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Abstract

Theories of scalars and gravity, with non-minimal interactions, ∼ (M2
P + F (φi))R+ L(φi), have graviton

exchange induced contact terms. These terms arise in single particle reducible diagrams with vertices, ∝ q2,

that cancel the Feynman propagator denominator, 1/q2, and are familiar in various other physical contexts.

In gravity these lead to additional terms in the action such as ∼ F (φi)T
µ
µ (φi)/M

2
P and F (φi)∂

2F (φi)/M
2
P .

The contact terms are equivalent to induced operators obtained by a Weyl transformation that removes

the non-minimal interactions, leaving a minimal Einstein-Hilbert gravitational action. This demonstrates

explicitly the equivalence of different representations of the action under Weyl transformations, both clas-

sically and quantum mechanically. To avoid such “hidden contact terms” one is compelled to go to the

minimal Einstein-Hilbert representation.
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I. INTRODUCTION

In recent years there has been considerable interest in scale invariant theories that, by way of

spontaneous scale symmetry breaking or “inertial symmetry breaking,” dynamically generate the

Planck mass and associated phenomena of inflation and hierarchies [1–3]. A feature many of these

approaches have in common is the notion of some pre-Planckian era, in which fundamental scalars

exist and couple to gravity through non-minimal interactions, ∼ F (φi)R. The scalars then acquire

VEV’s that lead to a Planck mass, ∼ M2
PR + F ′(φi)R, where F ′ contains residual active scalar

fields that couple non-minimally.

A key tool in the analysis of these models is the Weyl transformation, [4]. This involves a

redefinition of the metric, g′ = Ω(φi)g, in which g comingles with scalars. Ω can be chosen to lead

to a new effective theory, typically one that is pure Einstein-Hilbert, ∼ M2
PR + L′(φi), in which

the non-mimimal interactions have been removed.1

The Weyl transformation is classically exact. However, it is often difficult to discern how the

original non-minimal interaction theory is physically equivalent to the pure Einstein-Hilbert form.

There may be apparent advantages in using the transformed theory that are not evident in the

original, or vice versa. These apparent advantages, however, may not really be present when all

effects are taken into account. It is also unclear how the Weyl transformation is compatible with

a full quantum theory [5].

In the present paper we will address these questions. We will work to first order in 1/M2
P in a

linearized version of a theory with Planck mass and non-minimal interactions. We will not perform

a Weyl redefinition of the metric. Nonetheless, we will demonstrate how the Weyl transformation

form of L′(φi) necessarily arises perturbatively by way of Feynman diagrams involving graviton

exchange.

This happens by way of contact terms that are generated by the graviton exchange amplitudes.

These are bona fide physical effects that occur in various venues in physics and, though they arise

in tree approximation, they must be included into the effective action of the theory at the given

order of perturbation theory. Moreover, this represent essentially “integrating out” the vertices

that lead to the contact terms. The result is that the non-minimal interactions will disappear from

the theory at any given order in perturbation theory and are replaced by new, pointlike interactions

from the contact terms.

1 Alternatively, one might partially remove a subset of scalars from the non-minimal interactions ∼M2
PR+F ′′(φi)R

where F ′′ is optimized for some particular model application.
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Perhaps not surprisingly, the form of the contact term interactions corresponds identically with

the Weyl transformation that takes the theory to the pure Einstein-Hilbert form. We argue that,

once the Planck scale is generated in the theory, by spontaneous or “inertial” symmetry breaking

[3], then the action should be “diagonalized,” in analogy to diagonalizing the kinetic terms, so that

the contact terms do not appear perturbatively. This mandates a Weyl transformation to a pure

Einstein-Hilbert action which is a unique specification of the theory.

We will be computing potentials that arise from graviton exchange. This will require gauge

fixing, and we will use the standard De Donder gauge in a first pass, following Donoghue, et.al.

[6]. However, we will also find it illuminating to consider a different gauge choice which separates

a traceless metric from it’s trace. The trace metric has a ghost signature, but it uniquely controls

the relevant contact terms associated with the Weyl transformation. Otherwise, both gauges give

the same results, as they must.

We turn presently to a brief discussion of contact terms in general and a toy model that will be

structurally similar to the gravitational case.

A. Contact Interactions

Generally, single particle irreducible (1PI) Feynman diagrams describe perturbative corrections

(or renormalizations) of a Lagrangian based field theory action. On the other hand, reducible

diagrams, those that break into two disconnected diagrams upon cutting a line, are the radiative

effects that one computes from the given action [7]. There is, however, an exception: sometimes

single particle reducible diagrams correspond to “contact term” interactions. These then become

part of the action.

Contact terms arise in a number of phenomena. Diagrammatically they arise when a vertex for

the emission of, e.g., a massless quantum, of momentum qµ, is proportional to q2. This vertex then

cancels the 1/q2 from the propagator when the quantum is exchanged. This q2/q2 cancellation

leads to an effective pointlike operator from an otherwise single-particle reducible diagram.

For example, in electroweak physics a vertex correction by a W -boson to a gluon emission

induces a quark flavor changing operator, e.g., describing s → d+gluon, where s (d) is a strange

(down) quark. This has the form of a local operator:

gκs̄γµT
AdLDνG

Aµν (1)

where GAµν is the color octet gluon field strength and κ ∝ GFermi. This implies a vertex for
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an emitted gluon of 4-momentum q and polarization εAµ, of the form gκs̄γµT
AdLε

Aµ × q2 + ....

However, the gluon propagates, ∼ 1/q2, and couples to a quark current ∼ gεAµq̄γµT
Aq. This

results in a contact term:

g2κ

(
q2

q2

)
s̄γµTAdLq̄γµT

Aq ∼ g2κs̄γµTAdLq̄γµT
Aq (2)

The result is a 4-body local operator which mediates electroweak transitions between, e.g., kaons

and pions [8], also known as “penguin diagrams” [9]. Note the we can rigorously obtain the contact

term result by use of the gluon field equation within the operator of eq.(1),

DνG
Aµν = gq̄γµTAq. (3)

This is justified as operators that vanish by equations of motion, known as “null operators,” will

generally have gauge noninvariant anomalous dimensions and are unphysical [10].

Another example of a contact term occurs in the case of a cosmic axion, described by an os-

cillating classical field, θ(t) = θ0 cos(mat), interacting with a magnetic moment, ~µ(x) · ~B, through

the electromagnetic anomaly κθ(t) ~E · ~B. A static magnetic moment emits a virtual spacelike

photon of momentum (0, ~q). The anomaly absorbs the virtual photon and emits an on-shell pho-

ton of polarization ~ε, inheriting energy ∼ ma from the cosmic axion. The Feynman diagram,

with the exchanged virtual photon, yields an amplitude, ∝ (θ0µ
iεijkq

j)(1/~q 2)(κεk`hq`maεh) ∼

(κθ0ma~q
2/~q 2)~µ · ~ε. The ~q 2 factor then cancels the 1/~q 2 in the photon propagator, resulting

in a contact term which is an induced, parity violating, oscillating electric dipole interaction:

∼ κθ(t)~µ · ~E. This results in cosmic axion induced electric dipole radiation from any magnet,

including an electron [11].

B. Illustrative Toy Model of Contact Terms

In preparation for the analysis of gravitational contact terms we first present a schematic dis-

cussion of a simple toy model that illustrates the emergence of contact terms and is structurally

similar to what we encounter in gravity.2 Consider a single real scalar field φ and operators A and

B, which can be functions of other fields, with the action given by:

S =

∫
1

2
∂φ∂φ−A∂2φ−Bφ (4)

2 Here Lorentz indices have been suppressed and the contraction of indices understood. T̂ refers to the time ordered
product, where T is the trace of the stress tensor.
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A A + B
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FIG. 1: Contact terms in the toy model are generated by diagrams with exchange of φ (dashed). In gravity,

with non-minimal term ∼
∫ √
−gF (φi)R and matter field Lagrangian ∼

∫ √
−gL (φi) then A is replaced

by F (φ) and B is replaced by L(φ), and the dashed line is a graviton propagator.

Here φ has a propagator i
q2

, but the vertex of a diagram involving A has a factor of ∂2 ∼ −q2. This

yields a pointlike interaction, ∼ q2 × i
q2

, in a single particle exchange of φ, and therefore implies

contact terms:

T̂ i

∫
A∂2φ i

∫
Bφ → − i

q2
(
−q2

)
AB = i

∫
AB

1

2
T̂ i

∫
A∂2φ i

∫
A∂2φ → − i

2q2
A2
(
−q2

)2
=

i

2

∫
A∂2A. (5)

This also produces a nonlocal interaction − i
2q2
BB.

Exponentiating these operators we see that we have diagrammatically obtained a local effective

action:

S =

∫
1

2
∂φ∂φ+

1

2
A∂2A+AB + long distance terms (6)

Of course, we can see this straightforwardly by “solving the theory,” by defining a shifted field:

φ = φ′ − 1

∂2
(
∂2A+B

)
(7)

Substituting and integrating by parts, this yields:

S =

∫
1

2
∂φ′∂φ′ +

1

2
A∂2A+AB +

1

2
B

1

∂2
B (8)

An equivalent effective local action that describes both short and large distance is then,

S =

∫
1

2
∂φ∂φ+

1

2
A∂2A+AB −Bφ (9)
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The contact terms have become pointlike components of the effective action, while the long dis-

tance effects are produced by φ exchange. Note that the derivatively coupled operator A has no

long distance interactions due to φ exchange. Moreover, in the effective action of eq.(9) we have

implicitly “integrated out” the A∂2φ, which is no longer part of the action and is replaced by new

operators 1
2A∂

2A+AB. One can also adapt the use of equations of motion to simplify the action

but this requires care. For example, the insertion of the φ equation of motion into A∂2φ correctly

gives the AB term but misses the factor of 1/2 in the A∂2A term.

II. GRAVITATIONAL CONTACT TERMS

We will consider a general theory involving scalar fields φi, an Einstein-Hilbert term and a

non-minimal interaction:

S =

∫ √
−g
(

1

2
M2
PR (gµν) +

1

2
F (φi)R (gµν) + L (φi)

)
. (10)

where we use the metric signature and curvature tensor conventions of [12]. In parallel with the

general discussion we will quote the results for a simple model,

S =

∫ √
−g
(

1

2
M2
PR (gµν) +

1

2
ξφ2R (gµν) +

1

2
gµν∂µφ∂νφ−W (φ)

)
. (11)

The matter lagrangian has the stress tensor and stress tensor trace:

Tµν =
2√
−g

δ

δgµν

∫ √
−gL (φi)

T = gµνTµν (12)

which, in the simple model, take the form,

Tµν = ∂µφ∂νφ− gµν
(

1

2
gρσ∂ρφ∂σφ−W (φ)

)
.

T = −∂σφ∂σφ+ 4W (φ) (13)

This is the usual matter stress tensor and it is conserved by the φ equations of motion to leading

order in 1/M2
P in a linearized gravity approximation, and we can neglect the contribution of the

non-minimal term (S2 below) to the stress tensor conservation at this order.3

3 This is not the “improved stress tensor” of [12], where “improvement terms” are separately explicitly conserved
and come from an assumed conformal non-minimal coupling of φ to gravity, 1

2
ξφ2R, with ξ = 1

6
, and is not relevant

in the present discussion.
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We treat the theory perturbatively, expanding around flat space. Hence we linearize gravity

with a weak field hµυ:

gµυ ≈ ηµυ +
hµυ
MP

, gµυ ≈ ηµυ − hµυ

MP
+O(h2),

√
−g ≈ 1 +

1

2

h

MP
, h = ηµνhµν (14)

The scalar curvature is then:

R = R1 +R2

MPR1 =
(
∂2h − ∂µ∂νhµν

)
M2
PR2 = −3

4
∂ρhµν∂ρhµν −

1

2
hµν∂2hµν −

1

2
hµν∂µ∂νh

+∂ν (hνµ∂ρhµρ)−
1

2
∂ν (hνµ∂µh) + hµν∂ρ

(
∂µh

ρ
ν −

1

2
∂ρhµν

)
+

1

2
∂µh

µρ∂νh
ν
ρ −

1

2
∂µh∂

νhµν +
1

4
∂µh∂

µh (15)

Using this the action is given by S = S1 + S2 + S3 where S1 is the Fierz-Pauli action:

S1 =
1

2
M2
P

∫ √
−gR =

1

2
M2
P

∫ (
R2 +

1

2

h

MP
R1

)
=

1

2

∫
hµν

(
1

4
∂2ηµνηρσ −

1

4
∂2ηµρηνσ −

1

2
∂ρ∂σηµν +

1

2
∂µ∂ρηνσ

)
hρσ (16)

Note that the leading term in the first order expansion 1
2M

2
PR1 is a total divergence and is zero

in the Einstein-Hilbert action. What remains is the Fierz-Pauli action written in a factorized form

h (...)h.

On the other hand the non-minimal interaction, S2, takes the form:

S2 =
1

2

∫ √
−gF (φi)R (gµν) =

∫
1

2MP
F (φi) Πµνhµν (17)

where it is useful to introduce the transverse derivative,

Πµν = ∂2ηµν − ∂µ∂ν . (18)

Finally, S3 is the matter action and coupling to the gravitational weak field:

S3 =

∫
L (φi)−

hµν

2MP
Tµν (19)

Due to the conservation of Tµν and the transverse derivative, the full action S possesses the local

gauge invariance,

δhµν = ∂µAν + ∂νAµ. (20)

Since S2 involves derivatives, the Feynman diagrams involving S2 and S3 will generate contact

terms in the gravitational potential generated by single graviton exchange. This will closely parallel

the toy model.
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A. Graviton Propagator

We are interested in the gravitational potential amongst the operators that comprise S2 and S3.

This is mediated by a single graviton exchange, as in Figure 1, effectively integrating out the S2

term in analogy to the A∂2φ term in the toy model. For this we require the graviton propagator

and, due to the underlying gauge invariance, it is necessary first to gauge-fix.

A conventional choice of gauge is the De Donder gauge:4

∂µh
µν =

1

2
∂νh (21)

which is defined by the condition,

0 = gµνΓλµν =
1

2

(
ηµν∂µh

λ
ν + ηµν∂νh

λ
µ − ∂ληµνhµν

)
. (22)

The De Donder gauge is a member of a one-parameter family of gauges defined by ∂µh
µν = w∂νh,

where w = 1
2 in the De Donder case. In Section IV we discuss an alternative gauge, w = 1

4 , which

is somewhat more transparent for our present application but, of course, yields the same results.

The Fierz-Pauli action in De Donder gauge, by substituting eq.(21) into S1, takes the form:

S1 =
1

2

∫
1

8
hµν (ηµνηρσ − ηµρηνσ − ηνρηµσ) ∂2hρσ =

1

2

∫
hµν

(
1

8
Pµν ρσ

)
∂2hρσ (23)

where,

Pµν ρσ = ηµνηρσ − ηµρηνσ − ηνρηασ (24)

and Pµν ρσ is the spin-2 projection operator.

The inverse of the kinetic term operator is Aµν ρσ, given by:

1

8
(ηµνηαβ − ηµαηνβ − ηµβηνα)Aαβ ρσ = δρσµν

δρσµν =
1

2

(
δρµδ

σ
ν + δρνδ

σ
µ

)
hence, Aµν ρσ = 2Pµν ρσ. (25)

Note that the normalization follows from our choice of scale, ∼ hµν/MP , in the linear gravity

expansion, eq.(14). This gives the propagator in a path integral with action S1:

〈0|T̂ hρσ(x) hµν(y) |0〉 =

∫
Dg eiS1 (hρσ(x)hµν(y)) = iAµν ρσD(x− y) (26)

4 We presently follow the lecture notes of Donoghue et. al., [6], though we differ in normalization; note the corre-
spondence of our normalization to Donoghue’s [6] is κ = 2/MP .
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where

D(x− y) =
1

∂2
=

∫
−1

q2 + iε
eiq·(x−y)

d4q

(2π)4
(27)

is a time ordered scalar field Green’s function satisfying ∂2D(x− y) = δ4(x− y).5 The momentum

space Feynman propagator for gravitons is then,

〈0|T̂ hρσ(q) hαβ(−q) |0〉 =
−i

q2 + iε
Aρσ,αβ . (28)

The procedure of substituting the gauge condition into the action, then inverting, is analogous

in electrodynamics to substituting ∂µA
µ = 0 into the action, which yields the photon propagator

in Feynman gauge, ∼ −igµν/q2. In analogy to using Feynman gauge, we must take care to tie the

graviton propagator, eq(26), onto conserved currents, such as the stress tensor or the transverse

derivative, which then guarantees gauge invariance of a given tree amplitude.

B. Newtonian Potential

Let us first consider the Newtonian potential. This can be computed from a Feynman diagram

for graviton exchange. Equivalently, the action is determined by simply shifting the graviton field.

Using the truncated action:

S =

∫
1

2
hµν

(
1

8
Pµν ρσ

)
∂2hρσ − hµν

2MP
Tµν (29)

we can define a shifted h′ρσ:

hρσ = h′ρσ +
1

2MP

1

∂2
Aµν ρσTµν (30)

Hence,

S =
1

2

∫
h
′µν

(
1

8
Pµν ρσ

)
∂2h′ρσ − 1

2

(
1

2MP

)2 ∫ ∫
d4x d4y Tµν(x)AµνρσD(x− y)T ρσ(y).

(31)

For stationary masses, located at x = 0 and x = r the stress tensor is pure 00,

T 00(x) = m1δ
3(~x) +m2δ

3(~x− ~r). (32)

5 We use the shorthand 1
∂2 f(x) =

∫
D(x− y)f(y)d4y, and 1

∂2∂2 f(x) =
∫
D(x− y)D(y − z)f(z)d4yd4z, etc.
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Insert this into the second term of eq.(31), and note the time integrated stationary Green’s function

becomes, ∫ ∫
d4x d4y δ3(~x) δ3(~y − ~r) D(x− y) =

∫
dt

1

4πr
(33)

and A0000 = −2, which yields the effective action,∫
2

(2M)2
1

4πr
m1m2 dt =

∫
GNm1m2

r
dt (34)

where M2
P = (8πGN )−1 and implies an attractive Newtonian gravitational potential.

The Feynman propagator yields the graviton exchange amplitude in momentum space,

1

2

1

(2MP )2
(i)2

−i
q2 + iε

TµνAµν ρσT
ρσ =

1

4M2
P

−i
q2 + iε

(2T ρσTρσ − TT ) (35)

where T = ηρσTρσ is the trace of the stress tensor. This operator corresponds to the second term

of the action, eq.(31), with the amplitude factor of i (a combinatorial factor of 2 will arise in a

matrix element of this operator in states such as 〈m1m2|...|m1m2〉, and reproduces the potential

of eq.(34)),

C. Contact Terms from Single Graviton Exchange

Here we evaluate the operators in the Feynman diagrams of Figure 1 arising from single graviton

exchange between S2 and S3. In classical background fields, φi, graviton exchange between the

pair 〈S2S3〉 gives:

−i〈S2S3〉 = −i(i2)
∫ ∫

d4y d4x
1

(2MP )2
F (x) (−T ρσ(y))〈0|T̂ Πµνhµν(x) hρσ(y)) |0〉

=

∫ ∫
d4y d4x

1

(2MP )2
F (x) ΠµνAµνρσD(x− y)T ρσ(y) (36)

where we have:

ΠµνAµνρσ = 2∂2ηρσ + 4∂ρ∂σ. (37)

Rearranging and integrating by parts:

− i〈S2S3〉 =

∫ ∫
d4y d4x

F (x)

2M2
P

(
∂2D(x− y)T (y)− 2D(x− y)∂ρ∂σT

ρσ
)

(38)

and we note that ∂ρ∂σT
ρσ vanishes by the conservation of the stress tensor. The first term involving

the trace, T (y), is a contact term arising from ∂2D(x − y) = δ4(x − y). Hence the gravitational

potential generates a contact term interaction in the effective action of the form:∫
d4x

F (φi(x))

2M2
P

T (φi(x)) →
∫
d4x

ξφ2

2M2
P

(−∂µφ∂µφ+ 4W (φ)) (39)
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where we quote the general result and that of the simple model.

Furthermore, we have the exchange of a graviton involving the pair 〈S2S2〉:

−i〈S2S2〉 = −1

2
i
(
i2
) ∫ ∫

d4y d4x
1

(2MP )2
F (x)F (y) 〈0|T̂ Πµνhµν(x) Πρσhρσ(y)|0〉

= −1

2

∫ ∫
d4y d4x

1

4M2
P

F (x) ΠµνAµνρσ ΠρσD(x− y)F (y) . (40)

Note the factor of 1
2 coming from the second order perturbative expansion. Here we have,

ΠµνAµνρσ Πρσ = 6∂2∂2 (41)

leading to the result:

−i〈S2S2〉 = −
∫
d4x

3

4M2
P

F (φi (x)) ∂2F (φi (x)) . (42)

This is the analogy of the 1
2A∂

2A term in the toy model.

In summary the gravitational potential amongst S2 and S3 terms mediated by a single graviton

exchange diagram yields contact terms that are an effective action, SCT , and represents the effect

of integrating out the S2 term:

SCT = −
∫
d4x

3

4M2
P

F (φi) ∂
2F (φi) +

∫
d4x

1

2M2
P

F (φi)T (φi) (43)

In the simple model case, we can rearrange the F∂2F term to obtain,

SCT =

∫
d4x

3ξ2

M2
P

φ2∂φ∂φ+

∫
d4x

ξφ2

2M2
P

(−∂σφ∂σφ+ 4W (φ)) (44)

Note the sign of the F∂2F is opposite (repulsive) to that of the toy model, a point that we will

clarify below.

III. WEYL TRANSFORMATION

In the previous section we directly evaluated the effective action by calculating a single graviton

exchange potential and separating the contact terms, which must be interpreted as parts of the

effective action. There is, however, another route, which is to perform a Weyl transformation.

We can define:

gµν(x) = Ω−2g′µν(x), gµν(x) = Ω2gµν
′
(x),

√
−g =

√
−g′Ω−4 (45)

and use:

R(Ω−2g′) = Ω2R(g) + 6Ω3D∂Ω−1

L (gµν(x), φi(x)) = L
(
Ω−2g′µν(x), φi(x)

)
(46)
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With the choice Ω2 =
(

1 + F (φi)
M2

P

)
we have:

S ≡
∫ √

−g
(

1

2
M2
PR (gµν) +

1

2
F (φi)R (gµν) + L (φi)

)
→
∫ √

−g′(1

2
M2
PR
(
g′µν
)

+ 6ΩD∂Ω−1 + Ω−4L
(
Ω−2g′µν(x), φi(x)

)
) (47)

and we obtain:

S =

∫ √
−g′(1

2
M2
PR
(
g′µν
)
− 3M2

P∂µ

(
1 +

F (φi)

M2
P

)+1/2

∂µ
(

1 +
F (φi)

M2
P

)−1/2
+

(
1 +

F

M2
P

)−1 1

2
gµν∂µφ∂νφ−

(
1 +

F (φi)

M2
P

)−2
W (φ, χ)) (48)

Keeping terms to O( 1
M2

P
) and integrating by parts we have:

S = S1 +

∫ (
L (φi(x))− 3F (φi) ∂

2F (φi)

4M2
P

+
F (φi)T (φi)

2M2
P

)
(49)

The Weyl transformed action is identically consistent with the contact terms of eq.(43) above, to

first order in 1/M2
P .

Hence, contact terms arise in gravity with non-minimal couplings to scalar fields due to graviton

exchange. Their form is equivalent to a Weyl redefinition of the theory to one with a pure Einstein-

Hilbert action and reinforces their role as induced components of the effective action. Hence

working in any theory with a non-minimal interaction ∼ F (φ)R will lead to these contact terms

at order 1/M2
P . The contact terms can be avoided in perturbation theory by going to the pure

Einstein-Hilbert action with a Weyl tranformation.

The Weyl transformation is nonperturbative. It is technically simpler than the gravitational

potential calculation, and it confirms the tricky normalization factors and phases in the graviton

exchange calculation. As the Weyl transformation makes no reference to a gauge choice, a calcu-

lation of the the contact terms in other gauges should yield the equivalent results. To check the

invariance we turn now to a calculation in an alternative gauge which sheds further light on the

origin of their structure.

IV. ANOTHER GAUGE

Presently we will choose a gauge that will more clearly show what is going on in the contact

term equivalence with Weyl transformations. In particular, we obtained a negative sign for the

analogy to the positive sign A∂2A of the toy model, which becomes clear in the present gauge

choice.
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We begin by defining traceless and trace fields for the weak field metric:

sµν = hµν −
1

4
ηµνh tµν =

1

4
ηµνh = ηµνt (50)

hence hµν = sµν + ηµνt and h = 4t. The Fierz-Pauli action and non-minimal terms in these

variables become,

S1 =
1

2

∫
3

2
t∂2t− 1

4
sµν∂2sµν +

1

2
sµν∂µ∂

ρsρσ − 3t∂µ∂νs
µν

S2 =

∫
1

MP
F (φ)

(
3∂2t − ∂λ∂βsλβ

)
(51)

The coupling to gravity is:

− hµν

2MP
Tµν = − sµν

2MP
Tµν −

t

2MP
T (52)

Note that t can be viewed as a small shift in the trace of the metric; 4δt = δh, and δs = 0 and it

therefore exclusively couples to the trace of the matter field stress tensor.

Under a gauge transformation we have:

δsµν = ∂µAν + ∂νAµ −
1

2
ηµν∂ρA

ρ

δtµν =
1

2
ηµν∂ρA

ρ (53)

Things simplify considerably if we can impose the gauge condition,

∂µsµν = 0. (54)

Note that this is different from the condition ∂µhµν = 0 owing to the tracelessness of sµν . However,

with ∂µsµν = 0 we see that sµν exclusively contains the propagating modes of gravitational waves.

For a gravitational wave propagating in the z−direction in empty space the modes are hxy = sxy

and hxx − hyy = sxx − syy and t = 0.

Indeed, we can find a gauge transformation to fix ∂µsµν = 0. Given any arbitrary configuration

s0µν and t0µν we can choose,

∂µsµν = ∂µs0µν + ∂2Aν +
1

2
∂ν (∂ ·A) = 0 (55)

and we find (see footnote 5):

Aν = − 1

∂2
∂µs0µν +

1

3

∂ν∂
ρ

∂2∂2
∂µs0µρ (56)

Verifying we see that,

∂µsµν = ∂µs0µν + ∂2
(
− 1

∂2
∂µs0µν +

1

3

∂ν∂
ρ

∂2∂2
∂µs0µρ

)
− 1

3

∂ν∂
ρ

∂2
∂µs0µρ = 0 (57)
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Note that the gauge transformation also preserves the traceless of sµν as,

δηµνsµν = 2∂νAν − 4× 1

2
∂ρA

ρ = 0 (58)

Under this transformation we also redefine t:

tµν = t0µν +
1

2
ηµν∂ ·A = t0µν −

1

3
ηµν

1

∂2
∂ρ∂σs0ρσ (59)

We remark that this gauge choice is one of a single parameter, w, family of gauge choices,

∂µh
µν = w∂νh (60)

The De Donder gauge corresponds to w = 1
2 while the present gauge choice, ∂µs

µν = 0, corresponds

to w = 1
4 .

In the w = 1
4 gauge the Fierz Pauli action simplifies to:

S1 =
1

2

∫ (
−3

2
∂t∂t+

1

4
∂sµν∂sµν

)
=

1

2

∫ (
3

2
t∂2t− 1

8
sαβ (ηραησβ + ησαηρβ) ∂2sρσ

)
. (61)

The inverse of the kinetic term tensor is then,

−1

8
(ηµαηνβ + ηµβηνα)Bαβ ρσ =

1

2

(
δρµδ

σ
ν + δρνδ

σ
µ

)
Bαβ ρσ = −2

(
ηαρηβσ + ηβρηασ

)
(62)

The propagator for sρσ is now,

〈0|T̂ sρσ sαβ |0〉 =
−i

q2 + iε
Bρσ,αβ (63)

The gauge invariance of amplitudes is controlled by the conserved traceless tensors on the vertices.

Hence, we must explicitly ensure that sµν couples to conserved and traceless tensors only. Note

that any conserved field sµν can be made traceless, and maintain conservation, by applying the

projection,

sµν → sµν −
1

3

(
ηµν −

∂ν∂µ
∂2

)
ηρσsρσ. (64)

Applying this to the energy momentum tensor the appropriate sµν coupling to a conserved and

traceless stress tensor is given by,

− sµν

2MP
T̃µν −

t

2MP
T where T̃µν = Tµν −

1

3

(
ηµνT −

∂ν∂µ
∂2

T

)
. (65)
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We now repeat our calculation of the gravitational potential in this gauge. From the exchange

of the sµν field with the momentum space projection operator on the vertices,

T̃µν = Tµν −
1

3

(
ηµν −

qµqν
q2

)
T (66)

we have the amplitude,

1

2

(
1

2MP

)2 −i(i)2

q2 + iε
T̃ ρσ (Bρσαβ) T̃αβ =

−i
q2 + iε

(
1

2MP

)2(
2T ρσTρσ −

2

3
TT

)
(67)

The exchange of the t field which, c.f. eq(61), has a noncanonical, and wrong sign for a scalar.

normalization and yields,

−i
q2 + iε

(i)2
1

3

(
1

2MP

)2

TT (68)

and the sum of the s and t contributions is:

−i
q2 + iε

(
1

2MP

)2

(2T ρσTρσ − TT ) (69)

as obtained previously in the De Donder gauge. The repulsive scalar term, owing to the wrong sign

kinetic term of t, is absorbed into the full gauge invariant result, and this reduces back to the De

Donder gauge result which yields the Newtonian gravitational potential. We therefore see explicitly

that in two different gauges, w = 1
2 (De Donder) and w = 1

4 (∂µs
µν = 0 and ηµνs

µν = 0) the physical

results are equivalent. These are the two most interesting cases due to the simplifications detailed

above.

From eq.(61) we see that the field t is a ghost, however it is not produced radiatively. If we

consider F (φi) = 0, then the equation of motion of t is 3∂2t = 2
MP

T (φi) . However, we can always

write T (φi) as a divergence of a current (the local scale or Weyl current, ∂µKµ = T [13]) and

therefore 3∂µt = 2
MP

Kµ and t is coupled in first order to the Weyl current and becomes a “tracker

solution,” t =
∫ x 2

3MP
Kµdz

µ. There is no radiative wave, however there will be, e.g., cosmological

solutions where t describes an expanding or shrinking universe.

However, the ghost field t propagates off shell and will produce a contact interaction. In this

w = 1
4 gauge the non-minimal term now depends only upon the trace field t:

1

2

∫ √
−gFR =

∫
3

2MP
F∂2t (70)

Consider the t part of the action,

St =
1

2

∫
−3

2
∂µt∂

µt+
3F

2MP
∂2

t

MP
− t

2MP
T. (71)
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We define a normalized field, χ, by,

t = Zχ
3

4
Z2 =

1

2
Z =

√
2

3
(72)

and,

Sχ =

∫
1

2
χ∂2χ+

√
3

2

F

MP
∂2

χ

MP
− χ

2MP

√
2

3
T (73)

We see we essentially have the toy model action of eq(4) but with the ghost sign for the χ kinetic

term. We can solve by shifting χ:

χ = χ′ −
√

3

2

F

MP
+

1

∂2

√
2

3

1

2MP
T (74)

to obtain the contact terms,

S →
∫
−1

2
∂χ′∂χ′ +

3

4MP
F∂2F − F

2MP
T − 1

6M2
P

T
1

∂2
T. (75)

where the large distance piece was computed above and combines with the s exchange to give the

usual Newtonian potential. Restoring the original normalization the effective action is therefore:

S =

∫
−3

2
∂t∂t+

1

4
∂sµν∂sµν −

3F∂2F

4M2
P

+
FT

2M2
P

+ L(s, φi)−
t

2MP
T (φi)−

sµν

2MP
T̃µν (76)

The contact terms are the same as those found in eq(43) in the De Donder gauge, demonstrating

their gauge invariance as expected from the Weyl transformation structure.

V. CONCLUSIONS

We have provided some insight into the physical meaning and equivalence of actions related

by a Weyl transformation. Our analysis confirms that contact term effects are operant and that

Weyl equivalent representations with non-minimal terms yield explicitly equivalent physics to a

pure minimal Einstein-Hilbert form.

The Weyl transformation to the minimal Einstein-Hilbert form is, in a sense, inevitable. If one

didn’t know about the Weyl transformation one would discover it in the induced contact terms

in the single graviton exchange potential involving non-minimal couplings. However the Weyl

transformation is more powerful as it is fully non-perturbative. Technically it provides a powerful

check on the normalization and implementation of the graviton propagators in various gauges,

which can otherwise be somewhat confusing.

The non-minimal form of the action is incomplete without including the contact terms into the

action. The theory then becomes identical to the Weyl transformed form with a pure minimal
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Einstein-Hilbert action. This implies that there are pitfalls in directly interpreting the physics in

the non-minimal form since the contact terms must be included.

The minimal Einstein-Hilbert action is special and does not generate these contact terms. In a

sense, by going to the minimal Einstein-Hilbert form we are diagonalizing the graviton derivative

terms throught the action. Our analysis required an Einstein-Hilbert term with a Planck mass and

we expand perturbatively in inverse powers of M2
P . A Weyl invariant theory, where MP = 0, is

nonperturbative and our analysis is then inapplicable. Indeed, there is no conventional gravity in

this limit since the graviton kinetic term does not then exist. In this sense we view the formation

of the Planck mass by, e.g., inertial symmetry breaking, as a dynamical phase transition, similar

to a disorder-order phase transition in a material medium [13].

As an exploration of the gauge invariance of our result we have shown explicitly that, instead

of the w = 1/2, De Donder gauge, we can use the w = 1/4, ∂µs
µν = 0 gauge employing a traceless

sµν = hµν − 1
4ηµνh metric together with a separate trace field, t. A gauge transformation exists

that takes arbitrary s and t to the ∂µs
µν = 0 gauge. Then we find that t exclusively controls the

non-minimal term and the contact interations. t has a wrong sign (ghost) kinetic term, however it

is not produced as a propagating, on shell gravitational wave. It nonetheless appears virtually and,

together with sµν , produces the Newtonian potential and the equivalent contact terms as obtained

in De Donder gauge.
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