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ABSTRACT
Recent cosmic shear studies have reported discrepancies of up to 1𝜎 on the parameter

𝑆8 = 𝜎8

√
Ωm/0.3 between the analysis of shear power spectra and two-point correlation func-

tions, derived from the same shear catalogs. It is not a priori clear whether the measured
discrepancies are consistent with statistical fluctuations. In this paper, we investigate this is-
sue in the context of the forthcoming analyses from the third year data of the Dark Energy
Survey (DES-Y3). We analyze DES-Y3 mock catalogs from Gaussian simulations with a fast
and accurate importance sampling pipeline. We show that the methodology for determining
matching scale cuts in harmonic and real space is the key factor that contributes to the scatter
between constraints derived from the two statistics. We compare the published scales cuts of
the KiDS, Subaru-HSC and DES surveys, and find that the correlation coefficients of posterior
means range from over 80% for our proposed cuts, down to 10% for cuts used in the literature.
We then study the interaction between scale cuts and systematic uncertainties arising from
multiple sources: non-linear power spectrum, baryonic feedback, intrinsic alignments, uncer-
tainties in the point-spread function, and redshift distributions. We find that, given DES-Y3
characteristics and proposed cuts, these uncertainties affect the two statistics similarly; the
differential biases are below a third of the statistical uncertainty, with the largest biases arising
from intrinsic alignment and baryonic feedback. While this work is aimed at DES-Y3, the tools
developed can be applied to Stage-IV surveys where statistical errors will be much smaller.

Key words: gravitational lensing: weak – cosmological parameters – large-scale structure of
Universe.

1 INTRODUCTION

Weak gravitational lensing, the apparent distortion of galaxy shapes

due to the intervening dark matter distribution in the line-of-sight, is

one of the most powerful tools for constraining cosmological param-

eters at low redshift (Albrecht et al. 2006). In particular, the derived

parameter 𝑆8 = 𝜎8

√
Ω𝑚/0.3 points roughly to the most constraining

★ E-mail: cdoux@sas.upenn.edu
† E-mail: chihway@kicp.uchicago.edu

direction of weak lensing datasets (Jain & Seljak 1997), where 𝜎8 is

the amplitude of structure in the Universe, parametrized as the stan-

dard deviation of the linear overdensity fluctuations in 8 h−1 Mpc

spheres at present time, and Ωm is the density parameter of matter

at present time. The primary cosmological constraints from weak

lensing analyses come from two-point statistics of weak lensing dis-

tortion, referred to as cosmic shear, which may be evaluated in real

(or configuration), harmonic or other spaces. The most commonly

used two-point statistics in real space are the shear two-point an-

gular correlation functions 𝜉±(𝜃) (Hildebrandt et al. 2017; Troxel

© 2015 The Authors
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2 Doux, Chang, Jain et al.

et al. 2018a; Hamana et al. 2020), whereas in harmonic space, the

shear power spectrum 𝐶ℓ of lensing E-modes (see e.g. Bartelmann

& Schneider 2001, and Section 2.1 for a review of formalism) is

often used (Köhlinger et al. 2017; Hikage et al. 2019). Both present

advantages and drawbacks. 𝜉± measurements are insensitive to the

survey geometry and straightforward to compute (Jarvis et al. 2004),

but they are heavily correlated across scales (i.e. the covariance has

large off-diagonal contributions). 𝐶ℓ measurements, on the other

hand, are typically based on a pixelization of the shear field es-

timated with galaxy shapes. They must be deconvolved from the

survey mask (Alonso et al. 2019) and have their shape-noise con-

tributions subtracted, but are almost uncorrelated across multipoles

for large observed areas of the sky (alternatively, one may choose to

forward model the effect of the mask). Fast theoretical predictions

are available for both, a requirement to perform Bayesian analysis.

Even though different statistics compress the information in

different ways, one may expect both statistics—𝜉± and 𝐶ℓ—to re-

turn reasonably close constraints on cosmological parameters when

applied to the same data set. However, both the Kilo-Degree Survey

(KiDS, de Jong et al. 2013; Kuĳken et al. 2015) and the Hyper

Suprime-Cam survey (HSC, Aihara et al. 2018a,b) have released

cosmological results of the same weak lensing data using both real

and harmonic statistics, and found discrepancies at the level of 0.5

to 1.5𝜎. In Hildebrandt et al. (2017), the authors derived the con-

straint 𝑆8 = 0.745 ± 0.039 based on cosmic shear measured with

𝜉± in the 450 deg2 KiDS dataset, while Köhlinger et al. (2017)

carried out an analysis using instead the 𝐶ℓ statistic and obtained

𝑆8 = 0.651 ± 0.058. Similarly, with the first year of about 137 deg2

of HSC data, Hamana et al. (2020) found 𝑆8 = 0.804+0.032
−0.029

using

𝜉±, while Hikage et al. (2019) found 𝑆8 = 0.780+0.030
−0.033

based on

𝐶ℓ . These discrepancies are concerning and make the comparison

of weak lensing with other types of cosmological data ambiguous.

Therefore, in light of the observed tensions between the value of 𝜎8

(or 𝑆8) inferred from the cosmic microwave background and from

large-scale structure at low redshift (e.g. MacCrann et al. 2015;

Hildebrandt et al. 2017; DES Collaboration et al. 2018), it is crucial

to understand the limitations and consistency of standard statistics

such as 𝜉± and 𝐶ℓ used in weak lensing. This is important for on-

going weak lensing surveys, such as the Dark Energy Survey (DES,

Flaugher 2005), the Kilo-Degree Survey (KiDS, de Jong et al. 2013;

Kuĳken et al. 2015), the Hyper Suprime-Cam survey (HSC, Aihara

et al. 2018a,b), and even more so for upcoming ones, such as the

Vera Rubin Observatory Legacy Survey of Space and Time (LSST,

Ivezić et al. 2019), the ESA satellite Euclid (Laureĳs et al. 2012) and

the NASA’s Nancy Grace Roman Space Telescope (Akeson et al.

2019).

In this paper we will show that scale cuts play a significant

role in terms of the consistency between the two statistics. To il-

lustrate this, we imagine, as a thought experiment, that we know

the true shear field. If we were able to measure two-point statis-

tics with infinite resolution—that is, for arbitrarily large multipoles

ℓ, and arbitrarily small separation angles 𝜃 measured in infinitesi-

mal bins—and provided we can fully characterize the likelihood of

those estimators, both would capture the full Gaussian information.

Therefore, we would expect identical, cosmic variance-limited pos-

teriors on 𝑆8 and other parameters, and equal estimators, denoted

generically 𝑆̂8 | 𝜉± and 𝑆̂8 |𝐶ℓ
—e.g., from the mean or mode of the

respective posteriors. Now, if we consider a catalog of galaxy shapes

sampled from the shear field, this step adds noise to our measure-

ments, but the results should also perfectly agree between the 𝜉±
and 𝐶ℓ measurements. That is, we still expect 𝑆̂8 | 𝜉± = 𝑆̂8 |𝐶ℓ

.

In practice, however, neither of the previous scenarios are re-

alistic. First, the finite survey area and the density of observed (and

selected) galaxies introduce respectively large- and small-scale cut-

offs. Furthermore, cosmic shear analyses are inherently limited by

theoretical uncertainties (e.g., baryonic effects, intrinsic alignments)

and observational effects that restrict the use of two-point statistic

measurements at small scales—though accessible in the data—to

derive constraints on cosmological parameters. The most straight-

forward solution is to decide on hard cuts, i.e. using only real-space

angular bins between certain 𝜃min and 𝜃max for 𝜉±, and, similarly,

only multipoles between ℓmin and ℓmax for 𝐶ℓ . The 𝜃 and ℓ cuts

cannot, however, be directly translated because both statistics are

related through a Bessel integral, see Eq. (3) below, such that a

hard scale cut introduced in real space induces an oscillatory cut in

harmonic space, and vice versa (see, e.g., Huterer 2002). Therefore,

realistic cosmic shear analyses must exclude different information

for each statistic and we do not expect 𝑆̂8 | 𝜉± and 𝑆̂8 |𝐶ℓ
to be equal

because of the necessary scale cuts. In addition, cosmic shear two-

point statistics at a fixed angular scale receive contributions from

a wide range of physical scales—or Fourier modes 𝑘—stemming

from the projection of the shear field along the line of sight that

sums up distortions sourced by the matter density field from the

sources to the observer. This is illustrated in Fig. 1, where the three

panels show d ln 𝑋/d ln 𝑘 for 𝑋 = 𝜉±(𝜃), 𝐶ℓ , i.e. the normalized

integrand of 𝜉± and 𝐶ℓ statistics as a function of scales 𝑘 (for details,

see Section 2.1). Due to this mixing of 𝑘-modes, and for a given

choice of scale cuts, the estimators 𝑆̂8 | 𝜉± and 𝑆̂8 |𝐶ℓ
from cosmic

shear analyses are placing different weights on accessible 𝑘-modes.

The question of consistency thus pertains, to a large extent, to the

corresponding choice of scale cuts in harmonic and real space.

The problem was recently studied, in particular by the HSC and

KiDS collaborations. Hamana et al. (2020), investigated the origin

of the difference in their cosmological constraints from 𝜉± and 𝐶ℓ ,
noting that for some parameters, such as Ωm, the difference could

be significant. To understand the problem, the authors performed

the same real and harmonic-space analyses on 100 𝑁-body simula-

tions and found significant scatter between the constrains from 𝜉±
and 𝐶ℓ (see Fig. 19 of Hamana et al. 2020). They concluded that

one potential explanation of the difference in the constraints from

Hamana et al. (2020) and Hikage et al. (2019) is that the scales used

in the two analyses do not match, such that the observed discrepancy

could be explained by a statistical fluctuation at the ∼ 1.4𝜎 level,

based on discrepancies found in simulations. Recently, KiDS-1000

proposed and compared different statistics (Asgari et al. 2020b), in

addition to the real-space two-point functions, namely band powers

and COSEBIs (Complete Orthogonal Sets of E-/B-mode Integrals,

see Schneider et al. 2010). The latter are based on linear combina-

tions of thinly-binned measurements of 𝜉± weighted with specific

window functions that amount to apply effective soft cuts. They

similarly analyzed a number of simulations to quantify the expected

differences. Finally, Lu & Haiman (2019) investigated a similar

discrepancy found in cosmic shear data from the Canada-France-

Hawaii Telescope Lensing Survey (Kilbinger et al. 2013; Liu et al.

2015) and identified excess power at very small scales (ℓ � 5000)

to drive the larger value of the matter fluctuation amplitude inferred

from the power spectrum.

In this paper, our goal is to examine conditions for consistency

of the DES Y3 cosmic shear analysis in harmonic space and that per-

formed in real space. For a given data set and choices of scales used

in each analysis, the standard deviation ofΔ𝑆̂8 ≡ 𝑆̂8 | 𝜉± − 𝑆̂8 |𝐶ℓ
over

a large number of realizations of the shear field, denoted 𝜎(Δ𝑆̂8),
is fixed. The more common information the two statistics probe, the

MNRAS 000, 1–22 (2015)
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Figure 1. Contributions of physical 𝑘-modes to the shear power spec-

trum 𝐶ℓ and two-point functions 𝜉± (𝜃) , for different multipoles ℓ and

angular separations 𝜃 in the ranges used in cosmic shear analyses. These

curves correspond to the integrand of the Limber formula, Eq. (1), with a

change of variable 𝑧 → 𝑘 = (ℓ + 1/2)/𝜒 (𝑧) . We show d ln𝑋/d ln 𝑘 for

𝑋 = 𝐶ℓ , 𝜉± (𝜃) on a logarithmic scale in 𝑘, such that each curve is nor-

malized to have area unity under the curve. Here, the auto-correlation for

redshift bin 2 is shown (see redshift distributions and the broad lensing

efficiency functions in Fig. 2).

smaller 𝜎(Δ𝑆̂8) is, and vice versa. We will measure the distribution

of (𝑆̂8 | 𝜉± , 𝑆̂8 |𝐶ℓ
) and 𝜎(Δ𝑆̂8) from simulations of mock DES Y3

surveys, under different assumptions of noise and scale cuts. These

simulations are required to accurately estimate Δ𝑆̂8. They allow

us to include the effects of cosmic variance, shape noise, and any

effects coming from the particular geometry of the DES footprint.

In addition, we will compare the estimated scatter of Δ𝑆̂8 to the

biases in 𝑆8 predicted for a set of systematic effects and modeling

uncertainties. Indeed, observational systematics and theoretical un-

certainties in modeling are liable to impact 𝐶ℓ and 𝜉± measurements

differently depending on whether the effect has more compact sup-

port in real or harmonic space, or neither (e.g. for a 𝑘-dependent

effect). Therefore, it is useful to measure the differential impact of

systematics to the spread expected from statistical fluctuations. In

order to analyze hundreds of simulations for several choices of scale

cuts, we implement (and validate) an importance sampling pipeline

that provides fast estimates of 𝑆̂8. Finally, we will also evaluate the

equivalent quantities for 𝜎8 and Ωm.

This exercise is meant to provide guidance to determine scale

cuts for the DES Y3 cosmic shear analysis in harmonic space. In

the context of multiprobe analysis (Joudaki et al. 2018; van Uitert

et al. 2018; DES Collaboration et al. 2018; Heymans et al. 2020),

where one analyzes cosmic shear measurements in conjunction with

galaxy clustering and galaxy-galaxy lensing measurements—i.e. the

cross-correlation of galaxy positions and shapes—we restrict our

analysis to cosmic shear. The reason is that one expects less 𝑘-mode

mixing for the other two probes (at least for 𝐶ℓ ) since the integral

over redshift (or 𝑘) has limited support, given by the width of the

redshift distributions of clustering galaxy samples.

The paper is structured as follows. In Section 2, we provide a

brief overview of the theoretical background and we describe the

baseline model used in this analysis, as well as alternative modeling

choices and systematic effects for which we will examine the differ-

ential impact on harmonic vs real space. In Section 3 we describe

several strategies in choosing scale cuts in real and harmonic space.

In Section 4 we describe the generation and validation of the simu-

lations used in this work. In Section 5 we present and validate the

use of importance sampling to obtain fast estimators 𝑆̂8 in both har-

monic and real space. We present our estimation ofΔ𝑆̂8 in Section 6,

estimate 𝑆̂8 𝜉± − 𝑆̂8𝐶ℓ
for various systematics and discuss discrep-

ancies found in the literature. Finally, we summarize our findings in

Section 7 and discuss the implications for the forthcoming DES Y3

analysis and future surveys.

2 FORMALISM AND MODELING

Our modeling of 𝜉± and 𝐶ℓ follows closely the framework used in

Krause et al. (2017) and the cosmological analysis of the first year

(Y1) data of DES (Troxel et al. 2018a; DES Collaboration et al.

2018). For DES Y3, there were several improvements to this pipeline

though, for the purpose of this study, the Y1 pipeline is sufficient as

our simulations do not contain the higher-order corrections. We will

adopt the approximate Y3 footprint with Y1 redshift distributions,

shown in Fig. 2.

2.1 Theory

Here we provide the basic theoretical framework associated with

the harmonic- and real-space cosmic shear two-point statistics, the

power spectrum 𝐶ℓ and two-point correlation functions 𝜉±.

Under the Limber approximation (Limber 1953; Kaiser 1992,

1998; LoVerde & Afshordi 2008) and in a spatially flat Universe, the

lensing power spectrum encodes cosmological information through

𝐶
𝑖 𝑗
ℓ

=
∫ 𝜒H

0
d𝜒

𝑞𝑖 (𝜒)𝑞 𝑗 (𝜒)
𝜒2

𝑃NL

(
𝑘 =

ℓ + 1/2
𝜒

, 𝜒

)
, (1)

where 𝜒 is the radial comoving distance, 𝜒H is the distance to the

horizon, 𝑃NL is the non-linear matter power spectrum, and 𝑞(𝜒) is

the lensing efficiency defined via

𝑞𝑖 (𝜒) = 3

2
Ωm

(
𝐻0

𝑐

)2 𝜒

𝑎(𝜒)
∫ 𝜒H

𝜒
d𝜒′ 𝑛𝑖 (𝜒′) 𝜒′ − 𝜒

𝜒′ , (2)

where Ωm is the matter density today, 𝐻0 is the Hubble parameter

today, 𝑎 is the scale factor, and 𝑛𝑖 (𝜒) is the normalized redshift

distribution of the galaxy sample 𝑖.
Assuming the flat-sky approximation (Kaiser 1992, 1998), 𝜉±

and 𝐶ℓ are connected via

𝜉
𝑖 𝑗
± (𝜃) =

∫ ∞

0

ℓ dℓ

2𝜋
𝐽0/4 (𝜃ℓ) 𝐶𝑖 𝑗 (ℓ), (3)

where 𝐽𝑛 is the 𝑛th-order spherical Bessel function of the first kind,

with 𝑛 = 0 (𝑛 = 4) for 𝜉+ (𝜉−), and 𝐶 (ℓ) is an interpolation of 𝐶ℓ
for non-integer ℓ (see Kitching et al. 2017; Lemos et al. 2017, for

discussions of this approximation).

Both quantities receive contributions from the matter power

spectrum over a range of physical 𝑘-modes. By applying the change

of variables 𝑘 = (ℓ + 1/2)/𝜒(𝑧) in Eq. (1) and using Eq. (3), we

MNRAS 000, 1–22 (2015)



4 Doux, Chang, Jain et al.

Figure 2. Left: DES Y3 survey footprint used in this work. Right: Normalized redshift distributions 𝑛(𝑧) from DES Y1 (top) and corresponding lensing

efficiency functions 𝑞 (𝑧) at the fiducial cosmology (bottom).

can write both 𝐶ℓ and 𝜉± as integrals over ln 𝑘 . We show the cor-

responding (normalized) integrands in Fig. 1 for different values

of ℓ and 𝜃. Information from different physical 𝑘-modes in 𝑃NL

contribute to a given ℓ in 𝐶ℓ , and since 𝜉± is a Fourier transform of

𝐶ℓ , information in different 𝑘-modes get further redistributed into

different 𝜃 scales.

2.2 Baseline model

Following Krause et al. (2017), we compute the non-linear power

spectrum 𝑃NL using the Boltzmann code CAMB (Lewis et al. 2000;

Howlett et al. 2012) with the Halofit extension to non-linear scales

(Smith et al. 2003) with updates from Takahashi et al. (2012). Later

in Section 6.2, we investigate the effect of alternative prescription

for the non-linear matter power spectrum from either an emulator

(Lawrence et al. 2017) or the introduction of baryonic effects based

on hydrodynamical simulations (Schaye et al. 2010). Consistent

with the DES Y3 analysis, we vary six parameters of the ΛCDM

model, namely the total matter density parameter Ωm, the ampli-

tude of structure 𝜎8, the baryon density parameter Ωb, the Hubble

parameter ℎ (where 𝐻0 = 100 h km s−1 Mpc−1), the spectral index

of the primordial curvature power spectrum 𝑛s and the neutrino

physical density parameter Ω𝜈ℎ2. Throughout this paper we as-

sume the Planck 2018 (Planck Collaboration et al. 2020) best-fit

cosmology derived from TT,TE,EE+lowE+lensing+BAO data. The

list of parameters, their definition, fiducial values used as inputs for

simulations (see Section 4) and priors are shown in Table 1.

In addition, our baseline model includes a number of observa-

tional and astronomical systematic effects, parametrized by nuisance

parameters that we marginalize over.

• Shear calibration bias. To account for uncertainties in shear

calibration, we model the observed shear 𝛾𝑖
obs

in redshift bin 𝑖 from

the true shear 𝛾𝑖 by

𝛾𝑖obs = (1 + 𝑚𝑖)𝛾𝑖 , (4)

where 𝑚𝑖 is the multiplicative shear bias, constant within each

redshift bin 𝑖 (Huterer et al. 2006; Heymans et al. 2006). These

biases act as an overall rescaling for each redshift bin pair, such that

theoretical predictions are scaled as

𝐶
𝑖 𝑗
ℓ

→ (1 + 𝑚𝑖) (1 + 𝑚 𝑗 )𝐶𝑖 𝑗ℓ , (5)

𝜉
𝑖 𝑗
± (𝜃) → (1 + 𝑚𝑖) (1 + 𝑚 𝑗 )𝜉𝑖 𝑗± (𝜃). (6)

The posterior on these parameters is typically strongly dominated by

the tight prior, a centered Gaussian of standard deviation 0.005 (see

Table 1). Therefore, we approximate the posterior by marginalizing

analytically over these nuisance parameters by a simple modification

of the covariance matrix, as explained Section 2.3. This procedure

allows us to reduce the parameter space and hence decrease the

variance of importance sampling estimators (see Section 5). We use

the same priors on 𝑚𝑖’s for both statistics, but we do not require these

multiplicative bias corrections to be strictly equal. In fact, they may

slightly differ since biases are redshift dependent and contributions

along the line of sight are mixed into angular scales differently.

• Bias in the redshift distributions. To account for uncertainty

in the means of the redshift distributions, we model the estimated

𝑛obs (𝑧) to be shifted from the true 𝑛(𝑧). That is, we have

𝑛𝑖obs (𝑧) = 𝑛𝑖 (𝑧 − Δ𝑧𝑖), (7)

with a bias Δ𝑧𝑖 for each redshift bin 𝑖.
• Intrinsic alignment (IA). The intrinsic shapes of galaxies are

correlated through various mechanisms, such that the cosmic shear

power spectrum receives contribution from the auto-correlation of

intrinsic shapes, 𝐶
𝑖 𝑗
ℓ,II

, and the cross-correlation of intrinsic shapes

with the shear field, 𝐶
𝑖 𝑗
ℓ,𝛾I

. For our baseline model, we use the

so-called Non-Linear Alignment (NLA) model, proposed by Hi-

rata & Seljak (2004); Bridle & King (2007), to compute 𝐶
𝑖 𝑗
ℓ,II

and

𝐶
𝑖 𝑗
ℓ,𝛾I

, which is mathematically equivalent to replacing the lensing

efficiency 𝑞(𝜒) in Eq. (1) in the following way

𝑞𝑖 (𝜒) → 𝑞𝑖 (𝜒) − 𝐴(𝑧(𝜒))𝑛𝑖 (𝜒), (8)

with

𝐴(𝑧) = −𝐴IA𝐶̄1𝜌𝑐
Ωm

𝐷 (𝑧)

(
1 + 𝑧

1 + 𝑧0

)𝛼IA

, (9)

where 𝜌𝑐 = 3𝐻2
0
/8𝜋𝐺 is the critical density. Here 𝐷 (𝑧) is the

linear growth factor, 𝐶̄1 is a normalization constant set to

5 × 10−14 M−1
� h−2 Mpc3 (Brown et al. 2002) and we set the pivot

redshift at 𝑧0 = 0.62 as done in Troxel et al. (2018a); Samuroff et al.

MNRAS 000, 1–22 (2015)
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(2019). The amplitude 𝐴IA and power-law scaling with redshift,

𝛼IA, are treated as free parameters of the model with uniform priors

over the range [−5, +5] for both.

The full modeling pipeline described above is implemented in the

software package CosmoSIS (Zuntz et al. 2015).

2.3 Covariance and likelihood

Both sets of point statistics, 𝐶
𝑖 𝑗
ℓ

and 𝜉
𝑖 𝑗
± , measured from data at

multipoles ℓ and angular separation 𝜃, are stacked into two data

vectors which are modeled as multivariate Gaussian variables with

expected values described above by Eqs. (1) and (3). We use Gaus-

sian analytic covariance matrices computed with CosmoSIS for all

the cosmological inference in this work. The covariance for the

power spectra 𝐶ℓ can then be written as

Cov
(
𝐶
𝑖 𝑗
ℓ

, 𝐶
𝑖′ 𝑗′
ℓ′

)
≈ 𝛿ℓℓ′

𝐷𝑖𝑖
′
ℓ

𝐷
𝑗 𝑗′
ℓ

+ 𝐷
𝑖 𝑗′
ℓ

𝐷
𝑗𝑖′
ℓ

(2ℓ + 1) 𝑓sky
(10)

where 𝑖, 𝑗 and 𝑖′, 𝑗 ′ denotes the redshift bin pairs associated with

the two considered 𝐶ℓ ’s, 𝐷
𝑖 𝑗
ℓ

≡ 𝐶
𝑖 𝑗
ℓ

+ 𝑁
𝑖 𝑗
ℓ

is the sum of the signal

and noise power spectra, 𝛿ℓℓ′ is the Kronecker delta function and

𝑓sky is the fractional sky coverage set to 𝑓sky = 0.1181 in this work

(corresponding to 4872 deg2, the approximate DES Y3 area when

including small, isolated regions rejected in the Gold catalog as pre-

sented in Sevilla-Noarbe et al. 2020). The shape noise contribution

𝑁
𝑖 𝑗
ℓ

is zero for cross-correlation and 𝜎2
𝑒,𝑖/𝑛̄𝑖 for auto-correlations,

where 𝜎𝑒,𝑖 is the standard deviation of the measured galaxy shapes

and 𝑛̄𝑖 is the effective mean density of galaxies per unit sky area in

redshift bin 𝑖. In practice, we estimate power spectra 𝐶̂
𝑖 𝑗
𝐿 averaged

over band powers 𝐿 defined by ℓ𝐿
min

≤ ℓ < ℓ𝐿max and their covariance

matrix is obtained by averaging Eq. (10) accordingly,

Cov
(
𝐶
𝑖 𝑗
𝐿 , 𝐶

𝑖′ 𝑗′
𝐿′

)
=

1

Δ𝐿

1

Δ𝐿′

∑
ℓ∈𝐿

∑
ℓ′ ∈𝐿′

Cov
(
𝐶
𝑖 𝑗
ℓ

, 𝐶
𝑖′ 𝑗′
ℓ′

)
, (11)

where Δ𝐿 = ℓ𝐿max − ℓ𝐿
min

is the number of multipoles in band 𝐿.

The covariance for the correlation functions 𝜉± is essentially a

Fourier transform of Eq. (10), and can be written as

Cov
(
𝜉±𝑖 𝑗 (𝜃), 𝜉±𝑖

′ 𝑗′ (𝜃 ′)
)
≈∫

ℓ dℓ

2𝜋
𝐽𝑛 (ℓ𝜃)

∫
ℓ′ dℓ′

2𝜋
𝐽𝑛 (ℓ′𝜃 ′) Cov

(
𝐶
𝑖 𝑗
ℓ

, 𝐶
𝑖′ 𝑗′
ℓ′

)
, (12)

where spherical Bessel functions 𝐽𝑛 are of order 𝑛 = 0 (𝑛 = 4) for

𝜉+ (𝜉−).

As mentioned in the previous section, we do not vary shear

calibration biases in the cosmological analysis in order to reduce

the dimension of the parameter space and thus improve the accuracy

of importance sampling (see Section 5). However, we do account

for the uncertainty due to those nuisance parameters by marginal-

izing analytically, following the procedure laid out in Bridle et al.

(2002) and extended in Taylor & Kitching (2010). Assuming inde-

pendent Gaussian priors, and to first order in the shear biases 𝑚𝑖 ,
the marginalized likelihood remains Gaussian with a marginalized

covariance receiving an extra term1

Cov
(
𝐶
𝑖 𝑗
𝐿 , 𝐶

𝑖′ 𝑗′
𝐿′

)
→Cov

(
𝐶
𝑖 𝑗
𝐿 , 𝐶

𝑖′ 𝑗′
𝐿′

)
+ 𝜎2

𝑚𝐶
𝑖 𝑗
𝐿 𝐶

𝑖′ 𝑗′
𝐿′

(
𝛿𝑖𝑖′ + 𝛿𝑖 𝑗′ + 𝛿 𝑗𝑖′ + 𝛿 𝑗 𝑗′

)
, (13)

where 𝛿𝛼𝛽 is the Kronecker symbol and 𝜎𝑚 = 0.005 is the standard

deviation of the Gaussian prior on shear biases. The real-space

covariance matrix is modified in exactly the same way, by replacing

𝐶𝐿’s by 𝜉+(𝜃) or 𝜉−(𝜃).
We now comment on approximations made in the covariance

matrix. First, we do not account for the survey geometry in either

harmonic or real space as it has little impact for the DES Y3 foot-

print (Troxel et al. 2018b; Friedrich et al. 2020). Second, we note

that the choice of Gaussian covariance (and Gaussian likelihood) is

an approximation that matches the choice of Gaussian simulations.

However, as shown in Barreira et al. (2018), the Gaussian covari-

ance is largely sufficient even for non-Gaussian simulations. The

next leading term is the so-called super-sample covariance term,

accounting for correlations with 𝑘-modes larger than the survey

footprint, but even this term is largely subdominant for a survey like

DES Y3, as shown in Friedrich et al. (2020). This means that, for

the purposes of this work targetted at DES Y3, we can safely employ

Gaussian simulations and analyze them with a Gaussian covariance.

2.4 Contaminated data vectors: systematic effects and
alternative modeling

The baseline model described above matches that in the DES Y1

analysis. However, there are known physical and instrumental effects

that impact the measured 𝐶ℓ and 𝜉± potentially differently, which

may impact cosmological constraints depending on whether they

affect scales that are used for the analysis. We therefore compute

alternative theoretical data vectors, including one effect at a time,

either modifying modeling or including additional biases in the data

vectors from systematic effects.

• Non-linear matter power spectrum. Our fiducial model is based

on the Halofit prescription (Takahashi et al. 2012) to model the im-

pact of non-linear gravitational evolution of the large-scale structure

at small scales, i.e. 𝑘 � 0.2 h Mpc−1. However, it is known to be ac-

curate only up to 5% for 𝑘 ≤ 5 h Mpc−1 and degrading for smaller

scales. We recompute the fiducial data vectors using the matter

power spectrum emulator from Lawrence et al. (2017), a Gaussian

process interpolator based on the Mira-Titan Universe simulations

(Heitmann et al. 2016), leaving the rest of the pipeline unchanged.

With respect to Halofit, the emulator predicts a power spectrum

roughly 5% lower in the range 0.2−2 h Mpc−1 with damped acoustic

oscillation features. The cosmic shear power spectra and two-point

functions are respectively reduced by about 5% at most for multi-

poles ℓ ∼ 1000 and angular separations 𝜃 ∼ 10′, which is about

10% (respectively 40%) of the error bars for the auto-correlation of

redshift bin 1 (redshift bin 4) at these scales.

1 This derivation starts from equation (24) in Taylor & Kitching (2010),

noting that the prior covariance is diagonal with coefficients 𝜎2
𝑚 and that

the mean is (1 + 𝑚𝑖) (1 + 𝑚 𝑗 )𝐶𝑖 𝑗
ℓ

. Taking derivatives of the mean with

respect to𝑚𝑘 gives (𝛿𝑘𝑖 + 𝛿𝑘 𝑗 )𝐶𝑖 𝑗
ℓ

, to first order in𝑚𝑘 , and summing over

indices 𝑘 leads to Eq. (13). Note that this expression slightly differs from

that found in Hildebrandt et al. (2017) as our parametrization is different

(we allow all shear biases to vary independently).
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Parameters Symbols Fiducial values Priors IS proposal distributions

Total matter density Ωm 0.3111 U(0.1, 0.6)
Uniform in (𝑆8,

√
Ωm) , see Section 5.2.1.

Density fluctuation amplitude 𝜎8 0.8076 U(0.5, 1.3)
Baryon density Ωb 0.04897 U(0.03, 0.12) U(0.03, 0.12)
Hubble parameter ℎ 0.6766 U(0.55, 0.91) U(0.55, 0.91)
Spectral index 𝑛s 0.9665 U(0.87, 1.07) U(0.87, 1.07)
Physical neutrino density Ω𝜈ℎ

2 0.00083 U(0.0006, 0.01) U(0.0006, 0.01)
Intrinsic alignment amplitude 𝐴IA 0 U(−5, 5) N(0, 1.5)
Intrinsic alignment redshift dependence 𝛼IA 0 U(−5, 5) U(−5, 5)
Photo-𝑧 shift in bin 𝑖 (𝑖 = 1, 2, 3, 4) Δ𝑧𝑖 0 N(0, 0.005) N(0, 0.005)
Shear bias in bin 𝑖 (𝑖 = 1, 2, 3, 4) 𝑚𝑖 0 N(0, 0.005) None (analytical marginalization)

Table 1. Cosmological and nuisance parameters in the baseline model. Uniform distributions in the range [𝑎, 𝑏] are denoted U(𝑎, 𝑏) and Gaussian distributions

with mean 𝜇 and standard deviation 𝜎 are denoted N(𝜇, 𝜎) .

• Baryonic feedback. Baryonic processes within dark matter

haloes redistribute matter and therefore impact the matter power

spectrum at small scales. Energy injection from active galactic nu-

clei causes a small suppression of the matter power spectrum in

the range 𝑘 ∼ 1−10 h Mpc−1, and cooling as well as star formation

enhance it at smaller scales (Chisari et al. 2018; Schneider et al.

2019). In order to model the impact of baryons on the fiducial data

vectors, we rescale the non-linear matter power spectrum by the ra-

tio of the matter power spectra measured in the OWLS simulations

(van Daalen et al. 2011) with dark matter only, 𝑃DM (𝑘, 𝑧), and with

AGN feedback, 𝑃AGN (𝑘, 𝑧), such that

𝑃NL (𝑘, 𝑧) → 𝑃NL (𝑘, 𝑧) 𝑃AGN (𝑘, 𝑧)
𝑃DM (𝑘, 𝑧) , (14)

as was done for the real space analysis of DES Y1, Troxel et al.

(2018a). Note that we also derive scale cuts from this modified

power spectrum in Section 3.

• Intrinsic alignments from tidal torquing. The NLA model

accounts for tidal alignment (TA) mechanisms but not for tidal

torquing (TT) ones that were proposed by Catelan et al. (2001);

Crittenden et al. (2001); Mackey et al. (2002) as extra contribu-

tions in the observed shear power spectrum. These contributions

were unified, including cross terms, into a single model (TATT)

in Blazek et al. (2019), following a perturbation theory expansion

of the tidal field. The TATT model was applied to DES Y1 data

in Samuroff et al. (2019). Here, we adopt the same model and

measure biases on data vectors including (part or all of) TA and

TT contributions with respective amplitudes 𝐴1 and 𝐴2, and red-

shift dependence parametrized by power-law 𝛼1 and 𝛼2. We follow

Samuroff et al. (2019) and fix the source bias to 𝑏src
𝑔 = 1, accounting

for the density-tidal field term in the TA component (which is not

included in the NLA model). Note that NLA is a special case of

TATT with 𝐴2 = 0 and 𝑏src
𝑔 = 0.

• Point-spread function leakage. The point-spread function

(PSF) needs to be estimated and accounted for when measuring

the ellipticities of galaxies. It is usually measured at the positions

of stars and interpolated to the positions of galaxies, while model-

ing residuals can be estimated from a fraction of stars reserved for

this purpose (Zuntz, Sheldon et al. 2018; Jarvis et al., 2016). PSF

ellipticity residuals leak directly into cosmic shear measurements

and may introduce biases. In particular, the PSF does not have the

symmetries of gravitational lensing and has roughly equal E- and

B-mode signals. We use the measurements from DES Y3 data pre-

sented in Jarvis et al. (2020) and a similar parametrization of the

bias in the two-point functions 𝜉±(𝜃) (although for simplicity we

only keep the dominant term and fix 𝛽 = 1), given by

Δ𝜉±(𝜃) = 𝜌±1 (𝜃) − 𝛼𝜌±2 (𝜃). (15)

Here, 𝜌±
1

is the auto-correlation function of PSF ellipticity resid-

uals, 𝜌±
2

is the cross-correlation between the model and residual

ellipticities and 𝛼 is the leakage coefficient. It is, however, difficult

to directly evaluate the equivalent of 𝜌1/2 in harmonic space directly

because of the bias created by the noise power spectrum of the resid-

uals (which is not a simple shape-noise). Instead, for the purpose

of this work, we treat this bias as a small perturbation to the fidu-

cial data vectors. Given the cross-covariance between 𝜉± and 𝐶ℓ ,
we can compute the expectation value of the harmonic-space bias

Δ𝐶ℓ conditioned on the real-space bias Δ𝜉±(𝜃). More precisely, we

combine Eq. (3) and Eq. (10) to compute an approximate, analytic

Gaussian cross-covariance Cℓ± ≡ Cov (𝐶ℓ , 𝜉±(𝜃)) and the bias is

estimated by[
Δ𝐶ℓ

]
= Cℓ± · C−1± · [Δ𝜉±(𝜃)

]
, (16)

where C± is the covariance matrix of 𝜉±(𝜃) given by Eq. (12). We

used brackets to indicate data vectors and · for matrix-matrix and

matrix-vector products. We find the biases induced by the PSF, Δ𝐶ℓ
and Δ𝜉±(𝜃), to be very small for DES Y3, in agreement with Jarvis

et al. (2020), even for a leakage as high as 10% (i.e. 𝛼 = 0.1),

which is excluded by measurements presented in Gatti, Sheldon

et al. (2020).

• Width of the redshift distributions. In our fiducial pipeline, the

uncertainty in the redshift distributions is solely encoded by a co-

herent shift, as shown in Eq. (7), capturing the principal mode of un-

certainty. Here, we additionally probe the effect of underestimating

the width of the redshift distribution. To do so, we convolve the red-

shift distribution with a Gaussian kernel of width 𝜎𝑧 = 0.1. Given

that the widths of the redshift distributions are of order 0.2−0.3,

this convolution increases the width by about 5−10%, consistent

with typical width uncertainties found with self-organizing maps

methods for DES Y3 (Buchs, Davis et al. 2019).

3 SCALE CUTS

As discussed in Section 1, the scale cuts imposed on the data vectors

determine the physical 𝑘-modes of the cosmic shear field that are

accessible through the two-point functions. In particular, since a

hard cut in multipole space ℓ is not a hard cut in real space 𝜃 (and

vice-versa), there is no straightforward translation between the two

spaces, and a hard cut in 𝑘 corresponds to neither. We explore

below several methods to establish an approximate correspondence

between scale cuts in harmonic and real space.

Methodologies employed for determining scale cuts in the lit-

erature are usually based on balancing the trade-off between sys-

tematic uncertainty and statistical uncertainty (Hildebrandt et al.

2017; Troxel et al. 2018a; Hikage et al. 2019). The scale cuts are
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usually chosen to be such that the systematic uncertainty intro-

duced by errors in the modeling are subdominant to the statistical

uncertainty determined by the survey characteristics (e.g. area, den-

sity of galaxies). In particular, the modeling of intrinsic alignments

(Krause et al. 2017; Samuroff et al. 2019) and the impact of baryons

at small scales (Chisari et al. 2018; Schneider et al. 2019), both

connected to small-scale, non-linear, astrophysical processes, typ-

ically drives small-scale cuts, while observational considerations,

such as PSF residuals and shear calibration uncertainty, determine

the large-scale cuts. For the real space analysis of DES Y1, Troxel

et al. (2018a) chose small-scale cuts for each redshift bin such that

differences between 𝜉± data vectors, with or without the effect of

baryons, is less than 2%. The impact of baryons was modeled from

the ratio of the matter power spectra measured in the OWLS simu-

lations, as in Eq. (14). No additional scale cuts were applied for IA

modeling uncertainties, given robustness tests presented in Krause

et al. (2017). The DES Y1 scale cuts are listed in Table 2. We

will present and discuss scale cuts used in HSC Y1 and KiDS-450

analyses in Section 6.3.

For this analysis, we fix the large-scale cut at 𝜃max = 10°
and ℓmin = 𝜋/𝜃max = 18 (because signal-to-noise ratio is low in the

largest-scale bin) and focus on different methods to derive the small-

scale cuts. To derive the scale cuts we need to specify a number of

quantities associated with the survey properties, such as the redshift

distribution, the survey area and the number density of galaxies.

We have chosen to use numbers that match the DES Y3 dataset.

However, we note that the framework we developed here can be

easily adapted for a different survey. As an illustrative exercise, we

will present results in Section 6 that use all scales measured in the

simulations described in Section 4. In order to maintain consistency

between sections, we therefore include this option before presenting

three realistic methods.

(i) No scale cuts. In Section 6, we will perform measurements

using all available scales for which we have measurements.

(ii) ℓ ∼ 𝜋/𝜃 relation. If cuts are available in one space, they

can be very approximately translated to the other space using the

relation ℓ ∼ 𝜋/𝜃 . In particular, we will use DES Y1 scale cuts

in real space and approximately match them in harmonic space.

To do so, we choose to use the geometric mean of the 𝜉+ and 𝜉−
small-scale cuts, respectively 𝜃+

min
and 𝜃−

min
, i.e. we set ℓmax =

𝜋/
√

𝜃+
min

𝜃−
min

, which we find to preserve signal-to-noise ratio (as

opposed to using either 𝜃+
min

or 𝜃−
min

to do the conversion). This is

explained by the comparable marginal signal-to-noise ratios of 𝜉+
and 𝜉− measurements at their respective scale cuts.

(iii) Physical mode cut-off 𝑘max. The next option we consider

is motivated by Fig. 1. We pick a small-scale physical mode cut,

𝑘max, and determine an effective corresponding ℓmax and 𝜃min

from d ln 𝐶ℓ/d ln 𝑘 and d ln 𝜉±/d ln 𝑘 . To do so, we write the

power spectra 𝐶ℓ and correlation functions 𝜉±(𝜃) as integrals over

wavenumber 𝑘 , using the Limber formula and the change of vari-

ables 𝑘 = (ℓ + 1/2)/𝜒(𝑧) , and compute the corresponding scale

𝑘>𝛼—which is a function of ℓ or 𝜃—at which the integral reaches

a fraction 𝛼 of its total value, i.e.

∫ ln 𝑘>𝛼

−∞
d ln 𝑘

����d ln 𝑋

d ln 𝑘

���� = 𝛼, (17)

where 𝑋 is either 𝐶ℓ , 𝜉+(𝜃) or 𝜉−(𝜃). Since 𝜉+ receives negative

contributions for a range of 𝑘-modes (especially at small scales),

we consider the absolute value of the integrand to determine this

Figure 3. Harmonic space scale cuts derived from 𝑘max and baryonic

feedback cut-offs. In both plots, we show the curves corresponding to auto-

correlations for bins 1 (yellow) through 4 (red) and derived ℓmax cuts as

the vertical dotted lines. We do not show cross-correlations for readability,

although we apply the same method to derive cuts for those bins, which

we report in Table 2. Top: Scale cuts derived from physical mode cut-

off at 𝑘max = 3 h Mpc−1 (grey dashed line). For a given multipole ℓ, we

compute the 𝑘-mode at which the Limber integral, Eq. (1), reaches 95% of

its total value, 𝑘>0.95 (ℓ) . We exclude multipoles with 𝑘>0.95 (ℓ) > 𝑘max,

i.e. those that receive more than 5% of their signal from scales beyond

𝑘max. Bottom: Scale cuts derived from baryonic feedback (from OWLS).

The top panel shows the ratio of predicted 𝐶ℓ with and without baryonic

feedback. The bottom panel shows the probability-to-exceed 𝐹𝜒2 (> ℓ) of

the 𝜒2 statistics computed between𝐶ℓ data vectors computed with baryonic

feedback to that without (for the binning used in Gaussian simulations, see

Section 4) when including all multipole bins below ℓ. We exclude multipoles

with a 𝜒2 above its tenth percentile (grey dashed line).

cut2. We then compute the value ℓmax (respectively 𝜃min) for which

𝑘>𝛼 (ℓmax) = 𝑘max (respectively 𝑘>𝛼 (𝜃min) = 𝑘max). Here, we use

a fraction of 𝛼 = 0.95, i.e. we keep scales for which 95% of the

signal comes from modes under 𝑘max. In other words, theoretical

uncertainties beyond 𝑘max may only affect 5% of the smallest scales

included in the analysis. We will vary 𝑘max from 1 to 5 h Mpc−1,

which is the scale above which errors in the Halofit model exceed

10% (Takahashi et al. 2012). The results are shown in Fig. 3 for

harmonic space and in Fig. 4 for real space, for 𝑘max = 3 h Mpc−1,

which we use as our fiducial value, in the middle of the range

1−5 h Mpc−1.

(iv) Impact of baryons. Following the DES Y1 method, we

2 We tested both with and without the absolute value, and found that in-

cluding it yielded cuts with closer signal-to-noise ratio between harmonic

and real spaces.
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Figure 4. Real space scale cuts derived from 𝑘max and baryonic feedback

cut-offs, similar to Fig. 3 for real-space two-point functions 𝜉± (𝜃) . We use

solid (respectively dashed) curves for 𝜉+ (respectively 𝜉−). The wiggles in

𝑘>0.95 (𝜃) are due to acoustic features and sign flipping of d ln 𝜉±/d ln 𝑘

visible in Fig. 1. The bottom panel in the bottom plot should be read from

large scales (right) to small scales (left), as it shows the probability-to-

exceed of the 𝜒2 statistic, 𝐹𝜒2 (> 𝜃) computed for bins with a separation

angle above 𝜃 .

use baryonic feedback models to compare two-point data vectors

with and without modeling baryons (using the same OWLS AGN

model). The DES Y1 analysis set a fixed threshold for the frac-

tional difference between the data vector with and without baryons.

This threshold is, however, somewhat arbitrary. We improve on the

method by instead requiring the 𝜒2 distance between the two data

vectors, which incorporates correlations between elements of the

data vectors, not to exceed the percentile corresponding to a fixed

probability-to-exceed (PTE). We use a covariance matrix without

shape-noise to preserve the theoretical motivation for the cut, alle-

viating the dependence on survey depth (except for the area through

the 𝑓sky factor). Given a binning scheme (see Section 4), we com-

pute, separately for each redshift bin pair, 𝜒2 distances between

data vectors, starting from the largest-scale bin and progressively

including smaller-scale bins. At each step, we then compute the cor-

responding PTE for a 𝜒2 distribution with a number of degrees of

freedom equal to the number of aggregated bins, denoted 𝐹𝜒2 (< ℓ).
We set a threshold at the tenth percentile, i.e. we discard small-scale

bins where 𝐹𝜒2 (< ℓ) > 0.1. We plot 𝐹𝜒2 (< ℓ) in the lowest panel

of Fig. 3 as a piecewise constant function matching bin edges. The

procedure works similarly in real space, where we instead com-

pute 𝜒2 (𝜃) and 𝐹𝜒2 (> 𝜃), discarding small-angle bins 𝜃 where

𝐹𝜒2 (> 𝜃) > 0.1. This procedure allows us to obtain theoretically

motivated cuts in both spaces with relatively little dependence on

the threshold choice, as shown by the sharp transition in the lower

panels of Figs. 3 and 4. Note that this method is applicable to any

kind of comparison between a fiducial and contaminated model.

We list all scale cuts used in the analysis (results presented in Fig. 9

and thereafter) in Table 2 and plot them in Figs. 5 and 6 for com-

parison.

4 SIMULATIONS

Simulations are essential in this work as they allow us to realistically

capture the correlated information that is used by the harmonic and

real space statistics, and by representing the survey geometry, galaxy

density and noise level expected in the real survey. In particular,

simulations allow us to generate pairs of 𝐶ℓ and 𝜉± data vectors

with the correct cross-covariance, which is challenging to compute

analytically with good accuracy, especially when accounting for

survey geometry.

Our fiducial analysis is targeted towards the DES Y3 cosmic

shear analysis, which motivates the choice of tomographic redshift

bins, redshift distributions, number density and shape noise. At the

time of completing this analysis the DES Y3 shear catalog and

redshift distribution were not finalized. As a result we only ap-

proximately match final DES Y3 choices. We use four tomographic

redshift bins with redshift distributions taken from the DES Y1

dataset, as shown in Fig. 2. The number density for each redshift

bin is fixed to 𝑛̄ = 1.5 gal/arcmin2, with shape noise of 𝜎𝑒 = 0.3
per component in the fiducial analysis, and 𝜎𝑒 = 0.3/

√
2 for the low

noise analysis (see Section 6.1). We use an approximate DES Y3

footprint, also shown in Fig. 2, with a survey area of 4872 deg2. We

note that the main conclusions of this study should be robust even

though these numbers do not match exactly that in DES Y3.

We provide here a brief description of our simulations. Starting

from fiducial power spectra 𝐶
𝑖 𝑗
ℓ

for redshift bins 𝑖 and 𝑗 , we generate

a full-sky realization of the four correlated shear fields in HEALPix3

(Górski et al. 2005) maps of resolution 𝑁side = 4096 (with an ap-

proximate resolution of 0.86′). To do so, we first generate the har-

monic coefficients of the E-mode of the shear fields, 𝐸 𝑖
ℓ𝑚

, for mul-

tipoles up to ℓmax = 3𝑁side−1. These coefficients are Gaussian ran-

dom variables with covariance 〈𝐸 𝑖
ℓ𝑚

𝐸
𝑗
ℓ′𝑚′ 〉 = 𝛿ℓℓ′𝛿𝑚𝑚′𝐶

𝑖 𝑗
ℓ
/2𝑤2

ℓ
,

where we have included the HEALPix pixel window function 𝑤ℓ .
These variables are independent for different ℓ and 𝑚 indices, such

that they can be sampled in parallel. At fixed ℓ, 𝑚, the Cholesky

decomposition of the covariance matrix (indexed by 𝑖, 𝑗) is used

to generate 𝐸 𝑖
ℓ𝑚

coefficients from four standard random variables,

following a standard procedure to sample multivariate Gaussian

variables. We then use the alm2map function of healpy (Zonca

et al. 2019) in polarization mode, with 𝑇 𝑖
ℓ𝑚

= 𝐵𝑖
ℓ𝑚

= 0, to generate

the four correlated, true shear maps. Then, we draw random posi-

tions of galaxies within the DES Y3 footprint4 in each redshift bin

with density 𝑛̄ and compute the values 𝜸𝑖 of the shear field at the

positions of the galaxies5 (indexed by 𝑖 here). We then draw random

intrinsic ellipticities of the galaxies e𝑖 from a zero-mean normal

3 http://healpix.sf.net
4 Galaxies are drawn independently, therefore there is no clustering of

source galaxies, which may cause B-mode patterns, beyond the scope of this

paper. We also do not account for blending here, supposedly included in the

shear biases.
5 The shear field is thus sampled at fixed effective redshift and not at the

redshift of the galaxies.
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Redshift bin pairs

Scale cut Fiducial 𝑆/𝑁 𝐶ℓ /𝜉± cut 1-1 1-2 1-3 1-4 2-2 2-3 2-4 3-3 3-4 4-4

No scale cut

69.8 (𝐶ℓ ) ℓmax 8192 8192 8192 8192 8192 8192 8192 8192 8192 8192

62.8 (𝜉±)
𝜃+

min
1.0′ 1.0′ 1.0′ 1.0′ 1.0′ 1.0′ 1.0′ 1.0′ 1.0′ 1.0′

𝜃−
min

10.0′ 10.0′ 10.0′ 10.0′ 10.0′ 10.0′ 10.0′ 10.0′ 10.0′ 10.0′

DES Y1 (ℓ ∼ 𝜋/𝜃)

54.8 (𝐶ℓ ) ℓmax 423 474 532 532 670 670 752 844 844 947

43.8 (𝜉±)
𝜃+

min
7.2′ 7.2′ 5.7′ 5.7′ 4.5′ 4.5′ 4.5′ 3.6′ 3.6′ 3.6′

𝜃−
min

90.6′ 72.0′ 72.0′ 72.0′ 57.2′ 57.2′ 45.4′ 45.4′ 45.4′ 36.1′

𝑘max = 3 h Mpc−1
53.0 (𝐶ℓ ) ℓmax 391 441 491 513 512 586 619 694 751 830

50.1 (𝜉±)
𝜃+

min
5.5′ 5.0′ 6.0′ 6.0′ 5.6′ 5.1′ 5.0′ 4.5′ 4.1′ 3.9′

𝜃−
min

35.8′ 31.6′ 28.5′ 27.1′ 27.1′ 24.0′ 22.9′ 20.5′ 18.6′ 17.5′

Baryonic feedback 𝜒2
47.5 (𝐶ℓ ) ℓmax 341 364 410 429 397 432 456 485 507 532

40.3 (𝜉±)
𝜃+

min
11.5′ 11.4′ 10.5′ 9.3′ 10.0′ 9.2′ 9.0′ 7.6′ 7.4′ 6.1′

𝜃−
min

67.7′ 62.3′ 57.7′ 51.3′ 58.6′ 50.9′ 49.6′ 48.3′ 43.4′ 40.9′

Table 2. Small-scale cuts used in this work (in particular the results shown in Fig. 9) and the signal-to-noise ratio 𝑆/𝑁 computed from the the fiducial data

vector. The large-scale cuts are ℓmin = 18 and 𝜃±max = 𝜋/ℓmin = 600′ = 10° for all bins.

distribution with variance 𝜎2
𝑒 and finally compute the observed

ellipticity, given by

eobs
𝑖 =

𝜸𝑖 + e𝑖
1 + 𝜸∗𝑖 e𝑖

. (18)

The next step is to compute the two-point data vectors from

these mock catalogs both in harmonic and real space. In harmonic

space, we use a pseudo-𝐶ℓ estimator computed with NaMaster

(Alonso et al. 2019). To do so, we first compute ellipticity maps,

for both components, by averaging ellipticities in each pixel. We

use the count map as the inverse-variance weighting mask. We

use NaMaster to measure mask-deconvolved, binned power spec-

tra 𝐶̂
𝑖 𝑗
ℓ

in 36 logarithmically spaced bins between ℓmin = 18 and

ℓmax = 2𝑁side = 8192. The measurements are corrected for the pixel

window function introduced above (by multiplying raw 𝐶ℓ by 𝑤2
ℓ
)

and we correct for the noise power spectrum bias in each bin by

applying random rotations to ellipticities and subtracting the mean

power spectrum of 16 realizations to the measured auto power spec-

tra. In real space, we use the package TreeCorr (Jarvis et al. 2004)

to estimate 𝜉± from the mock catalogs in 30 log-spaced bins be-

tween 𝜃min = 1′ and 𝜃max = 600′. For both harmonic and real space

measurements, the large-scale cut corresponds to 10°, which is of

the order of the largest scale that can be measured well in the DES

footprint, and the small-scale cut corresponds to the resolution of

the simulations.

Figures 5 and 6 show two-point data vectors measured from

the 500 simulations we use for the analysis. The input 𝐶ℓ power

spectra are recovered well within 5% of the error bars at all con-

sidered scales6. Corresponding real-space two-point functions are

recovered within 5% and 10%, respectively, for 𝜉+ and 𝜉−, for scales

larger than 10′, which is accurate enough for our purposes. At scales

below 10′, resolution effects of at most 20% of the error bars for

𝜉+ are visible and a simple correction is applied (see below). For

𝜉−, these effects are larger, leading us to discard these scales for

𝜉−, although these are already cut off in all scale cuts we consider.

We therefore apply an additive correction to each simulation cor-

responding to the difference between the fiducial data vector and

the mean measured data vector to correct for small resolution and

6 Note that the sampling noise creates a small bias at very large multipoles

ℓ � 4000, likely due to the choice of resolution parameter 𝑁side = 4096

with our fiducial galaxy density, leading to many empty pixels.

binning effects, which we approximate to be realization indepen-

dent. This allows us to use the fiducial data vector as a reference

point while not changing the variance of measured data vectors.

We verified that the shifts in cosmological parameters arising from

this difference are indeed negligible, thus validating a posteriori the

simulations and this correction.

5 FAST DERIVATION OF MEAN POSTERIOR POINT
USING IMPORTANCE SAMPLING

For a given choice of scale cuts, we wish to measure the difference

in the posterior of cosmological parameters, for each simulations

presented in the previous section, between harmonic and real space

two-point statistics measurements. Running two full Markov Chain

Monte Carlo (MCMC) analyses for each simulation and each choice

of scale cuts is computationally unfeasible. As a result, we employ

importance sampling (IS) in this work to rapidly compute, for each

simulation, a point estimator of 𝑆8 in both harmonic and real space,

which we denote 𝑆̂8 |𝐶ℓ
and 𝑆̂8 | 𝜉± (or simply 𝑆̂8 to mention both).

We choose to use the mean of the posterior as point estimator, as it

is less noisy than the mode of the posterior (or maximum a poste-

riori) when evaluated from a fixed sample. Since the likelihood is

Gaussian, we can generate a library of theoretical data vectors (for

𝐶ℓ and 𝜉±) for a sample of cosmological parameters representative

of the full prior space, and use them to rapidly compute importance

weights for all simulations and scale cuts. The IS pipeline and its

validation are detailed in the following subsections. We show the

distributions of 𝑆̂8 computed from simulations in Fig. 8 and com-

pare it to the posteriors derived from a single (noiseless) fiducial

data vector without scale cuts. While expectedly close, these distri-

butions are not mathematically equal, i.e. the spread of 𝑆̂8 does not

necessarily trace the width of the posterior. Moreover, 𝑆̂8 |𝐶ℓ
and

𝑆̂8 | 𝜉± are correlated variables—the two-dimensional distribution of

which we will study in Section 6, see e.g. Fig. 9.

5.1 Improved weighted importance sampling

We now provide a brief introduction to the theory of importance

sampling. Given a sample of size 𝑛 of parameters {𝜃𝑖}1≤𝑖≤𝑛 from

a proposal distribution with density 𝑞, one can estimate the expec-

tation value of a function 〈 𝑓 (𝜃)〉𝑝 under a target distribution with

MNRAS 000, 1–22 (2015)
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Figure 5. Power spectra 𝐶ℓ measured from Gaussian simulations described in Section 4 and scale cuts used in the analysis in Section 6. The input power

spectrum are plotted in dark blue. Boxes show the measured mean and standard deviation in each ℓ bin, in orange for the fiducial noise level (𝜎𝑒 = 0.3), in

moccasin for the low noise level (𝜎𝑒 = 0.3/
√

2) and in light blue for the noiseless case (where each galaxy shape corresponds to the shear field value). The

ranges of scale cuts used in the analysis are shown as solid horizontal lines.

density 𝑝 with the estimator

𝑓𝑛 =
1

𝑛

∑
1≤𝑖≤𝑛

𝑤𝑖 𝑓 (𝜃𝑖), (19)

where 𝑤𝑖 ≡ 𝑝(𝜃𝑖)/𝑞(𝜃𝑖) are ratios of the densities, called impor-

tance weights. For our study, the target distribution is the posterior

𝑝(𝜃) ∝ L(𝑋 |𝜃) 𝜋(𝜃), where 𝑋 is either 𝐶ℓ or 𝜉± measured from

simulations, L is the likelihood and 𝜋 is the prior. However, the

posterior, computed this way, has unknown normalization. There-

fore, one needs to normalize the importance weights such that they

sum to 1 and then use the weighted average estimator instead of

the standard estimator Eq. (19). This operation introduces an or-

der O(1/𝑛) bias which can be reduced to O(1/𝑛2) by using the

improved weighted importance sampling (IWIS) estimator from

Skare et al. (2003), where weights are modified to 𝑤′
𝑖 = 𝑤𝑖/𝑆−𝑖

with 𝑆−𝑖 =
∑
𝑗≠𝑖 𝑤 𝑗 and then normalized, providing final IS weights

𝑤̃𝑖 = 𝑤′
𝑖/
∑

1≤𝑖≤𝑛 𝑤′
𝑖 .

The efficiency of importance sampling strongly depends on

the choice of proposal distribution 𝑞, i.e. how the parameter sam-

ple is generated. The effective number of samples is given by

𝑁 IS
eff

= 1/∑1≤𝑖≤𝑛 𝑤̃2
𝑖 . It is bounded by the total number of sam-

ples 𝑛, corresponding to the case where the proposal distribution

is equal to the target distribution and all weights are equal to 1/𝑛.

In practice, the closer the proposal distribution 𝑞 is to the target

distribution 𝑝, the higher the effective number of samples will be,

and therefore the more accurate the IWIS estimator is.

5.2 Cosmological parameter sampling

For the purposes of this work, the proposal distribution 𝑞 of cosmo-

logical parameters needs to efficiently cover all regions in parameter

space where the posteriors corresponding to each simulations have

support. We detail the choice of proposal distribution in the next

section, motivated by posteriors obtained with MCMC from few

random realizations of the data vectors.

5.2.1 Choice of proposal distribution

We choose to sample all parameters independently, except for 𝜎8 and

Ωm. Therefore, the proposal distribution can be factorized into the

product of distributions for (𝜎8,Ωm) and all the other parameters.

We adopt a uniform distribution in the (𝜎8,Ωm)-plane within a band

along the degeneracy observed in weak lensing experiments, which

better constrain the combination 𝑆8 ∝ 𝜎8

√
Ωm. To do so, we note

that the Jacobian of the transformation (𝜎8,Ωm) → (𝑆8,
√
Ωm) is

constant, such that we can uniformly sample over a rectangle in

the (𝑆8,
√
Ωm)-plane in order to obtain the desired distribution.

We draw 𝑆8 in the range [0.7, 0.9] and
√
Ωm within [

√
0.1,

√
0.6]

(i.e. the prior range of Ωm). We sample over other cosmological

parameters (Ωb, ℎ, 𝑛s andΩ𝜈ℎ2) uniformly within their prior bounds

specified in Table 1. For intrinsic alignment parameters, we opt

for a uniform distribution for the intrinsic alignment tilt parameter

𝛼IA; however, we sample the amplitude of intrinsic alignments 𝐴IA

with a Gaussian proposal distribution of standard deviation 1.5 and

centered at zero, as the prior range is much broader than observed

posterior distributions. Finally, we adopt the Gaussian priors over
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Figure 6. Two-point functions 𝜉± (𝜃) measured from Gaussian simulations described in Section 4 and scale cuts used in the analysis in Section 6, similar to

Fig. 5. The input two-point functions are plotted in dark blue. Boxes show the measured mean and standard deviation in each 𝜃 bin, in orange for the fiducial

noise level (𝜎𝑒 = 0.3), in moccasin for the low noise level (𝜎𝑒 = 0.3/
√

2) and in light blue for the noiseless case (where each galaxy shape corresponds to the

shear field value). The ranges of scale cuts used in the analysis are shown as solid horizontal lines.

redshift biases Δ𝑧𝑖’s for the proposal distribution. As explained in

Section 2.3, we dot not sample shear biases as they are marginalized

analytically. Given these choices, summarized in the fourth column

of Table 1, the proposal distribution is therefore proportional to the

product of redshift bias priors and the proposal distribution of 𝐴IA,

the other marginal distributions being uniform within their support.

5.2.2 Sample generation

In order to generate a sample with good space-filling properties, we

use optimized Latin Hypercube Sampling (LHS). More precisely,

we first generate 106 samples within the unit hypercube [0, 1]12

with standard LHS and then optimize its design using the Enhanced

Stochastic Evolutionary algorithm7 (Jin et al. 2005). This tech-

7 We use the implementation from the Surrogate Modeling Toolbox python

library (Bouhlel et al. 2019), available at https://smt.readthedocs.

io/en/latest/_src_docs/sampling_methods/lhs.html.

nique operates by exchanging coordinates of points to make the

sample closer to uniform (which is formally quantified by a dis-
crepancy criterion). This reduces the variance of the IS estimator

while maintaining its convergence properties and leaving it unbiased

(see Packham 2015, for a derivation). Finally, we apply to the LHS

sample the inverse cumulative distribution function of the proposal

distribution 𝑞 to generate the sample of cosmological parameters.

5.3 Fast derivation of posterior mean

For each simulation, indexed 𝑗 , from which we obtained a mea-

surement 𝑋 𝑗 (where 𝑋 is either 𝐶ℓ or 𝜉±), we compute the IWIS

estimator of the mean under the posterior given by

𝜃̂ 𝑗 =
1

𝑛

∑
1≤𝑖≤𝑛

𝑤̃𝑖 𝑗𝜃𝑖 , (20)
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Figure 7. Validation of the importance sampling (IS) pipeline by comparison

of estimated mean 𝑆8 obtained with standard nested sampling of the posterior

(horizontal axis) and with importance sampling (vertical axis) for 20 noisy

data vectors. The error bars show the error on the IS estimator, which

depends on the effective number of samples, shown by the color of the error

bars. This test uses no scale cuts: applying scale cuts increases the effective

number of samples and further reduces errors.

where the normalized weights 𝑤̃𝑖 𝑗 are computed as explained in

Section 5.1 from unnormalized weights, given by

𝑤𝑖 𝑗 =
L(𝑋 𝑗 |𝜃𝑖)𝜋(𝜃𝑖)

𝑞(𝜃𝑖)
. (21)

This computation can be accelerated and parralelized by noting that

log 𝑤𝑖 𝑗 = −1

2

��L𝑋 𝑗 − L𝑋 (𝜃𝑖)
��2 + log 𝜋(𝜃𝑖) − log 𝑞(𝜃𝑖) + 𝑐, (22)

up to an irrelevant constant 𝑐, where L is the Cholesky decomposi-

tion of the covariance matrix, C = LᵀL. We first compute L𝑋 𝑗 and

L𝑋 (𝜃𝑖) for all 𝑗 and 𝑖 (slow but parallelizable operations), and then

we compute the first term for all pairs 𝑖 and 𝑗 (fast operations). The

computation thus becomes linear in the number of samples plus

the number of simulations—instead of the product—and we can

analyze all 500 simulations in under a minute on a single 28-core

node.

To validate the importance sampling pipeline and the choice

of proposal distribution, we draw 20 noisy data vector realizations

in harmonic and real space (uncorrelated), which were obtained

by independently sampling the likelihoods at the fiducial model.

We then run a standard nested sampling analysis with MultiNest

(Feroz et al. 2009) and compare the mean of the parameter pos-

teriors obtained from the nested sampling to those obtained with

importance sampling. Figure 7 shows the comparisom in the case

where we use all the measured scales described in Section 4, which

represents the most stringent test. In the plot, the points are colored

by their effective number of samples. We obtain biases well below

0.5% for most realizations as seen in Fig. 7, with effective number

of samples typically in the few hundreds. Note that for all other cuts,

we obtain much higher effective number of samples, typically few

thousands for 𝑘max = 5 h Mpc−1 to order 104 for 𝑘max = 1 h Mpc−1,

making errors on the posterior means negligible for our purposes.

As a complementary test, we also compare the full shape of

the marginalized posterior derived from nested sampling and im-

portance sampling, shown in Fig. 8 for the fiducial, noiseless data

vector, in both spaces and without scale cuts. In this case, the impor-

tance sampling pipeline recovers the mean with an accuracy of 0.1%

and the width within 10%, with very similar results in harmonic and

real space. For comparison, we also show the distribution of mean

posterior points evaluated from simulations (orange histograms).

Figure 8. Comparison of marginal posterior distributions on 𝑆8 on the

fiducial data vectors 𝑃 (𝑆8 |𝑋fid) in harmonic (𝑋 = 𝐶ℓ ) and real space

(𝑋 = 𝜉±) without scale cuts, derived from standard MCMC sampling (blue)

and IS (green). Colored vertical lines (mostly overlapping) indicate the mean

under each posterior and the black vertical line shows the input 𝑆8 value. In

orange, we show the histogram of mean posterior points 𝑆8 derived from𝐶ℓ

and 𝜉± measurements for 500 simulations, see Section 6. The gray dashed

line show the input 𝑆8 value.

6 RESULTS

This section presents our main results. In Section 6.1, we probe the

joint distribution of 𝑆8 estimators, 𝑆̂8 |𝐶ℓ
and 𝑆̂8 | 𝜉± , derived from

measurements of two-points statistics in harmonic and real space,

on 500 simulated mock DES Y3 surveys, for different scale cuts. In

particular, we measure the Pearson correlation coefficients of these

estimators and the scatter of their difference to gauge the expected

consistency of harmonic and real space analyses. In Section 6.2, we

compute the biases Δ𝑆̂8 = 𝑆̂8 | 𝜉± − 𝑆̂8 |𝐶ℓ
due to various potential

theoretical, astrophysical and observational residual systematic un-

certainties and compare it with the scatter measured from statistical

fluctuations, 𝜎(Δ𝑆̂8). Finally, we apply scale cuts from published

analyses of HSC and KiDS-450 data and discuss observed discrep-

ancies in 𝑆8 in Section 6.3. Although we partially focus our analysis

on 𝑆8, we also report results on 𝜎8 and Ωm, with figures in Ap-

pendix A.

Before describing our results, we draw attention to important

features of the marginalized 𝑆8 posterior. As can be seen in Fig. 8,

it is slightly asymmetric towards lower values, and both the mode

and the mean are biased low, with respect to the input 𝑆8 value, on a

fiducial data vector. This projection effect is expected when a high-

dimensional posterior, with its associated degeneracies and prior

boundaries, is projected onto one dimension. Similar trends were

observed with other cosmic shear analyses (e.g., Joachimi et al.

2020). As a consequence, our measurements of posterior means

generally appear to be biased low with respect to the input 𝑆8

parameter (similarly, 𝜎8 is biased low and Ωm high). However, this

problem pertains to the choice of point estimate—e.g., the mode,

median, or, like here, the mean of the marginal posterior—and we

find similar trends in both harmonic and real space. Moreover, the

truth value consistently lies within the∼ 1𝜎 interval of the posterior.

Therefore, this apparent bias does not interfere with the question of

the consistency between analyses, as long as we relate to the mean

of the posterior evaluated from the fiducial data vector as a reference

point, and shifts thereof.
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Figure 9. Distribution of estimated 𝑆8 from real space (vertical axis) vs harmonic space (horizontal axis) analyses, and biases induces by unmodeled systematic

effects. Each plot corresponds to a different scale cut indicated in the upper left. The scattered gray points show the mean of the posteriors of the Gaussian

simulations described in Section 4 in both real and harmonic space, as well as the error associated with the IS estimator (mostly indistinguishable for realistic

scale cuts). Note these error bars denote the uncertainty on the mean of the posteriors rather than their width. Blue contours show the 68% and 95% contours

of these points. Their Pearson correlation coefficient 𝑟 is reported in the upper left. Marginal distributions are shown by the gray (unnormalized) histograms

above and to the right of each panel. The mean of the posterior for the fiducial, noiseless data vector is shown by the white dot encircled in black. Data vectors

contaminated with various unmodeled systematic effects are analyzed in the same way and results are shown by the colored points. The value of 𝑆8 used as

input is shown by the cross. The result of the analysis of the fiducial data vector provides a reference point for the estimator, which is expected to differ from

the input due to projection effects (while remaining consistent in terms of the width of the posterior).

6.1 Estimated parameter differences between harmonic and
real space cosmic shear

We now apply the importance sampling methodology described in

Section 5 to compute the mean posterior points 𝑆̂8 |𝐶ℓ
and 𝑆̂8 | 𝜉±

for each simulation using harmonic and real-space measurements

described in Section 4, for different scale cuts described in Section 3.

We consider four fiducial scale cuts: (i) no scale cuts, i.e. using

all measured scales from the simulations (ℓmax = 8192, 𝜃+
min

= 1′
and 𝜃−

min
= 10′) (ii) using DES Y1 real-space cuts converted to

harmonic space with the relation ℓ = 𝜋/𝜃, (iii) a 𝑘max type cut

with a threshold at 3 h Mpc−1, and (iv) cuts derived from baryonic

feedback contamination. The baryonic feedback cut is the most con-

servative choice, while the 𝑘max cut is (relatively) more aggressive,

and the DES Y1 (ℓ = 𝜋/𝜃) lies in between (see Figs. 5 and 6).

Results are shown in Fig. 9, where we show with gray error bars the

mean of the posterior for each simulation, and in blue the 68% and

95% contours of the distribution sampled by these points. Note that

these contours do not necessarily reflect the width of the posteriors

themselves, but rather how much posteriors may shift for multiple

realizations of the cosmic shear measurements at fixed cosmol-

ogy. We quantify the statistical discrepancy between harmonic and

real-space cosmic shear analyses by characterizing the distribution

of the difference between mean posterior points, 𝜎(Δ𝑆̂8), derived

from harmonic and real-space measurements. We show histograms

of Δ𝑆̂8 in Fig. 10, for the four sets of scale cuts used above (as well

as HSC Y1 and KiDS-450 scale cuts, discussed in Section 6.3). We

measure its standard deviation as well as the Pearson correlation
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coefficients, 𝑟, between 𝑆̂8 |𝐶ℓ
and 𝑆̂8 | 𝜉± , which are reported in Ta-

ble 3. If the mean posterior shifts from individual statistics have the

same spread (𝜎(𝑆̂8 |𝑋 ) for 𝑋 = 𝐶ℓ , 𝜉±, also reported for reference),

the two metrics measure the same quantity, but when the constraints

change, the correlation coefficient 𝑟 is likely a better measure of the

common information used in the two statistics. The spread, however,

is useful to determine how likely a certain observed difference be-

tween parameters measured by the two statistics is, i.e. an observed

difference larger than this number would be indicative of a tension

between the two analyses. We proceed similarly for Ωm and 𝜎8, see

Figs. A1 and A2.

Quantitatively, we find that, using all scales available in sim-

ulations, the standard deviation of 𝑆̂8 |𝐶ℓ
and 𝑆̂8 | 𝜉± , 𝜎(𝑆̂8 |𝑋 ) is

0.010 for both statistics (𝑋 = 𝐶ℓ , 𝜉±). The spread of the difference

is 𝜎(Δ𝑆̂8) = 0.007, for the fiducial noise level and DES Y3-like

survey characteristics. These are lower bound on the error that can

be reached with DES Y3 data. For realistic scale cuts, we find that

𝜎(𝑆̂8 |𝑋 ) increases similarly for both statistics while 𝜎(Δ𝑆̂8) varies

significantly across scale cuts (by a factor of almost 2), as seen in

Figs. 9 and 10. We find significantly smaller variations for 𝜎(ΔΩ̂m)
and 𝜎(Δ𝜎8). In particular, we observe that the 𝑘max cut provides

the highest correlation coefficient at about 83%, with similar spread

in either space. For this cut, we find 𝜎(𝑆̂8 |𝐶ℓ
) ≡ 𝜎(𝑆̂8 | 𝜉± ) = 0.013

and 𝜎(𝑆̂8 |𝐶ℓ
− 𝑆̂8 | 𝜉± ) = 0.0076. For the DES Y1 (ℓ ∼ 𝜋/𝜃) cut,

which by comparison of 𝜃min is close to a 𝑘max cut between 2 and

3 h Mpc−1, we find a lower correlation coefficient of 68%, indicating

that the simplistic conversion fails at capturing the same information

in each estimator. Moreover, posterior means are slightly more scat-

tered in real space, consistent with the fact that, for these scale cuts,

the fiducial signal-to-noise ratio is lower in real space (see Table 2).

Similarly, the baryonic feedback cut that we have applied here yields

asymmetric results with a tail for lower values in real space, as ex-

pected from the difference in predicted signal-to-noise ratio (47 for

𝐶ℓ and 40 for 𝜉±), and a correlation coefficient of 68%. Overall,

we measure 𝜎(Δ𝑆̂8) to be a fraction ∼ 0.6−0.9 of the scatter for

individual statistics, which is to be compared to
√

2 ≈ 1.4 for fully

uncorrelated estimators. For 𝜎8 and Ωm, we observe a similar trend

for the scatter of the difference to increase for stricter cuts. However,

the correlation coefficients 𝑟 are much less sensitive to scale cuts,

which we interpret as a consequence of the strong, banana-shaped

degeneracy between 𝜎8 and Ωm visible for all scale cuts—the dif-

ference in posterior means between statistics is subdominant to the

variance of posterior means across realizations.

We proceed to further explore the distribution of parameters

shifts and attempt to gain insight into the generalization of our

results to the next generation of weak lensing surveys. We perform

two tests, one where we repeat measurements for 𝑘max-type cuts

for different values of 𝑘max in the range 1−5 h Mpc−1, which is

an indication of the confidence in small-scale modeling, and one

where we emulate a deeper survey by reducing shape-noise. In

Fig. 11, we plot the 68% contours obtained when varying 𝑘max

from 5 down to 1 h Mpc−1. We first observe that these cuts return

very similar constraints in both spaces, indicating that, they are

well-performing and physically motivated choices, if consistency

is desired. We find that 𝜎(𝑆̂8 |𝐶ℓ
− 𝑆̂8 | 𝜉± ) goes from 0.0049 to

0.019, with a correlation coefficient going from 89% to 56%, as

expected when decreasing 𝑘max from 5 to 1 h Mpc−1. We find that

the posterior mean derived from the fiducial data vectors shifts

towards lower values for decreasing 𝑘max, albeit with negligible

differential biases. In Fig. 12, we show 68% contours obtained

when decreasing the noise level, which here we achieve by dividing

the variance of intrinsic ellipticities 𝜎2
𝑒 by two (while keeping the

density fixed) in simulations. Contours shrink, as expected, towards

the input value. Both the spread of the posterior means and the

spread of the difference decrease, though we note that the amount

to which they decrease with respect to one another depends on

the choice of scale cut, making it difficult to separate the effect of

noise and scale cuts on discrepancies in the harmonic and real space

analyses. In other words, shape-noise acts as an effective cut-off at

small scales where it dominates the signal.

We expect that numerical results presented here will not change

dramatically for the real DES Y3 data. At the time of conducting

this work, the DES Y3 catalogs and pipeline were not yet finalized,

but the number density, footprint and redshift distributions we used

do capture the essential properties of the final DES Y3 data.

6.2 Bias from systematic effects

We now compute posterior shifts due to theoretical and astrophysi-

cal uncertainties. As argued in the introduction, different effects may

impact 𝐶ℓ and 𝜉± measurements differently, resulting in non-equal

shifts in posterior distributions, thus creating a differential bias. Al-

though it is difficult to assess all potential biases and their interplay,

we nonetheless propose to measure individual (differential) biases

from a selection of systematics, representative of theoretical and

observational uncertainties pertaining to the current generation of

weak lensing surveys. To do so, we apply the IS analysis pipeline

to noiseless theory data vectors computed with varying modeling

assumptions, or contaminated with spurious signals, as detailed in

Section 2.4. Results are overlaid in Figs. 9 and 10 for comparison

with expected shifts from statistical fluctuations described in the

previous section. In particular, we show the result of analyzing the

following data vectors (we indicate in italic the label used in the

plots):

• Fiducial DV. Noiseless data vector computed from the base-

line model detailed in Section 2 with the fiducial cosmology (see

Table 1).

• PSF leakage 𝛼 = 0.1. Data vector computed from the fiducial

data vector with an additive bias measured from PSF elliptiticies

and residuals, with a leakage fraction 𝛼 = 0.1.

• Photo-z width (𝜎𝑧 = 0.10). Noiseless data vector computed at

the fiducial cosmology but with redshift distributions convolved by

a Gaussian kernel of width 𝜎𝑧 = 0.1.

• Baryons (OWLS). Noiseless data vector computed at the fidu-

cial cosmology with a power spectrum including small-scale rescal-

ing due to baryonic feedback, see Eq. (14).

• Cosmic emu 𝑃NL (𝑘, 𝑧). Noiseless data vector computed with

a non-linear matter power spectrum modelled with the Mira-Titan

emulator, as opposed to the Halofit prescription.

• NLA. Noiseless data vector computed from the baseline model

at the fiducial cosmology, but with a non-zero amplitude (𝐴IA = 1.5)

of the intrinsic alignments (IA), assuming the fiducial NLA model.

This is a check that the cosmology is not significantly affected by

intrinsic alignments when the model is correct. We note that the

small shifts with respect to the fiducial data vector indicate that pro-

jection effects—that shift the posterior mean from input parameter

values—are somewhat dependent on the input parameters.

• TA (𝐴1 = 1, 𝐴2 = 0). Noiseless data vector computed at the

fiducial cosmology but where we switched the IA model to TATT.

For this first TATT data vector, we only include the TA component,

which includes the additional density-tidal field contribution, with

respect to NLA. Current constraints on TATT amplitudes 𝐴1,2 and

redshift-dependence parameters 𝛼1,2 remain fairly weak. However,
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Figure 10. Distribution of differential biases Δ𝑆8 ≡ 𝑆8 |𝜉± − 𝑆8 |𝐶ℓ
between real space and harmonic space analyses.The histograms show the posterior mean

difference derived from simulations. They are compared to individual posteriors, 𝑃 (𝑆8 |𝑋 ) with 𝑋 = 𝐶ℓ , 𝜉±, derived from fiducial data vectors and shifted

with respect to their own mean 𝑆8. Each panel corresponds to a different scale cut used in this analysis, as indicated above. The standard deviations (multiplied

by 100) of the 𝐶ℓ posterior (red), 𝜉± posterior (blue) and Δ𝑆8 histograms (gray) are reported in the upper left of each panel. Vertical lines indicate the

differential biases computed for data vectors contaminated with unmodeled systematics.

Statistics

Parameter (𝜃) Scale cut 𝜎
(
𝜃
��𝐶fid

ℓ

)
𝜎

(
𝜃
��𝜉fid±

)
𝜎

(
𝜃 |𝐶ℓ

)
𝜎

(
𝜃 |𝜉±

)
𝜎

(
Δ𝜃

)
Pearson 𝑟

𝑆8

(i) No scale cut 0.013 0.014 0.010 0.010 0.006 0.79

(ii) DES Y1 (ℓ ∼ 𝜋/𝜃) 0.016 0.019 0.012 0.014 0.011 0.68

(iii) 𝑘max = 3 h Mpc−1 0.016 0.017 0.013 0.013 0.008 0.83

(iv) Baryonic feedback 𝜒2 0.018 0.021 0.014 0.018 0.014 0.66

𝜎8

(i) No scale cut 0.058 0.060 0.050 0.047 0.031 0.79

(ii) DES Y1 (ℓ ∼ 𝜋/𝜃) 0.070 0.070 0.056 0.053 0.041 0.71

(iii) 𝑘max = 3 h Mpc−1 0.071 0.064 0.057 0.052 0.036 0.79

(iv) Baryonic feedback 𝜒2 0.077 0.077 0.063 0.061 0.046 0.73

Ωm

(i) No scale cut 0.049 0.054 0.042 0.043 0.026 0.81

(ii) DES Y1 (ℓ ∼ 𝜋/𝜃) 0.063 0.063 0.049 0.046 0.033 0.76

(iii) 𝑘max = 3 h Mpc−1 0.063 0.059 0.050 0.046 0.029 0.82

(iv) Baryonic feedback 𝜒2 0.069 0.068 0.053 0.050 0.034 0.78

Table 3. Comparison of the scatter of parameter estimators between harmonic and real space two-point statistics. For each parameter 𝜃 = 𝑆8, 𝜎8,Ωm and

two-point statistics 𝑋 = 𝐶ℓ , 𝜉±, we report the scatter of the mean of the posterior 𝜎 (𝜃 |𝑋 ) compared to the width of the posterior for the fiducial data vector

𝜎 (𝜃 |𝑋fid) for power spectra and correlation functions, the scatter of the difference of posterior means between the two statistics 𝜎 (Δ𝜃) (penultimate column)

and the Pearson correlation coefficient 𝑟 of posterior means (last column). If 𝜃 |𝐶ℓ
and 𝜃 |𝜉± were independent random variable with equal variance, we would

have 𝜎 (Δ𝜃) =
√

2𝜎 (𝜃 |𝑋 ) .

Samuroff et al. (2019) showed that all four parameters are of order

unity and that DES Y1 data favor 𝐴1 > 0, 𝐴2 < 0 and show a mild

preference for 𝛼1,2 < 0. We therefore use 𝐴1 = 1 and 𝐴2 = 0 here,

and no redshift dependence, i.e. 𝛼1,2 = 0.

• TATT (𝐴1 = 1, 𝐴2 = −1). Noiseless data vector computed at

the fiducial cosmology with the TATT model, incorporating the TT

contribution with 𝐴1 = 1 and 𝐴2 = −1, and no redshift dependence,

i.e. 𝛼1,2 = 0.

• TATT + 𝑧 (𝛼1 = −2, 𝛼2 = −2). Noiseless data vector computed

at the fiducial cosmology with the TATT model with both TA and TT

contributions and redshift dependence with parameters 𝛼1,2 = −2.

Biases should be compared with the mean posterior point from

the analysis of the fiducial data vector ("Fiducial DV") and differ-

ences between harmonic and real space should be measured per-

pendicular to the gray diagonal (and, strictly speaking, multiplied

by
√

2). For the three fiducial scale cuts, and given our DES Y3-

like setup, we find most systematics tested here yield estimate 𝑆8

well within 68% contours in the (𝑆̂8 |𝐶ℓ
, 𝑆̂8 | 𝜉± ) plane and that the

differences between harmonic and real space biases are typically
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Figure 11. Impact of the 𝑘max cut on the distribution of 𝑆8. We show the

68% contours, similar to the lower left panel of Fig. 9, for 𝑘max scale cuts,

varying 𝑘max from 1 to 5 h Mpc−1 (light to dark blue). The values of 𝑆8

derived from the fiducial data vector are shown by the white dots encircled

in blue.

Figure 12. Impact of shape noise on the distribution of 𝑆8. The low noise

contours are obtained by dividing the variance of intrinsic ellipticities 𝜎2
𝑒

by two in the simulations, which is, with respect to the covariance matrix,

equivalent to a deeper survey with doubled galaxy density (see also Figs. 5

and 6). The values of 𝑆8 derived from the fiducial data vector are shown by

the white dots encircled in red.

within ∼ 0.5𝜎(Δ𝑆̂8), displaced along the diagonal. The largest bias

comes from baryonic feedback, which lies beyond the 68% con-

tour when no scale cuts are applied and approaches it for the "DES

(ℓ ∼ 𝜋/𝜃) cut. Then, smaller biases are found for the TA model

and non-linear power spectrum, and, to a lesser extent, data vectors

contaminated with photo-𝑧 width—all of which result in biases of

about 0.01 for each estimator, but generally negligible differential

biases. When comparing TA and TATT models, we find, somewhat

counter-intuitively, that the model including TT contributions yield

a smaller bias, on both statistics, than the TA-only model. This

depends on details of how the NLA model is able to mimic TA

and TT contributions and absorb the non-cosmological shear sig-

nal. However, we note that the choice of a negative 𝐴2 reduces the

overall IA contamination, especially on small scales, and that the

TT part is likely canceling part of the beyond NLA contributions

in TA. We conclude that the various effects we examined impact

the two statistics similarly for the three fiducial scale cuts we show

and do not bias one over the other for a DES Y3-like configura-

tion. This indicates that these scale cuts capture sufficiently similar

information for those systematics to have basically the same effect

on both two-point statistics, with regard to 𝑆8 estimation. For 𝜎8

and Ωm (see Figs. A1 and A2), baryons do create a differential

bias when no cut is applied, but are well controlled with realis-

tic cuts. On the other hand, intrinsic alignments including TA and

TT contributions, in particular with redshift dependence, create a

mild differential bias, pushing 𝜎8 high and Ωm low for harmonic

space compared to real space. A possible explanation is that the

redshift dependence, once the shear field is projected, becomes a

scale-dependent effect which impacts both statistics differently. The

contamination from PSF leakage and NLA (which is included in

the model) are found to be negligible for all cuts.

In Fig. 11, we vary the 𝑘max cut and find that, for most system-

atics, decreasing 𝑘max does not create significant differential biases.

We observe that 𝑆̂8 moves similarly for the fiducial data vector and

for most contaminated data vectors, although these are not shown

to maintain readiblity. These shifts are therefore likely due to the

lesser information content at 𝑘max = 1 h Mpc−1, combined with

projection effects. When decreasing shape-noise in Fig. 12, we see

two countereffects: with lower noise, the posterior tightens closer

to the true input value, but the reweighting of small scales increases

some biases—particularly baryons and IA— beyond the tightened

68% contours for the most aggressive cuts.

We note that, by testing effects one at a time, we cannot probe

all their combinations and how they add up to increase biases, or

reversely, cancel each other out. Finally, we point out that for all

systematic effects tested here, the IS pipeline provides accurate

estimates, characterized by effective numbers of samples in the

range 103 − 104. We ran standard MCMC chains for a limited

number of cases and found excellent good agreement for all of

them.

6.3 Comparison with previous work

The HSC (Hamana et al. 2020; Hikage et al. 2019) and KiDS (Hilde-

brandt et al. 2017; Köhlinger et al. 2017) collaborations have pub-

lished cosmic shear analyses in both harmonic and real spaces using,

respectively, HSC Year 1 and KiDS-450 data, sharing shear cata-

logues and redshift distributions across analyses, and found discrep-

ancies in their cosmological constraints of order 0.5 − 1𝜎. We now

repeat the exercise of analyzing simulations and contaminated data

vectors using corresponding scale cuts found in those publications,

that is, removing bins outside the corresponding 𝜃min/𝜃max and

ℓmin/ℓmax ranges while maintaining the binning we used throughout

this work. We caution the reader that here we use the same simu-

lations of a DES Y3-like survey as presented in previous sections,

and only apply published scale cuts for comparison with cuts shown

above. Since the simulations do not capture the depth and geometry

of the different surveys, we cannot directly apply the conclusions

here to the published KiDS and HSC results. We can, however, gain

qualitative insights to how the chosen scale cuts might have resulted
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Figure 13. Distribution and biases of𝑆8 from real (vertical axis) vs harmonic

(horizontal axis) space for mock DES Y3 surveys analyzed with scale cuts

that were used in the published cosmic shear analyses of HSC Y1 data (top,

Hamana et al. 2020; Hikage et al. 2019) and KiDS-450 (bottom, Hildebrandt

et al. 2017; Köhlinger et al. 2017). See Fig. 9 for a description of elements

in the plot.

in the apparent large scatter between the constraints from real- and

harmonic-space statistics.

For the analysis of HSC first-year data in real space (Hamana

et al. 2020), scale cuts are the same for all redshift bin pairs. The

small-scale cut is chosen so that the difference in 𝜉± from baryons

(AGN model from Harnois-Déraps et al. 2015) is smaller than 5%.

The large-scale cut is chosen from PSF contamination and impacts

only 𝜉+. They are 7.08′ < 𝜃 < 56.2′ and 28.2′ < 𝜃 < 178′ for

𝜉+ and 𝜉−, respectively. For the harmonic space analysis (Hikage

et al. 2019), the cuts are also the same for all redshift bin pairs.

The large-scale cut ℓmin = 300 is determined by the detection of

B-modes at lower multipoles from PSF leakage. The small-scale

cut ℓmax = 1900 is chosen to avoid uncertainties from intrinsic

alignments at scale smaller than 1−2 h−1 Mpc, corresponding to

ℓ � 2000. Both analyses share modeling choices, e.g. for the non-

linear matter power spectrum, intrinsic alignments and the impact

of baryons. Although the fiducial model assumes no baryonic feed-

back, the authors test the analytic model of Harnois-Déraps et al.

(2015) and find that constraints shift by less than 1 𝜎.

For the KiDS-450 analyses, scale cuts are also chosen to be

identical across redshift bins. In real space (Hildebrandt et al. 2017),

a large scale cut of 72′ is imposed on 𝜉+ because of additive shear

biases at larger scales, while 𝜉− is used up to 300′, only limited by

the extent of the KiDS-450 patches. Small scale cuts of 0.5′ and 4.2′
are applied to 𝜉+ and 𝜉− due to uncertainties in the model and low

signal-to-noise ratio. In harmonic space (Köhlinger et al. 2017),

the large scale cut is ℓmin = 76, limited by the extent of KiDS-

450 patches, and the small-scale cut of ℓmax = 1310 is chosen to

be in the regime where the quadratic power spectrum estimator

is found to recover simulation inputs. We note that authors caution

that the real-space analysis uses more non-linear scales information,

therefore expecting differences.

In the four aforementioned HSC and KiDS-450 papers, the

robustness of the results with respect to model choices were thor-

oughly explored, in particular the impact of baryonic feedback and

intrinsic alignment, as well as to instrumental effects (some of which

dictated scale cuts, as mentioned above). In particular, KiDS-450

analyses, which use small-scale measurements, include baryonic

effects in their baseline model. Both collaborations also model in-

trinsic alignments with the NLA model in each analysis.

Figure 13 shows the distribution of 𝑆̂8 |𝐶ℓ
and 𝑆̂8 | 𝜉± and the

impact of systematics when using HSC and KiDS-450 published

scale cuts on a DES Y3-like survey. We present corresponding re-

sults for 𝜎8 and Ωm in Figs. A1 and A2, respectively. For HSC scale

cuts, we find that the correlation coefficient is of order 10% for 𝑆8,

𝜎8 and Ωm, somewhat consistent with findings in Section 6.7 and

Appendix 5 of Hamana et al. (2020) obtained from running the full

pipeline on one hundred 𝑁-body mock survey simulations (𝑆8 was

found to show a correlation of 50%, albeit on the posterior median

rather than the mean, though the difference may also arise from

survey configurations). Noticeably, all systematic effects we probed

point in the direction where 𝜎8 as measured from harmonic space

is higher than 𝜎8 from real space measurements (and lower Ωm),

which coincides with actual observations, although the amplitudes

are found to be smaller here than actual discrepancies observed in

data, meaning that no single systematic may explain this discrep-

ancy. It is possible that all systematic effects combined could create

a more significant bias between the two analyses, though this would

require further investigation. However, we also note that baryonic

feedback points to a higher 𝑆8 from real space measurement—

matching observations in directions, but not in amplitude—while

intrinsic alignments point in the other direction. Therefore, while

we observe significant systematic trends in 𝜎8 and Ωm, we also find

that distribution of Δ𝑆̂8 is significantly broader here than for other

cuts, as shown in the top right panel of Fig. 10, and we refrain from

attributing the observed difference in 𝑆8 to either systematics or

statistics. For KiDS-450 scale cuts, we observe a significant trend

for real space measurement to yield higher mean of 𝑆8 than har-

monic space measurements, the former being typically closer to the

input value in our simulations. This is likely due to a combination

of the different scale cuts and projection effects. We find a higher

correlation coefficient of 66% in this case, and note that all system-

atics have higher 𝑆8 for real space measurements. In particular, we
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find that the bias created by intrinsic alignments from tidal torquing,

especially with redshift dependence (and, for HSC, the TA model),

lie close to the boundary of the 68% region in the (𝑆̂8 |𝐶ℓ
, 𝑆̂8 | 𝜉± )

plane. While these observations are not sufficient to make any con-

clusive claim regarding observed discrepancies (i.e. distinguish a

statistical fluke from systematic biases), they do shed some light

on the interactions between the choice of scale cuts and systematic

effects. Moreover, in the case of HSC, we note that a change in area

increases error bars in the same proportion at all scales (through the

𝑓sky coefficient in the covariance matrix, see Eq. (10)) and we find

that our results still hold when using our "low noise" simulations:

biases remain practically unchanged while (𝑆̂8 |𝐶ℓ
, 𝑆̂8 | 𝜉± ) contours

shrink, making those biases all the more concerning. A caveat is that

to generate those simulations, we decrease the shape-noise 𝜎2
𝑒/𝑛̄ by

dividing the ellipticity standard deviation 𝜎𝑒 by 2, while HSC would

be better matched by increasing the galaxy density 𝑛̄, though the

two should be equivalent with respect to shape-noise alone.

7 CONCLUSION

In this work, we have investigated the impact of scale cuts and

systematic effects on the cosmological constraints derived from the

analysis of cosmic shear two-point statistics in harmonic vs real

space. As a quantity projected along the line-of-sight, the observed

angular two-point statistic at a given scale receives contribution

from a broad range of three-dimensional, Fourier 𝑘-modes, where

physics is naturally described. Moreover, these contributions do not

align perfectly between the harmonic and real space statistics, which

are related through a Bessel integral. Therefore, imposing a hard

cut in one space means imposing soft, or oscillatory, cuts in other

spaces, making it difficult to find unambiguous correspondence

between various analyses. In addition, theoretical uncertainties and

observational systematic effects may induce differential biases that

need to be disentangled from statistical fluctuations.

Motivated by discrepancies found in the literature on the pa-

rameter 𝑆8 by the HSC Y1 (Hamana et al. 2020; Hikage et al. 2019)

and KiDS-450 (Hildebrandt et al. 2017; Köhlinger et al. 2017)

collaborations between their analyses of two-point statistics in har-

monic and real space, we explore the expected consistency of Year

3 cosmic shear data from the Dark Energy Survey and how similar

discrepancies can arise. We suggest several scale cuts and a method

to test them, which we apply to the forthcoming analysis of DES

Y3. To do so, we generate 500 mocks of a DES Y3-like survey from

Gaussian simulations, which we analyze using a fast importance

sampling method with various scale cuts, in order to measure the

discrepancies that can be expected from pure statistical fluctuations

in parameter space versus that originating in systematic effects.

Our findings are:

• We motivate two new methods to determine small-scale cuts

from theory, both readily applicable to harmonic and real space

two-point statistics; one is based on a three-dimensional 𝑘-mode

cut-off, the other on a 𝜒2 distance between alternative predictions

for the data vectors, here applied to the baryonic feedback model

(which is the most conservative cut we test). We also use DES Y1

cuts, converted with ℓ ∼ 𝜋/𝜃.

• Given our DES Y3 setup, we find that 𝜎(Δ𝑆̂8), the scatter of

the difference Δ𝑆̂8 between posterior means from harmonic and

real space analyses, is of order 0.08−0.14. Its value is a frac-

tion ∼ 0.6−0.9 of the scatter for individual statistics (it would be√
2 ≈ 1.4 for independent estimators). The correlation coefficient

between 𝑆̂8 |𝐶ℓ
and 𝑆̂8 | 𝜉± is highly sensitive to the choice of scale

cut, decreasing with more conservative cuts. Among the scale cuts

we try, the 𝑘max-based scale cuts yield the best consistency metrics.

In particular they lead to symmetric scatter in the two statistics and

to a high correlation coefficient (86% for 𝑘max = 3 h Mpc−1).

• We estimate the differential bias in 𝑆8 due to a variety of

systematics and modeling choices and we do not find, overall, one

statistic to be intrinsically more biased than the other. Biases are

generally small in our DES Y3-like setup and our proposed cuts,

leading to shifts of less than a third of the statistical uncertainty.

The partial exceptions are intrinsic alignment mechanism including

tidal torquing (and redshift dependence) and baryonic feedback

processes, especially for 𝜎8 andΩm. We conclude that our proposed

cuts are immune to systematics tested here and are good candidates

for the upcoming analysis for DES Y3, and easily adaptable to other

surveys’ characteristics.

• Our results indicate that with deeper surveys, and lower statis-

tical errors, the biases due to systematics will be more significant—

harmonic and real space statistics could then lead to different re-

sults in 𝑆8 and other parameters. Extrapolating our results to LSST,

with an effective number density of 30 gal/arcmin2 and area of

18 000 deg2 (following Chang et al. 2013), error bars in the noise-

dominated regime would reduce by ∼ 4.3, so one might expect

𝜎(Δ𝑆̂8) ∼ 0.002.

Although the trends observed for various scale cuts match our

expectations, the numerical value of the scatter 𝜎(𝑆̂8 |𝐶ℓ
− 𝑆̂8 | 𝜉± ) is

a complex function of scale cuts, survey characteristics and model-

ing, thus requiring simulations to quantify. We tested the impact of

a number of systematic effects and alternatives in the ingredients of

our baseline model, including non-linear power spectrum, baryonic

feedback, intrinsic alignments, PSF leakage and redshift distribu-

tion uncertainty and found that the largest discrepancies are due to

baryonic feedback, intrinsic alignments sourced by tidal torquing

(TATT with 𝐴2 = −1), particularly when redshift dependence is

present but not modeled. This work will serve to guide the choice

of small-scale cuts for the forthcoming analysis of DES Y3 cosmic

shear data in harmonic space.

We also applied scale cuts used in the published HSC and

KiDS-450 cosmic shear analyses and compared statistical and sys-

tematic differences in 𝑆8, 𝜎8 andΩm. Although we used simulations

with DES Y3-like characteristics, preventing us from drawing con-

clusions about observed spread, we do highlight some of our find-

ings. We find a very low correlation of 𝑆8 estimators when using

HSC cuts, consistent with results of Hamana et al. (2020). Therefore

the scatter of individual estimators 𝑆̂8 is typically smaller than the

scatter of the difference. For KiDS-450 cuts, we find asymmetric

results, with the two-point functions measurements yielding higher

𝑆8 than power spectra (as a matter of fact, closer to the truth because

of a projection effect). It is finally worth noting that all systematic

effects we tested point in the direction where 𝜎8 |𝐶ℓ
> 𝜎8 | 𝜉± (and

Ω̂m |𝐶ℓ
< Ω̂m | 𝜉± ) for HSC, consistent with observations, although

with modest but non-negligible amplitudes, typically of a fraction

of the statistical spread. This indicates that no single systematic

effect we test can create a significant differential bias, while a com-

bination of effects could create differences of order ∼ 1𝜎. Recent

KiDS-1000 results compared three different statistics—two-point

functions 𝜉±, band powers of 𝐶ℓ , COSEBIs (Complete Orthogo-

nal Sets of E-/B-mode Integrals, Schneider et al. 2010)—and found

them to be consistent (Asgari et al. 2020b), although all of them rely

on initial 𝜉± measurements for thin bins in 𝜃 in the range 0.5−300′,
corresponding to band powers from ℓ = 100 to 1500. Scale cuts
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were unchanged for 𝜉± and no cuts were applied to band powers or

COSEBIs.

For future surveys, such as LSST, Euclid and Roman, those

systematic shifts are expected to remain the same while statistical

scatter will decrease with either higher depth or increased area,

making control of those effects all the more important. We also

note that we restricted the analysis to a single choice of estimator

for each statistic, namely a pseudo-𝐶ℓ estimator of the shear power

spectrum and the standard, unweighted estimator of the correlation

functions 𝜉±(𝜃) (Bartelmann & Schneider 2001). For each statistic,

different estimators exist (Bond et al. 1998; Hikage et al. 2011) as

well as alternative two-point statistics (e.g. the variance of the aper-

ture mass statistic Schneider 1996), with various trade-off between

computational difficulty and sensitivity to systematic effects. How-

ever, we have shown that scale cuts appear to be the key factor in

terms of consistency between harmonic and real space, and we do

not expect results would change in that regard. Nonetheless, some

of these estimators were developed along with mitigation strategies

to minimize biases from systematic effects (including deprojection

of systematic templates for pseudo-𝐶ℓ , Elsner et al. 2017; Alonso

et al. 2019; Weaverdyck & Huterer 2020), which would impact this

part of our results, although this is beyond the scope of this paper.

One could also imagine combining both harmonic and real space

statistics into a joint analysis, provided that one can model the joint

likelihood (in particular the cross-covariance). In other words, if

constraints derived from the two statistics independently are not

fully correlated, a joint analysis could capture extra information

with respect to independent analyses. That information likely lies

within the particular 𝑘-modes that are captured by one statistics and

missed by the other, as discussed in the introduction. An alternative

is to use other statistics that exploit information from both spaces,

such as COSEBIs or Ψ- and Υ-statistics (Asgari et al. 2020a), at the

cost of increased complexity in estimation from data and modeling

from theory.

DATA AVAILABILITY

A general description of DES data releases is available on

the survey website at https://www.darkenergysurvey.org/

the-des-project/data-access/. DES Y1 cosmological data

is available on the DES Data Management website hosted by the Na-

tional Center for Supercomputing Applications at https://des.

ncsa.illinois.edu/releases/y1a1. This includes the redshift

distributions used in this analysis. DES-Y3 data will be made

available at https://des.ncsa.illinois.edu/releases. The

CosmoSIS software (Zuntz et al. 2015) is available at https:

//bitbucket.org/joezuntz/cosmosis/wiki/Home.
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APPENDIX A: ADDITIONAL PLOTS ON 𝜎8 AND Ωm

Figures A1 and A2 show the equivalents of Figs. 9 and 13 for 𝜎8

and Ωm, respectively.
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Figure A1. Same as Figs. 9 and 13 for 𝜎8.
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Figure A2. Same as Figs. 9 and 13 for Ωm.
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