𝑧) over
some redshift interval (𝑧1, 𝑧2),

𝑁𝛾 (𝑧1, 𝑧2) =
∫ 𝑧2

𝑧1

d𝑧 𝑛𝛾 (𝑧). (15)

This is the response of the mean measured shear of the ensemble
𝜸̄obs to an applied shear Δ𝛾true in redshift interval (𝑧1, 𝑧2).

Equation 13 and equation 14 constitute definitions of the effec-
tive redshift distribution that should be used to describe a sample
of detections in a weak gravitational lensing analysis e.g. for pre-
dicting shear correlation functions or tangential shear signals. Note

that the normalization of 𝑛𝛾 (𝑧), i.e.
∫ ∞
0 𝑑𝑧𝑛𝛾 (𝑧), is now meaning-

ful. The normalization is the response of the mean measured shear
to a true shear that is constant in redshift. This corresponds to the
traditional 1+𝑚, where 𝑚 is the mean multiplicative bias for the
ensemble. Note that numerical codes for making theoretical pre-
dictions of weak lensing statistics often internally normalize the
provided redshift distribution. In this case one would need to apply
the normalization of 𝑛𝛾 (𝑧) to the predicted statistic as an additional
correction.

The use of 𝑛𝛾 (𝑧) unifies two effects: biases in photometric
redshifts and shear calibration, that have traditionally been treated
separately. As we enter the era of deeper galaxy surveys, where
blending becomes more and more important, we no longer have the
luxury of treating these two systematic effects separately.

2.4 Calibrating 𝑛𝛾 with image simulations

The definition of 𝑛𝛾 (𝑧) in equation 9 is superseded by that of equa-
tion 13. In the presence of blending, the two are expected to disagree,
not just in their normalization (i.e. as an overall multiplicative bias),
but also in their shape.

Photometric and/or clustering-based redshift calibration, can at
best (when combined with a Metacalibration response estimate
for each detection) aim to measure 𝑅̄(𝑧)𝑛(𝑧). Image simulations
must be used to check whether the difference between 𝑅̄(𝑧)𝑛(𝑧) and
the true 𝑛𝛾 (𝑧) is small, as one might hope as long as blending is rare
or mild. In case that difference is not negligible, image simulation
methods can be used to infer corrections to 𝑅̄(𝑧)𝑛(𝑧) that improve
its agreement with the true 𝑛𝛾 (𝑧); this is the approach taken in
Section 5 of this work.

Equation 14 allows us to operationalize the updated definition
of 𝑛𝛾 . From suitable image simulations we can measure 𝑁𝛾 (𝑧1, 𝑧2),
that is, the integral of 𝑛𝛾 (𝑧) over some interval 𝛼 between (𝑧𝛼1 , 𝑧

𝛼
2 ),

in which we vary the applied shear. To this end, we need to run
a separate image simulation for each interval we would like to
study, with a differential shear Δ𝛾true

𝛼 applied to galaxies within that
interval. We will use more compact notation in the following, with
𝑁𝛼
𝛾 denoting the integral of 𝑛𝛾 (𝑧) over redshift interval 𝛼,

𝑁𝛼
𝛾 ≡ 𝑁𝛾 (𝑧𝛼1 , 𝑧

𝛼
2 ) (16)

≡
∫ 𝑧𝛼2

𝑧𝛼1

d𝑧 𝑛𝛾 (𝑧). (17)

This is estimated from our simulations via

𝑁𝛼
𝛾 =

Δ𝛾̄obs

Δ𝛾true
𝛼

, (18)

where Δ𝛾̄obs is the change in mean measured shear of the ensemble.
Thus far, we have only considered a single ensemble of de-

tections, and its effective redshift distribution for lensing, 𝑛𝛾 (𝑧). In
Section 5, we will estimate these quantities for multiple subsets of
our simulated detections, for example true or photometric redshift
bins. In this case, we assign these subsets a label 𝑖, and denote
as 𝑔̄obs

𝑖
, 𝑛𝛾,𝑖 (𝑧) and 𝑁𝛼

𝛾,𝑖
, the mean measured shear, effective red-

shift distribution and integrated effective redshift distribution for
the subset 𝑖 of our detections.

In the absence of blending, and if there were no overlap between
the redshift interval𝛼, and the redshift range of galaxies contributing
to detections in subset 𝑖, Δ𝛾̄obs

𝑖
and thus 𝑁𝛼

𝛾,𝑖
(𝑧) would vanish i.e.

there would be no response of the mean shear for subset 𝑖 to shear in
redshift interval 𝛼. Blending, however, causes a non-zero response
for any realistic selection of an ensemble 𝑖 of detections. This is
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because there will always be some amount of blending between
galaxies in redshift interval 𝛼, and the detections in 𝑖, and shear
applied to the former will impact the measurement of the shapes of
the latter.

3 DES Y3 IMAGE SIMULATIONS

Having introduced and motivated our formalism for quantifying
observational biases, we now turn to describing and validating our
suite of DES Year 3-like image simulations. We note again here that
DES Year 3 refers to the first three years of DES data processed
together. In our simulation design we follow closely the real DES
Year 3 data, by simulating complete sets of single-epoch images
required to form DES Year 3 tiles in all four photometric bands
𝑔𝑟𝑖𝑧, and then applying the same software for coadding, object
detection and object measurement as is applied on the real data in
Sevilla-Noarbe et al. (2021) and Gatti & Sheldon et al., (2021).
This consistent simulation of weak lensing data across multiple
photometric bands is key a step forward in the Dark Energy Survey’s
joint shear and photo-𝑧 bias characterization. We describe the main
steps in our fiducial simulation pipeline below.

3.1 Exposures, single-epoch images, and tiles

DES wide-field images are processed in tiles, square sky regions
of side length 10, 000 pixel (≈ 0.72 degree, see Morganson et al.
2018). There are 10,338 such tiles included in the Y3 dataset. For
each tile region, all images overlapping that region are included in a
coadded image for each band. These input images to the coadd come
from many exposures, each of which is a collections of images, one
for each CCD in the Dark Energy Camera (DECam, Flaugher et al.
2015) focal plane. We refer to these individual CCD images as
single-epoch images. We also organize our image simulation using
this tiling system.

We select at random 400 of the tiles entering the Y3 dataset,
and for each tile, generate simulated versions of all the single-epoch
images with any overlap of the tile region. For a given version of our
simulation, this constitutes 62.8 million simulated objects, of which
15.4 million are detected in our shear pipeline, and 4.1 million pass
shear catalog quality cuts (see Section 3.4). We simulate a total of
20 versions of this 400 tile set simulation, with versions differing
only in their applied shear field (see Section 3.2), or whether objects
are placed on a regular grid and whether detection is performed (see
Section 3.5). We were limited in producing more simulation volume
by time and computing resources, but find that this 400 tile set is
sufficient volume such that statistical uncertainties in the simulation
measurements are not the dominant uncertainty on our inferred bias
corrections.

3.2 Single-epoch Image generation

Our simulation pipeline starts by generating a simulated version
of each single-epoch image using GalSim5 (Rowe et al. 2015),
with the addition of various custom modules. Briefly, we create
simulated images with noise, point-spread-functions and world-
coordinate system (WCS) estimated from the DES Y3 data, and
insert parametric models for stars and galaxies. The images are
simulated with the following properties:

5 https://github.com/GalSim-developers/GalSim

• Pixel geometry: Each simulated single-epoch image is gener-
ated with the pixel geometry of the corresponding image in the real
DES data. This is simply set by the DECam CCD properties, all of
which have 4096 × 2048 pixels.

• Noise: Noise is assumed to be Gaussian and is drawn from
the weight maps estimated for the corresponding image in the real
DES data. For pixels that are masked in the corresponding image,
the median of the weight map is used as the inverse noise variance.
This noise field constitutes the only background onto which sim-
ulated objects are drawn — we do not simulate e.g. non-zero sky
background. This choice implicitly assumes that the background
subtraction performed on the Y3 data is sufficiently accurate.

• WCS: Our input objects to the simulation, for which we gen-
erate a model in sky coordinates, are consistently drawn into all the
single-epoch images they overlap, using the WCS (world-coordinate
system) solution for the the corresponding image in the real data.

• PSF: The drawn objects are convolved with a smoothed version
of the PSF model estimated from the real data by Piff6 (Jarvis
et al. 2021). See Appendix C for the details and justification of
this procedure. A significant simplification of our analysis here is
that we do not attempt to measure the PSF from our simulations
for use in shape measurement, rather we use the input PSF models.
While we believe this is well justified by the stringent PSF validation
performed in Jarvis et al. (2021), jointly simulating the inference of
PSF and shear would be a natural extension of the work presented
here.

• Masking: We package with the simulated images the bad pixel
masks taken from the corresponding real data image files. These
indicate pixels to exclude or interpolate for downstream processing
and measurement codes.

• Input galaxies: We randomly draw galaxy models from a cat-
alog of "bulge+disk", two-component parametric fits to galaxies in
the COSMOS field7. This catalog is described in Hartley & Choi
et al., (2020); we provide a brief description here. The morphologi-
cal parameters (half-light-radius, bulge-to-disc-ratio, ellipticity) of
the parameteric galaxy models were fit to Hubble Space Telescope
Advanced Camera for Surveys (HST-ACS) imaging (Scoville et al.
2007; Koekemoer et al. 2007), specifically we use the re-processed
HST-ACS data of Leauthaud et al. (2007). These model fits were
then used to estimate fluxes for the DECam 𝑔𝑟𝑖𝑧 filter bandpasses,
using forced photometry at the same sky positions in deep stacks
of DECam imaging (described in Hartley & Choi et al., 2020). The
use of both HST imaging and DECam imaging gives us a cata-
log of parametric galaxy models with realistic and well-constrained
morphology (from HST) and realistic fluxes and colors in the DES
filters (from the deep DES imaging). When drawing a parametric
model galaxy into the simulations, we apply a random rotation to
each simulated object.

We additionally match this catalog (using a 0.75 arcsecond match-
ing radius) to the Laigle et al. (2016) redshift catalog, and apply area
masks for the problematic regions identified by Hartley & Choi et al.,
(2020), after which 222116 unique input objects remain. We remove
60 (0.03%) of these for which the parametric model fits failed. We
additionally apply a selection 𝑟50 > −0.25(mag𝑖−22)−1.35, which
we find effectively removes the stars (we separately simulate stars
using a different catalog described below).

In our fiducial simulation we include only galaxies with 𝑖-band
magnitude < 25.5, which is two magnitudes fainter than our thresh-

6 https://github.com/rmjarvis/Piff
7 http://cosmos.astro.caltech.edu/page/hst
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old for inclusion in the eventual shape catalog. While we do not
perform an analysis of sensitivity to this choice, the results of e.g.
Hoekstra et al. (2017) suggest the absence of fainter objects than
this in our simulations will probably bias our multiplicative bias
estimates at the ∼ 0.1% level, well below our current uncertainties.

In each tile, the number of galaxies simulated is drawn from a
Poisson distribution with mean 170000, which corresponds to a
number density of 88 galaxies per square arcminute. The density
of input objects was tuned such that the number of detected objects
in the simulations matched the number of detected objects for the
same set of tiles in the real DES Y3 data. The majority of these
galaxies will be either undetected or removed via cuts, resulting in
a number density of roughly 6 galaxies per square arcminute used
for shear estimation.

Galaxies are placed randomly on the sky and so are not clustered.
Compared to the real Universe, we expect this to result in less
blending of objects at similar redshifts. We discuss the implications
of this approximation in Sections 6.3 and 7.

• Input stars: We use a catalog of stars simulated using the
Trilegal8 code, with the best-fitting models from the MWFitting
method presented in Pieres et al. (2020). This catalog contains
both sky positions and fluxes for a simulated population of stars
complete in the magnitude range 14-26 in the 𝑔-band. In our fiducial
simulation we include only stars with 𝑖-band magnitude < 25.5.

• Input shear: We run otherwise identical realizations of each
simulation with constant input shears of either +0.02 or −0.02 in a
single shear component (the other component being 0). This allows
us to follow the approach of Pujol et al. (2019), who propose com-
puting multiplicative shear biases via measuring the difference in
recovered shear between two simulations which are identical apart
from a small change in input shear. Using this procedure greatly
reduces the noise (both shape noise and measurement noise) on the
multiplicative bias estimate, since much of it cancels when taking
the difference. Note this is closely related to the idea of the ‘ring-
test’ introduced by Nakajima & Bernstein (2007). We additionally
generate simulations where the applied shear depends on the red-
shift of the input galaxy. More specifically, we generate simulations
where galaxies with redshift within some redshift interval 𝛼 have
a difference in applied shear of Δ𝑔true

𝛼 = 0.04 with respect to the
rest of the simulated galaxies. This allows us to measure the 𝑁𝛼

𝛾 as
described in Section 5.1.

3.3 Image reduction, coaddition and detection

The processing and measurements applied to the simulated images
closely follows that performed on the real DES Y3 images (de-
scribed in Morganson et al. 2018; Sevilla-Noarbe et al. 2021; Gatti
& Sheldon et al., 2021). We summarize here:

• A 10000 × 10000 pixel weighted-mean coadd image is gener-
ated for each tile, in each band, using SWarp (Bertin et al. 2002).
The weight maps used are the same as those used to generate the
noise on the simulated images. The 𝑟, 𝑖 and 𝑧 coadd images are then
themselves combined in a CHI-MEAN coadd image, again using
SWarp.

• The 𝑟𝑖𝑧 coadd is used for object detection and segmentation,
which is performed by SExtractor (Bertin & Arnouts 1996). SEx-
tractor outputs a catalog of detected objects, various measured
quantities for these objects, as well as segmentation maps (which

8 http://stev.oapd.inaf.it/cgi-bin/trilegal

indicate which pixels in the images are assigned to which catalog
objects).

• Multi-epoch data structure (MEDS, Jarvis et al. 2016) files
are generated for each band for each tile. For each detected object
in the SExtractor catalog, the MEDS file contains a postage-stamp
cutout from each of the single-epoch images in which that object
appears. This data format makes convenient the fitting of models
simultaneously to multiple observations of a given object.

3.4 Shear estimation

To generate a shear catalog for each tile, we run Metacalibration
on the 𝑟 , 𝑖 and 𝑧 MEDS files, which fits an elliptical Gaussian
profile, convolved with the PSF model, to the observed light profile
of each detection. The parameters of the profile are fit jointly to
square regions (stamps) extracted from each single-epoch image
for all bands, apart from a free amplitude allowing an independent
flux in each band. Stamps with a masked fraction of more than 0.1
are not used in the fits. Estimates of the shear response, 𝑅𝑖 𝑗 are
also generated by Metacalibration which is the response of the
measured shear in component 𝑖 to an applied shear in component 𝑗 .
From the shear catalogs generated by Metacalibration we select
a sample suitable for weak lensing measurements by applying the
identical catalog cuts as those applied to the DES Y3 data in Gatti &
Sheldon et al., (2021). The most significant (in terms of number of
objects removed) of these are cuts on the object signal-to-noise ratio,
𝑆/𝑁 > 10, and the ratio of PSF-deconvolved galaxy size, 𝑇 , to the
PSF size,𝑇psf ,𝑇/𝑇psf > 0.5.𝑇 is an area measure (equal to the trace
of the covariance) for the Gaussian profile. The signal-to-noise ratio
cut is required to minimize biases associated with shear-dependence
of the SExtractor selection, and the size cut reduces the impact
of any PSF modeling errors. See Gatti & Sheldon et al., (2021) for
more discussion of the motivation and details for the shear catalog
cuts, as well as detailed descriptions of the quantities such as 𝑇 .
This sample can then be used to estimate the shear recovered from
the simulation, which can then be compared to the true shear input
to the simulation to estimate any biases in the shear recovery.

3.5 Simulation variants

In order to better understand the source of shear calibration biases,
we generate and analyse two sets of simulations additional to the
fiducial simulation described thus far. In the grid simulations,
objects are placed on a regular grid with spacing ≈ 35 pixels (≈ 9
arcseconds). We would expect any biases related to blending to be
absent in this variant. The second variant is the grid-truedet

simulations, which again places objects on this regular grid, and
in addition the SExtractor detection catalog used as input to the
shape measurement is replaced by a catalog containing the true
positions of input objects. We would expect this to remove any
biases related to possible shear dependence of the SExtractor
detection probability (e.g. if rounder objects were more likely to be
detected).

3.6 Simulation Validation

The final part of our simulation pipeline is validating our simu-
lation’s realism by comparing it to the real data. We infer below
that the shear biases present are related to the blending of sources
and the possible shear-dependence in how sources are selected, seg-
mented and modelled. This blending must therefore be accurately
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characterized in the simulations. We ensure here that the number
density of sources, the noise levels in the image, and the distribution
of measured source properties like flux and size are well-matched
between the fiducial simulation and real DES data. We expect the
effects of blending to be sensitive to the properties of neighbouring
objects (such as the number of them within a given distance, and
their brightness) encountered by our target source galaxies, so we
additionally study statistics sensitive to these in Section 6.3.

3.6.1 Aesthetics

We generate 𝑔𝑟𝑖 color images of our simulated coadds, using the
desimage9 package. These are useful for visual inspection of the
simulations, but also for visual comparison to images made via the
same process on the real data. Figure 2 shows color images for the
same 1000x1000 pixel region of the coadd tile DES0003-3832 in
the real data (left panel) and the fiducial simulation (right panel). A
lack of bright stars in the simulation is apparent. These are masked
out of the real data before analysis, so we do not believe that their
absence from the simulations can impact our results.

3.6.2 SExtractor comparisons

SExtractor forms a crucial part of our pipeline in detecting and
segmenting objects in the coadd images, so it is important that the
simulated images analysed using SExtractor resemble the real
data. Here, we perform comparisons of the measured properties of
objects detected in the simulations.

The top-left and top-middle panels of Figure 3 shows the
joint distribution of magnitude and size estimated by SExtrac-
tor, for the 𝑔 and 𝑖-bands respectively. Specifically, we use
MAG_AUTO (an elliptical aperture magnitude), and FLUX_RADIUS

(with PHOT_FLUXFRAC = 0.5) an estimate of the PSF-convolved
half-light radius of the object10. Some clear features are apparent
in both simulations and data, such as the shift of the distribution
to larger size in the 𝑔-band compared to the 𝑖-band, which is due
primarily to the larger PSF. We note that the distributions plotted
share the same normalization, so any differences in absolute number
density would be apparent.

3.6.3 Metacalibration quantities

For shear estimation and photometry, we use elliptical Gaussian
models fit to single-epoch images (as opposed to the coadds used
for the SExtractor quantities discussed above). The distributions
of size and signal-to-noise of a weak lensing galaxy sample have
often been identified as key to the expected level of bias in the shear
recovery (e.g. Refregier et al. 2012; Kacprzak et al. 2012). The top-
right panel of Figure 3 compares the joint distribution of signal-
to-noise and size between simulations and data. The distributions
are smoother in the log of these quantities, so we actually compare
distributions of log10 (𝑆/𝑁) and (since 𝑇 can take slightly negative
values) log10 (1 + 𝑇).

As well as size and signal-to-noise, it is important to verify that
other quantities used to select sub-samples of the source galaxies are

9 https://github.com/esheldon/desimage
10 see SExtractor documentation at http://mensa.ast.uct.ac.

za/~holwerda/SE/Manual.html or https://www.astromatic.net/
pubsvn/software/sextractor/trunk/doc/sextractor.pdf for
more details on these quantities

well matched between simulations and data. A key example of this
is selection of objects into bins based on their photometric redshift
(photo-𝑧 henceforth). Photo-𝑧 algorithms usually use some discrete
set of broadband fluxes, with ratios of those fluxes (or differences
in magnitudes), known as colors considered particularly informa-
tive for redshift estimation. The bottom three panels of Figure 3
demonstrate that the simulations reproduce well the joint distribu-
tions of (from left to right): 𝑖-band magnitude and 𝑟 − 𝑖 color, 𝑖-band
magnitude and 𝑖 − 𝑧 color, and 𝑟 − 𝑖 color and 𝑖 − 𝑧 color.

3.7 Photo-z inference

The photometric redshift distributions for the simulation sample
are inferred using the SOMPZ method outlined in Myles & Alarcon
et al., (2021) (see also Buchs & Davis et al., 2019). Following
the methodology applied to DES Y3 data there, detected objects
in the image simulations are assigned to two self organizing maps
(SOMs), corresponding to “wide” (32 x 32 cells, using 𝑟𝑖𝑧 flux
information) and “deep” (64 × 64 cells, using 𝑢𝑔𝑟𝑖𝑧𝐽𝐻𝐾𝑠 colour
information from the DES Deep Fields measurements presented in
Hartley & Choi et al., 2020). In the Y3 data anaysis, galaxies with
spectroscopic redshifts or flux measurements in a large number
of photometric bands (“deep" galaxies) are assigned to the higher
resolution SOM. When those same galaxies are assigned to the
lower resolution SOM based on their wide field flux information,
they can be used to infer information about other galaxies with only
the limited wide-field photometry available in order to calibrate the
color-redshift relation.

We use the SOMs constructed from the Y3 data catalogs and
the same software to assign the simulated galaxies (Myles & Alar-
con et al., 2021). We assume that all simulation input galaxies have
precise redshifts (equal to the photo-𝑧 point estimates by Laigle et al.
2016) that, together with their measured deep 𝑢𝑔𝑟𝑖𝑧𝐽𝐻𝐾𝑠 fluxes,
describe the deep color-redshift relation. Matching simulation de-
tections to input galaxies allows us to generate a transfer function
that connects redshift, deep SOM cell, and wide SOM cell. The wide
cells and their contained galaxies are then grouped together by their
mean redshift in a variety of ways (see below) to form tomographic
bins.

The procedure for matching injection galaxies to measured de-
tections in these simulations begins with a nearest neighbors search
to identify the three closest objects in the truth catalog to a given
detection. For a detection to be matched to a true object, it must
have a close match within two pixels. If it does not have one, it is
ignored in the rest of the photo-𝑧 inference (roughly 0.5% of detec-
tions). Detections with an exclusive close match (i.e. one that is not
a close match to any other detection) make up approximately 30%
of the simulated sample. To discriminate between detections with
multiple close truth matches, we loop over injections from brightest
to faintest in 𝑖-band magnitude and assign the brightest close truth
match that has not yet been assigned to another detection. Roughly
70% of detections fall into this category. If all close matches have
already been assigned to other detections via this loop, no truth
match is assigned, but this happens rarely enough to be negligi-
ble. For example, this only occurs for 4 cases in the entire fiducial
(𝑔1, 𝑔2) = (−0.02, 0.00) simulation.

The wide SOM occupancy for both the simulations and the
data can be seen in Figure 4, showing very good general agreement.
This is a consequence of the close alignment of color and magni-
tude distributions between the data and the simulations discussed in
Section 3.6.2. The largest point of discrepancy is due to cells com-
posed of very large, very blue galaxies at low redshifts, which likely
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Figure 2. 𝑔𝑟𝑖 color image of 1000 × 1000 pixel region of tile DES0003-3832 for the real Y3 data (left panel) and the fiducial simulation (right panel). .
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Figure 3. Comparisons of joint distribution of measured quantities between simulations (orange dashed lines) and DES Y3 data (blue lines). The top-left and
top-middle panels show joint distributions of SExtractor measured quantities MAG_AUTO and FLUX_RADIUS 𝑔-band and 𝑖-band respectively. The stellar locus
is at larger FLUX_RADIUS in the 𝑔-band because of the larger PSF. The remaining panels show comparison of quantities estimated by the shape measurement
code (Metacalibration). The top-right panel shows the joint distribution of signal-to-noise and size (in fact, log10 (𝑆/𝑁 ) and log10 (1 +𝑇 )). The bottom-left
panel shows the joint-distribution of 𝑖-band magnitude and 𝑟 − 𝑖 color. The bottom-middle panel shows the joint distribution of 𝑖-band magnitude and 𝑖 − 𝑧

color. The bottom right panel shows the joint distribution of 𝑟 − 𝑖 and 𝑖 − 𝑧 colors.
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Sample Binning Style 𝑧̄0 𝑧̄1 𝑧̄2 𝑧̄3
Data Fiducial 0.334 0.517 0.749 0.936
Sim Fiducial 0.311 0.460 0.723 0.894
Sim Equal 0.322 0.510 0.745 0.920
Sim Z-Match 0.325 0.511 0.753 0.930
Sim W-Match 0.294 0.463 0.714 0.895

Table 1. Table describing the mean redshift per photo-𝑧 bin for each binning
algorithm as compared to that found in the data.

do not significantly contribute to the redshift-dependent effects of
blending that are key to this analysis.

A principal aim of this work is to quantify the shear calibration
separately for each of the photometric redshift bins used in the DES
Y3 cosmology analyses. This requires that we perform an equivalent
photometric redshift binning on the image simulations. One can
motivate several different choices of photo-𝑧 binning algorithms in
order to estimate the shear calibration biases that may differ due
to the small differences in color-redshift relation between the sims
and the data. Presented here is a description of the four binning
algorithms we use and their resulting summary statistics like the
mean redshift per bin.

• Fiducial: We use the same mapping between wide SOM cell
and photo-𝑧 bin as in the Y3 data. We make this our fiducial choice,
since we think the philosophy of treating the real data and the
simulations as similarly as possible is a sensible one. However,
small differences in wide SOM occupancy between simulations and
real data are apparent with this procedure. Whereas in the data,
each photo-𝑧 bin has an equal number of objects (25% of the total,
by construction), there are deviations from 25% occupancy in the
simulations, with the four photo-𝑧 bins receiving 19%, 24%, 25%
and 30% of the objects respectively.

• Equal Count (equal): Instead of taking the mapping from the
data, the wide SOM cells are ordered by mean redshift and then
grouped such that an approximately equal number of galaxies end
up in each photo-𝑧 bin, much like how the mapping is chosen in the
data.

• Mean redshift matching (z-match): This is a binning that
chooses the wide SOM cells such that they closely match the mean
redshift found in the data photo-𝑧 bins, with approximately equal
counts in each bin. By necessity, in this binning scheme a galaxy
may end up assigned to multiple bins, or not assigned to any bin.

• SOM Occupancy Matching (w-match): This preserves the
mapping used in the fiducial case, but also reweights galaxies to
reproduce the relative wide SOM cell occupancy found in the Y3
data, using the ratio between the left and center panels of Figure 4.

The mean redshift for each of these photo-𝑧 binning choices on
the simulations are reported in Table 1, and the full distributions can
be seen in Figure 5. We see broad similarity between the binning
recipes, but revisit the alternative options in Section 6.2 where we
test the sensitivity of our calibration corrections to the choice of
binning recipe.

4 RESULTS I: SHEAR CALIBRATION BIASES FROM
CONSTANT SHEAR SIMULATIONS

In this section, we begin by examining the shear calibration biases
apparent in constant shear simulations, and we report average shear
calibration bias estimates for the full DES Y3-like sample, as well
as for individual photo-𝑧 bins. As described in Section 2, these
bias estimates are not sufficient in general to correct theoretical

predictions for weak lensing shear statistics, hence in Section 5, we
present estimates of biases in 𝑛𝛾 (𝑧), using simulations where the
input shear varies with redshift.

For these calculations, we use four 400 tile constant shear
simulations with input shear

(𝑔1, 𝑔2) ∈ {(0.02, 0), (−0.02, 0), (0, 0.02), (0,−0.02)} (19)

(see Section 3.2). Each simulation is identical (i.e. random elements
of the simulation use the same random seeds) apart from the applied
shear, reducing the noise on the differences between the mean shear
measured between pairs of the simulations (see Pujol et al. 2019).
See Table 2 for more details.

For each shear component 𝜇, the multiplicative and additive
biases, 𝑚𝜇 and 𝑐𝜇 are calculated by fitting the model

𝑔̄obs
𝑥 = (1 + 𝑚𝑥)𝑔true

𝑥 + 𝑐𝑥 (20)

to the pair of simulations with 𝑔true
𝑥 = ±0.02, where 𝑔̄obs

𝑥 is the
measured mean shear for component 𝑥. The uncertainty on 𝑔̄obs

𝑥 ,
inferred from jackknifing over the simulated tiles, is included in the
fit.

Table 3 contains mean multiplicative biases for our fiducial,
grid, and grid-truedet simulations. In the grid simulation,
blending is removed by placing down objects on a grid. In the
grid-truedet simulation, objects are again placed on a grid, and
in addition we use their true positions for the detection catalog,
rather than the detection catalog estimated using SExtractor. We
expect this to additionally remove any selection biases due to shear-
dependence of the SExtractor selection.

While the fiducial simulations exhibit a mean multiplicative
bias of ≈ −2%, the multiplicative bias for both the grid and the
grid-truedet simulations are greatly reduced, with a remaining
bias of around −0.4%. We can draw a few conclusions from this.
Firstly, the fact that we see consistent biases for the grid and grid-
truedet cases implies that we do not have significant SExtractor
biases for isolated objects. This is not unexpected, since we apply a
𝑆/𝑁 > 10 cut to our catalogs that likely dominates over the threshold
for detection used by SExtractor, and Metacalibration is able
to accurately correct for selection biases due to this cut.

Beyond that, we can attribute most of the multiplicative bias
we see in the fiducial simulation to the presence of blending. As
explored in Sheldon et al. (2020), the presence of blending can
likely generate biases through various (related) mechanisms. Firstly
there is ‘detection’ bias due to shear-dependence of the detection
algorithm, including the decision of how many different objects to
assign to a blend. Secondly one may also expect an additional bias
due to the presence of a neighbor in the shape measurement process,
either due to its contaminating flux, or due to some unaccounted-for
shear dependence of the neighbor masking algorithm. With these
simulations, we cannot fully decouple these effects. A simulation
with randomly-placed objects as in the fiducial simulation, but using
true detection to remove detection biases, would shed light on the
issue, but we did not have the resources to run this variation.

Figure 6 shows the multiplicative bias (averaged over shear
component) as a function of signal-to-noise ratio. For the grid

and grid-truedet cases there is no clear trend with 𝑆/𝑁 , while
for the fiducial case, there do appear to be variations with 𝑆/𝑁 ,
although only at the percent level, and we do not attempt to explain
this behaviour. We also do not have a conclusive explanation for
the ≈ −0.4% biases remaining in the grid and grid-truedet

simulations. Appendix B explores various potential sources of small
(sub-percent) multiplicative biases using idealized simulations, and
we do see the potential for biases due to masking at the ∼ 0.1%, so
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Figure 4. The wide SOM population distribution in the data (left) compared to the simulations (center), with a residual (right) that shows the majority of cells
agree to within 0.05% in total population.
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Figure 5. The photometric redshift distributions for the four photo-𝑧 binning schemes applied in the simulations (described in Section 3.7, as well as the
estimated Y3 data redshift distributions (labelled “DATA - Fiducial”). For plotting purposes all curves have been smoothed using a Gaussian kernel of width
0.01 in 𝑧.

this may be contributing some of the remaining bias. Given that we
directly apply the masks from the DES Y3 data to our simulations,
we are confident that the biases in the simulations due to masking
will be at a similar level to that present in the real data.

In order to provide some more detail on the impact of blending
on the multiplicative bias, we attempt to compute the bias as a func-
tion of object separation as follows. Using the galaxies in the input
truth catalogs for our simulations, we find pairs of input galaxies
that are separated by some distance and are no closer to any other
galaxy in the simulation than the other galaxy in its pair. We then
define a small region in the simulated image encompassing each
pair, such that detections in this region include light from just these
two galaxies. Specifically, we used a circle of radius 0.75 times the
pair separation, centered on the midpoint between the two galaxies.

Detections in these regions were used to compute the multiplicative
bias as a function of separation. The results of this exercise are
shown in Figure 7. For comparison, we show the predicted effects
of detection bias from Sheldon et al. (2020) for a simplified sim-
ulation setup involving only pairs of galaxies with equal size and
flux. Note also that Sheldon et al. (2020) used a different procedure
to remove the light of neighboring objects. At small separations we
see the qualitative effects of detection bias, that is a large negative
bias. At large separations, the bias is consistent with zero within
the statistical noise. At intermediate scales, we also see a positive
bias that was not apparent in the Sheldon et al. (2020) simulation
results. This can occur when a neighbor is not detected, so may only
be significant when pairs with widely disparate fluxes are included.

To summarize, we see multiplicative biases in our simulations
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Figure 6. Multiplicative bias as a function of 𝑆/𝑁 for the fiducial, grid,
and grid-truedet simulations. The fiducial simulation places the ob-
jects in the images at random positions and detects them with SExtractor.
The grid simulation places them on a grid with ≈ 9 arcsecond spacing
and still employs SExtractor. The grid-truedet simulation uses a grid
for the objects, but uses their true positions instead of detecting them with
SExtractor.

from at least three sources. First, as shown in Appendix B, the effects
of masking and their corrections used in the DES Y3 analysis cause
a small, few tenths of a percent bias. Second, for very close pairs of
truth objects, we see a strong negative multiplicative bias in Figure 7
that is qualitatively consistent with the detection biases studied in
Sheldon et al. (2020). At intermediate separations we see some
positive multiplicative bias which is presumably blending-related,
involving pairs with widely different fluxes.

We note here that the mean multiplicative bias of ≈ −0.02
we estimate here is somewhat different from the multiplicative bias
prior of 0.012±0.012 inferred by Zuntz & Sheldon et al., (2018) for
the DES Year 1 shear catalog, which used very similar shape mea-
surement methodology. We believe the significant improvements
in simulation realism presented here explain this discrepancy. We
note also that Sheldon et al. (2020), which used an independent set
of image simulations to those presented here, that we believe also
contained significant improvements with respect to those used by
Zuntz & Sheldon et al., (2018), reported multiplicative biases much
close to those presented here for DES-like simulations.

In Section 6.3, we use a re-weighting procedure to estimate
systematic uncertainty (due to potential simulation inaccuracy) in
the impact of blending, which is then propagated to our final priors
on the shear calibration.

5 RESULTS II: : ESTIMATES OF 𝑛𝛾 (𝑧) BIASES FROM
REDSHIFT-DEPENDENT SHEAR SIMULATIONS

We explained in Section 2 that for theory predictions of shear statis-
tics involving ensembles of detections over a range of redshifts,
we require an estimate of 𝑛𝛾 (𝑧), the effective redshift distribution
for lensing. In this section we describe the extra simulations and
methodology used to infer biases in the DES Y3 methodology for
estimating 𝑛𝛾 (𝑧). To summarize, we take the following approach
(with much more detail given in the following section). For each
photo-𝑧 bin 𝑖:

• We measure 𝑁𝛼
𝛾,𝑖

for 4 redshift intervals 𝛼 (with ranges

0 1 2 3 4 5
pair separation (arcsec)

0.6

0.4

0.2

0

m

Sheldon et al. (2020) DES Y3 sims

Figure 7. Multiplicative bias for detections corresponding to pairs of truth
objects separated by a given angle. To make this plot, we find pairs of
true objects separated by some distance in the truth catalog in our fiducial
simulations and not near any other objects. We then use detected objects near
this location to measure the multiplicative bias as a function of separation.
At small scales, we find signals in our simulations that appear to be from
detection bias. For comparison, we show the detection bias result from
Sheldon et al. (2020) as the red line. At intermediate scales, we see a positive
bias, which is probably from pairs where one source is much fainter than the
other. The bias converges to be consistent with zero at large separations.

(𝑧𝛼1 , 𝑧
𝛼
2 )), from simulations with a change in applied shear

within that interval. We use redshift intervals (𝑧𝛼1 , 𝑧
𝛼
2 ) ∈

{(0.0, 0.4), (0.4, 0.7), (0.7, 1.0), (1.0, 3.0)}. Note these redshift in-
tervals 𝛼 have no specific correspondence to the four photo-𝑧 bins 𝑖
we use.

• We compare this measurement to the prediction based on in-
tegrating the Metacalibration response-weighted redshift distri-
bution, 𝑛mcal

𝛾 (𝑧) (which is how 𝑛𝛾 (𝑧) is estimated in the real data).
• Due to computing limitations, we can only measure 𝑁𝛼

𝛾,𝑖
in the

four coarse aforementioned redshift intervals. However, we need a
finely sampled 𝑛𝛾 (𝑧) to make theory predictions. Therefore we use
a model that parameterizes deviations from 𝑛mcal

𝛾 (𝑧) of the form
𝑛model
𝛾 (𝑧) = 𝑓 (𝑧)𝑛mcal

𝛾 (𝑧) + 𝑔(𝑧), where 𝑓 (𝑧) and 𝑔(𝑧) are smooth
functions of 𝑧. We fit this model to our 𝑁𝛼

𝛾,𝑖
measurement.

We start in Section 5.1 by describing the simulation inputs and
procedure for estimating 𝑁𝛼

𝛾 for a given ensemble of detections. In
Section 5.2 we present the 𝑁𝛾,𝑖 estimates for the case without red-
shift binning, and compare these to the prediction from the Meta-
calibration response-weighted redshift distribution, 𝑛mcal

𝛾 (𝑧). In
Section 5.3 we present measurements of 𝑁𝛼

𝛾,𝑖
for ensembles of

galaxies restricted to true redshift intervals, a case which most
clearly demonstrates the response of galaxies assinged one redshift
to a shear applied at another. In Section 5.4 we present measure-
ments of 𝑁𝛼

𝛾,𝑖
, for each photo-𝑧 bin 𝑖, again comparing these to

the 𝑛mcal
𝛾 (𝑧). In Section 5.5 we describe our modeling approach

using fitting functions to infer 𝑛𝛾 (𝑧) corrections from these mea-
surements, and finally in Section 5.6 present the resulting 𝑛𝛾 (𝑧)
bias model constraints.
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variant sheared redshift interval (𝑔1, 𝑔2) in redshift interval (𝑔1, 𝑔2) outside redshift interval object placement SExtractor detection
grid-truedet [0.0, 3.0] (+0.02, 0.00) – grid no
grid-truedet [0.0, 3.0] (−0.02, 0.00) – grid no
grid-truedet [0.0, 3.0] (0.00, +0.02) – grid no
grid-truedet [0.0, 3.0] (0.00, −0.02) – grid no

grid [0.0, 3.0] (+0.02, 0.00) – grid yes
grid [0.0, 3.0] (−0.02, 0.00) – grid yes
grid [0.0, 3.0] (0.00, +0.02) – grid yes
grid [0.0, 3.0] (0.00, −0.02) – grid yes

fiducial [0.0, 3.0] (+0.02, 0.00) – random yes
fiducial [0.0, 3.0] (−0.02, 0.00) – random yes
fiducial [0.0, 3.0] (0.00, +0.02) – random yes
fiducial [0.0, 3.0] (0.00, −0.02) – random yes
fiducial [0.0, 0.4] (+0.02, 0.00) (−0.02, 0.00) random yes
fiducial [0.4, 0.7] (+0.02, 0.00) (−0.02, 0.00) random yes
fiducial [0.7, 1.0] (+0.02, 0.00) (−0.02, 0.00) random yes
fiducial [1.0, 3.0] (+0.02, 0.00) (−0.02, 0.00) random yes
fiducial [0.0, 0.4] (0.00, +0.02) (0.00, −0.02) random yes
fiducial [0.4, 0.7] (0.00, +0.02) (0.00, −0.02) random yes
fiducial [0.7, 1.0] (0.00, +0.02) (0.00, −0.02) random yes
fiducial [1.0, 3.0] (0.00, +0.02) (0.00, −0.02) random yes

Table 2. Image simulation properties. Each line lists a specific image simulation produced for this work. The fiducialsimulation places objects at random
into the image and uses SExtractor for object detection. We also ran variations for some of the simulations where objects were placed on a grid (grid) or
we used their true locations for shear measurements (grid-truedet).

variant 𝑚1 × 100 𝑚2 × 100 𝑚 × 100 𝑐1 × 104 𝑐2 × 104

grid-truedet −0.48 ± 0.07 −0.40 ± 0.07 −0.44 ± 0.05 −2.06 ± 1.48 −2.77 ± 1.46
grid −0.33 ± 0.15 −0.35 ± 0.15 −0.34 ± 0.11 −2.14 ± 1.34 −3.59 ± 1.40

fiducial −2.23 ± 0.16 −1.93 ± 0.17 −2.08 ± 0.12 −0.86 ± 1.35 −1.34 ± 1.45
fiducial bin 0 −1.55 ± 0.44 −0.96 ± 0.45 −1.25 ± 0.31 1.57 ± 3.05 −4.38 ± 2.75
fiducial bin 1 −1.77 ± 0.56 −1.87 ± 0.54 −1.82 ± 0.39 −1.86 ± 2.66 −0.69 ± 2.79
fiducial bin 2 −2.51 ± 0.64 −2.03 ± 0.67 −2.27 ± 0.44 −3.05 ± 2.39 1.11 ± 2.43
fiducial bin 3 −0.038 ± 0.79 −0.034 ± 0.88 −3.60 ± 0.59 0.31 ± 2.78 −1.24 ± 2.89

Table 3. Average multiplicative (𝑚) and additive (𝑐) biases for the fiducial, grid and grid-truedet simulations. While we expect no bias in the shear
measurements for simulations of objects on a grid with no detection employed, we do find a small bias due to masking corrections. See Appendix B for details.
The fiducial simulations show non-trivial multiplicative biases due to a combination of blending, object detection effects, masking, and potentially other
unknown causes.

5.1 Estimating 𝑁𝛼
𝛾

As discussed in Section 2, we can estimate 𝑁𝛼
𝛾 , which is 𝑛𝛾 (𝑧)

integrated over the interval 𝑧𝛼1 < 𝑧 < 𝑧𝛼2 , by generating a simulation
which we can label 𝛼, that has constant true shear 𝑔const apart from
in redshift interval 𝛼 which has an applied true shear 𝑔const+Δ𝑔true

𝛼 .
Our estimate for 𝑁𝛼

𝛾 is then given by

𝑁𝛼
𝛾 =

Δ𝑔̄obs
𝛼

Δ𝑔true
𝛼

, (21)

whereΔ𝑔̄obs
𝛼 is the change in measured mean shear w.r.t a simulation

with constant shear 𝑔const at all redshifts.
In practice, we always use Δ𝑔true

𝛼 = 0.04 and 𝑔const = −0.02.
The latter is chosen because we already generated simulations with
constant shear −0.02 (separately for both shear components) for the
constant shear results in Section 4. That is, for each redshift interval
𝛼, we generate an extra simulation with

(𝑔1, 𝑔2) =
{
(0.02, 0.00) if 𝑧𝛼1 < 𝑧 < 𝑧𝛼2
(−0.02, 0.00) otherwise.

(22)

This allows us to estimate 𝑁𝛼
𝛾 for the first shear component; we also

generate an analogous simulation to estimate it for the second shear

component, with

(𝑔1, 𝑔2) =
{
(0.00, 0.02) if 𝑧𝛼1 < 𝑧 < 𝑧𝛼2
(0.00,−0.02) otherwise,

(23)

and then average over the two sets of per-shear-component 𝑁𝛼
𝛾

measurements.
We use four redshift intervals 𝛼 with lower and upper redshift

limits (𝑧𝛼1 , 𝑧
𝛼
2 ) ∈ {(0.0, 0.4), (0.4, 0.7), (0.7, 1.0), (1.0, 3.0)}. The

bottom section of Table 2 summarizes the simulation inputs for
these redshift-dependent shear simulations.

Since we have only a finite volume of simulation and thus noisy
estimates of Δ𝑔̄obs

𝛼 , and the estimates for different 𝛼 are correlated
(for two reasons - they are differences with a common constant
shear simulation, and their random seeds are matched with that
constant shear simulation to reduce noise on the differences), we
construct the covariance matrix Cov(Δ𝑔̄obs

𝛼 ,Δ𝑔obs
𝛽

) by jackknifing
over simulated tiles. We then have

Cov(𝑁𝛼
𝛾 , 𝑁

𝛽
𝛾 ) = Cov(Δ𝑔̄obs

𝛼 ,Δ𝑔obs
𝛽 )/(0.042). (24)
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5.2 Effective redshift distribution for lensing: Simulation
measurements vs. predictions

We start with the simplest case of 𝑁𝛼
𝛾 for the full ensemble of de-

tected objects in our simulations which pass the standard selection
cuts - we call this the ‘non-tomographic‘ case, since no tomographic
redshift binning is applied. As discussed in Section 2, we are in-
terested foremost in measuring biases in the estimation of 𝑛𝛾 (𝑧)
via the method used on the real data - that is, a Metacalibra-
tion response-weighted histogram of redshift estimates, which we
denote 𝑛mcal

𝛾 (𝑧). From this, one can make a prediction for 𝑁𝛼
𝛾

𝑁
𝛼,mcal
𝛾 =

∫ 𝑧𝛼2

𝑧𝛼1

d𝑧 𝑛mcal
𝛾 (𝑧). (25)

Since in the simulations we work with discrete detections with as-
signed redshifts, we can estimate 𝑁𝛼,mcal

𝛾 via summing the Meta-
calibration responses of detections assigned to redshift interval
𝛼:

𝑁
𝛼,mcal
𝛾 =

∑
𝑧𝛼1 <𝑧 𝑗<𝑧

𝛼
2
𝑅 𝑗∑

𝑗 𝑅 𝑗
, (26)

where the sum in the numerator is over all detected objects with
an assigned redshift in the interval 𝑧𝛼1 < 𝑧 𝑗 < 𝑧𝛼2 , and the sum in
the denominator is over all detected objects. 𝑁𝛼,mcal

𝛾 then is simply
the fraction of the response-weighted detections in redshift interval
𝛼. Any differences between this fraction, and the 𝑁𝛼

𝛾 measured
directly from the simulations via equation 21 would imply a bias in
𝑛mcal
𝛾 (𝑧) as an estimate of 𝑛𝛾 (𝑧).

In the top panel of Figure 8, we show the simulation measure-
ments of 𝑁𝛼

𝛾 , as well the 𝑁𝛼,mcal
𝛾 and for reference the redshift

distribution 𝑛mcal
𝛾 (𝑧). On this scale, the simulation measurements,

𝑁𝛼
𝛾 , are indistinguishable from the prediction, 𝑁𝛼,mcal

𝛾 , so in the
bottom panel we show the fractional difference between the two
quantities. The blue rectangles are the fractional difference between
𝑁𝛼
𝛾 measured from the simulations (equation 21) and, 𝑁𝛼,mcal

𝛾 (es-
timated via equation 26) i.e. 𝑁𝛼

𝛾 /𝑁
𝛼,mcal
𝛾 − 1 for the four redshift

intervals 𝛼. The height of the rectangles denotes the 1 − 𝜎 error
bounds on this fractional difference, propagated from the covari-
ance on the measured 𝑁𝛼

𝛾 . We see that 𝑁𝛼,mcal
𝛾 is a percent-level

overestimate of 𝑁𝛼
𝛾 , with the disparity increasing for the higher

redshift intervals.
What is going on here? Let us consider the highest redshift

interval. Figure 8 implies that our ensemble of detections responds
to a shear in this redshift interval around 6% more weakly than
one would expect from the Metacalibration response-weighted
redshift distribution. This could be an indication of either of two
subtly different effects (or both):

(i) The measured shear for detections assigned redshift 𝑧 depends
only on the applied shear at redshift 𝑧, but has some (redshift-
dependent) mean multiplicative bias 𝑚̄(𝑧) ≠ 0 or equivalently non-
unity mean response 𝑅̄(𝑧) ≠ 1 (that is not captured by Meta-
calibration), such that 𝛾̄obs (𝑧) = 𝑅̄(𝑧)𝛾true (𝑧), and therefore
𝑛𝛾 (𝑧) = 𝑅̄(𝑧)𝑛mcal

𝛾 (𝑧).
(ii) Due to blending, the measured shear for detections assigned

redshift 𝑧 has some additional non-zero response to the applied shear
at other redshifts 𝑧′ (due to contamination by light from galaxies
at 𝑧′), such that 𝛾̄obs (𝑧) =

∫
𝑅(𝑧, 𝑧′)𝛾true (𝑧′). Here 𝑅(𝑧, 𝑧′) is

some function that determines the strength of linear response to
shear applied at redshift 𝑧′, for detections assigned redshift 𝑧. We
might expect this sort of effect from blending, since the measured
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Figure 8. Measurements of 𝑁 𝛼
𝛾 without photo-𝑧 binning. Top panel: The

orange line is 𝑛mcal
𝛾 (𝑧) (the Metacalibration response-weighted 𝑛(𝑧)),

and the black horizontal lines show 𝑁
𝛼,mcal
𝛾 i.e. the prediction for 𝑁 𝛼

𝛾

based on integrating 𝑛mcal
𝛾 (𝑧) over each interval 𝛼. We also show as blue

rectanges the direct measurements of 𝑁 𝛼
𝛾 from the simulations, with the

height of the rectangle indicating the 1𝜎 uncertainty region. In both cases
we divide by the width of the redshift interval 𝛼 for consistency with the
plotted 𝑛mcal

𝛾 (𝑧) . On this scale the percent level differences between 𝑁 𝛼
𝛾

(black lines) and 𝑁
𝛼,mcal
𝛾 (blue rectangles) are difficult to perceive, hence

we show fractional difference in the bottom panel.
Bottom panel: Blue rectangles indicate the fractional difference between
the measured 𝑁 𝛼

𝛾 , and 𝑁
𝛼,mcal
𝛾 . 𝑁

𝛼,mcal
𝛾 is biased high, especially for

𝑧 > 1, where the bias is around 6%. This means that the response of the
shear catalog to shear at 𝑧 > 1 is around 6% less than predicted. Orange
rectangles show, 𝑚̄𝛼 the mean multiplicative bias for objects assigned to
each redshift interval, as inferred from constant shear simulations. The fact
that the two sets of measurements differ implies the presence of cross-
redshift blending - where galaxies assigned to one redshift interval have
some non-zero response to shear applied to a different interval.

shear of objects assigned redshift 𝑧 may be influenced by the shear
applied to light from other redshifts 𝑧′. This is precisely the effect
we demonstrated with our simple simulation in Section 1, where
the shape measurement of the high 𝑧 galaxy had non-zero response
to shear applied to the low 𝑧 galaxy.

We know to some extent the first effect is present - we do see a
multiplicative bias in the constant shear simulations in Section 4. In
the next section we show measurements of 𝑁 𝑖

𝛾,𝛼, for true redshift
bins 𝑖, which gives us a clear insight into whether the second effect is
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Figure 9. Measurements of 𝑁 𝛼
𝛾,𝑖

for assigned true redshift interval 𝑖. 𝑁 𝛼
𝛾,𝑖

is the response of the mean shear of galaxy ensemble 𝑖, to a shear applied
in redshift interval 𝛼. In this case our ensembles 𝑖 correspond to intervals
in true redshift. The Metacalibration prediction for 𝑁 𝛼

𝛾,𝑖
in this case

is simply the identity matrix: 𝑁 𝛼
𝛾,𝑖

= 𝛿𝑖𝛼, since one would expect unity
response of galaxies to shear applied in their own redshift interval, and
zero response otherwise. Hence we have subtracted 𝛿𝑖𝛼 in this plot to
reduce the dynamic range. The 𝑦-axis then demonstrates the biases from
assuming the Metacalibration-response weighted 𝑛(𝑧) as the effective
redshift distribution.

present. But before that, is useful to consider 𝑚̄𝛼, the multiplicative
bias for detections assigned to redshift interval 𝛼 as measured from
constant shear simulations. If only the first mechanism above was
present, we would expect this measurement to be equivalent to the
fractional difference 𝑁𝛼

𝛾 /𝑁
𝛼,mcal
𝛾 −1 shown in Figure 8. The orange

rectangles in Figure 8 show 𝑚̄𝛼, and the difference with respect to
𝑁𝛼
𝛾 /𝑁

𝛼,mcal
𝛾 − 1 implies the presence of the second mechanism

above, as we will explore further in the next section.

5.3 𝑁𝛼
𝛾 measurements for assigned true redshift bins

We noted in Section 2.4 that it will be useful to measure 𝑁𝛼
𝛾 for

subsets 𝑖 of our detections. While using photometric redshift bins
as those subsets, as we do in the next section, is more directly
applicable to an analysis of real data, it is instructive to study 𝑁𝛼

𝛾,𝑖

for bins 𝑖 in “true” redshift, or really assigned true redshift. The
qualification here is important because we have already noted that
detections do not necessarily correspond to only one galaxy, so may
not have a unique true redshift, but they are assigned a unique true
redshift in the matching procedure described in Section 3.7.

A measurement of 𝑁𝛼
𝛾,𝑖

for 𝑖 ≠ 𝛼 directly probes the presence
of effect (ii) discussed above – the linear response of the shear
measured for detections assigned a redshift 𝑧, to the applied shear
at other redshifts 𝑧′ ≠ 𝑧. It is calculated via

𝑁𝛼
𝛾,𝑖 =

Δ𝛾̄obs
𝛼,𝑖

Δ𝛾true
𝛼

, (27)

where Δ𝛾̄obs
𝛼,𝑖

is the change in mean measured shear for galaxies
assigned to redshift interval 𝑖 only, for the simulation in which
redshift interval 𝛼 is sheared. 𝑁𝛼

𝛾,𝑖
can be related to the 𝑅(𝑧, 𝑧′)

postulated in Section 5.2 via

𝑁𝛼
𝛾,𝑖 =

∫ 𝑧𝑖2

𝑧𝑖1

𝑑𝑧

∫ 𝑧𝛼2

𝑧𝛼1

𝑑𝑧′𝑅(𝑧, 𝑧′). (28)

The prediction for 𝑁𝛼
𝛾,𝑖

based on the Metacalibration

response-weighted 𝑛(𝑧) for detections assigned to redshift inter-
val 𝑖, 𝑛mcal

𝛾,𝑖
(𝑧), is simple. Since in this case the full sample is within

redshift interval 𝑖, we should see unity response to shear applied to
the assigned interval 𝑖 i.e. when 𝛼 = 𝑖, and zero response otherwise
i.e. when 𝛼 ≠ 𝑖. That is, 𝑁mcal

𝛾,𝑖
= 𝛿𝑖,𝛼.

In Figure 9, we plot as points with errorbars the 𝑁𝛼
𝛾,𝑖

for the
four redshift intervals used. Since we expect 𝑁𝛼

𝛾,𝑖
to be close to

unity for 𝑖 = 𝛼, we subtract 𝛿𝑖𝛼 from the measurements so that
the results are all near zero. We see that the diagonal elements of
𝑁𝛼
𝛾,𝑖

are all less than unity, implying that detections assigned to a
given redshift interval do not have unity response to shear applied
in that same redshift interval, with the size of the effect increasing
from around 1% at low redshift to around 10% at high redshift.
This implies the presence of a multiplicative shear bias e.g. due to
a dilution of the applied shear due to contamination of the shape
measurement by light from other (unsheared) redshift intervals.

The off-diagonal terms in 𝑁𝛼
𝛾,𝑖

are predominantly positive,
especially for 𝑖 = 3, that is for detections assigned to the highest
redshift interval. This means that the detections exhibit a positive
response to shear applied in the other redshift intervals 𝛼 ≠ 𝑖,
a clear detection of the mechanism (ii) described in the previous
section, and demonstrated in our simple simulation in Section 1.
This effect is potentially important since it implies there will be extra
correlation in the shears measured at different redshifts w.r.t what
one would expect from the estimated redshift distribution 𝑛mcal

𝛾 (𝑧).
Or put differently, there will be additional tails or broadening in the
effective redshift distribution for weak lensing.

5.4 𝑁𝛼
𝛾 measurements for photo-𝑧 bins

We now repeat the above measurement, but applied to photometric
redshift bins, rather than bins of assigned true redshifts. These
are the most directly applicable measurements for the DES Y3
weak lensing analyses. We use the same simulations and shear
measurements to calculate the integrated effective density 𝑁𝛼

𝛾,𝑖
for

photometric redshift bin 𝑖. 𝑁𝛼
𝛾,𝑖

is estimated from the simulations
in the same way as above but now simply restricting the mean
shear calculation to detections assigned to photometric redshift bin
𝑖, according to the procedure described in Section 3.7. Note the
change in meaning of index 𝑖, which now labels the photo-𝑧 bin
rather than the bin in assigned true redshift.

Figure 10 shows the difference between the 𝑁𝛼
𝛾,𝑖

measure-

ments and the 𝑁𝛼,mcal
𝛾,𝑖

predictions for each photo-𝑧 bin 𝑖. In this

case, 𝑁𝛼,mcal
𝛾,𝑖

is no longer 𝛿𝑖,𝛼 as before, since for any (𝑖, 𝛼) pair,
the photo-𝑧 bin 𝑖 includes galaxies outside of the range (𝑧𝛼1 , 𝑧

𝛼
2 ).

Instead, we now calculate 𝑁𝛼,mcal
𝛾,𝑖

using equation 26, summing over
the Metacalibration responses for the galaxies in each photo-𝑧 bin
𝑖. The blue rectangles in Figure 10 show the resulting 𝑁𝛼

𝛾,𝑖
−𝑁𝛼,mcal

𝛾,𝑖

values with their estimated uncertainties.
The measurements are noisier for this case, especially where

there is little weight in the underlying 𝑛(𝑧), e.g. at high redshift
(𝛼 = 2 and 𝛼 = 3) for the first photo-𝑧 bin, 𝑖 = 0. Due to the fact that
our photometric redshift pipeline cannot group galaxies perfectly
in redshift, the effects from source blending in Figure 9 are diluted.
The model fits that also appear in Figure 10 are described in the
next section.
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Figure 10. Modeling 𝑛model
𝛾,𝑖

(𝑧) using 𝑁 𝛼
𝛾,𝑖

from our image simulations. In each panel, the blue rectangles show 𝑁 𝛼
𝛾,𝑖

− 𝑁
𝛼,mcal
𝛾 for the photometric redshift

bin 𝑖. The width represents the redshift extent of the interval 𝛼 and height indicates the 1𝜎 uncertainty on the measurement. The grey band in each panel shows
the posteriors of our 𝑛model

𝛾,𝑖
(𝑧) and the horizontal black lines are the integrals over this model which form the predictions for the 𝑁 𝛼

𝛾,𝑖
measurements from the

simulations. The light and dark purple lines show the models that would result if one used a constant multiplicative bias of −0.01 and −0.03 respectively. It is
clear from the simulation data, especially in bin 2, that no constant multiplicative bias model would be sufficient. In particular, at lower redshift in bin 2, they
cannot capture the increased response to low redshift shear due to blending.

5.5 𝑛𝛾 (𝑧) bias model constraints for photo-𝑧 bins

Above, we have made measurements of 𝑁𝛼
𝛾,𝑖

in a set of coarse red-
shift bins. While these measurements constitute direct constraints
on the shear systematics in these bins, we expect the underlying
effects to be smooth functions of redshift, and we require a contin-
uous corrected 𝑛𝛾 (𝑧) to make theoretical predictions. Thus we now
fit a smooth model to the measurements. We posit that this smooth
model has two terms as follows

𝑛model
𝛾,𝑖 (𝑧) = (1 + 𝐹𝑖 (𝑧)) 𝑛mcal

𝛾,𝑖 (𝑧) + 𝐺𝑖 (𝑧) . (29)

The term 𝐹𝑖 (𝑧) captures changes in the effective weighting of
the discrete sources used to construct 𝑛mcal

𝛾,𝑖
(𝑧). These effects

could include things like constant multiplicative biases or redshift-
dependent multiplicative bias effects. The term 𝐺𝑖 (𝑧) captures re-
sponses to shear at redshifts not present in the naive 𝑛mcal

𝛾,𝑖
(𝑧) distri-

bution computed from the detected sources. This term is designed
to capture blending effects where high-redshift sources respond to
input shear at lower redshifts. Note though that a sufficiently flexible
𝐹𝑖 (𝑧) could also capture such effects.

5.5.1 The model

Due to the limited volume of image simulation data, we can only
employ relatively constrained models. For 𝐺𝑖 (𝑧), we fit a template
with a single free amplitude. The template is built from the flux

density of the COSMOS sample in the 𝑟𝑖𝑧-bands as a function
of redshift. This model is motivated by the idea that for random
projections, blending effects will be proportional to the flux density
of objects.

For 𝐹𝑖 (𝑧), we employ a model with two parts. First, we have a
constant term that is meant to capture overall multiplicative biases.
Second, we employ a perturbative method detailed in Berberan-
Santos (2007) to build a set of correction terms that capture mean
shifts in the redshift distribution and possibly changes in its width.
The overall idea of this method is that we can expand 𝑛model

𝛾,𝑖
(𝑧)

perturbatively about the input 𝑛mcal
𝛾,𝑖

(𝑧) with the coefficients of the
expansion corresponding to changes in the moments of 𝑛mcal

𝛾,𝑖
(𝑧).

The form of this series for two general PDFs ℎ(𝑥) and 𝑝(𝑥) is

ℎ(𝑥) ≈ 𝑝(𝑥)
(
1 + 𝑎1

1
𝑝(𝑥)

𝑑𝑝(𝑥)
𝑑𝑥

+ 𝑎2
1

2𝑝(𝑥)
𝑑2𝑝(𝑥)
𝑑𝑥2 + . . .

)
. (30)

In our application, we use either the first or the first two terms of this
series to generate template functions to put into 𝐹𝑖 (𝑧). We then fit
for the coefficients 𝑎1 and/or 𝑎2. Given that directly differentiating
the simulation 𝑛mcal

𝛾,𝑖
(𝑧) will be quite noisy, we fit a model to this

quantity and then differentiate that model. If we call this model
𝜙(𝑧; 𝜃𝑖), then the final form for 𝐹𝑖 (𝑧) is

𝐹𝑖 (𝑧) = 𝑎0 + 𝑎1
1

𝜙(𝑧; 𝜃𝑖)
𝑑𝜙(𝑧; 𝜃𝑖)

𝑑𝑧
+ 𝑎2

1
2𝜙(𝑧; 𝜃𝑖)

𝑑2𝜙(𝑧; 𝜃𝑖)
𝑑𝑧2

. (31)

In this expression, 𝑎0 is approximately an overall multiplicative
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bias term, 𝑎1 approximately controls changes in the mean redshift
of 𝑛mcal

𝛾,𝑖
(𝑧), and 𝑎2 approximately controls a combination of the

mean and the width of 𝑛mcal
𝛾,𝑖

(𝑧). We use the following distribution
(Baugh & Efstathiou 1993; Brainerd et al. 1996),

𝜙(𝑧; 𝑎, 𝑏, 𝑐) ∝ 𝑧𝑎 exp
(
−
( 𝑧
𝑏

)𝑐 )
(32)

for our fiducial model for 𝜙, keeping only the terms up to 𝑎1 in
equation 31. As an alternative, we also considered using a Student’s-
𝑡 distribution with 𝜈 = 1 degree of freedom, keeping all terms up
to 𝑎2. We found that for the Student’s-𝑡 distribution we needed
to increase the width of the distribution by a factor of 10 when
generating the model terms in order to avoid extremely strong model
effects in the tails of the distribution.

From these smooth models, we can estimate 𝑁𝛼
𝛾,𝑖

via

𝑁
𝛼,model
𝛾,𝑖

=

∫ 𝑧𝛼2

𝑧𝛼1

d𝑧 𝑛model
𝛾,𝑖 (𝑧). (33)

We can also make a prediction for the mean multiplicative bias for
photo-𝑧 bin 𝑖, 𝑚̄𝑖 , or equivalently mean response 𝑅̄𝑖 = 1+ 𝑚̄𝑖 , which
we measured from the constant shear sims, which is simply

𝑅̄model
𝑖 =

∫ ∞

0
𝑛model
𝛾,𝑖 (𝑧), (34)

i.e. the normalization of 𝑛𝛾 (𝑧)model. Therefore we can use both 𝑁𝛼
𝛾,𝑖

and 𝑅̄𝑖 measurements to constrain the 𝐹𝑖 (𝑧) and 𝐺𝑖 (𝑧) components
of our 𝑛𝛾 (𝑧) bias model.

5.5.2 Fitting procedure

Equipped with simulation measurements of 𝑁𝛼
𝛾,𝑖

and 𝑅̄𝑖 , an estimate
of their joint covariance matrix 𝐶𝑖 (again estimated by jackknifing
over simulated tiles) and a model for 𝑛𝛾 (𝑧) with which we can
predict them, we can now form a likelihood to constrain that model.

We use Markov chain Monte Carlo (MCMC) to produce sam-
ples of 𝐹 (𝑧) and 𝐺 (𝑧) and thus 𝑛model

𝛾 (𝑧). Our likelihood is

log 𝐿 = N
( [
𝑅̄𝑖 , 𝑁

𝛼
𝛾,𝑖

]sim
−
[
𝑅̄𝑖 , 𝑁

𝛼
𝛾,𝑖

]model
, 𝐶𝑖

)
, (35)

where N(𝜇,Σ) indicates a Gaussian distribution with mean 𝜇 and
covariance Σ. We use wide, uninformative priors on the free pa-
rameters of 𝐹 (𝑧) and 𝐺 (𝑧), and use emcee (Foreman-Mackey et al.
2013) to sample the posterior. We use a configuration of 12 walkers
taking 104 steps each. We then discard the first 5 × 103 samples
and thin the rest of the samples by a factor of 10. Our final chains
have autocorrelation lengths of approximately 40 − 50 and are thus
long enough to generate a sufficient number of independent sam-
ples. Having sampled the posteriors of the model parameters, we
can then produce samples of 𝐹 (𝑧), 𝐺 (𝑧), and 𝑛model

𝛾,𝑖
(𝑧) that are

conditioned on our simulation measurements.

5.6 Model constraints

The posterior constraints on our models are show in Figure 10
as the grey bands. We also show the predictions for 𝑁𝛼

𝛾,𝑖
as the

horizontal grey lines. We find that our model generally provides
a good fit to the data. In this figure we also show the predictions
of a model which employs a constant 𝑚 per tomographic bin, i.e.
𝑛model
𝛾,𝑖

(𝑧) = (1 + 𝑚𝑖)𝑛mcal
𝛾,𝑖

(𝑧). While this model may be sufficient
for the lower redshift tomographic bins, in bin 𝑖 = 2 we find that

quantity tomo. bin fiducial model Student’s-𝑡 model
𝑚 × 100 0 −1.36 ± 0.29 −1.37 ± 0.29
𝑚 × 100 1 −1.78 ± 0.36 −1.77 ± 0.36
𝑚 × 100 2 −2.48 ± 0.41 −2.52 ± 0.42
𝑚 × 100 3 −3.34 ± 0.52 −3.31 ± 0.52
Δ𝑧̄0 × 100 0 −0.65 ± 0.27 −0.96 ± 0.30
Δ𝑧̄0 × 100 1 −0.80 ± 0.31 −0.76 ± 0.29
Δ𝑧̄0 × 100 2 −0.36 ± 0.26 −0.40 ± 0.19
Δ𝑧̄0 × 100 3 −1.13 ± 0.60 −0.45 ± 0.37

Table 4. Inferred constraints on 𝑚 and 𝛿𝑧̄ from the 𝑛𝛾 (𝑧) model samples fit
to the image simulations measurements. These 𝑛𝛾 (𝑧) models are generated
by perturbing the image simulation 𝑛mcal

𝛾 (𝑧) .

it cannot capture the low redshift tails introduced into 𝑛model
𝛾,𝑖

(𝑧),
perhaps due to blending.

From each 𝑛model
𝛾,𝑖

(𝑧) sample we can calculate an effective
multiplicative bias 𝑚, and a change in mean redshift Δ𝑧. 𝑚 is equal
to the normalization of 𝑛model

𝛾,𝑖
(𝑧) minus 1, i.e.

𝑚 =

∫
d𝑧 𝑛model

𝛾,𝑖 (𝑧) − 1 (36)

and

Δ𝑧 =

∫
d𝑧 𝑧𝑛model

𝛾,𝑖
(𝑧)∫

d𝑧 𝑛model
𝛾,𝑖

(𝑧)
−

∫
d𝑧 𝑧𝑛mcal

𝛾,𝑖
(𝑧)∫

d𝑧 𝑛mcal
𝛾,𝑖

(𝑧)
. (37)

Note we have chosen the sign convention of our definition of Δ𝑧
to match that used in the cosmology analyses (eg. DES Collabo-
ration (2021)), which means it is the correction one would apply
to 𝑛mcal

𝛾,𝑖
(𝑧), rather than the bias in 𝑛mcal

𝛾,𝑖
(𝑧) (which would have the

opposite sign).
These two summary statistics of 𝑛𝛾 (𝑧) are probably the two

most important for weak lensing analysis, where higher-order biases
in the redshift distribution are likely to have a subdominant effect to
changes in normalization (i.e. multiplicative bias) or mean redshift.
The two models give largely similar constraints in𝑚 and 𝛿𝑧, with the
fiducial model in general allowing slightly larger shifts in redshift.
The first two lines of Table 4 contains these inferred 𝑚 and 𝛿𝑧

constraints for the two 𝑛𝛾 (𝑧) bias models (fiducial and Student’s-𝑡),
when applied to the fiducial 𝑛(𝑧)s from the image simulations.

The 𝑛𝛾 (𝑧) bias model constraints encapsulate our character-
ization of shear calibration biases for each DES Y3 photometric
redshift bin, including redshift dependent effects such as the impact
of blending on the effective redshift distribution for lensing. They
also include the statistical uncertainty on the calibration due to fi-
nite simulation volume. When using the 𝑛𝛾 (𝑧) bias model for the
real DES Y3 data, we apply it instead to the 𝑛(𝑧)s estimated from
the DES Y3 data. In the next section, we describe this procedure,
and explore potential systematic uncertainties in our corrections, in
order to provide statistical and systematic uncertainty priors on the
corrections measured from the simulations here.

6 𝑛𝛾 (𝑧) CORRECTIONS FOR THE DES Y3 SHEAR
CATALOG

In Section 5, we generated estimates of the bias in our methodology
for constructing the effective redshift distribution for lensing, 𝑛𝛾 (𝑧).
We did this by comparing direct estimates of 𝑛𝛾 (𝑧) from the image
simulations, possible only because we know the input shear to the
simulations, to the method we use on the Y3 data: the Metacal-
ibration response-weighted redshift distribution, 𝑛mcal

𝛾 (𝑧). These
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bias estimates are intended to be used to make corrections to the
redshift distributions used in theory predictions in weak lensing cos-
mology analyses. In our case, those redshift distributions are those
estimated from the DES Y3 data, summarized in Myles & Alar-
con et al., (2021), which provide ensembles of redshift distributions
constrained by both galaxy flux information, and clustering (Gatti &
Giannini et al., 2020). In Section 6.1 we describe our procedure for
applying our corrections to these redshift distributions. This proce-
dure results in a set of 𝑛𝛾 (𝑧) samples, which can be sampled over
when performing cosmological parameter inference (e.g. using the
hyperrank method described in Cordero et al. 2021).

The accuracy of our corrections depends on how realistically
we have simulated the DES Y3 data. In Sections 6.2-6.4 we explore
this issue by inspecting the sensitivity of our 𝑛𝛾 (𝑧) bias corrections
to variations in the simulation measurements or simulation analy-
sis choices. Results from these variations feed into our systematic
uncertainties.

Finally, in Section 6.5 we summarize our final corrections
which include both statistical and systematic uncertainties.

6.1 Applying corrections to the DES Y3 𝑛(𝑧)s

Myles & Alarcon et al., (2021) provide an ensemble of 1000 samples
(for each of the four photo-𝑧 bins) drawn from the posterior of the set
of photo-𝑧 bin redshift distributions, constrained by both galaxy flux
(including color) and clustering information. These distributions are
already weighted by the Metacalibration response estimated from
the DES data, so in fact correspond to samples of 𝑛mcal

𝛾,𝑖
(𝑧). For each

of these 1000 samples, we draw 100 randomly chosen samples of our
bias model inferred from our simulation measurements, quantified
by the functions 𝐹 (𝑧) and 𝐺 (𝑧). Then we apply these model biases
to 𝑛mcal

𝛾,𝑖
(𝑧) using equation 29 to produce estimates of 𝑛𝛾 (𝑧). This

process leaves us with 1000 × 100 = 100, 000 𝑛𝛾 (𝑧) samples for
each photo-𝑧 bin, but note that in practice one could downsample
this set of 𝑛𝛾 (𝑧)s to a more manageable number depending on the
application.

In Figure 11 we show the distributions of mean multiplicative
bias, 𝑚 (top panels), and mean redshift, 𝑧 (bottom panels) inferred
from these 𝑛𝛾 (𝑧) samples. 𝑚 is calculated as in equation 36 i.e. is
simply the normalization of 𝑛𝛾 (𝑧) minus 1. In all cases the height
of the violin shape is proportional to the fractional weight in the dis-
tribution at a given value of the 𝑥-axis. The lines labelled "fiducial"
represent the inferred𝑚 and 𝑧 distributions for this case. We also list
the mean and standard deviation of these 𝑚 and 𝑧 distributions in
Table 6.1. We note here that we are in some sense extrapolating the
corrections we have inferred from our simulations onto the DES Y3
data, and one must always be careful with extrapolation. However,
the fact that the mean 𝑚 values inferred from the image simulation
𝑛𝛾 (𝑧) models (first row of Table 4) are within the 1𝜎 bounds of the
"fiducial" Y3 data 𝑚 priors in Table 6.1, gives us confidence that
this extrapolation is well-behaved.

In Table 6.1 we also list the mean and standard deviation of
two other quantities, labelled “𝛿𝑧” and “𝛿𝑧𝐹𝐺”. These are defined
as follows. For a given input 𝑛mcal

𝛾 (𝑧) sample, which we will call
𝑛mcal
𝑠 (𝑧), we generate an output 𝑛𝛾 (𝑧) sample, 𝑛𝛾,𝑠 (𝑧), by applying

samples of the 𝐹 (𝑧) and 𝐺 (𝑧) perturbation functions. For a given
𝑛𝛾,𝑠 (𝑧), 𝛿𝑧𝑠 is defined as the change in mean redshift with respect
to the mean redshift of the ensemble of input 𝑛mcal

𝛾 (𝑧) samples i.e.

𝛿𝑧𝑠 = 𝑧
[
𝑛𝛾,𝑠 (𝑧)

]
−
〈
𝑧

[
𝑛mcal
𝑠 (𝑧))

]〉
𝑠
, (38)

where 𝑧 [𝜓(𝑧)] represents the mean redshift of the function 𝜓(𝑧),

and 〈〉𝑠 represents an average over all samples 𝑠. Note the distribu-
tion of this 𝛿𝑧 will include the scatter in the input 𝑛mcal

𝛾 (𝑧) samples.
The quantity 𝛿𝑧𝐹𝐺 on the other hand does not; it is defined as

𝛿𝑧𝐹𝐺,𝑠 = 𝑧
[
𝑛𝛾,𝑠 (𝑧)

]
− 𝑧

[
𝑛mcal
𝑠 (𝑧)

]
(39)

for a given sample 𝑠, and thus isolates the impact of applying the
𝐹 (𝑧) and 𝐺 (𝑧) correction functions. Hence it is this quantity that
is more directly comparable to the Δ𝑧 we defined in Section 5.6 for
the image simulation 𝑛𝛾 (𝑧), and listed values for in Table 4. The
image simulation Δ𝑧 from Table 4 are all within the 1𝜎 bounds of
the 𝛿𝑧𝐹𝐺 distributions, except for photo-𝑧 bin 1, where it is within
2𝜎.

In the next three sub-sections we test for sensitivity of the
inferred 𝑚 and 𝛿𝑧 priors to various potential systematics in our
simulation corrections.

6.2 Alternative photo-𝑧-binning schemes

Given the range of viable different photo-𝑧 binning schemes pre-
sented in Section 3.7, we test for the sensitivity of our corrections
to this choice, and include a corresponding contribution to our sys-
tematic uncertainties related to this choice. For each of the photo-𝑧
binning schemes, we repeat the inference of 𝑛𝛾 (𝑧) corrections per-
formed in Section 5.5, but now using the slightly different 𝑁𝛼

𝛾,𝑖

and 𝑅̄𝑖 measurements resulting from changing the photo-𝑧 binning
scheme. This results in sets of 𝐹 (𝑧) and 𝐺 (𝑧) samples for each
photo-𝑧 binning scheme, from which we can generate 𝑛𝛾 (𝑧) sam-
ples for the DES Y3 data, following the procedure in Section 6.1.
The inferred𝑚s and 𝑧s for these cases are also shown in Figure 11, as
the lines labelled “zmatch pz-binning”, “wmatch pz-binning ” and
“equal pz-binning” (see Section 3.7 for the details of the binning
methods).

6.3 Simulation re-weighting

The overall agreement between object properties and density in the
simulation and real data is very good, both globally and within
each redshift bin. To validate that any remaining differences would
not significantly modify our inferred shear calibration, we focus
on several properties most likely to correlate with the amount of
blending, which is our main source of shear calibration bias.

We implement a re-weighting scheme designed to match the
small-scale counts of close pairs in the DES Y3 data, including the
magnitude dependence of this behaviour. We believe this should
provide a first order estimate of the potential impact of ignoring
galaxy clustering in our simulations, which although weak for our
wide-in-redshift photometric redshift bins, may have non-negligible
impact on the amount of blending.

We choose three quantities on which to re-weight: the magni-
tude (calculated from the mean of the flux in the 𝑟, 𝑖 and 𝑧 bands),
the distance to the nearest neighbor, and the magnitude of the near-
est neighbor (again based on the 𝑟 , 𝑖 and 𝑧 bands). The neighbor can
be any detected object with non-negative flux (i.e. we do not restrict
the neighbor candidates to objects passing shape catalog cuts). We
then aim to produce a set of weights to apply to the simulation re-
sults that will improve the match of the joint distributions of these
quantities between simulations and data.

To accomplish this, we use k-means clustering to define clus-
ters of these three quantities based on 200,000 randomly selected
objects in each photo-𝑧 bin. We then assign all objects in both the
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Figure 11. Distributions of the inferred 𝑚 (top panels) and mean redshift 𝑧̄ (bottom panels) of our DES Y3 redshift 𝑛𝛾 (𝑧) estimates, generated by applying
our simulation corrections to an input ensemble of redshift distributions. For each line 𝑛𝛾 (𝑧) corrections are applied from a variation on the fiducial simulation
analysis, which have been chosen to expose potential systematic errors in the fiducial approach. The lines marked ‘final’ represent the mixture approach
described in Section 6.5, which incorporates systematic uncertainty by mixing together samples from the alternative approaches with the fiducial analysis. In
the lower panel, we show also in the first line the distribution of mean redshifts for the input (i.e. before correction) redshift distributions.

simulations and DES Y3 data to these clusters. Weights are pro-
duced for each photo-𝑧 bin by taking the ratio of the number of
the number of objects assigned to each data cluster to the number
assigned to each simulation cluster. We show in Figure 12 that this
re-weighting of objects improves agreement with the data.

We update the weights of our simulated shear catalogs, and
re-derive the 𝑛𝛾 (𝑧) correction model (by re-performing the 𝑁𝛼

𝛾,𝑖

and 𝑅̄𝑖 measurements and the 𝑛model
𝛾,𝑖

(𝑧) fits). We again apply the
resulting 𝐹 (𝑧) and 𝐺 (𝑧) corrections to the Y3 data 𝑛(𝑧) ensemble
to get an ensemble of 𝑛𝛾 (𝑧) samples. The inferred 𝑚s and 𝑧s for
these cases are also shown in Figure 11, as the lines labelled “re-
weighted”. The impact on 𝑧 is small, with at most 0.2% shifts in
the mean. There is also a small (between 0.1 and 0.2%), coherent
shift in the mean of the 𝑚 distributions to less negative values for
all photo-𝑧 bins. While small, we find the sign surprising, since we

expect this re-weighting procedure to increase the number of close
pairs in the simulation, and thus increase the impact of blending on
the multiplicative bias.

We note that this re-weighting procedure will not include all the
potentially relevant effects present in a galaxy sample with realistic
clustering. We discuss in detail in Section 7 the possibility that we
have underestimated blending-related biases as a result of this.

6.4 Alternative 𝑛𝛾 (𝑧) bias parameterization

We chose a fiducial functional form for the multiplicative correction
𝐹 (𝑧) in our 𝑛𝛾 (𝑧) bias model. This was based on the perturbative
expansion in equation 31, applied to the 𝑛(𝑧) model in equation 32.
Note that we only use this simple parametric model to generate a
functional form for the perturbations from 𝑛mcal

𝛾 (𝑧); we do not use
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Model photo-𝑧 bin 𝑚 × 100 𝑧̄ 𝛿 𝑧̄ × 100 𝛿𝑧̄𝐹𝐺 × 100
input 0 N/A 0.341 ± 0.016 0.000 ± 1.608 0.000 ± 0.000

fiducial 0 −0.789 ± 0.625 0.341 ± 0.019 −0.021 ± 1.938 −0.021 ± 0.711
alternate 𝑛𝛾 (𝑧) 0 −1.346 ± 0.541 0.330 ± 0.018 −1.054 ± 1.834 −1.054 ± 0.991

re-weighted 0 −0.574 ± 0.615 0.337 ± 0.017 −0.406 ± 1.750 −0.406 ± 0.353
zmatch pz 0 −0.368 ± 0.481 0.335 ± 0.016 −0.565 ± 1.644 −0.565 ± 0.143
wmatch pz 0 −0.172 ± 0.790 0.341 ± 0.018 −0.009 ± 1.766 −0.009 ± 0.361
equal pz 0 1.117 ± 0.908 0.335 ± 0.017 −0.580 ± 1.651 −0.580 ± 0.212

final 0 −0.627 ± 0.908 0.336 ± 0.018 −0.467 ± 1.846 −0.467 ± 0.758
input 1 N/A 0.528 ± 0.013 −0.000 ± 1.280 0.000 ± 0.000

fiducial 1 −1.703 ± 0.446 0.524 ± 0.013 −0.367 ± 1.344 −0.367 ± 0.215
alternate 𝑛𝛾 (𝑧) 1 −2.315 ± 1.080 0.515 ± 0.018 −1.267 ± 1.812 −1.267 ± 1.441

re-weighted 1 −1.589 ± 0.461 0.523 ± 0.013 −0.467 ± 1.341 −0.467 ± 0.193
zmatch pz 1 −2.869 ± 0.375 0.521 ± 0.012 −0.725 ± 1.212 −0.725 ± 0.358
wmatch pz 1 −1.763 ± 0.452 0.524 ± 0.013 −0.385 ± 1.335 −0.385 ± 0.218
equal pz 1 −2.308 ± 0.435 0.522 ± 0.013 −0.561 ± 1.311 −0.561 ± 0.282

final 1 −1.984 ± 0.779 0.521 ± 0.015 −0.671 ± 1.506 −0.671 ± 0.833
input 2 N/A 0.750 ± 0.006 −0.000 ± 0.629 0.000 ± 0.000

fiducial 2 −2.667 ± 0.458 0.746 ± 0.006 −0.365 ± 0.632 −0.365 ± 0.209
alternate 𝑛𝛾 (𝑧) 2 −1.649 ± 0.892 0.729 ± 0.012 −2.048 ± 1.173 −2.048 ± 1.251

re-weighted 2 −2.570 ± 0.494 0.746 ± 0.006 −0.355 ± 0.641 −0.355 ± 0.152
zmatch pz 2 −2.759 ± 0.511 0.743 ± 0.006 −0.676 ± 0.637 −0.676 ± 0.204
wmatch pz 2 −2.967 ± 0.483 0.745 ± 0.006 −0.411 ± 0.627 −0.411 ± 0.202
equal pz 2 −2.558 ± 0.430 0.743 ± 0.006 −0.613 ± 0.626 −0.613 ± 0.256

final 2 −2.412 ± 0.760 0.741 ± 0.011 −0.830 ± 1.071 −0.830 ± 0.959
input 3 N/A 0.946 ± 0.015 0.000 ± 1.524 0.000 ± 0.000

fiducial 3 −3.794 ± 0.718 0.934 ± 0.013 −1.170 ± 1.317 −1.170 ± 1.046
alternate 𝑛𝛾 (𝑧) 3 −3.780 ± 0.606 0.945 ± 0.019 −0.060 ± 1.913 −0.060 ± 0.977

re-weighted 3 −3.574 ± 0.841 0.933 ± 0.014 −1.304 ± 1.378 −1.304 ± 1.333
zmatch pz 3 −3.253 ± 0.589 0.933 ± 0.017 −1.313 ± 1.698 −1.313 ± 0.902
wmatch pz 3 −4.179 ± 0.852 0.927 ± 0.015 −1.875 ± 1.490 −1.875 ± 1.575
equal pz 3 −3.442 ± 0.690 0.933 ± 0.015 −1.277 ± 1.548 −1.277 ± 1.037

final 3 −3.692 ± 0.761 0.936 ± 0.017 −1.008 ± 1.672 −1.008 ± 1.290

Table 5. Summary statistics of the DES Y3 data 𝑛𝛾 (𝑧) distributions, or in the case of the lines labelled “input”, input ensemble of redshift distributions i.e.
before correction. The “input” lines hence have no associated multiplicative bias 𝑚. The column labelled 𝑧̄ is the mean and standard deviation of the distribution
of mean redshift of 𝑛𝛾 (𝑧) . The column labelled 𝛿𝑧̄ is the mean and standard deviation of the distribution of 𝛿𝑧̄, which for a given 𝑛𝛾 (𝑧) , is the difference in
mean redshift w.r.t to the mean redshift of the input ensemble of 𝑛(𝑧) . The column labelled 𝛿𝑧̄𝐹𝐺 is the mean and standard deviation of the distribution of
𝛿𝑧̄𝐹𝐺 , which for a given 𝑛𝛾 (𝑧) , is the difference in mean redshift w.r.t the mean redshift of the specific 𝑛(𝑧) sample used to generate the 𝑛𝛾 (𝑧) .

the parameteric fit directly. We have also investigated the use of a
Student’s-𝑡 model, which we use to generate an alternative set of
𝐹 (𝑧) and 𝐺 (𝑧) samples with which we correct the DES Y3 𝑛(𝑧)
ensemble. The resulting inferred 𝑚 and 𝛿𝑧 distributions are show in
Figure 11, as the lines labelled “alternate 𝑛𝛾 (𝑧) model”. We observe
some non-negligible shifts with respect to the fiducial 𝑚 and 𝑧. The
largest are for photo-𝑧 bin 2, with a shift in the mean of the 𝑚
distribution of 1.0%, and a shift in the mean 𝑧 of −1.7%. We also
see broadening of the 𝑧 distributions for all photo-𝑧 bins.

6.5 Final 𝑛𝛾 (𝑧) priors

As discussed in Section 6.1, the 𝑛𝛾 (𝑧) samples inferred from ap-
plying the results of our fiducial simulation to the DES Y3 data
𝑛(𝑧) include our fiducial correction and statistical uncertainties. We
incorporate systematic uncertainties as follows. We generate a final
prior on 𝑛𝛾 (𝑧) which is a mixture of the priors inferred from our
fiducial approach, and the variations described in Sections 6.2-6.4.
More precisely, we formulate the prior 𝑃(𝑛𝛾 (𝑧)) as

𝑃(𝑛𝛾 (𝑧)) ∝ 𝑃(𝑛𝛾 (𝑧) |Fiducial assumptions)
+𝑃(𝑛𝛾 (𝑧) |Simulation re-weighting)
+𝑃(𝑛𝛾 (𝑧) |Alternative 𝑛𝛾 (𝑧) bias parameterization)
+𝑃(𝑛𝛾 (𝑧) |Alternative photo-𝑧 binning scheme).

(40)

Each term on the right-hand-side represents the prior on 𝑛𝛾 (𝑧) given
some set of analysis assumptions. We normalize each term on the
right-hand-side such that they contribute equal weight to the total
prior on 𝑛𝛾 (𝑧). Note that this means the priors based on the three
alternative photo-𝑧 binning schemes described in Section 6.2 each
contribute only one third of the weight to the mixed prior, compared
to the other variations. This choice, while somewhat arbitrary, en-
sures we give equal weight to the three categories of systematic
uncertainty defined in Sections 6.2-6.4.

We can generate the final prior on 𝑛𝛾 (𝑧) simply by combining
the samples from the individual cases in the correct proportions.
The inferred 𝑚 and 𝑧 distributions for this final prior is shown in the
bottom rows of Figure 11. The grey dotted vertical lines show the
5th and 95th percentiles of this final prior, while the dashed vertical
line shows its median.

One can see qualitatively by eye that this mixture prior accounts
for systematic uncertainties with a longer tail where there is an
outlier in one of the variations. For example, the 𝑚 distribution
for bin 0, while still centered close to the fiducial case, gains extra
weight in the tail to high𝑚 due to the outlying𝑚 distribution for the
"equal" photo-𝑧 binning variation. Similarly, the significant shift
for the alternate 𝑛𝛾 (𝑧) variation in the 𝑧 distribution for bin 2 is
accounted for by a large tail to low 𝑧 values.

We note that the 𝑚 and 𝛿𝑧 statistics presented here are sum-
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Figure 12. Distribution of distance to nearest neighbor for each photo-𝑧 bin. The first and third rows show these distributions (as normalized histograms) for
the Y3 data (“Y3”, blue), the image simulations (“sim”, orange) and the re-weighed simulations (“sim rw”, green - using the re-weighting procedure described
in Section 6.3). The second and fourth rows show the fractional difference of the “sim” and “sim rw” distributions with respect to the Y3 data distributions. In
all cases the agreement between simulations and data is improved by the re-weighting procedure.

mary statistics of the full corrections, which are incorporated into
perturbed 𝑛𝛾 (𝑧) samples. It is these 𝑛𝛾 (𝑧) samples that should be
used in theoretical predictions of weak lensing statistics (e.g. shear
correlation functions or tangential shear) for the DES Year 3 shear
catalog. An algorithm for efficiently sampling over discrete 𝑛𝛾 (𝑧)
samples, such as that presented in Cordero et al. (2021) can be
used (or alternatively one could directly sample the likelihood in
equation 35, simultaneously with the likelihood for the Year 3 weak
lensing statistics). However, for some applications, it may be desir-
able and sufficiently accurate to directly use the inferred 𝑚 and 𝛿𝑧
statistics as approximate corrections to the effective redshift distri-
bution, and sample over them as nuisance parameters. The accuracy
of such an approach should be validated against the use of the full
corrections.

7 DISCUSSION

Image simulations have long been recognized as an essential tool
for calibrating shear estimation pipelines, and have played a role in
providing the shear calibration for all recent weak lensing cosmol-
ogy analyses. While current methodologies like Metacalibration
have made major strides in dealing with well-studied shear estima-
tion biases like noise bias and model bias, we are now entering an
era of weak lensing data that is both deep, resulting in significant
blending of galaxy surface brightness profiles, and voluminous, thus
statistically powerful enough to have very strict accuracy require-
ments.

In this work we present realistic image simulations designed
to accurately calibrate many of the complexities in analysing real
imaging data. By using a combination of morphological information
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from HST and flux information from DES Deep Fields, we make
use of an input galaxy sample with realistic joint distributions of
flux (in multiple bands) and morphology. This, along with careful
simulation of the observational characteristics of real DES Y3 data,
gives us confidence that measurements of biases can be reliably
applied as calibration corrections. This multi-band weak lensing
calibration simulation allows us to perform the same photometric
redshift inference as is performed on the real data, allowing reliable
and consistent corrections for each photometric redshift bin.

While we believe these simulations are sufficiently realistic
given the requirements of the DES Year 3 cosmology analyses, they
do of course involve approximations and shortcuts that may not
be sufficiently accurate for future analyses. We do not simulate the
estimation of the WCS solution, PSF, background levels or noise
levels in our simulations, under the assumption that any errors in our
estimation of these in the real data are negligible. These assumptions
should be carefully re-examined for more precise upcoming weak
lensing datasets.

In addition, we simulated galaxies with random sky positions,
rather than a realistic level of clustering. While our re-weighting
procedure in Section 6.3 can increase the number of pairs of close
detected objects, it does not explicitly match the number of groups
of more than two close detected objects, however, at current num-
ber densities, we expect those to be much less frequent. The re-
weighting also cannot impact the statistics of undetected objects,
and so will not change the frequency of detected galaxies having
close, undetected neighbours. This specific case is investigated in
detail by Euclid Collaboration (2019), who demonstrate that for
Euclid-like data, the clustering of faint galaxies around the bright
ones used for shape measurement can induce a multiplicative bias
of ∼ −0.5% (with respect to the case where the faint galaxies are
unclustered). Since this is of the same order as our statistical uncer-
tainties, it is worth careful consideration.

We firstly note that the only conclusive way to judge the impact
of the clustering of undetected galaxies is to simulate it. However,
generating a weak lensing calibration image simulation with realistic
clustering statistics, as well as the realistic distributions of measured
properties demonstrated here (Section 3.6) is an ongoing challenge.
Current cosmological simulations which include the former have not
been demonstrated to produce the high level of agreement with real
data at the image level that is required for weak lensing calibration.
In the absence of such a simulation, we make some arguments that
the size of the biases estimated by Euclid Collaboration (2019) are
likely an upper limit on the size of biases likely to be generated by
clustering of undetected objects in DES Year 3.

Firstly, the DES Year 3 data is shallower than the Euclid-
like simulations in Euclid Collaboration (2019), hence in general
blending-related biases are lessened. Secondly, the “faint" galaxies
in Euclid Collaboration (2019) are defined as having 𝑆/𝑁 < 10.
We include all objects detected by SExtractor (and with positive
flux) in our re-weighting procedure, which therefore only misses
out on the 𝑆/𝑁 << 10 objects that are undetected by SExtractor.
Thirdly, we are using Metacalibration, which has some robust-
ness to blending - for very close pairs which are always detected
as a single object, Metacalibration performs extremely well (as
demonstrated in Sheldon et al. (2020)), because it calibrates the
response of the measurement to shear of all the light in the system.
This is not the case for the shape measurement methods used in
Euclid Collaboration (2019), which we would expect to be more
sensitive to “model bias” arising from the unusual apparent mor-
phology of blended systems. Similarly, metacalibration’s insen-
sitivity to noise bias means faint objects that are always undetected

are unlikely to cause significant biases; their contribution behaves
largely as extra noise.

While these arguments are somewhat based on intuition rather
than extensive simulation results, given constraints on time and
computing resources, we think they justify our approach and pri-
orities for the calibration of this intermediate dataset. Nonetheless,
we recommended that Amon et al. (2021) include a robustness test
where an additional multiplicative bias with prior width 1% was
marginalized over in the cosmological inference from cosmic shear.
This extra bias was assumed to be coherent across redshift bins, and
represents a pessimistic interpretation of the potential bias arising
from the effect explored by Euclid Collaboration (2019). They find
negligible change in the constraint on 𝑆8 = 𝜎8 (Ω𝑚/0.3)0.5, likely
due to the dominance of other sources of systematic uncertainty.

Another potential limitation of our simulations is the limited
size of our input galaxy catalog (see e.g. Kannawadi et al. 2015
for an investigation of the impact of limited input catalog size in
weak lensing image simulations), which came from the COSMOS
region, motivated by the availability of HST imaging which provides
precise morphological information for our input galaxies. While our
detailed comparisons of the simulation outputs and the real DES
Year 3 data suggest that cosmic variance in the input catalog is not
a huge effect (and this conclusion agrees with that of Kannawadi
et al. 2019), we would recommend investigations of the possibility
of larger reliable input catalogs from deep ground-based imaging
only (as measured by Hartley & Choi et al., 2020 and used in
injection simulations by Everett et al. 2020). The planned LSST
deep-drilling fields would be a valuable source of such data.

Conceptually, we have stressed the importance of characteriz-
ing biases due to blending via their impact on the effective redshift
distribution. When blending becomes an important contributor to
shear calibration biases, photo-𝑧 and shear inference can no longer
be cleanly decoupled. Folding both photo-𝑧 and shear calibration
biases into an effective redshift distribution for lensing, 𝑛𝛾 (𝑧), is
both a compact approach, and very general in that 𝑛𝛾 (𝑧) is the key
observational quantity required to make theoretical predictions for
most weak lensing signals of interest. The normalization of 𝑛𝛾 (𝑧)
corresponds to the traditional mean multiplicative bias, 1 + 𝑚.

Via simulations with redshift-dependent shear signals, we have
provided a methodology for directly estimating 𝑛𝛾 (𝑧) integrated
over finite redshift intervals. The key point in this approach is that
the value of the effective redshift distribution at a given redshift is
defined by the response of the ensemble to shear at that redshift.
Therefore only by simulating such a shear signal can the effective
redshift distribution be estimated robustly. We believe that with the
increased depth (and therefore increased blending) and stricter accu-
racy requirements of future surveys such as the Rubin Observatory
and Euclid, such an approach will become essential i.e. 𝑛𝛾 (𝑧) is
the quantity that must be accurately characterized for reliable cos-
mological inference, which is a requirement beyond the traditional
approach of characterizing the multiplicative bias 𝑚.

In Section 6 we propagated our simulation measurements
through to corrections for the DES Y3 redshift distributions, pro-
ducing from an input ensemble of redshift distributions, an output
ensemble of effective redshift distributions, 𝑛𝛾 (𝑧) ready for use in
the Year 3 weak lensing cosmology analyses. This output ensem-
ble includes both statistical (due to finite simulation volume) and
systematic (due to potential simulation inaccuracies) uncertainties.
These 𝑛𝛾 (𝑧) should be used directly in the theoretical predictions
for weak lensing statistics like the shear correlation functions and
galaxy-galaxy lensing tangential shear, as the effective redshift dis-
tribution entering the lensing kernel. Note that the (in general non-
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unity) normalization of the effective redshift distributions should
be retained in the calculations, or applied to the resulting theory
prediction if using a numerical code that normalizes the redshift
distribution internally. This data will be made available along with
the DES Year 3 shear catalogs, on publication of the key Year 3
cosmology analyses, as part of the DES Y3 coordinated release11.
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config. # gal. mag. gal. size PSF model masking effects outlier rej. mcal PSF m (×10−3) c (×10−5)
1 17 0.5′′ Gaussian no no gauss-fit g1: 0.225 ± 0.005 0.1 ± 0.1

g2: 0.440 ± 0.004 −0.1 ± 0.1
2 17 variable Gaussian no no gauss-fit g1: 0.314 ± 0.007 −0.2 ± 0.2

g2: 0.415 ± 0.007 −0.1 ± 0.02
3 17 variable Gaussian no no symmetrize g1: 0.381 ± 0.009 0.1 ± 0.2

g2: 0.383 ± 0.009 −0.4 ± 0.5
4a 17 variable Piff no no gauss-fit g1: 0.219 ± 0.025 −0.1 ± 0.3

g2: 0.294 ± 0.127 0.1 ± 0.3
4 17 variable Piff no no symmetrize g1: 0.405 ± 0.075 0.2 ± 0.3

g2: 0.414 ± 0.014 1.4 ± 0.4
5 17 variable Piff yes no symmetrize g1: −1.95 ± 0.30 0.6 ± 0.4

g2: −1.94 ± 0.29 6.8 ± 1.0
6 18 variable Piff no yes symmetrize g1: 8.56 ± 0.16 0.0 ± 0.9

g2: 8.70 ± 0.13 −9.5 ± 1.0
7 18.75 variable Piff no yes symmetrize g1: 3.79 ± 0.33 −2.0 ± 2.3

g2: 3.78 ± 0.13 −2.3 ± 1.9
8 19.5 variable Piff no yes symmetrize g1: 2.44 ± 0.16 −2.8 ± 2.4

g2: 2.50 ± 0.11 −1.0 ± 2.6
9 20.5 variable Piff no yes symmetrize g1: 0.89 ± 0.29 −5.9 ± 6.1

g2: 0.56 ± 0.26 0.1 ± 6.6

Table B1. Validation simulation configurations and results. All simulations place the galaxies on a grid and use “true detection” where the shear measurement
code is fed the true position of the galaxy in the image. We then run variations with and without bad pixel masking and corrections ("masking effects"),
pixel-level outlier rejection ("outlier rej."), the galaxy and PSF models ("gal. mag", "gal. size", and "PSF model"), and the Metacalibration treatment of the
PSF model ("mcal PSF"). The last two columns list the multiplicative and additive biases we find in these simulation setups. See the text in Appendix B for
details.

APPENDIX A: SHEAR AND REDSHIFT BIAS PARAMETERS USED PRIOR TO UNBLINDING THE ANALYSIS

A final technical improvement to the priors on 𝑚 and 𝛿𝑧 was completed in parallel with the unblinding of the DES Y3 3x2pt cosmology
analysis. These updates were not expected to impact the analysis in a significant way. The original chains at unblinding used a different
(but very similar) set of 𝑚 and 𝛿𝑧 priors. Gaussian priors on the per-bin 𝑚 were marginalized over with mean, 𝜇 and width, 𝜎 for the four
photo-𝑧 bins given by (𝜇, 𝜎) = [(−0.01044, 0.00576), (−0.01579, 0.00414), (−0.02489, 0.00532), (−0.03802, 0.00801)]. The mean of the
𝑛𝛾 (𝑧) samples generated using our fiducial correction was used, with a Gaussian 𝛿𝑧 prior estimated from their statistical scatter only, with
width [0.018, 0.013, 0.006, 0.013].

DES Collaboration (2021) describe the unblinding criteria and procedure in detail, and conclude that updating the priors had negligible
impact on the final cosmological constraints, and would not have affected the unblinding criteria (and therefore the decision to unblind).

APPENDIX B: SIMULATION VALIDATION TESTS

One of the main concerns when working with the complex simulation suite presented in this work is that the simulations themselves could
contain bugs which would cause non-zero multiplicative or additive biases. To guard against this possibility, we tested the performance of our
pipelines and the simulations in configurations where previous studies have demonstrated sub-0.1% performance.

In these simulations, all objects have exponential light profiles. We fix the objects to have the same magnitude in each band, but different
simulations vary the magnitude overall. The galaxies have a half-light radius that is either fixed to 0.5′′ or allowed to vary according to the
input catalogs for the more realistic simulations, although in the latter case, we limit the half-light radius to at most 0.8′′ in order to prevent
adjacent objects from overlapping. We test both a Gaussian PSF with a FWHM of 0.9′′ and the smoothed Piff PSF models. We also vary
whether or not we apply the bad pixel masks from the data to the simulations (and then correct for them). See Sevilla-Noarbe et al. (2021)
and Gatti & Sheldon et al., (2021) for more details on the bad pixel masks and how our measurement codes correct for them. Further, we vary
whether or not we perform pixel-level outlier rejection on the individual postage stamps for each object. Finally, we also vary a detail of how
Metacalibration handles the computation of the PSF it uses in its reconvolution step. These variants are denoted internally as symmetrize
or gauss-fit. The simulation configurations we tested are listed in Table B1.

The measurements for 𝑚 and 𝑐 from these simulations are in the last two columns of Table B1. We find that in the simplest case
(configuration 1), we recover the applied shear to better than a part in a thousand with no evidence of any additive bias. The same conclusion
holds for configurations 2, 3, and 4a which vary the galaxy sizes, the PSF model, and the Metacalibration reconvolution PSF treatment.
Comparing configurations 4a and 4, we find that galaxy size variation coupled with the symmetrize Metacalibration PSF treatment
introduces a small additive error in 𝑔2, but one that is too small to impact cosmology. Configuration 5, which introduces pixel masking effects
relative to configuration 4, demonstrates that our masking corrections cause a small ∼ −0.2% multiplicative bias. This effect is well below our
requirements and is subdominant relative to detection and/or blending, as described above. Configurations 6, 7, 8, and 9 use the pixel-level
outlier rejection and employ a series of fainter objects from magnitude 17 to magnitude 20.5. We find that extremely bright objects exhibit
some non-trivial multiplicative bias in this case. This effect was traced back to Poisson noise from the object’s flux falsely triggering the
pixel-level outlier rejection (which only considered the sky noise in its threshold). In the data, these bright objects are extremely rare. Further,
this effect is correctly modeled in our simulations for any objects that do eventually pass the cuts we employ on the shear catalogs.

MNRAS 000, 1–28 (2020)
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Figure C1. Performance of the smoothed Piff PSF models. Each panel from left to right shows a histogram of the differences in the shape (𝑔1 or 𝑔2) or
FWHM of the smoothed PSF model versus the underlying Piff PSF model.

APPENDIX C: PIFF PSF MODEL SMOOTHING FOR SIMULATIONS

The simulations in this work use the observed Piff PSF models. We found a bug in the process of doing the DES Y3 analysis, detailed in
Jarvis et al. (2021, §3.2), which causes some images of the Piff PSF model to have what is effectively extra background noise. In tests of the
simulations, we found that when using the model images as the true PSF for the simulation, sometimes this extra noise caused shear recovery
biases with Metacalibration even in cases where that method is known to work at extremely high precision. In order to avoid any potential
problems in the simulations presented here, we applied the following smoothing procedure to the Piff PSF models. For each single-epoch
image, we fit the rendered image of the Piff model with an ngmix turb model (which is an approximation to a Kolmogorov-like PSF for
a long exposure taken through atmospheric turbulence). This fit is done over a grid of locations on the CCD and the parameters of it are
interpolated. We then use these interpolated fit parameters to draw the image of the PSF model at any location on the CCD. We include a
small correction for the size of pixel in the fit parameters in order to more closely match the output PSF sizes when the PSF is drawn.

Figure C1 shows the differences in the shapes and FWHM for the raw Piff models and the rendered smooth models. To make these
histograms, we selected 104 CCDs at random, fit our smoothed, interpolated models, and then drew images of both the smooth model and
the interpolated one at 10 random points per CCD. We find an extremely small negative bias in the FWHM, but otherwise the models provide
a good approximation to the true PSF size and shape variations.

APPENDIX D: THE EFFECT OF SMOOTH RESPONSE WEIGHTING ON REDSHIFT DISTRIBUTIONS

As previously noted in Section 2.3, the redshift distributions are weighted by the METACALIBRATION response. It was found in general that
the noise in response measurement could result in unrealistic redshift distributions, where negatively measured responses could lead to an
unphysical negative 𝑁 (𝑧) at several points. Noise in response measurement then, tracks directly into N(z) scatter.

The DES Year 3 analysis resolves this problem by smoothing the same two sets of weights (shear and response) over a log grid in signal
to noise mcal_s2n_r and the size ratio with respect to the point spread function, 𝑇mcal/𝑇psf . One such grid, generated from the mesh average
in the data is plotted in Fig. D1. For each detection in the image simulations, we assign it to a cell on this grid of SNR and size ratio, and take
the mean response of all detections in that cell. This mean response (or smooth response) is then used when weighting the redshift distribution.

For this weighting scheme to be valid, we tested the shift in mean redshift for each tomographic bin in the image simulations from the
reweighting, as this data set has a very well understood input redshift distribution. The shift applied as a result of smoothing in each bin was
on average 0.0025 in mean redshift, with the first bin being the most affected with a shift of 0.004, and the third being the least affected at
0.0002. Response weighting as a whole shifts the mean redshift in each bin by an order of magnitude larger, so the majority of the effect
is preserved. In conclusion, given the reduction in 𝑁 (𝑧) scatter achieved with a smooth response weight and the small amplitude of bias
(∼ 10−3), this approximation can be made when evaluating the Year 3 data.

APPENDIX E: AFFILIATIONS
1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
2 Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
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Figure D1. The smooth response grid generated from the DES Y3 catalog shows correlation between mean response and size ratio, and mean response and
signal to noise. This 20 x 20 log-spaced grid supplied the smoothed weighting scheme evaluated in App. D.
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