
FERMILAB-PUB-20-624-QIS

Machine learning of high dimensional data on a noisy quantum processor

Evan Peters,1, 2, 3, ∗ João Caldeira,3 Alan Ho,4 Stefan Leichenauer,5 Masoud Mohseni,4

Hartmut Neven,4 Panagiotis Spentzouris,3 Doug Strain,4 and Gabriel N. Perdue3

1Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
2Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

3Fermi National Accelerator Laboratory, Batavia, IL 60510
4Google Quantum AI, Venice, CA 90291, United States

5Sandbox@Alphabet, Mountain View, CA 94043, United States

(Dated: January 26, 2021)

We present a quantum kernel method for high-dimensional data analysis using Google’s universal
quantum processor, Sycamore. This method is successfully applied to the cosmological benchmark
of supernova classification using real spectral features with no dimensionality reduction and without
vanishing kernel elements. Instead of using a synthetic dataset of low dimension or pre-processing
the data with a classical machine learning algorithm to reduce the data dimension, this experiment
demonstrates that machine learning with real, high dimensional data is possible using a quantum
processor; but it requires careful attention to shot statistics and mean kernel element size when
constructing a circuit ansatz. Our experiment utilizes 17 qubits to classify 67 dimensional data -
significantly higher dimensionality than the largest prior quantum kernel experiments - resulting
in classification accuracy that is competitive with noiseless simulation and comparable classical
techniques.

Keywords: quantum computing, machine learning, kernel methods

I. INTRODUCTION

Quantum kernel methods (QKM) [1, 2] provide tech-
niques for utilizing a quantum co-processor in a machine
learning setting. These methods were recently proven
to provide a speedup over classical methods for certain
specific input data classes [3]. They have also been used
to quantify the computational power of data in quantum
machine learning algorithms and drive the conditions un-
der which quantum models will be capable of outperform-
ing classical ones [4]. Prior experimental work [1, 5, 6] has
focused on artificial or heavily pre-processed data, hard-
ware implementations involving very few qubits, or cir-
cuit connectivity unsuitable for NISQ [7] processors; re-
cent experimental results show potential for many-qubit
applications of QKM to high energy physics [8].

In this work, we extend the method of machine learn-
ing based on quantum kernel methods up to 17 hardware
qubits requiring only nearest-neighbor connectivity. We
use this circuit structure to prepare a kernel matrix for a
classical support vector machine to learn patterns in 67-
dimensional supernova data for which competitive clas-
sical classifiers fail to achieve 100% accuracy. To extract
useful information from a processor without quantum
error correction (QEC), we implement error mitigation
techniques specific to the QKM algorithm and experi-
mentally demonstrate the algorithm’s robustness to some
of the device noise. Additionally, we justify our circuit
design based on its ability to produce large kernel mag-
nitudes that can be sampled to high statistical certainty
with relatively short experimental runs.

We implement this algorithm on the Google Sycamore
processor which we accessed through Google’s Quantum

Computing Service. This machine is similar to the quan-
tum supremacy demonstration Sycamore chip [9], but
with only 23 qubits active. We achieve competitive re-
sults on a nontrivial classical dataset, and find intriguing
classifier robustness in the face of moderate circuit fi-
delity. Our results motivate further theoretical work on
noisy kernel methods and on techniques for operating on
real, high-dimensional data without additional classical
pre-processing or dimensionality reduction.

II. QUANTUM KERNEL SUPPORT VECTOR
MACHINES

A common task in machine learning is supervised learn-
ing, wherein an algorithm consumes datum-label pairs
(x, y) ∈ X ×{0, 1} and outputs a function f : X → {0, 1}
that ideally predicts labels for seen (training) input data
and generalizes well to unseen (test) data. A popu-
lar supervised learning algorithm is the Support Vec-
tor Machine (SVM) [10, 11] which is trained on inner
products 〈xi, xj〉 in the input space to find a robust lin-
ear classification boundary that best separates the data.
An important technique for generalizing SVM classifiers
to non-linearly separable data is the so-called “kernel
trick” which replaces 〈xi, xj〉 in the SVM formulation
by a symmetric positive definite kernel function k(xi, xj)
[12]. Since every kernel function corresponds to an in-
ner product on input data mapped into a feature Hilbert
space [13], linear classification boundaries found by an
SVM trained on a high-dimensional mapping correspond
to complex, non-linear functions in the input space.

ar
X

iv
:2

10
1.

09
58

1v
1

 [q
ua

nt
-p

h]
 2

3
Ja

n
20

21

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy Physics.

2

...
...

spectral analysis

Preprocessing: log-scale, outlier removal, standardization

CPU

QPU
000

001
010

011
100

101
110

111

...

Support Vector Machine

Hyperparameter tuning

Final train/test score

 datapoints

experiments

FIG. 1: In this experiment we performed limited data preprocessing that is standard for state-of-the-art classical
techniques, before using the quantum processor to estimate the kernel matrix K̂ij for all pairs of encoded datapoints
(xi, xj) in each dataset. We then passed the kernel matrix back to a classical computer to optimize an SVM using
cross validation and hyperparameter tuning before evaluating the SVM to produce a final train/test score.

Quantum kernel methods can potentially improve the
performance of classifiers by using a quantum computer
to map input data in X ⊂ Rd into a high-dimensional
complex Hilbert space, potentially resulting in a kernel
function that is expressive and challenging to compute
classically. It is difficult to know without sophisticated
knowledge of the data generation process whether a given
kernel is particularly suited to a dataset, but perhaps
families of classically hard kernels may be shown empir-
ically to offer performance improvements. In this work
we focus on a non-variational quantum kernel method,
which uses a quantum circuit U(x) to map real data into
quantum state space according to a map φ(x) = U(x)|0〉.
The kernel function we employ is then the squared in-
ner product between pairs of mapped input data given
by k(xi, xj) = |〈φ(xi)|φ(xj)〉|2, which allows for more
expressive models compared to the alternative choice
〈φ(xi)|φ(xj)〉 [4].

In the absence of noise, the kernel matrix Kij =
k(xi, xj) for a fixed dataset can therefore be estimated
up to statistical error by using a quantum computer
to sample outputs of the circuit U†(xi)U(xj) and then

∗ e6peters@uwaterloo.ca

computing the empirical probability of the all-zeros bit-
string. However in practice, the kernel matrix K̂ij sam-
pled from the quantum computer may be significantly
different from Kij due to device noise and readout er-

ror. Once K̂ij is computed for all pairs of input data in
the training set, a classical SVM can be trained on the
outputs of the quantum computer. An SVM trained on
a size-m training set T ⊂ X learns to predict the class
f(x) = ŷ of an input data point x according to the deci-
sion function:

f(x) = sign

(
m∑
i=1

αiyik(xi, x) + b

)
(1)

where αi and b are parameters determined during the
training stage of the SVM. Training and evaluating the
SVM on T requires an m×m kernel matrix, after which
each data point z in the testing set V ⊂ X may be clas-
sified using an additional m evaluations of k(xi, z) for
i = 1 . . .m. Figure 1 provides a schematic representa-
tion of the process used to train an SVM using quantum
kernels.

mailto:e6peters@uwaterloo.ca

3

A. Data and preprocessing

We used the dataset provided in the Photometric
LSST Astronomical Time-series Classification Challenge
(PLAsTiCC) [14] that simulates observations of the Vera
C. Rubin Observatory [15]. The PLAsTiCC data consists
of simulated astronomical time series for several different
classes of astronomical objects. The time series consist of
measurements of flux at six wavelength bands. Here we
work on data from the training set of the challenge. To
transform the problem into a binary classification prob-
lem, we focus on the two most represented classes, 42
and 90, which correspond to types II and Ia supernovae,
respectively.

Each time series can have a different number of flux
measurements in each of the six wavelength bands. In
order to classify different time series using an algorithm
with a fixed number of inputs, we transform each time
series into the same set of derived quantities. These in-
clude: the number of measurements; the minimum, max-
imum, mean, median, standard deviation, and skew of
both flux and flux error; the sum and skew of the ratio
between flux and flux error, and of the flux times squared
flux ratio; the mean and maximum time between mea-
surements; spectroscopic and photometric redshifts for
the host galaxy; the position of each object in the sky;
and the first two Fourier coefficients for each band, as
well as kurtosis and skewness. In total, this transforma-
tion yields a 67-dimensional vector for each object.

To prepare data for the quantum circuit, we convert
lognormal-distributed spectral inputs to log scale, and
normalize all inputs to

[
−π2 ,

π
2

]
. We perform no di-

mensionality reduction. Our data processing pipeline is
consistent with the treatment applied to state-of-the-art
classical methods. Our classical benchmark is a compet-
itive solution to this problem, although significant addi-
tional feature engineering leveraging astrophysics domain
knowledge could possibly raise the benchmark score by a
few percent.

B. Circuit design

To compute the kernel matrix Kij ≡ k(xi, xj) over
the fixed dataset we must run R repetitions of each cir-
cuit U †(xj)U(xi) to determine the total counts ν0 of the

all zeros bitstring, resulting in an estimator K̂ij = ν0
R .

This introduces a challenge since quantum kernels must
also be sampled from hardware with low enough statis-
tical uncertainty to recover a classifier with similar per-
formance to noiseless conditions. Since the likelihood of
large relative statistical error between K and K̂ grows
with decreasing magnitude of K̂ and decreasing R, the
performance of the hardware-based classifier will degrade
when the kernel matrix to be sampled is populated by
small entries. Conversely, large kernel magnitudes are
a desirable feature for a successful quantum kernel clas-
sifier, and a key goal in circuit design is to balance the

a.

b.

c.

FIG. 2: a. 14-qubit example of the type 2 circuit used
for experiments in this work. The dashed box indicates
U(xi), while the remainder of the circuit computes
U†(xj) to ouput |〈φ(xj)|φ(xi)〉|2. Non-virtual gates
occurring at the boundary (dashed line) are contracted
for hardware runs. b. The basic encoding block consists
of a Hadamard followed by three single-qubit rotations,
each parameterized by a different element of the input
data x (normalization and encoding constants omitted

here). c. We used the
√

iSWAP entangling gate, a
hardware-native two-qubit gate on the Sycamore
processor.

requirement of large kernel matrix elements with a choice
of mapping that is difficult to compute classically. An-
other significant design challenge is to construct a circuit
that separates data according to class without mapping
data so far apart as to lose information about class rela-
tionships - an effect sometimes referred to as the “curse
of dimensionality” in classical machine learning.

For this experiment, we accounted for these de-
sign challenges and the need to accommodate high-
dimensional data by mapping data into quantum state
space using the quantum circuit shown in Figure 2. Each
local rotation in the circuit is parameterized by a single
element of preprocessed input data so that inner prod-
ucts in the quantum state space correspond to a similar-
ity measure for features in the input space. Importantly,

4

100 200 300 400 500 600 700
Train fold size

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Noiseless train
Noiseless validation
RBF train
RBF validation

FIG. 3: Learning curve for an SVM trained using
noiseless circuit encoding on 17 qubits vs. RBF kernel
k(xi, xj) = exp(−γ||xi − xj ||2). Points reflect train/test
accuracy for a classifier trained on a stratified 10-fold
split resulting in a size-x balanced subset of
preprocessed supernova datapoints. Error bars indicate
standard deviation over 10 trials of downsampling, and
the dashed line indicates the size m = 210 of the
training set chosen for this experiment.

the circuit structure is constrained by matching the input
data dimensionality to the number of local rotations so
that the circuit depth and qubit count individually do not
significantly impact the performance of the SVM classi-
fier in a noiseless setting. This circuit structure consis-
tently results in large magnitude inner products (median

K ≥ 10-1) resulting in estimates for K̂ with very little
statistical error. We provide further empirical evidence
justifying our choice of circuit in Appendix IV.

III. HARDWARE CLASSIFICATION RESULTS

A. Dataset selection

We are motivated to minimize the size T ⊂ X since
the complexity cost of training an SVM on m datapoints
scales as O(m2). However too small a training sample
will result in poor generalization of the trained model,
resulting in low quality class predictions for data in the
reserved size-v test set V. We explored this tradeoff by
simulating the classifiers for varying train set sizes in
Cirq [16] to construct learning curves (Figure 3) standard
in machine learning. We found that our simulated 17-
qubit classifier applied to 67-dimensional supernova data

was competitive compared to a classical SVM trained
using the Radial Basis Function (RBF) kernel on iden-
tical data subsets. For hardware runs, we constructed
train/test datasets for which the mean train and k-fold
validation scores achieved approximately the mean per-
formance over randomly downsampled data subsets, ac-
counting for the SVM hyperparameter optimization. The
final dataset for each choice of qubits was constructed by
producing a 1000 × 1000 simulated kernel matrix , re-
peatedly performing 4-fold cross validation on a size-280
subset, and then selecting as the train/test set the ex-
act elements from the fold that resulted in an accuracy
closest to the mean validation score over all trials and
folds.

B. Hardware classification and Postprocessing

We computed the quantum kernels experimentally us-
ing the Google Sycamore processor [9] accessed through
Google’s Quantum Computing Service. At the time of
experiments, the device consisted of 23 superconducting
qubits with nearest neighbor (grid) connectivity. The
processor supports single-qubit Pauli gates with > 99%
randomized benchmarking fidelity and

√
iSWAP native

entangling gates with XEB fidelities [9, 17] typically
greater than 97%.

To test our classifier performance on hardware, we
trained a quantum kernel SVM using n qubit circuits
for n ∈ {10, 14, 17} on d = 67 supernova data with bal-
anced class priors using a m = 210, v = 70 train/test
split. We ran 5000 repetitions per circuit for a total of
m(m − 1)/2 + mv ≈ 1.83 × 108 experiments per num-
ber of qubits. As described in Section III A, the train
and test sets were constructed to provide a faithful rep-
resentation of classifier accuracy applied to datasets of
restricted size. Typically the time cost of computing the
decision function (Equation 1) is reduced to some frac-
tion of mv since only a small subset of training inputs
are selected as support vectors. However in hardware ex-
periments we observed that a large fraction (> 90%) of
data in T were selected as support vectors, likely due to
a combination of a complex decision boundary and noise
in the calculation of K̂.

Training the SVM classifier in postprocessing required
choosing a single hyperparameter C that applies a
penalty for misclassification, which can significantly af-
fect the noise robustness of the final classifier. To de-
termine C without overfitting the model, we performed
leave-one-out cross validation (LOOCV) on T to deter-
mine Copt corresponding to the maximum mean LOOCV
score. We then fixed C = Copt to evaluate the test ac-
curacy 1

v

∑v
j=1 Pr(f(xj) 6= yj) on reserved datapoints

taken from V. Figure 4 shows the classifier accuracies for
each number of qubits, and demonstrates that the per-
formance of the QKM is not restricted by the number of
qubits used. Significantly, the QKM classifier performs
reasonably well even when observed bitstring probabil-

5

Noiseless

17 qubits
10 qubits

10 14 17

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

10 14 17

Random Guessing

Experiment

Train TestTrain Test

Number of qubits

b.

c.

a.

FIG. 4: a. Parameters for the three circuits
implemented in this experiment. Values in parentheses
are calculated ignoring contributions due to virtual Z
gates. b. The depth of the each circuit and number of
entangling layers (dark grey) scales to accommodate all
67 features of the input data, so that the expressive
power of the circuit doesn’t change significantly across
different numbers of qubits. c. The test accuracy for
hardware QKM is competitive with the noiseless
simulations even in the case of relatively low circuit
fidelity, across multiple choices of qubit counts. The
presence of hardware noise significantly reduces the
ability of the model to overfit the data. Error bars on
simulated data represent standard deviation of accuracy
for an ensemble of SVM classifiers trained on 10 size-m
downsampled kernel matrices and tested on size-v
downsampled test sets (no replacement). Dataset
sampling errors are propagated to the hardware
outcomes but lack of larger hardware training/test sets
prevents appropriate characterization of of a similar
margin of error.

ities (and therefore K̂ij) are suppressed by a factor of
50%-70% due to limited circuit fidelity. This is due in
part to the fact that the SVM decision function is invari-
ant under scaling transformations K → rK and high-
lights the noise robustness of quantum kernel methods.

IV. CONCLUSION AND OUTLOOK

Whether and how quantum computing will contribute
to machine learning for real world classical datasets re-
mains to be seen. In this work, we have demonstrated
that quantum machine learning at an intermediate scale
(10 to 17 qubits) can work on “natural” datasets using
Google’s superconducting quantum computer. In par-
ticular, we presented a novel circuit ansatz capable of
processing high-dimensional data from a real-world sci-
entific experiment without dimensionality reduction or
significant pre-processing on input data, and without the
requirement that the number of qubits matches the data
dimensionality. We demonstrated classification results
that were competitive with noiseless simulation despite
hardware noise and lack of quantum error correction.
While the circuits we implemented are not candidates for
demonstrating quantum advantage, these findings sug-
gest quantum kernel methods may be capable of achiev-
ing high classification accuracy on near-term devices.

Careful attention must be paid to the impact of shot
statistics and kernel element magnitudes when evaluat-
ing the performance of quantum kernel methods. This
work highlights the need for further theoretical investiga-
tion under these constraints, as well as motivates further
studies in the properties of noisy kernels.

The main open problem is to identify a “natural” data
set that could lead to beyond-classical performance for
quantum machine learning. We believe that this can be
achieved on datasets that demonstrate correlations that
are inherently difficult to represent or store on a classi-
cal computer, hence inherently difficult or inefficient to
learn/infer on a classical computer. This could include
quantum data from simulations of quantum many-body
systems near a critical point or solving linear and nonlin-
ear systems of equations on a quantum computer [18, 19].
The quantum data could be also generated from quan-
tum sensing and quantum communication applications.
The software library TensorFlow Quantum (TFQ) [20]
was recently developed to facilitate the exploration of
various combinations of data, models, and algorithms for
quantum machine learning. Very recently, a quantum ad-
vantage has been proposed for some engineered dataset
and numerically validated on up to 30 qubits in TFQ us-
ing similar quantum kernel methods as described in this
experimental demonstration [4]. These developments in
quantum machine learning alongside the experimental re-
sults of this work suggest the exciting possibility for real-
izing quantum advantage with quantum machine learning
on near term processors.

6

ACKNOWLEDGMENTS

We would like to thank Google Quantum AI team for
time on their Sycamore-chip quantum computer. In par-
ticular, the presentation and discussion with Kostyantyn
Kechedzhi on error mitigation techniques that was incor-
porated into this experiment and Ping Yeh’s participa-
tion in some of the group discussions. Pedram Roushan
provided a great deal of useful feedback on early versions
of the draft and joined in several useful discussions. We
would also like to thank Stavros Efthymiou for some early
work on the quantum circuit simulations, and Brian Nord

for consultation on interesting datasets in the domain of
astrophysics and cosmology.

EP is partially supported through A Kempf’s Google
Faculty Award. JC, GP, and EP are partially supported
by the DOE/HEP QuantISED program grant HEP Ma-
chine Learning and Optimization Go Quantum, identi-
fication number 0000240323. This manuscript has been
authored by Fermi Research Alliance, LLC under Con-
tract No. DE-AC02-07CH11359 with the U.S. Depart-
ment of Energy, Office of Science, Office of High Energy
Physics.

[1] V. Havĺıcek, A. D. Córcoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Super-
vised learning with quantum-enhanced feature spaces,
Nature 567, 209 (2019).

[2] M. Schuld and N. Killoran, Quantum machine learning
in feature hilbert spaces, Phys. Rev. Lett. 122, 040504
(2019).

[3] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and
robust quantum speed-up in supervised machine learning
(2020), arXiv:2010.02174 [quant-ph].

[4] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush,
S. Boixo, H. Neven, and J. R. McClean, Power of data
in quantum machine learning (2020), arXiv:2011.01938
[quant-ph].

[5] T. Kusumoto, K. Mitarai, K. Fujii, M. Kitagawa, and
M. Negoro, Experimental quantum kernel machine learn-
ing with nuclear spins in a solid (2019), arXiv:1911.12021
[quant-ph].

[6] K. Bartkiewicz, C. Gneiting, A. Černoch, K. Jiráková,
K. Lemr, and F. Nori, Experimental kernel-based quan-
tum machine learning in finite feature space, Scientific
Reports 10, 1 (2020).

[7] J. Preskill, Quantum Computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[8] S. L. Wu, J. Chan, W. Guan, S. Sun, A. Wang, C. Zhou,
M. Livny, F. Carminati, A. D. Meglio, A. C. Y. Li,
J. Lykken, P. Spentzouris, S. Y.-C. Chen, S. Yoo, and
T.-C. Wei, Application of quantum machine learning us-
ing the quantum variational classifier method to high en-
ergy physics analysis at the lhc on ibm quantum com-
puter simulator and hardware with 10 qubits (2020),
arXiv:2012.11560 [quant-ph].

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-

tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Marti-
nis, Quantum supremacy using a programmable super-
conducting processor, Nature 574, 505 (2019).

[10] C. Cortes and V. Vapnik, Support-vector networks, Ma-
chine learning 20, 273 (1995).

[11] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training
algorithm for optimal margin classifiers, in Proceedings of
the Fifth Annual Workshop on Computational Learning
Theory , COLT ’92 (ACM, New York, NY, USA, 1992)
pp. 144–152.

[12] M. Aizerman, E. Braverman, and R. Rozoner, Theoreti-
cal foundations of potential function method in pattern
recognition learning, Automation and Remote Control 6,
821 (1964).

[13] N. Aronszajn, Theory of reproducing kernels, Trans-
actions of the American mathematical society 68, 337
(1950).

[14] The PLAsTiCC team, T. A. Jr., A. Bahmanyar,
R. Biswas, M. Dai, L. Galbany, R. Hložek, E. E. O.
Ishida, S. W. Jha, D. O. Jones, R. Kessler, M. Lochner,
A. A. Mahabal, A. I. Malz, K. S. Mandel, J. R. Mart́ınez-
Galarza, J. D. McEwen, D. Muthukrishna, G. Narayan,
H. Peiris, C. M. Peters, K. Ponder, C. N. Setzer, The
LSST Dark Energy Science Collaboration, and The LSST
Transients and Variable Stars Science Collaboration, The
photometric lsst astronomical time-series classification
challenge (plasticc): Data set (2018), arXiv:1810.00001
[astro-ph.IM].

[15] Vera C. Rubin Observatory, https://www.lsst.org/

about (2020).
[16] Q. A. team and collaborators, Cirq (2020).
[17] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V.

Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro,
A. Dunsworth, K. Arya, R. Barends, B. Bur-
kett, Y. Chen, Z. Chen, A. Fowler, B. Foxen,
M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly,
P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quin-
tana, D. Sank, A. Vainsencher, J. Wenner, T. C.
White, H. Neven, and J. M. Martinis, A blueprint
for demonstrating quantum supremacy with su-
perconducting qubits, Science 360, 195 (2018),
https://science.sciencemag.org/content/360/6385/195.full.pdf.

[18] B. T. Kiani, G. D. Palma, D. Englund, W. Kaminsky,

https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevLett.122.040504
https://arxiv.org/abs/2010.02174
https://arxiv.org/abs/2011.01938
https://arxiv.org/abs/2011.01938
https://arxiv.org/abs/1911.12021
https://arxiv.org/abs/1911.12021
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/2012.11560
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://arxiv.org/abs/1810.00001
https://arxiv.org/abs/1810.00001
https://www.lsst.org/about
https://www.lsst.org/about
https://doi.org/10.5281/zenodo.4062499
https://doi.org/10.1126/science.aao4309
https://arxiv.org/abs/https://science.sciencemag.org/content/360/6385/195.full.pdf

7

M. Marvian, and S. Lloyd, Quantum advantage for differ-
ential equation analysis (2020), arXiv:2010.15776 [quant-
ph].

[19] S. Lloyd, G. D. Palma, C. Gokler, B. Kiani, Z.-W.
Liu, M. Marvian, F. Tennie, and T. Palmer, Quan-
tum algorithm for nonlinear differential equations (2020),
arXiv:2011.06571 [quant-ph].

[20] M. Broughton, G. Verdon, T. McCourt, A. J. Mar-
tinez, J. H. Yoo, S. V. Isakov, P. Massey, M. Y. Niu,
R. Halavati, E. Peters, M. Leib, A. Skolik, M. Streif,
D. V. Dollen, J. R. McClean, S. Boixo, D. Bacon, A. K.
Ho, H. Neven, and M. Mohseni, Tensorflow quantum:
A software framework for quantum machine learning
(2020), arXiv:2003.02989 [quant-ph].

[21] C. J. Burges, A tutorial on support vector machines for
pattern recognition, Data mining and knowledge discov-
ery 2, 121 (1998).

[22] J. Shawe-Taylor, N. Cristianini, et al., Kernel methods
for pattern analysis (Cambridge university press, 2004).

[23] R. Fletcher, Practical Methods of Optimization., Vol. 2
(John Wiley and Sons, Inc., 1987).

[24] H. W. Kuhn and A. W. Tucker, Nonlinear program-
ming, in Proceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability (University of
California Press, Berkeley, Calif., 1951) pp. 481–492.

[25] M. Goemans, Lecture notes in 18.310a principles of dis-
crete applied mathematics (2015).

[26] E. Farhi and H. Neven, Classification with quantum
neural networks on near term processors (2018), arXiv
preprint arXiv:1802.06002 (2018).

[27] K. P. F.R.S., Liii. on lines and planes of closest fit to
systems of points in space, The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science 2,
559 (1901), https://doi.org/10.1080/14786440109462720.

[28] T. Tilma and E. Sudarshan, Generalized euler angle pa-
rameterization for u(n) with applications to su(n) coset
volume measures, Journal of Geometry and Physics 52,
263 (2004).

[29] A. Kandala, A. Mezzacapo, K. Temme, M. Takita,
M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-
efficient variational quantum eigensolver for small
molecules and quantum magnets, Nature 549, 242
(2017).

[30] Doug Strain, Private communication (2019).
[31] J. H. Friedman, Flexible Metric Nearest Neighbor Classi-

fication, Tech. Rep. (1994).
[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Ma-
chine Learning Research 12, 2825 (2011).

[33] R. Sedgewick, Algorithms in c, Part 5: Graph Algo-
rithms, Third Edition, 3rd ed. (Addison-Wesley Profes-
sional, 2001).

[34] A. A. Hagberg, D. A. Schult, and P. J. Swart, Explor-
ing network structure, dynamics, and function using Net-
workX, 7th Python in Science Conference (SciPy 2008) ,
11 (2008).

[35] J. Bi and T. Zhang, Support vector classification with in-
put data uncertainty, in Advances in neural information
processing systems (2005) pp. 161–168.

Appendix A: Binary classification with Support Vector Machines

Supervised learning algorithms are tasked with the following problem: Given input data X ⊂ Rd composed of
d-dimensional datapoints and the corresponding class labels taken from Y = {−1, 1} attached to each datapoint,
construct a function f that can successfully predict f(xi) = yi given a datapoint-label pair taken from the dataset
(xi, yi) ∈ X × Y .

We now introduce the theoretical foundations for the Support Vector Machine, or SVM (see [21, 22] for a thorough
review). A linear SVM performs binary classification by constructing a (d − 1) dimensional hyperplane 〈x,w〉 + b
that divides elements of X according to their class, by finding the hyperplane with the largest perpendicular distance
(“margin”) to elements of either class. The hyperplane parameters capable of classifying linearly separable data must
satisfy the inequality

yi (〈xi, w〉+ b) ≥ 1 (A1)

which corresponds to a symmetric margin of 2/||w|| dividing classes of linearly separable data. Maximizing the margin
therefore corresponds to minimizing the hyperplane normal vector, so the task of the SVM is to find the solution to
the convex problem

min
w,b

1

2
||w||2 (A2)

Equations A1-A2 frame a constrained optimization problem that can be solved by method of Lagrange multipliers.
The Lagrangian to minimize is then

LP =
1

2
||w||2 −

∑
i=1

αiyi(〈xi, w〉+ b) +
∑
i=1

αi (A3)

https://arxiv.org/abs/2010.15776
https://arxiv.org/abs/2010.15776
https://arxiv.org/abs/2011.06571
https://arxiv.org/abs/2003.02989
https://projecteuclid.org/euclid.bsmsp/1200500249
https://projecteuclid.org/euclid.bsmsp/1200500249
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://arxiv.org/abs/https://doi.org/10.1080/14786440109462720
https://doi.org/https://doi.org/10.1016/j.geomphys.2004.03.003
https://doi.org/https://doi.org/10.1016/j.geomphys.2004.03.003
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879

8

Recognizing that the inequality of Equation A1 can only be satisfied by fully separable data, SVM classifiers trained
on real data typically employ so-called “slack” variables that loosen the classification constraints and introduce a
misclassification penalty to the Lagrangian formulation [10]. The constraints for training a linear SVM on non-
separable data using slack variables ξi then takes on the form:

yi

(∑
s∈SV

αsysk(xi, xs) + b

)
≥ 1− ξi (A4)

ξi ≥ 0 ∀i (A5)

where we choose to assign an L2 penalty for misclassification by adding an additional cost term to the objective
function A2, resulting in the modified objective function

min
w,b

1

2
||w||2 +

C

2

∑
i

ξ2i (A6)

Applying the method of Lagrange multipliers, the primal Lagrangian for Equation A6 is

LP =
1

2
||w||2 −

∑
i=1

αi(yi(〈xi, w〉+ b)− 1 + ξi)−
∑
i

µiξi +
C

2

∑
i

ξ2i (A7)

Alternatively this can be reformulated to the Wolfe dual problem [23], with the goal of maximizing the dual
Lagrangian

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyj〈xi, xj〉 −
C

2

∑
i

ξ2i (A8)

subject to the constraints:

0 ≤ αi ≤ C (A9)∑
i

αiyi = 0 (A10)

As Equation A6 is a convex programming problem, the solutions to the primal Lagrangian of Equation A7 and the
dual Lagrangian of Equation A8 are subject to the Karush-Kuhn-Tucker (KKT) conditions [24]:

w −
∑
i

αiyixi = 0 (A11)∑
i

αiyi = 0 (A12)

C − αi − µi = 0 (A13)

αi(yi(〈xi, w〉+ b)− 1 + ξi) = 0 (A14)

yi(〈xi, w〉+ b)− 1 + ξi ≥ 0 (A15)

µiξi = 0 (A16)

C ≥ αi ≥ 0 (A17)

µi ≥ 0 (A18)

ξi ≥ 0 (A19)

These conditions determine the hyperplane intercept b and also describe the geometry of the maximal margin
hyperplane for the trained SVM. Once the optimal set of parameters ~α is determined with respect to the training
inputs X , the linear SVM predicts the class of a data point using the decision function

f(xp) =
∑
s∈SV

αsys〈xp, xs〉+ b (A20)

9

where the sum runs over the indices of the support vectors, or equivalently all nonzero αi.
Equation A20 and the dual Lagrangian A8 no longer explicitly reference elements of the input space w, xi ∈ R, so the

optimization problem is still valid under the substitution x→ φ(x) for some mapping φ : X → H where H is a Hilbert
space (this is the so-called “kernel trick” [12]). This permits us to embed input data into higher dimensional Hilbert
space for some choice of φ and then train the SVM on inner products in the mapped space, 〈φ(xi), φ(xj)〉H ≡ k(xi, xj),
where the status of k as an inner product guarantees that it is symmetric, positive-definite. The resulting SVM will
then be capable of constructing decision boundaries that are nonlinear in the input space Rd resulting in a decision
function

f(xp) =
∑
s∈SV

αsysk(xp, xs) + b (A21)

Evaluating k(xp, xs) = Kps for a fixed set xp, xs ∈ T ∪V recovers Equation 1 from the main body (since αi = 0 for
i outside the support vector set by Equations A13 and A16).

Appendix B: Circuit structure and Hilbert space embedding

1. Statistical uncertainty and vanishing kernels

We now discuss limitations to hardware-based quantum kernel methods due to statistical uncertainty. Recall that
each kernel matrix element Kij = k(xi, xj) is computed by sampling the output of a circuit U †(xj)U(xi) for a total
of R repetitions and counting the number ν0 of all-zeros bitstrings that appear. This experiment constitutes R trials
of a Bernoulli process parameterized by Kij ; the unbiased estimators for Kij and associated variance are therefore
given by:

K̂ij =
ν0
R

(B1)

Var(K̂ij) =
K̂ij(1− K̂ij)

R− 1
(B2)

Note that positive definiteness of K̂ is not necessarily preserved in the presence of statistical error and hardware
noise, but in practice we found this had little effect on the ability of the SVM to classify data. The O(R−1/2) sampling

error of Equation B2 combined with a requirement that ||K̂ −K||F =
(∑

ij |Kij − K̂ij |
)1/2

≤ εm (where m = |X |)
would suggest that an ε-close estimation of K could be achieved using R = O(ε−2N2) shots per kernel element. In the
main body we argue that this fails to bound relative error between kernel matrices. This is evident in the symmetric
Chernoff bound for the relative error of a sampled K̂ij [25]:

P

(
|K̂ −K|

K
≥ ε

)
≤ 2e−RKε

2/3 (B3)

for which the probablity of large relative error quickly becomes unbounded for R << O(K−1ij). Relative error is relevant

by the following reasoning: Let L′D be the L1-penalized dual Lagrangian corresponding to a kernel constructed from
the transformation K ′ = rK, given by

L′D =
∑
i

α′i −
1

2

∑
i,j

α′iα
′
jyiyjK

′
ij (B4)

If αopt contains the parameters maximizing the Lagrangian

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjKij (B5)

then αopt also maximizes the Lagrangian 1
rLD which may be rewritten as follows:

10

1

r
LD =

∑
i

αi
r
− 1

2

∑
i,j

αiαj
r2

yiyj(rKij) (B6)

By comparison with Equation B4 L′D has the immediate choice of unique solution α′opt = αopt/r, which may
be achieved by appropriate choice of penalty parameter C appearing in the KKT conditions A11-A19 for L′D (or
equivalently in the primal problem L′P before kernelizing the problem). A similar result can be attained if an L2
misclassification penalty is used by restricting the Lagrange multipliers α. Consequently the decision function for
an SVM classifier trained on the kernel matrix K ′ is identical to the decision function for the SVM classifier trained
on the original K. This result makes intuitive sense for the choice of a linear kernel Kij = 〈xi, xj〉, for which
stretching/shrinking each datapoint xi → xi/

√
r has no effect on the geometry of the maximal margin hyperplane.

By choosing some r for the transformation K → rK, K̂ → rK̂, the absolute error ||K−K̂||F may be made arbitrarily

large or small without affecting the performance of the associated SVM classifier, which suggests that ||K−K̂||F does
not completely characterize the resulting SVM accuracy.

The high dimensionality of quantum state space poses a threat to the experimental feasibility of quantum kernel
methods since the relative statistical error incurred by finite shot statistics grows as the magnitude of the sampled
kernel element shrinks. Using a naive example, a randomly selected encoding unitary will almost certainly result
in vanishing kernel elements by strong measure concentration: If we treat S = {U†(xj)U(xi)} as a distribution of
unitaries that are random with respect to the Haar measure it is well known that the expected probability for any
specific bitstring (and therefore ν0

R) sampled from a unitary in S scales as O(2−n). In practice, the preprocessing of
input data and circuit structure must be chosen with careful attention given to the corresponding distribution on K.

To explore this effect we constructed a classifier similar to quantum circuits described in [1, 26], depicted in Figure
5b and given by

U(x) = H⊗nV (x)H⊗nV (x) (B7)

V (x) = exp

 n∑
i=1

c1xiZi +
∑

(i,j)∈NN

c2(xi − xj)ZiZj



where the entangling gates are selected among nearest neighbors on the (simulated) circuit grid. We chose to
parameterize entanglers by c2(xi − xj) instead of quadratic terms proportional to xixj to eliminate concentration of
E[xixj] → 0 that occurs for our choice of normalization. For clarity we refer to the circuit described by Equation
B7 as “Type 1”. An increase in the connectivity results in a higher gate/parameter count, resulting in generally
smaller sampled kernel elements. This circuit structure requires that input data have dimension equal to the number
of qubits. We applied Principal Component Analysis (PCA) [27] to reduce the 67-dimensional data to n dimensions
and then standardized the data to the interval [−π/2, π/2]. We defined additional hyperparameters (c1, c2) that can
be tuned to optimize the cross-validated performance of the corresponding SVM and control the resulting distribution
of kernel matrix elements. Figure 5a shows that the magnitude of K vanishes with respect to increasing c1, c2 or
number of qubits n. This does not necessarily result low accuracies for the associated SVM classifiers, but describes
a family of kernels that are infeasible to sample on hardware. It is possible to preserve the magnitude of K if c1 and
c2 are scaled down with increasing n but for small enough angles over/under-rotation errors and noise will become
dominating factors in hardware outcomes, while the limit c2 → 0 results in a circuit that can be simulated trivially.

These results motivate a new approach for encoding data on large numbers of qubits, especially if the input
data dimensionality is large. To compute large-magnitude kernels on high dimensional data without dimensionality
reduction, we designed a circuit encoding to map input data xi, zi ∈ X ⊂ Rd into a subspace of C2n using an
approximately orthogonal parameterization of U(2n), the group describing n-qubit unitaries. While examples of
exactly orthogonal parameterizations of U(2n) exist, such as Euler angle parameterization of U(2n) [28], such schemes
are generally inefficient to implement on hardware. We approximate such an encoding using circuits structured
similarly to the Hardware Efficient Ansatz [29] consisting of an initial layer parameterizing

⊗n
U(2) interspersed with

local entanglers. This circuit structure (referred to here as “Type 2”) is shown in Figure 2 of the main body and can
be expressed in terms of individual gates as

11

a. b.

2 4 6 8 10 12 14 16

Number of qubits

10 3

10 2

10 1

100

M
e
d
ia

n
K
ij

Type 1 circuit
Type 2 circuit

...

FIG. 5: Circuit structure and data preprocessing has a large impact on the resulting distributions of kernel matrix
elements. (a) Distributions of median K with respect to a coarse grid search over c1, c2 ∈ {0.1, 0.15, 0.2, 0.25, 0.3} for
type 1 circuits with n-dimensional PCA compressions as input suggest that vanishing kernel magnitudes (red) make
much of the gridsearch space inaccesible to realistic hardware experiments for even modest numbers of qubits. We
found no such trend in K for type 2 circuits (Equation 2) implemented in our experiments with 67-dimensional
input data.

U(x) =
L∏
`=1

UBUA(S`(x)) (B8)

UA(z) =

n⊗
i=1

H(i)R(i)
z (c1zi2)R(i)

y (c1zi1)R(i)
z (c1zi0)

UB =
∏

(i,j)∈E(G)

√
iSWAP(i,j)

where E(G) denotes the set of edges composing a length-n simple path permitted by the Sycamore connectivity,
superscript (i) indicates action on qubit i, and S : Rd → R3n denotes selection of a subset of 3n elements from
the input data to be encoded into a given rotation layer. The specific choice of rotation and entangling gates was
influenced by the gate set available on the processor at the time the experiments were conducted, namely

√
iSWAP

and the Sycamore gate [9]. Note that the use of Z rotations in UA reduces the hardware depth of the corresponding
circuit by 50% [30]. This architecture therefore encodes d-dimensional input data in O(d/n) depth on hardware.
The fact that this circuit choice may be made arbitrarily shallow in number of qubits n rules out the possibility of
demonstrating quantum advantage, but the experimental and design challenges of implementing this architecture are
relevant to QKM in general.

As depicted in Figure 1, single qubit rotations in each circuit were “filled” sequentially from left to right, top to
bottom beginning with the first element x1 of the data and ending with x67. Exceptions were made to this pattern
to more evenly distribute single qubit rotations between entangling layers. We explored randomized filling schemes
and found no significant difference to circuit performance nor inner product magnitudes. When the number of qubits
is not an integer factor of 67, gaps appeared in at most two layers of the circuit.

2. Hyperparameter tuning in the quantum circuit

Our circuit design introduces a single parameter c1 for multiplicative scaling of on elements of preprocessed x. We
observed that train/test performance varied with respect to c1 and therefore treated it as a hyperparameter of the
kernel function to be optimized in simulation. In practice, the same optimization procedure can be carried out using
sweeps over c1 for hardware submissions. Figure 6a shows a typical outcome of the hyperparameter tuning process

12

and demonstrates both a local optimum for validation scores with respect to c1 as well as a capacity for overfitting in
the large-c1 limit.

0.0 0.2 0.4 0.6 0.8 1.0
c1/ encoding weight

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

10 1 100 101

C hyperparameter

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train
Validation

FIG. 6: Hyperparameter tuning for simulated type 2 circuits consisted of grid search optimization over two
parameters. (left) The encoding parameter c1 multiplies each encoded data element and impacts the typical
separation (magnitude of K) for mapped feature space vectors. (right) The L2 penalty hyperparameter C used to
train the SVM allows for robust performance in the presence of noise. Both plots correspond to 10 qubit circuits
used in the experiment (c1 was optimized over an m = 1000 subset of SN-67 dataset while C was optimized over
experimental run dataset with m = 210).

The choice of optimal c1 has a direct impact on the proximity of states |ψ(x)〉 mapped into the quantum state
space; in the trivial limit c1 → 0 the unitary U(x) becomes the identity map and Kij → 1; similarly in the large
c1 limit the angles between mapped input data grow linearly and K quickly vanishes. Therefore there is a tension
between producing mapped states {|ψ(xi)〉} with good separability but without the isolation of mapped points in
high dimensional space that would degrade performance, a phenomenon in classical machine learning known as the
“curse of dimensionality” (e.g. [31]).

Appendix C: Dataset selection and preprocessing

We used the dataset provided in the Photometric LSST Astronomical Time-series Classification Challenge (PLAs-
TiCC) [14]. After engineering the 67-float data with binary labels (Section II A), preprocessing consisted of the
following steps:

1. Logscale transformation : Many of the features were distributed in a lognormal distribution which motivates
use of the transformation xi → log10(xi). Some information loss resulted from taking the absolute value of
median flux, for which approximately 4% of entries in the original dataset were negative. All other absolute
value operations resulted in negligible loss of sign information.

2. Normalization/scaling and outliers : Since the local rotations of U(x) are 2π-periodic, an effective normalization
scheme is to map the boundaries of the input range to

[
−π2 ,

π
2

]
. Realistically, outliers will result in the effective

range for most data being compressed into a much smaller space (thereby amplifying the effect of over/under-
rotation errors) and so we scaled data in such a way to ignore the effects of large outliers by applying the
transformation:

x′ = π

(
x− P1

P99 − P1

)
− π

2

to every element of input data, where Pk denotes the value of the k-the percentile of the input domain. This is
equivalent to typical implementations of a robust scaler with the quantile range set to (0.01, 0.99) (e.g. [32]),

13

16.5

18.6 13.8 14.6

18.2 11.2 15.0 20.1 24.3

12.1 15.9 16.4 18.7 15.3

12.3 17.2 13.2 11.6 21.8

13.4 13.1 15.6

18.4

FIG. 7: Sample results of automated qubit selection with rejected qubits denoted by a red slash. Entangler patterns
(light/dark gray) are overlaid on the Sycamore 23-qubit grid annotated with T1 in µs. No more than 19 qubits may
be assigned to the grid using our connectivity scheme, so that qubit selection has diminishing effects on performance
as n→ 19.

which removes the effects of outliers on the rescaling. Then hyperparameter tuning was used to adjust the
rotation parameters by a further multiplicative factor c1 (see Appendix B 2).

Appendix D: Error mitigation

1. Device parameters

Periodic calibrations of the Sycamore superconducting qubit device produce diagnostic data describing qubit and
gate performances. Calibration metrics relevant to this experiment included readout errors p00 (probability of a
computational basis measurement reporting a “1” when the result should have been “0”) and p11 (probability of a
measurement reporting a “0” when the result should have been “1”), single qubit T1, single qubit gate RB error,

and
√

iSWAP gate cross-entropy benchmarking (XEB) error. The readout error probabilities were used primarily for
constructing and analyzing post-processing techniques for error correction while the remainder of the calibration data
were fed in to an automated qubit selection algorithm.

2. Automated qubit selection

To improve the performance of the algorithm for a given number of qubits, we designed a graph traversal algorithm
to select qubits based on diagnostic data taken during device calibration. Less weight was applied to p0 and p1 due
to the availability of readout error mitigation techniques. We constructed a qubit graph Gq = (E, V) where edges
represent entangling gate connectivity and nodes represent qubits according to the Sycamore 23-qubit grid layout.
The optimization was done by traversing all simple paths of fixed length k (implemented according to [33, 34]), and
then scoring each path according to some function of the metrics for the subset of nodes and edges visited. Stated as
an optimization problem, given an objective function f : V ×E → R scoring subsets of vertices and edges composing
an Eulerian graph, this algorithm finds the maximum evaluation of f over all possible graphs Gq:

max
f(Vk(G),Ek(G))

Gq (D1)

subject to the constraints |Vk(G)| = k, |Ek(G)| = k − 1. Before applying f , the heterogeneous calibration data were
normalized to the range [0, 1] and inverted if they represented an error (as opposed to a fidelity). Letting the value of

14

the p-th category of calibration data for the i-th qubit vi be cp(vi), and similarly the p-th category of calibration for
the i-th edge ei be dp(ei), and defining gp as a scoring function applied to the p-th processed calibration metric, our
implementation of f takes on the form

f(V) =
∑
p∈C1

∑
vi∈G

gp(cp(vi)) +
∑
p∈C2

∑
ei∈G

gp(cp(ei)) (D2)

where C1 and C2 represent the calibration metrics corresponding to single and pairs of qubits respectively. We
implemented gp as a logarithmic function for T1, T2, and fXEB,2q metrics and a linear function for p00 and p11 metrics.
Figure 7 shows the results of an example optimization overlaid on T1 calibration results.

3. Readout error correction

Readout error resulting from relaxation and thermal excitation can be modelled by a stochastic bitflip process
applied to the observed bitstrings. Here we describe an efficient and accurate technique for correcting readout error
for quantum kernel methods.

Let p(yn|xn) describe the conditional probability for observing bitstring yn after exposing the bitstring xn to n
distinct bitflip channels, and let qk(y|x) for x, y ∈ {0, 1} describe the corresponding probability for observing bit
“y” after exposing the k-th bit “x” to a single bitflip channel. Then for the k-th qubit, the metrics introduced
in Appendix D 1 as p00 = qk(1|0) and p11 = qk(0|1) may be used to partially undo readout error by means of
postprocessing. We define a response matrix R ∈ R2n×2n elementwise as (R)xy = p(yn|xn) that contains as its
elements the total probability for transition from bitstring xn = x1 . . . xn to bitstring yn = y1 . . . yn computed as the
product of qk(1|0) and qk(0|1) corresponding to each individual bit:

Rxy ≡ p(y1 . . . yn|x1 . . . xn) =

n∏
k=1

qk(yk|xk) (D3)

For simplicity, we assume that each individual bitflip may be modelled as an independent process, although the
techniques discussed here are readily applicable to a system of dependent bitflips if the bitflip likelihoods are experi-
mentally measured in parallel. Then evidently,

R =
n⊗
k=1

(
qk(0|0) qk(0|1)
qk(1|0) qk(1|1)

)
(D4)

Note that R is generally asymmetric since typically qk(1|0) < qk(0|1). While multiplying R−1 by the set of observed
bitstring frequencies would recover the prior distribution of bitstring frequencies with good fidelity, standard matrix
inversion is subject to instabilities and is not tractable for even modest numbers of qubits.

Since only the frequency of the all-zero’s bitstring is necessary to compute K̂ij , we implemented correction using a
small subset of bitstring transition probabilities to perform quick and relatively high-fidelity readout error correction
in post-processing. We generated R and then truncated the full 2n-dimensional basis to the bitstring space containing
strings with Hamming weight ≤ kmax for some n-dependent kmax resulting in a truncated response matrix Rt. We
then computed the pseudo-inverse R−1t and performed error correction by simple matrix multiplication on the array
of experimental readout frequencies (similarly truncated). This simplification comes at the expense of knowledge
about any other post-correction frequencies since the other bitstrings in the truncated space are off-center within the
Hamming sphere of kept bitstrings, resulting in a bias in the inverted linear map.

We now analyze the effect of truncation on the readout error correction. The number of simultaneous readout error
events (either relaxation or excitation) may be modelled as an induced random variable Z =

∑
kXk for Pr(Xk =

1) = qk(¬x|x). This distribution has expected value µ =
∑
k q

k(¬x|x) and an exponentially suppressed likelihood for
simultaneous readout errors via the Chernoff bound Pr(Z ≥ k) ≤ exp(k − µ − k log(k/µ)). Thus a natural measure
for the effect of Hamming weight truncation is the empirical probability allocated to the complement of the truncated
subspace:

Pr(Z > kmax) = 1−
kmax∑
i=0

Pr(Z = i) (D5)

While Equation D5 describes the probability of events outside the truncated subspace, it does not directly translate
to failure probability for truncated readout correction. To explore this effect numerically, we computed the output

15

probability distributions for a 10-qubit quantum kernel circuit sampled for 5000 repetitions, and then introduced
artificial readout error (using bitflip probabilities taken from the Sycamore processor) followed by roughly 5% Gaussian
noise on the sampled distribution. Figure 8 shows the error distribution as well as the effect of correcting using an
inverted truncated response matrix for a variety of kernel magnitudes and truncation weights. We observed similar
behavior for 14 and 17-qubit simulated experiments; readout error for quantum kernel experiments may be corrected
reasonably well using a small fraction of the full bitflip response matrix.

0.0 0.2 0.4 0.6 0.8 1.0
K

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r K
′

No correction
kmax = 1
kmax = 3

0 1 2 3 4 5 6 7 8
kmax

10 8

10 6

10 4

10 2

100

1
k m

ax

i=
0Pr

(Z
=

i)

q(0|1)
q(1|0)

FIG. 8: Truncated readout error correction for 10 qubit circuit. (left) Correcting on the likely subspace described by
kmax = 1 provides significant error correction, and further increasing kmax provides diminishing returns. Dashed
lines indicate the infinite-shot upper/lower bounds given by Equation E6 (bounds are violated when empirical bitflip
probabilities do not match imposed readout error probabilities); black line indicates perfect error correction. (right)
Empirical probability for transition out of the weight ≤ kmax vanishes exponentially in the highest weight considered.

Figure 8 suggests a linear relationship between the kernel K ′ computed in the presence of readout error and
the noiseless kernel K. While readout error does not constitute a linear process in general (the underlying bitflip
probabilities and bitstring distributions may be modified to give rise to arbitrary effects on K within the bounds of
Equation E6), by the arguments in Section IV demonstrating such an effect in general would imply minimal effect
of readout error on the corresponding classifier. The degree to which readout error plays a role in quantum kernel
methods is therefore an important research area for implementation on near-term processors.

4. Crosstalk optimization

Cross-talk between two-qubit gates on implemented on superconducting processors can contribute to decoherence
and decrease circuit fidelity. Since our choice of circuit ansatz requires entire layers of entangling gates, we conducted
diagnostic runs to determine whether executing these gates sequentially (in different staggering patterns) could improve
performance compared to executing the gates simultaneously. We found that the completely parallel execution of
entangling gates achieved the lowest cross entropy with respect to noiseless simulation compared to partially sequential
arrangements. Therefore all entangling gates in this experiment were run in parallel.

Appendix E: Hardware error and performance

Figure 9 shows a typical outcome for sampled kernel elements K̂ij compared to their true values as determined from
noiseless simulation. Notably, all of the hardware outcomes are strongly biased towards zero as a result of decoherence.
The observation that the SVM decision function is scale-invariant (Appendix IV) suggests that the performance of an
SVM trained using data subject to hardware error will only be affected to the degree that the sampled kernel elements

16

K̂ij differ from some linear transformation of the corresponding exact elements Kij , so that the circuit fidelity and
other typical metrics for hardware performance are not predictive of classifier performance in any obvious way. For
instance, we achieved comparable test accuracy to noiseless simulation for n = 14 qubits despite circuit fidelity in the
neighborhood of 30%.

FIG. 9: (left) Distribution of sampled K̂ compared to simulated K for 17 qubit train set (m = 210) colored
according to quartiles of K. The dashed line indicates the value of rK for r = 0.29, demonstrating that the
hardware trends towards some scaled value of K. The mean value of Kii corresponding to Tr(|0〉〈0|) ≡ 1 (elements
in the top right) is a useful proxy for circuit fidelity and tends towards 30% for the qubit counts investigated. (right)

The distribution of K̂ around rK is irregular but exhibits consistent patterns with respect to kernel magnitude. The
hardware error is therefore not normal with respect to (a scaled version of) K, which complicates bounds for
guaranteed performance.

1. Effects of readout error in quantum kernel methods

Since K̂ is estimated by computing the empirical probability of the all zeros bitstring p(0), the effects of readout
error may be bounded in a straightforward manner. The following analysis will consider readout error as the sole
source of noise and ignore statistical effects and other sources of decoherence. The resulting bounds apply to only
to the infinite-shot limit but will be shown to be approximately correct in the low-shot limit. As in Section D 3,
we let p(yn|xn) describe the conditional probability for observing bitstring yn after exposing the bitstring xn to n
distinct bitflip channels, and let qk(y|x) for x, y ∈ {0, 1} describe the corresponding probability for observing ”y”
after exposing the k-th bit ”x” to a single bitflip channel. After exposing the all-zeros bitstring to a stochastic bitflip
process repeatedly, the lowest possible value for K̂ occurs when no bitstrings transform into the all-zeros bitstring.
The expected fraction of events remaining is

p(0|0) =
n∏
k

(1− qk(1|0)) (E1)

17

The maximum increase in the observed p(0) will result from transitions from other bitstrings into the all-zeros
bistring. Intuitively this will occur almost entirely due to low-weight bitstrings with just a few bitflips. The probability
of transition into the all-zeros bitstring from an arbitrary starting bitstring yn = y1y2 . . . yn is p(0|yn) =

∏n
k=1 q

k(0|yk),
while the log-odds of each term in this product may be rewritten as

log q(0|yk) = log q(0|0)(1− yk) + log qk(0|1)yk (E2)

The total log-odds for transition into 0 is then

log p(0|yn) =
n∑
k=1

log qk(0|0) +
n∑
k=1

log
qk(0|1)

qk(0|0)
yk (E3)

which is in the form w · yn + b with w ∈ Rn, b ∈ R, indicating a linear dependence of log p(0|yn) on yn. Since the
logarithm is strictly increasing, the corresponding integer programming problem for maximizing p(0|yn) is:

max
w

n∑
k=1

wkxk (E4)

subject to xk ∈ {0, 1},
n∑
k=1

xk > 0 (E5)

where the second constraint avoids the trivial solution of the all-zeros bitstring. By inspection of Equation E3,
qk(0|0) = 1−qk(1|0) implies that w is strictly negative with the realistic assumption that qk(1|0) < 0.5, qk(0|1) < 0.5.
In this case, the solution maximizing Equation E4 must be a bitstring with weight 1 with a “1” at the position
argmaxkq

k(0|1). Combined with Equation E1 this results in the bound:

K̂
n∏
k

(
1− qk(1|0)

)
≤ K̂ ′ ≤

(
1− K̂

)
max
k

qk(0|1) + K̂ (E6)

Where K̂ ′ describes the estimated kernel element after readout error has occurred. This bound is plotted in Figure
8 for one instance of a 10-qubit readout error calibration. The form of these bounds further justify the need for
large kernels, since the bound becomes increasingly loose as K̂ approaches the magnitude of typical readout error
probabilities on the quantum processor.

We now discuss the implementation of the readout error correction technique described in Appendix D 3. While
routine calibration of the device returns diagnostic information on readout error probabilities qk(0|1) and qk(1|0), these
quantities may drift in the time between calibration and experiment resulting in lower quality readout correction.
To account for drift, we periodically estimated qk(0|1) and qk(1|0) by preparing a sequence of random bitstrings |s〉
and the complement |s ⊕ 1〉 and then measured in the computational basis. We then computed empirical bitflip
likelihoods for measurements in parallel over the specific qubits used in each experiment and computed the time-
averaged likelihoods to use for readout correction. We averaged over the different prepared states to reduce the
impact of imperfect state preparation on measured outcomes.

Figure 10 shows learning curves computed for the 14-qubit experiment with and without readout correction for
post-processing. While classifiers trained using error-corrected results are capable of achieving higher accuracies on
the reserved test set, the choice of C hyperparameter for improved test accuracy did not generally correspond to
improved accuracies for the validation sets. Therefore, we could not consistently improve the classifier performance
by applying readout correction and opted to present the results achieved without readout correction in Figure 4 in
the main body.

2. Effects of statistical error on SVM accuracy

While recent work [3] has established performance bounds relating SVM accuracy to statistical sampling error for
quantum kernel methods, we conducted experiments using orders of magnitude fewer repetitions than necessary to
achieve robust classification. In addition, modified SVM algorithms exist for processing noisy inputs in the data
space [35] but these modifications do not generalize to processing noise in the feature space (i.e. ∆k(xi, xj)). Given
these limitations, we chose to explore the effects of statistical noise numerically to determine the relative impact of
statistical noise on final classifier accuracy compared to other sources of error.

18

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Ac

cu
ra

cy

No correction

Train Validation

kmax = 1 kmax = 2

0.8 1.0 1.2 1.4
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Train Test

0.3 0.4 0.5 0.6 0.7 0.8
C hyperparameter

0.3 0.4 0.5 0.6 0.7 0.8

FIG. 10: We analyzed the LOO cross-validation accuracy versus accuracy on the reserved test set to determine the
effect of (truncated) readout correction using readout error likelihoods determined experimentally at periodic
intervals during the 14-qubit experiment. While the trained classifiers are often able to achieve significantly higher
accuracy on the reserved test set, the error-corrected validation accuracy is not predictive of improved test accuracy.
For instance, the kmax = 2 classifier achieves a 65.7% validation accuracy and a 64.3% test accuracy while the
classifier with no readout correction achieves 66.1% validation accuracy and 61.4% test accuracy, indicating that the
improved test score cannot be consistently predicted by LOOCV.

Figure 11 shows simulated trials of the type 2 circuits used for experimental runs. Each circuit was initially
simulated with an full wavefunction simulator, and then the amplitude K = |〈0|ψ〉|2 was used to sample R repetitions
from the implied binomial distribution Bin(R,K). The sampled kernel elements were used to train and validate
SVM classifiers following the procedure outlined in Section III B. The results indicate there are diminishing returns in
classifier accuracy beyond the R = 5000 repetitions we used for the experiments, but that this choice incurs ∼ 1-2%
classifier error compared to the infinite-shot limit. As expected, greater statistical noise results in less overfitting for
the model.

3. Classifier results

Figure 12 shows the result of tuning the hyperparameter C controlling the L2 penalty for violating the SVM margin.
The C values resulting in optimal validation scores were then used to determine the final train/test scores reported
in Figure 4 of the main body.

19

102 103 104 105

R
0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

10 qubits

102 103 104 105

R
0.65

0.70

0.75

0.80

0.85

0.90

0.95
14 qubits

102 103 104 105

R
0.65

0.70

0.75

0.80

0.85

0.90

0.95
17 qubits

train
cv
R = train
R = cv

FIG. 11: We empirically investigated the effect of statistical noise by generating a sampling a binomial distribution
with success probability equal to K and enfocing symmetry on the resulting kernel matrix. The results show that
additional circuit repetitions beyond R ≈ 5000 provide diminishing returns to the validation accuracy of the
classifier. We note that typically 50,000 circuit repetitions per kernel element are required to achieve cross-validated
accuracy comparable to noiseless simulation. Fill for finite-R represents 1σ interval for stratified 10-fold
cross-validated train/test scores over 10 trials of downsampling to R shots.

20

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Ac

cu
ra

cy

10 qubits 14 qubits 17 qubits

Train Validation

0.4 0.6 0.8 1.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

0.8 1.0 1.2 1.4
C hyperparameter

0.4 0.6 0.8 1.0

Train Test

FIG. 12: Hyperparameter optimization for hardware kernels is performed by tuning the L1 penalty parameter C via
LOOCV on the training data (top row) during model validation, which then becomes fixed for evaluation of the
model on the test set (bottom row). The capacity of the hardware-based models to overfit the data is drastically
reduced, and oftentimes the SVM behavior becomes pathological. To avoid undesirable generalization behavior, the
validation score corresponding to the optimal C was required to be no greater than the corresponding training score.
The vertical dashed line indicates the optimal C decided in the validation stage.

	Machine learning of high dimensional data on a noisy quantum processor
	Abstract
	I Introduction
	II Quantum kernel Support Vector Machines
	A Data and preprocessing
	B Circuit design

	III Hardware classification results
	A Dataset selection
	B Hardware classification and Postprocessing

	IV Conclusion and outlook
	 Acknowledgments
	 References
	A Binary classification with Support Vector Machines
	B Circuit structure and Hilbert space embedding
	1 Statistical uncertainty and vanishing kernels
	2 Hyperparameter tuning in the quantum circuit

	C Dataset selection and preprocessing
	D Error mitigation
	1 Device parameters
	2 Automated qubit selection
	3 Readout error correction
	4 Crosstalk optimization

	E Hardware error and performance
	1 Effects of readout error in quantum kernel methods
	2 Effects of statistical error on SVM accuracy
	3 Classifier results

