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Abstract: Electroweak baryogenesis is an attractive mechanism to generate the baryon

asymmetry of the Universe via a strong first order electroweak phase transition. We com-

pare the phase transition patterns suggested by the vacuum structure at the critical tem-

peratures, at which local minima are degenerate, with those obtained from computing

the probability for nucleation via tunneling through the barrier separating local minima.

Heuristically, nucleation becomes difficult if the barrier between the local minima is too

high, or if the distance (in field space) between the minima is too large. As an exam-

ple of a model exhibiting such behavior, we study the Next-to-Minimal Supersymmetric

Standard Model, whose scalar sector contains two SU(2) doublets and one gauge singlet.

We find that the calculation of the nucleation probabilities prefers different regions of pa-

rameter space for a strong first order electroweak phase transition than the calculation

based solely on the critical temperatures. Our results demonstrate that analyzing only

the vacuum structure via the critical temperatures can provide a misleading picture of the

phase transition patterns, and, in turn, of the parameter space suitable for electroweak

baryogenesis.
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1 Introduction

Cosmological observations suggest that our Universe has a large dark energy component,

and that its matter component is dominated by an unknown form of dark matter [1]. Only

5 % of the energy budget of the Universe consist of the particles of the Standard Model

(SM), mainly its baryons. Extensive tests at particle accelerators and other laboratory

experiments have found no (unambiguous) deviations from the SM predictions. However,

whereas the SM accurately describes the behavior of the particles making up the ordinary

matter, it fails to give an explanation of how they came to be.

Under the assumption that particles and anti-particles are produced in equal number

in the early Universe, the SM predicts that they would have long annihilated each other

without leaving any remnant matter today. As first enunciated by Sakharov [2], producing

a baryon asymmetry, i.e. more matter than anti-matter, requires baryon number violation,

C and CP violation, and out-of-equilibrium processes to all occur at the same time. The SM

does provide for C, CP, and baryon number violation through the electroweak interactions

and sphalerons, respectively. The Electroweak Phase Transition (EWPT), however, is a

smooth crossover in the SM and, thus, is not giving rise to sufficient deviations from thermal

equilibrium [3]. In addition, the amount of C and CP violation in the SM is too small to
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generate the observed baryon asymmetry [4] even if the EWPT were to provide out of

equilibrium conditions.

In order to generate the observed baryon asymmetry, sources of CP violation and

out-of-equilibrium processes beyond those found in the SM must be realized in nature.

One interesting possibility to achieve the latter is via a Strong First Order Electroweak

Phase Transition (SFOEWPT), yielding promising conditions for electroweak baryogenesis.

Accommodating a SFOEWPT demands modifications of the Higgs potential. Such modifi-

cations may be induced predominantly by thermal effects, as it happens e.g. in the Minimal

Supersymmetric extension of the Standard Model (MSSM) [5–11], or by zero-temperature

effects that have a lasting consequence after thermal effects are taken into account. The

latter situation naturally occurs in models of new physics containing additional light scalar

particles with sizable couplings to the Higgs.

To study the phase transition patterns of models with extended Higgs sectors, most

previous works solely rely on analyses of the temperature-dependent vacuum structure via

the computation of the critical temperature, Tc, at which two (distinct) local minima of the

effective potential become degenerate. While the critical temperature is indicative of the

thermal history since it is the temperature at which the role of the global minimum passes

from one vacuum phase to another, this calculation does not account for the probability

of the associated phase transition actually taking place. First order phase transitions

proceed via bubble nucleation, and the probability of the system transitioning from the

false vacuum to the (new) true vacuum is computed via the bounce action, the Euclidean

space-time integral over the effective Lagrangian, see, e.g., ref. [12] for a review.

Heuristically, bubble nucleation becomes difficult if the barrier separating two local

minima becomes too high, or if the distance (in field space) separating the minima is too

large. These conditions occur most readily if multiple scalar fields participate in the phase

transition. For the EWPT, the possibility of a SM gauge singlet field participating in

the phase transition is particularly interesting. While electroweak precision data tightly

constrains the couplings and vacuum expectation values (vevs) of any fields charged under

the electroweak symmetry, such constraints do not apply to gauge singlets. Since its

couplings are free parameters, a gauge singlet field can radically alter the shape of the

effective potential, enabling a SFOEWPT. On the other hand, a gauge singlet may induce

large barriers separating local minima and acquire a large vev during the EWPT, increasing

the distance between the local minima and reducing the nucleation probability. Therefore,

a careful analysis of these effects is necessary in order to determine the region of parameter

space leading to a successful SFOEWPT.

The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) [13,

14] is a well-motivated example of physics beyond the SM that may solve the hierarchy

problem of the electroweak scale [15–19] and provide a dark matter candidate [20–30]. Its

scalar sector contains a (complex) gauge singlet and two SU(2) doublets, thus, it is well-

suited for a case study of the comparison of the phase transition patterns suggested by the

critical temperature calculation and those obtained from calculating the nucleation prob-

abilities. Moreover, the NMSSM provides a range of possibilities for C and CP violation

beyond what is found in the SM. For example, CP violation can occur in the Higgs sector,
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or between the superpartners of the SM particles. Assuming the latter, CP violation in

the Higgs sector is induced only via (small) quantum corrections, and one can study the

EWPT in the CP-conserving limit of the scalar potential.

The EWPT in the NMSSM has been studied previously in the literature. To the

best of our knowledge, Pietroni [31] was the first to consider electroweak baryogenesis in

the NMSSM, noting that the dimensionful coupling of the singlet to the Higgs doublets,

Aλ, allows for shapes of the scalar potential suitable for a SFOEWPT at tree level. This

is to be contrasted with the situation in the MSSM, where a barrier between the trivial

and the physical minimum necessary for a SFOEWPT arises only from thermal effects.

Subsequent work on the EWPT in the NMSSM includes refs. [32–45], and work on closely

related models can be found in refs. [46, 47]. Many of these papers focused on numerical

scans of the NMSSM parameter space, aiming at identifying regions of parameter space

suitable for realizing a SFOEWPT. Analytic studies have been carried out in refs. [31, 34–

36, 38, 39]. A common idea in these works was to use parameters shaping the potential in

the singlet-only direction to characterize the EWPT.

In the NMSSM, in general, there are ten degrees of freedom in the Higgs sector.

In practice it suffices to consider the three-dimensional subspace spanned by the CP-even

neutral scalar degrees of freedom. Nevertheless, computing the bounce action in this three-

dimensional field space is still numerically expensive, and, until now, results for the phase

transition based on the nucleation calculation have only been presented for a few benchmark

points in parameter space, see, e.g., refs. [33, 36, 40, 43, 45]. These studies mainly reported

small-to-moderate supercooling, i.e. nucleation temperatures not much smaller than the

corresponding critical temperatures for their benchmark points. More importantly, the

thermal histories indicated by the critical temperatures agree with the ones obtained by

the nucleation calculation. The notable exception is the recent work of Athron et al. [45],

where results for the nucleation temperatures of four benchmark points were presented:

For two of those four points, the authors reported small-to-moderate supercooling, while

for the two remaining points the authors found that the nucleation condition could not

be satisfied and, hence, the transition pattern indicated by the calculation of the critical

temperatures was not a good indicator of the thermal history.

In this work, we present results for the EWPT in the NMSSM based on the nucleation

calculation for a broad scan of the parameter space. We use CosmoTransitions [48] for the

calculation of the bounce action, and support our results with analytic studies. We focus on

the region of parameter space where alignment-without-decoupling is realized in the Higgs

sector, and on small-to-moderate values of tan β, the ratio of the vevs of the scalar SU(2)

doublets. This is motivated by the phenomenology of the 125 GeV Higgs boson observed

at the Large Hadron Collider (LHC). In the NMSSM, a mass of 125 GeV of the SM-like

Higgs boson can be achieved in the low-to-moderate tan β . 5 regime without the need

for large radiative corrections. The couplings of this state to SM particles are SM-like if it

is (approximately) aligned with the interaction eigenstate that couples like the SM Higgs

boson to other SM particles. In the NMSSM, there are two ways to achieve such alignment:

i) the decoupling limit, that requires the non-SM-like interaction eigenstates to have masses

much larger than the SM-like interaction state, and ii) the alignment-without-decoupling
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limit, where the parameters of the theory conspire to suppress the mixing of the SM-like

interaction state with the non-SM-like interaction states [49]. The latter is of particular

interest for realizing a SFOEWPT in the NMSSM: in the alignment-without-decoupling

limit the non-SM-like states can have masses comparable to that of the SM-like Higgs

boson, and hence, they can easily alter the shape of the scalar potential in ways relevant

for the EWPT.

The null-results from searches for superpartners at the LHC suggests that the squarks

and gluinos are heavy and decoupled from the EWPT. We use an effective field theory

approach, integrating out all superpartners except for the neutralinos and charginos. This

leaves the full SM particle content, an augmented scalar sector consisting of two SU(2)

doublets and a complex singlet, and the electroweakinos (composed of the superpartners

of the photon, the Z- and W -bosons, the two Higgs doublets, and the scalar singlet) as

dynamical degrees of freedom; similar approaches have been taken in refs. [40, 45, 47]. In

order to maintain the location of the physical minimum in field space, the mass of the SM-

like Higgs boson, and the alignment of the singlet-like and SM-like interaction eigenstates

after including the radiative corrections to the effective potential from these remaining

dynamical degrees of freedom, we add a set of (finite) counterterms, see refs. [41–43] for

similar schemes.

The outline of our work is as follows: We begin by discussing the scalar sector of

the NMSSM in section 2. In section 2.1 we discuss the radiative corrections to the scalar

sector of the NMSSM, and in section 2.2, the thermal corrections. After analyzing the zero-

temperature vacuum structure of the NMSSM in section 2.3, we discuss the phase transition

behavior of the NMSSM in section 2.4, in particular, we identify the relevant characteristics

of the transition patterns for a SFOEWPT, and develop some analytical intuition for the

regions of parameter space where phase transitions can successfully nucleate. In section 3,

we present our numerical results. In section 3.1 we study the region of parameters in

which the proper physical minimum is obtained. We compare the results for the phase

transitions obtained from the nucleation calculation with the transition patterns suggested

by the critical temperature analysis in section 3.2. In section 3.3 we comment on the

collider and dark matter phenomenology in the region of parameter space where we find

SFOEWPTs. We summarize and present our conclusions in section 4. Explicit formulae

for the field-dependent masses, the finite temperature corrections to the masses, and the

equations we use to fix the counterterms are listed in appendices A, B, and C, respectively.

Let us here already highlight our main result: We find that the phase transition pat-

terns of given parameter points vary substantially between the critical temperature analysis

and the nucleation calculation. Thus, calculating only critical temperatures is not enough

to identify the regions of parameter space favorable for electroweak baryogenesis.

2 The Next-to-Minimal Supersymmetric Standard Model

The Next-to-Minimal Supersymmetric Standard Model augments the particle content of

the MSSM by a SM gauge-singlet chiral superfield Ŝ, see refs. [13, 14] for reviews. The

best-studied version of the NMSSM is the Z3-NMSSM. In this model, an additional discrete

– 4 –



symmetry is imposed, under which all left-handed chiral superfields transform as Φ̂ →
e2πi/3Φ̂ and all gauge superfields transform trivially. An interesting consequence of the Z3

symmetry is that it renders the superpotential of the NMSSM scale invariant; in particular

the Higgsino mass parameter µ arises from the vacuum expectation value (vev) of the

scalar component of the singlet superfield, S. Thus, the NMSSM alleviates the MSSM’s

µ-problem.

Of greater phenomenological interest is that the NMSSM can accommodate a 125 GeV

SM-like Higgs boson without the need for large radiative corrections to its mass. Further-

more, the presence of the scalar gauge singlet makes a SFOEWPT easily achievable in the

NMSSM [31–45, 47, 50]. This should be contrasted with the situation in the MSSM, where,

in the presence of a 125 GeV SM-like Higgs, the scalar potential is constrained such that a

SFOEWPT is only possible if the stops are very light [5–11]. Such stops have been virtu-

ally ruled out by the LHC, not only via direct searches but also by the fact that such light

stops would lead to a variation of the Higgs production cross section and decay branching

ratios that are in conflict with current Higgs precision measurement data [51–57]. This

places severe pressure on the possibility of electroweak baryogenesis in the MSSM. In the

NMSSM, the presence of the singlet S, the bosonic component of Ŝ, allows for radically

different shapes of the scalar potential, which make a SFOEWPT possible in the NMSSM

without the need for light stops.

The superpotential of the Z3-NMSSM is given by

W = λŜĤu · Ĥd +
κ

3
Ŝ3 +WYuk , (2.1)

where λ and κ are dimensionless parameters that can be chosen manifestly real in the CP-

conserving case. The superfields Ĥd =
(
Ĥ0
d , Ĥ

−
d

)T
and Ĥu =

(
Ĥ+
u , Ĥ

0
u

)T
are the usual

SU(2)-doublet Higgs superfields, we use a dot-notation for SU(2) products

Ĥu · Ĥd = Ĥ+
u Ĥ

−
d − Ĥ0

uĤ
0
d , (2.2)

and WYuk indicates the Yukawa terms which are identical to those in the MSSM [58].

Including F -, D- and soft SUSY-breaking terms, the scalar potential reads

V0 = m2
Hd
|Hd|2 +m2

Hu |Hu|2 +m2
S |S|2 + λ2 |S|2

(
|Hd|2 + |Hu|2

)
+
∣∣λHu ·Hd + κS2

∣∣2
+
(
λAλSHu ·Hd +

κ

3
AκS

3 + h.c.
)

+
g2

1 + g2
2

8

(
|Hd|2 − |Hu|2

)2
+
g2

2

2

∣∣∣H†dHu

∣∣∣2 ,

(2.3)

where m2
i and Ai are soft SUSY-breaking parameters of dimension mass-squared and mass,

respectively, and g1 and g2 are the U(1)Y and SU(2)L gauge couplings.

The Higgs fields have large couplings amongst themselves, to the electroweak gauge

bosons, and to third generation (s)fermions. These couplings lead to sizable radiative

corrections to V0, to which we return in section 2.1. However, many of the properties of

the scalar potential can already be seen from the tree level potential, eq. (2.3).

In order to be compatible with phenomenology, the NMSSM must preserve charge.

While in the MSSM the scalar potential is sufficiently constrained to make charge-breaking
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minima very rare (see, e.g., ref. [59]), the additional freedom of the NMSSM’s scalar po-

tential makes such minima a much larger problem. However, ref. [60] demonstrated nu-

merically that, while charge-breaking minima may be present in the NMSSM, they are

virtually always accompanied by additional charge-conserving minima, and the tunneling

rate from the metastable physical minimum to these charge-conserving minima is larger

than to the charge-breaking minima. Hence, we can neglect such charge-breaking minima;

in the following we will assume that for all phenomenologically relevant vacua the vevs can

be rotated to have the form

〈Hd〉 =

(
vd
0

)
, 〈Hu〉 =

(
0

vu

)
, 〈S〉 = vS , (2.4)

breaking SU(2)L×U(1)Y → U(1)em. Without loss of generality, one can furthermore take

all vevs to be real-valued: While the Z3-NMSSM does allow for stationary points in the

scalar potential which spontaneously break CP, at tree level such points are either saddle

points or local maxima [61]. In summary, it suffices to allow the neutral real components

of Hd, Hu, and S to take non-trivial vevs1 when studying the vacuum structure of the

NMSSM. This reduction from a ten-dimensional to a three-dimensional field space makes

the task considerably more tractable.

In order to ensure that the scalar potential has a stationary point at the physical

minimum, we use the minimization conditions

∂V

∂Hd

∣∣∣∣Hd=vd
Hu=vu
S=vS

=
∂V

∂Hu

∣∣∣∣Hd=vd
Hu=vu
S=vS

=
∂V

∂S

∣∣∣∣Hd=vd
Hu=vu
S=vS

= 0 , (2.5)

replacing the squared mass parameters m2
Hd

, m2
Hu

, and m2
S with the vevs vd, vu, and vS in

eq. (2.3). In practice, it is convenient to re-parameterize the vevs,

v ≡
√
v2
d + v2

u , tanβ ≡ vu/vd , µ ≡ λvS . (2.6)

The observed mass of the electroweak gauge bosons is reproduced by fixing v = 174 GeV,

removing one of the NMSSM’s free parameters.

In order to account for the constraints on the NMSSM imposed by the SM-like cou-

plings of the observed 125 GeV Higgs boson, it is useful to write the Higgs fields in the

extended Higgs basis [49, 62–68]2

Hd =

(
1√
2

(
cβH

SM − sβHNSM
)

+ i√
2

(
−cβG0 + sβA

NSM
)

−cβG− + sβH
−

)
, (2.7)

Hu =

(
sβG

+ + cβH
+

1√
2

(
sβH

SM + cβH
NSM

)
+ i√

2

(
sβG

0 + cβA
NSM

)) , (2.8)

S =
1√
2

(
HS + iAS

)
. (2.9)

1Observe that in general the sfermions can get non-trivial vevs as well, potentially giving rise to charge

and/or color breaking vacua. We will not entertain this possibility further in this work.
2Note, that there are different conventions in the literature for the Higgs basis differing by an overall

sign of HNSM and ANSM.
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HSM, HNSM, and HS are the three neutral CP-even interaction states of the Higgs basis,

ANSM and AS are the CP-odd states, and H± is the charged Higgs. The neutral and

charged Goldstone modes are denoted by G0 and G±, respectively, and we used a shorthand

notation

sβ ≡ sinβ , cβ ≡ cosβ . (2.10)

In this basis, the couplings to pairs of SM particles take a particularly simple form.

Focusing on the CP-even states, the couplings to pairs of down-type and up-type fermions

and pairs of vector bosons (VV) are

HSM(down, up ,VV) = (gSM, gSM, gSM) , (2.11)

HNSM(down, up ,VV) = (−gSM tanβ, gSM/ tanβ, 0) , (2.12)

HS(down, up ,VV) = (0, 0, 0) , (2.13)

where gSM is the corresponding coupling of the SM Higgs boson to pairs of such particles.

Thus, HSM has the same couplings to pairs of SM particles as the SM Higgs boson. Fur-

thermore, HSM is the only Higgs boson which couples to pairs of vector bosons. HNSM

has tanβ enhanced (suppressed) couplings to pairs of down-type (up-type) SM fermions,

and HS does not couple to pairs of SM particles. Note that at the physical minimum, only

〈HSM〉 =
√

2v and 〈HS〉 =
√

2vS take non-trivial vevs, while 〈HNSM〉 = 0.

The interaction states mix into mass eigenstates. We denote the CP-even mass eigen-

states as {h125, H, hS}, where h125 is identified with the 125 GeV state observed at the

LHC, H is the non-SM-like state with the largest HNSM component, and hS the state with

the largest HS component. Similarly, the CP-odd interaction states ANSM and AS mix into

two mass eigenstates, which we denote as A and aS .

In order to ensure compatibility with the observed Higgs boson phenomenology, the

h125 state must be dominantly composed of HSM. Denoting the squared mass matrix

for the CP even states as M2
S in the basis

{
HSM, HNSM, HS

}
, the tree-level mass of the

SM-like state is given by

m2
h125
'M2

S,11 = m2
Z cos2(2β) + λ2v2 sin2(2β) , (2.14)

where m2
Z = v2

(
g2

1 + g2
2

)
/2 is the Z-boson mass. While mh125 receives sizable radiative

corrections via the stops, see section 2.1, it is interesting to note that the term proportional

to λ2v2 allows one to obtain mh125 = 125 GeV already at tree level for small values of

tanβ . 3 if λ takes values 0.7 . λ . 1. Thus, there is no need for large radiative corrections

to the mass of the SM-like Higgs, i.e. no need for heavy stops, in the NMSSM. Including

moderate corrections from the stops, the required value for the mass of the SM-like Higgs

boson is obtained for 0.6 . λ . 0.8 in the small-to-moderate tan β . 5 regime.

In order to ensure that the mass eigenstate h125 is dominantly composed of HSM, the

mixing angles of HNSM and HS with HSM must be suppressed. The mixing of HSM with

HNSM is suppressed if ∣∣M2
S,12

∣∣� ∣∣M2
S,22 −M2

S,11

∣∣ , (2.15)
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and similarly, the mixing of HSM with HS is suppressed if∣∣M2
S,13

∣∣� ∣∣M2
S,33 −M2

S,11

∣∣ . (2.16)

Here, the M2
S,ij again are the entries of the squared mass matrix for the CP-even states

in the basis
{
HSM, HNSM, HS

}
. There are two possibilities to achieve such (approximate)

alignment of h125 with HSM: either, the entries of the squared mass matrix corresponding

to such mixing are small, or, the right hand sides of eqs. (2.15) and (2.16) become large.

The latter option is the so-called decoupling limit. Realizing alignment in this way implies

{mH ,mhS} � mh125 . As we will see below, a relatively light singlet-like state gives the

scalar potential a favorable shape for SFOEWPT. Thus, the former option, the so-called

alignment without decoupling limit, is more interesting for electroweak baryogenesis.

At tree-level, alignment between the two states originating from the Higgs doublets,

eq. (2.15), is achieved for

M2
S,12 = −

(
m2
Z − λ2v2

)
sin(2β) cos(2β)→ 0 . (2.17)

It is convenient to instead rewrite this condition as

M2
S,12 =

1

tanβ

[
M2

S,11 −m2
Z cos(2β)− 2λ2v2 sin2 β

]
→ 0 , (2.18)

because this form is robust against radiative corrections [49]. Identifying M2
S,11 = m2

h125
,

one obtains the alignment condition

λ2 =
m2
h125
−m2

Z cos(2β)

2v2 sin2 β
. (2.19)

For small to moderate values of tan β, this condition yields 0.6 . λ . 0.7. It is interesting

to note that, for moderate values of tan β . 5, this range of λ coincides with the range for

which one obtains mh125 = 125 GeV without the need for large radiative corrections.

Suppressing the mixing of HSM with HS, eq. (2.16), yields a second alignment condition

from demanding M2
S,13 → 0, namely

M2
A =

4µ2

sin2(2β)

(
1− κ

2λ
sin 2β

)
, (2.20)

where we introduced the parameter

M2
A =

2µ

sin 2β

(
Aλ +

κµ

λ

)
. (2.21)

M2
A is the (squared) mass parameter of ANSM and controls the mass scale of the mostly

doublet-like CP-even and CP-odd mass eigenstates as well as the mass scale of the charged

Higgs boson. The alignment condition eq. (2.20) gives rise to a mass spectrum where, pro-

vided κ < λ, the doublet-like mass eigenstates have approximate masses mH ,mA,mH± ∼
2µ/ sin 2β [69, 70].

In the remainder of this work, we will consider the NMSSM in the alignment limit,

choosing parameters to satisfy eqs. (2.19) and (2.20). While current data [71, 72] allow for
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some deviation from perfect alignment, the phenomenological impact of such departures

on the EWPT in the NMSSM is small. Note also that in refs. [69, 70] it was demonstrated

that, in random parameter scans where the alignment conditions are not a priori enforced,

requiring compatibility with the phenomenology of the observed 125 GeV Higgs boson

selects the region of parameter space where eqs. (2.19) and (2.20) are (approximately)

satisfied.

The NMSSM parameter space is constrained by a number of additional arguments. Let

us briefly discuss two of them here, while we derive constraints arising from the stability

of the electroweak vacuum in section 2.3. It is well known, that large values of the dimen-

sionless parameters λ and κ lead to Landau poles. Avoiding the appearance of Landau

poles below the GUT scale [QGUT ∼ O(1016) GeV] entails constraining the values of the

NMSSM’s couplings, at the electroweak scale, to [14]√
λ2 + κ2 . 0.7 . (2.22)

As discussed above, both the SM-like nature of the observed Higgs boson and its mass value

lead to a preference of sizable values of 0.6 . λ . 0.7 in the NMSSM. Hence, avoiding

Landau poles below QGUT limits the value of |κ| . 0.3 in the alignment limit. Note that

the NMSSM with larger couplings (and Landau poles between the TeV and the GUT scale)

is known as λ-SUSY, see, for example, refs. [73–75].

The parameter space is also constrained by avoiding tachyonic masses. The most

relevant constraint arises from the singlet-like CP-odd mass eigenstate aS . Taking into

account first-order mixing effects, its mass is approximately [49]

m2
aS
' 3κv2

[
3λ

2
sin(2β)−

(
µAκ
λv2

+
3κµ2

M2
A

)]
. (2.23)

Recalling that alignment requires M2
A ' 4µ2/ sin2(2β), we can deduce the condition the

NMSSM parameters must satisfy to keep aS from becoming tachyonic:

κµAκ
v2

.
3κλ2 sin(2β)

2

[
1− κ sin(2β)

2λ

]
. (2.24)

For small-to-moderate values of tan β and in the alignment limit, where 0.6 . λ . 0.7,

the right-hand side of eq. (2.24) is approximately κ×O(1). Hence, equation (2.24) implies

µAκ . v2 for κ > 0, while for κ < 0 the condition becomes µAκ & v2; in particular,

disfavoring sgn(µAκ) = −1 for κ < 0.

2.1 Radiative Corrections

The scalar potential receives sizable radiative corrections from the large couplings between

the Higgs bosons themselves as well as from their large couplings to the electroweak gauge

bosons and the (s)fermions, in particular the (s)tops, see, for example, refs. [14, 76–78].

Since the precise interplay between the higher-order corrections to the Higgs mass and the

mass values of the SM particles and their superpartners does not play a relevant role in

our study of the EWPT, we shall take only the dominant one loop corrections into account
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in this work. The null-results from SUSY searches at the LHC suggest that all squarks

as well as the gluinos have masses & 1 TeV. LHC constraints on new states neutral under

QCD are less stringent. Furthermore, to yield a scalar potential sufficiently different from

that of the SM to accommodate a SFOEWPT, the Higgs bosons’ masses should not be

much larger than the electroweak scale. These considerations motivate studying a scenario

in which all sfermions3 and the gluinos are heavy and can be integrated out, yielding an

effective theory where the remaining dynamical degrees of freedom are the SM particles,

the new Higgs bosons {H,hS , A, aS , H±}, the five neutralinos χ̃0
i , and the two charginos

χ̃±i ; see refs. [40, 45, 47] for similar approaches. The parameters of this effective theory are

obtained by matching onto the full theory (containing all the NMSSM’s degrees of freedom)

at an intermediate scale. The leading operator one obtains from this procedure is

∆L = −∆λ2

2
|Hu|4 , (2.25)

arising from stop loops. At one loop, the coefficient ∆λ2 is related to the parameters of

the stop sector via [79–82]

∆λ2 =
3

8π2
h4
t

[
log

(
M2
S

m2
t

)
+
A2
t

M2
S

(
1− A2

t

12M2
S

)]
, (2.26)

where ht is the top Yukawa coupling determined from the (running) top quark mass mt =

htv sinβ, MS is the geometric mean of the stop masses, and At is the soft trilinear stop-

Higgs coupling. We note that for small to moderate values of tan β, the top quark superfield

has a sizable coupling only to Ĥu in the superpotential. After the singlet acquires a non-

trivial vev, an effective µ-term is generated and additional effective quartic couplings,

which involve not only Hu but also Hd, arise via stop loops. However, these contributions

are suppressed by powers of µ/MS . We shall work in a region of parameter space where

|µ| � MS and, hence, the dominant contribution induced by integrating out the stop

sector is given by eq. (2.25). At higher loop orders, the exact relation between ∆λ2 and

the parameters in the stop sector is modified, but, for small values of |µ|, the stop radiative

corrections can still be effectively parametrized by ∆λ2 (see, for example, refs. [80, 82, 83]).

The scalar potential of this effective theory is then given by

V eff
0 = V0 +

∆λ2

2
|Hu|4 . (2.27)

This new contribution gives sizable corrections to the Higgs mass matrix. In particular,

the mass of the SM-like Higgs state is given by

m2
h125
'M2

S,11 = m2
Z cos2(2β) + λ2v2 sin2(2β) + 2∆λ2v

2 sin4 β . (2.28)

Note that the alignment conditions in eqs. (2.19) and (2.20) are not modified by ∆λ2.

While the value of ∆λ2 is in principle controlled by the soft parameters in the stop sector,

3For simplicity we also take the sleptons to be heavy here. Because the couplings of sleptons to the scalar

sector are much smaller than the gauge couplings and the top Yukawa coupling, lighter sleptons would not

lead to large radiative corrections to the scalar sector.
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see eq. (2.26), in the remainder of this work we use eq. (2.28) to set ∆λ2 to reproduce the

observed mass of the SM-like Higgs boson, mh125 = 125 GeV.

The radiative corrections to the effective potential from the remaining dynamical de-

grees of freedom are given by the Coleman-Weinberg potential [84]

V CW
1−loop =

1

64π2

∑
i=B,F

(−1)Finim̂
4
i

[
log

(
m̂2
i

m2
t

)
− Ci

]
, (2.29)

where Fi = 0 for bosons and Fi = 1 for fermions. The constant Ci takes values Ci = 3/2 for

scalars, longitudinally polarized vector bosons, and fermions, while for transversal vector

bosons Ci = 1/2. We denote the field-dependent masses computed from V eff
0 by

m̂2
i = m̂2

i (H
SM, HNSM, HS) , (2.30)

and work in the Landau gauge; explicit expressions for the m̂2
i are collected in appendix A.

The bosonic fields entering eq. (2.29) are B =
{
hi, ai, H

±, G0, G±, Z,W±
}

with nB =

{1, 1, 2, 1, 2, 3, 6} degrees of freedom, respectively. Here, hi and ai denote the three neutral

CP-even and two CP-odd Higgs bosons, H± the charged Higgs, G0 and G± the neutral and

charged Goldstone modes, and Z and W± the electroweak gauge bosons. The fermionic

fields entering the Coleman-Weinberg potential are4 F =
{
χ̃0
i , χ̃
±
i , t
}

with nF = {2, 4, 12},
where χ̃0

i and χ̃±i denote the five neutralinos and two charginos, respectively, and t is the

top quark. We have chosen mt as the renormalization scale, implying that the parame-

ters are defined at such scale. In order to guarantee the one-loop renormalization scale

independence and preserve the supersymmetric relations, the parameters at the scale mt

must be related with those at higher energies, up to the supersymmetry breaking scale, by

including all particles in the effective theory in the running to higher energies.

Note that since the Goldstone modes’ masses vanish at the physical minimum, their

contributions to the Coleman-Weinberg potential lead to divergent contributions to physical

masses and coupling coefficients computed from derivatives of the loop-corrected effective

potential. This divergence is an artefact of the perturbative calculation [85, 86] and can be

dealt with by shifting the masses of the Goldstone modes by an infrared regulator, m̂2
G →

m̂2
G + µ2

IR. In our numerical calculations, we use a value of µ2
IR = 1 GeV2; note, however,

that in numerical calculations numerical errors on m̂2
G typically suffice to “regulate” the

logarithmically divergent contribution from m̃2
G → 0, even before including an explicit

infrared regulator.

Including the Coleman-Weinberg contributions, the (effective) scalar potential at zero

temperature is given by

V1(T = 0) = V eff
0 + V CW

1−loop . (2.31)

The Coleman-Weinberg corrections alter the location of the minima as well as the physical

masses. We include a set of counterterms

δL = −δm2
Hd

|Hd|2 − δm2
Hu
|Hu|2 − δm2

S
|S|2 − δλAλ (SHu ·Hd + h.c.)− δλ2

2
|Hu|4 , (2.32)

4We neglect the (small) radiative corrections from the SM fermions other than the top quark.
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to keep the location of the physical minimum at
{
HSM, HNSM, HS

}
=
√

2 {v, 0, µ/λ}, en-

sure M2
S,13 → 0, preserving alignment, and maintain mh125 = 125 GeV. Note that these

counterterms correspond to a redefinition of the soft SUSY-breaking terms5, see refs. [41–

43] for similar approaches. We list equations for the fixing of the counterterms in ap-

pendix B.

The input parameters for our model are thus

tanβ , µ , κ , Aκ . (2.33)

All other parameters are fixed by the various conditions we impose on the model, namely,

λ and M2
A are determined by alignment, ∆λ2 by setting mh125 = 125 GeV, and the coun-

terterms are fixed by the conditions discussed in the previous paragraph.

2.2 Thermal Corrections

So far, we have discussed the scalar potential at zero temperature. At finite temperatures,

thermal corrections to the potential have to be taken into account. The one-loop finite

temperature potential is given by

V T 6=0
1−loop =

T 4

2π2

∑
i=B,F

(−1)FiniJB/F

(
m̃2
i

T 2

)
, (2.34)

where analogously to our definition of the Coleman-Weinberg potential, eq. (2.29), the sum

runs over bosonic and fermionic degrees of freedom, ni counts the degrees of freedom of

species i, and Fi = 0 (Fi = 1) for bosons (fermions). We denote thermal (field-dependent)

masses with a tilde, m̃2
i . Compared to the field-dependent masses, which we denote with

a hat, m̂2
i , the thermal masses include the so-called Daisy corrections re-summing hard

thermal loops,

m̃2
i ≡ m̃2

i (H
SM, HNSM, HS;T ) = m̂2

i (H
SM, HNSM, HS) + ciT

2 . (2.35)

The Daisy coefficients ci are only non-zero for bosonic fields. Furthermore, only the lon-

gitudinal polarization states of vector bosons receive non-zero Daisy corrections, gauge

symmetry protects the transversal degrees of freedom. We list the Daisy coefficients for

the relevant fields in appendix C.

The thermal functions are defined as

JB/F (x2) =

∫ ∞
0

dy y2 log
(

1∓ e−
√
y2+x2

)
. (2.36)

Following ref. [87], we improve the calculation of the thermal corrections by replacing

the field-dependent masses with the thermal masses in the Coleman-Weinberg potential,

V CW
1−loop(m̂2

i )→ V CW
1−loop(m̃2

i ) =
1

64π2

∑
i=B,F

(−1)Finim̃
4
i

[
log

(
m̃2
i

m2
t

)
− Ci

]
. (2.37)

5The counterterm δλ2 corresponds to a soft SUSY-breaking term in the sense that it can be understood

as a counterterm shifting the soft parameters in the stop sector and, in turn, the threshold correction ∆λ2

that we obtain from integrating out the stops.
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Including the Coleman-Weinberg and the thermal corrections, the temperature-dependent

effective potential at one-loop order is given by

V1(T ) = V eff
0 + V CW

1−loop(m̃2
i ) + V T 6=0

1−loop(m̃2
i ) . (2.38)

2.3 Zero-Temperature Vacuum Structure

While the NMSSM’s scalar potential is subject to radiative as well as thermal corrections

as discussed in sections 2.1 and 2.2, one can already learn much about the possibility of

a SFOEWPT from considering the effective potential, V eff
0 , obtained after integrating out

all sfermions and the gluinos and prior to including the Coleman-Weinberg and thermal

corrections. In this section, we derive the most interesting regions of NMSSM parameter

space for realizing a SFOEWPT from V eff
0 . As we shall show later on, these regions of

parameter space are only mildly affected by radiative corrections. Recall that in order to

study the vacuum structure of the NMSSM, it suffices to consider the three-dimensional

field space spanned by the neutral CP-even fields
{
HSM, HNSM, HS

}
,

V eff,3
0 (HSM, HNSM, HS) ≡ V eff

0

∣∣∣ANSM=0
AS=0
H±=0

, (2.39)

where V eff
0 is the potential given in eq. (2.27).

As discussed above, the singlet plays a special role for realizing a SFOEWPT. Its

coupling to the Higgs doublets, λ, and its self-coupling, κ, are free parameters, while the

quartic couplings between the Higgs doublets are governed by the gauge couplings (and

∆λ2). Furthermore, as a consequence of U(1)Y symmetry, V eff,3
0 is invariant under the

transformation HSM → −HSM, HNSM → −HNSM, HS → HS. This residual Z2 symmetry

ensures that any extrema in the singlet-only direction, i.e. where HSM = HNSM = 0, are

also extrema (or saddle points) of V eff,3
0 . In the alignment limit (or, more specifically, as

long as the second alignment condition, eq. (2.16), is satisfied) the scalar potential in the

singlet-only direction is given by

V eff,3
0 (0, 0, HS)→ −κ2µ

λ

(
µ

λ
+
Aκ
2κ

)
(HS)2 +

κAκ

3
√

2
(HS)3 +

κ2

4
(HS)4 . (2.40)

This potential has extrema at

HS =

{
0 ,

√
2µ

λ
, −

√
2

(
µ

λ
+
Aκ
2κ

)}
. (2.41)

The first of these field values corresponds to the trivial minimum of the scalar potential

HSM = HNSM = HS = 0, and the second value coincides with the vev of HS at the physical

minimum vS = µ/λ. The third field value marks a new special location in HS space, which,

in the following, we refer to as

v′S ≡ −
(
µ

λ
+
Aκ
2κ

)
. (2.42)
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Recall that since we used the minimization conditions, eq. (2.5), to replace the m2
i pa-

rameters in the scalar potential with v, tanβ, and µ, the physical minimum
{
HSM, HNSM, HS

}
=√

2 {v, 0, µ/λ} is also guaranteed to be a stationary point of the scalar potential. Hence,

in the alignment limit, all first-order derivatives of V eff,3
0 vanish at

{
HSM, HNSM, HS

}
= {0, 0, 0} ∨

{
0, 0,
√

2v′S

}
∨
{

0, 0,

√
2µ

λ

}
∨
{
√

2v, 0,

√
2µ

λ

}
. (2.43)

The potential V eff,3
0 may have additional stationary points; we will return to the possibility

of such minima below.

In order to constrain the allowed parameter space, we consider the value of the potential

at the field values given in eq. (2.43) and demand the physical minimum to be the global

minimum. As we will see, the |µ| vs. v′S/vS plane is a useful projection of the parameter

space. In the alignment limit, the potential at the physical minimum takes the value

V eff,3
0 (

√
2v, 0,

√
2µ

λ
) = −

m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

4
v2 − κ2µ3

λ3

(
µ

λ
+
Aκ
3κ

)
(2.44)

= −1

4
m2
h125

v2 − 1

3

κ2µ4

λ4

(
1− 2

v′S
vS

)
, (2.45)

where we used eqs. (2.28) and (2.42) for the second equality.

We can derive a first constraint on the parameter space by demanding the physi-

cal minimum to be deeper than the trivial minimum. The scalar potential vanishes

at the trivial minimum, V eff,3
0 (0, 0, 0) = 0. Thus, in the alignment limit, demanding

V eff,3
0 (

√
2v, 0,

√
2µλ) < V eff,3

0 (0, 0, 0) yields the condition

v′S
vS

<
1

2

(
1 +

3

4

λ4

κ2

m2
h125

v2

µ4

)
. (2.46)

At
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2µ/λ
}

the potential takes the value

V eff,3
0 (0, 0,

√
2µ

λ
) = −κ

2µ3

λ3

(
µ

λ
+
Aκ
3κ

)
= −1

3

κ2µ4

λ4

(
1− 2

v′S
vS

)
. (2.47)

Comparing with eq. (2.45), we see that this stationary point of the potential is never deeper

than the physical minimum;
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2µ/λ
}

is a saddle point of the

scalar potential in the alignment limit.

On the other hand, at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

, the scalar potential (in the

alignment limit) takes the value

V eff,3
0 (0, 0,

√
2v′S) = −κ

2

3

(
µ

λ
+
Aκ
2κ

)3(3µ

λ
+
Aκ
2κ

)
=

1

3

κ2µ4

λ4

(
v′S
vS

)3(
2− v′S

vS

)
. (2.48)

Demanding this minimum to be shallower than the physical minimum, V eff,3
0 (0, 0,

√
2v′S) >

V eff,3
0 (

√
2v, 0,

√
2µ
λ ), yields the condition(

v′S
vS
− 1

)3(v′S
vS

+ 1

)
<

3

4

λ4

κ2

m2
h125

v2

µ4
, (2.49)
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Figure 1. The white region indicates the region of NMSSM parameter space where (in the align-

ment limit) the physical minimum
{
HSM, HNSM, HS

}
=
√

2 {v, 0, v′S} is the global minimum of the

potential. In the gray region labeled as m2
aS < 0, the singlet-like CP-odd state becomes tachyonic,

see eq. (2.50). In the orange region labeled as HNSM 6= 0, there exist minima with HNSM 6= 0

that are deeper than the physical minimum (they are only found numerically). In the blue region

labeled
{

0, 0,
√

2v′S
}

, there exists a minimum at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

deeper than

the physical minimum, see eq. (2.49). Similarly, in the green region labeled {0, 0, 0}, the trivial

minimum is deeper than the physical minimum, see eq. (2.46). The regions are shaded on top of

each other in the order described in this caption; the dashed lines of the respective colors mark the

edges of the respective regions where overlapping. In the figures, we chose tan β = 1.5 (tan β = 3)

for the left (right) panel, and κ/λ = −0.1 for both panels.

defining a range of v′S/vS for which the physical minimum is deeper than the minimum at{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

.

As we noted above, the potential may feature additional stationary points beyond those

listed in eq. (2.43). In particular, minima deeper than the physical minimum can easily

appear in the NMSSM for field configurations where HNSM and HSM take non-zero vevs.

Such minima break the electroweak symmetry, and, unless 〈HNSM〉 = 0 and 〈HSM〉 =
√

2v,

do not lead to electroweak physics compatible with observations. In general, V eff,3
0 does

not have stationary points in the HNSM-only direction, V eff,3
0 (0, HNSM, 0), except for the

trivial point HSM = HNSM = HS = 0. Instead, both HNSM and HSM (and sometimes

HS) take non-vanishing values at these additional electroweak symmetry breaking minima.

Such field configurations are very challenging to identify analytically, thus, we resort to

numerical techniques to infer the constraints on the NMSSM parameter space arising from

demanding the physical minimum to be deeper than any minima where HNSM 6= 0.6

Finally, the parameter space of the NMSSM is also constrained by avoiding tachyonic

6We use the package HOM4PS2 [88] to solve the system of first derivatives of V eff,3
0 (HSM, HNSM, HS) to

identify the stationary points, and then check numerically if the global minimum is the physical minimum.
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Figure 2. Same as figure 1 but for κ/λ = 0.1.

masses. As discussed in section 2, the most relevant constraint arises from avoiding the

singlet-like neutral CP-odd state, aS , becoming tachyonic. In terms of v′S/vS , the constraint

arising from eq. (2.24) can be rewritten as

v′S
vS

+ 1 & −3

4

λ2v2

µ2
sin(2β)

[
λ

κ
− sin(2β)

2

]
. (2.50)

Figures 1–3 show the allowed region of parameter space in the |µ| vs. v′S/vS plane

for values of tan β = {1.5, 3} and κ/λ = {−0.1, 0.1, 0.3}. The different shaded regions

are excluded by the constraints from eq. (2.46) (green shade), eq. (2.49) (blue shade), and

numerical results (orange shade). Correspondingly, these constraints come from avoiding

the trivial minimum, the minimum at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

, or minima with

HNSM 6= 0, becoming deeper than the physical minimum. We also show the region where

the singlet-like CP-odd mass eigenstate aS becomes tachyonic, eq. (2.50), with the gray

shade. Note that overlapping regions are marked by dashed lines of the corresponding

colors. In all figures, we truncate the x-axis at |µ| = 100 GeV; smaller values of |µ| are

disfavored by null results of chargino searches at LEP. Since we imposed alignment (without

decoupling), the scalar potential is uniquely specified by v′S/vS (see eq. (2.42)), µ, tanβ,

and κ/λ, and the potential is insensitive to the sign of µ. As we can see from eqs. (2.46)

and (2.49) (the green and blue shaded regions, respectively), the conditions stemming from

the trivial minimum and the minimum at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

becoming

deeper than the physical minimum do not depend on the sign of κ and are relatively

insensitive to the value of |κ|.
For large values of

∣∣κµ2
∣∣, eq. (2.46) implies that the physical minimum is deeper than

the trivial minimum for v′S/vS < 1/2. Equation (2.49) on the other hand implies, for

large
∣∣κµ2

∣∣, that v′S/vS > −1 to avoid the minimum at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

becoming deeper than the physical minimum. These constraints relax for smaller values of
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Figure 3. Same as figure 1 but for κ/λ = 0.3.

∣∣κµ2
∣∣, i.e. where the term proportional to m2

h125
v2 in eq. (2.45) becomes relevant. As can

also be seen from eqs. (2.46) and (2.49), the range of v′S/vS opens up for
∣∣κµ2

∣∣ . λ2mh125v.

With λ ∼ 0.65 in the alignment limit, we find
√
λmh125v ∼ 120 GeV. In figures 1–3 we

can observe the corresponding change in the blue and green shaded bounds for |µ| .
120 GeV/

√
|κ/λ|.

Finally, as discussed above, the region of parameter space where minima with HNSM 6=
0 are deeper than the physical minimum can only be inferred by numerically investigating

the vacuum structure. From figures 1–3 we see that such constraints become more stringent

with larger |κ| and depend on the value of tan β. Furthermore, the constraints arising from

avoiding such minima are sensitive to the sign of κ; for κ < 0, avoiding minima with

HNSM 6= 0 effectively sets a lower limit on the value of v′S/vS , while for κ > 0, avoiding

these minima sets an upper bound on the value of v′S/vS .

2.4 Thermal History: Analytical Understanding

In this section, we explore the possible phase transition patterns in the NMSSM. We

first discuss the effective potential at very high temperatures, which gives guidance on

the starting point of the thermal evolution. Then, we discuss the requirements a phase

transition must satisfy to provide favorable conditions for electroweak baryogenesis via a

SFOEWPT. We continue by discussing specific phase transition patterns which appear in

the NMSSM, and fix a shorthand notation we will use to identify them. We close this section

by discussing the regions in parameter space where we expect to observe different transition

patterns, in particular, the regions in which we expect the nucleation probabilities of first

order phase transitions to be sufficiently large for such transitions to complete.

Let us start with the vacuum structure at very high temperatures. In the limit T 2 �
m̂2
i , and neglecting the Daisy coefficients, the finite temperature potential, eq. (2.34), can
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be written as

V T 6=0
1−loop −−−−−→

T 2�m̂2
i

T 4 [. . .] +
T 2

48

(
2
∑
i=B

nim̂
2
i +

∑
i=F

nim̂
2
i

)
+ T 4 ×O

(∣∣∣∣m̂2
i

T 2

∣∣∣∣3/2
)
. (2.51)

The ellipsis [. . .] in eq. (2.51) indicates terms which are independent of the field values. It is

straightforward to see that in this limit, the field-dependent terms of the thermal potential

are parameterized by the Daisy coefficients, (see eq. (C.2))

V T 6=0
1−loop →

[cHSMHSM

2

(
HSM

)2
+ cHSMHNSMHSMHNSM +

cHNSMHNSM

2

(
HNSM

)2
+
cHSHS

2

(
HS
)2]

T 2 + . . .
(2.52)

where the ellipsis now includes both the field-independent and higher-order terms. Explicit

expressions for the cij can be found in appendix C. Note that the symmetries of the

NMSSM enforce this particular form of the high-temperature potential. In particular, the

Z3 symmetry (and gauge symmetry) ensures that terms linear in the fields (such as µiH
iT 2,

where µi is a coefficient of dimension mass) cancel, while gauge symmetry forbids terms

mixing one doublet with one singlet state, i.e. HSMHST 2 and HNSMHST 2.

Since all coefficients cij are positive, and cHSMHSMcHNSMHNSM > c2
HSMHNSM throughout

the parameter space, the trivial minimum
{
HSM, HNSM, HS

}
= {0, 0, 0} is guaranteed

to be the global minimum of the effective potential at very high temperatures. Thus,

any phase transition patterns in the NMSSM will begin in the trivial phase. In order to

give rise to acceptable phenomenology, the (chain of) phase transition(s) must end in the

physical minimum,
{
HSM, HNSM, HS

}
=
√

2 {v, 0, vS}. If the transition pattern involves

multiple steps, the most relevant property of the intermediate phase(s) for electroweak

baryogenesis is if the electroweak symmetry is broken, i.e. if HSM or HNSM acquires a non-

trivial vev, or if, instead, HSM = HNSM = 0 and the electroweak symmetry is conserved in

the intermediate phase(s).

A phase transition must satisfy certain requirements in order to give rise to favorable

conditions for electroweak baryogenesis: In order for a baryon asymmetry to be produced

in the transition, and such asymmetry not to be subsequently washed out in the low tem-

perature phase, electroweak sphalerons must be active in the high-temperature phase and

suppressed in the low temperature phase. Estimating the rate of the sphaleron suppression

is a notorious problem in the perturbative approach to the phase transition calculation,

see, for example, refs. [3, 89, 90], and even more so if the electroweak symmetry is broken

in multiple steps, see, for example, ref. [91].

We shall demand
√〈

HSM
lT

〉2
+
〈
HNSM
lT

〉2

T
> 1

 ∧


√〈

HSM
hT

〉2
+
〈
HNSM
hT

〉2

T
< 0.5

 , (2.53)

as conditions for a SFOEWPT. Here, 〈ΦhT 〉 (〈ΦlT 〉) is the value of Φ in the high (low)

temperature phase at the temperature T where the phase transition occurs. The first

condition ensures that electroweak sphalerons are inactive in the low-temperature phase,
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while the second condition requires the sphalerons to not be unduly suppressed in the high

temperature phase. We stress that while the numerical thresholds for the order parameters

we chose in eq. (2.53) are indicative for the possibility of generating the baryon asymmetry

through a SFOEWPT [89], obtaining the exact conditions would require a gauge-invariant

evaluation of the sphaleron profile through the bubble wall which is beyond the scope of

this work.

In the remainder of this paper, we use a shorthand notation to classify the phase

transition patterns we observe in the NMSSM:

• We use an integer (1, 2, . . .) to denote the number of steps in the transition patterns.

• For 2-step transitions (we don’t observe transition patterns with more than 2 steps

in our data) we use a roman number to classify the intermediate phase:

– “(I)” denotes an intermediate phase in the singlet-only direction, i.e. where〈
HSM

〉
=
〈
HNSM

〉
= 0 and electroweak symmetry is conserved,

– “(II)” denotes an intermediate phase in which electroweak symmetry is broken,

i.e. where at least one of the fields HNSM or HSM acquires non-trivial vev.

• We use a lower case letter to denote the strength of any transitions in which elec-

troweak symmetry is broken in the low-temperature phase,

– “a” denotes a SFOEWPT,

– “b” denotes a first order phase transition that is not a SFOEWPT, i.e does not

satisfy one (or both) of the conditions in eq. (2.53),

– “c” denotes a second order phase transition.

Thus, for example, “1-a” denotes a direct one-step SFOEWPT from the trivial phase to

the electroweak phase. “2(I)-b” denotes a two-step transition pattern, where the first step

is from the trivial phase to a singlet-only phase (since electroweak symmetry is not broken

in this intermediate phase, we do not differentiate the pattern with respect to the strength

of this first transition), and the second step is a first order (but not SFOEWPT) transition

from the singlet-only to the electroweak phase. “2(II)-ca” on the other hand denotes a two-

step phase transition pattern, where the first transition is a second order phase transition

into a phase in which electroweak symmetry is broken (but which is distinct from the

electroweak phase), and the second transition is a SFOEWPT from this intermediate phase

to the electroweak phase.

We can get some intuition about the different regions of parameter space suitable for the

respective phase transition patterns from the shape of the effective potential. While thermal

effects alter the shape of the potential at finite temperatures, the zero-temperature vacuum

structure still indicates the relative importance of the different possible local minima for

the thermal history. Thus, we expect the results from section 2.3 to be indicative for the

transition patterns suggested by the critical temperature calculation. For example, we can

expect direct one-step transition patterns to most prominently be realized in the parameter
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region close to where the trivial minimum becomes the global minimum at zero temperature

(green shade in figures 1–3). Similarly, we can expect “2(I)” transition patterns to appear

in the parameter regions adjacent to where
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

becomes the

global minimum at zero temperature (blue shade), and “2(II)” transitions are expected to

appear in regions close to those where the global minimum has non-trivial vev of HNSM 6= 0

(orange shade).

The vacuum structure gives however little information about the tunneling probability

from one local minimum to another, i.e. if a first order phase transition suggested by the

critical temperature calculation can actually nucleate. The tunneling rate is controlled

by the height of the barrier and the distance (in field space) between the respective local

minima. The higher the barrier, and the larger the distance between the minima, the

lower the nucleation probability. Although the shape of the potential is modified by ther-

mal effects, we can learn some lessons from the zero-temperature potential. As discussed

above, the trivial minimum is the global minimum of the effective potential at very high

temperatures. Thus, any phase transition pattern starts at HSM = HNSM = HS = 0. The

distance between the trivial and the physical minimum (at zero temperature) is given by√
2v2 + 2µ2/λ2. Since the values of v = 174 GeV and λ ∼ 0.65 are fixed by electroweak

precision data and the alignment conditions, respectively, the distance between the trivial

and the physical minimum is controlled by |µ|. The distance increases with the value of

|µ|, hence, nucleation proceeds more easily for small |µ|.
The height of the barrier around the trivial minimum can be inferred from the squared

mass parameters of the fields HSM, HNSM, and HS around the trivial point, i.e. the field-

dependent masses given in appendix A at HSM = HNSM = HS = 0. In order for a phase

transition to occur, the smallest of the eigenvalues of the squared mass matrix should be

approximately zero, implying a flat direction around the trivial point at zero temperature.

If the smallest eigenvalue is too large, the barrier around the trivial minimum is large, and

hence the tunneling rate will be too small to allow for successful nucleation. If the smallest

squared mass eigenvalue is negative, the trivial minimum is a saddle point of the potential

(at zero temperature). Finite temperature effects can still give rise to a barrier between

the trivial and the physical minimum required for a SFOEWPT in this situation, but only

if the absolute value of the smallest squared mass parameter is not too large, such that

thermal effects can overcome the zero-temperature shape of the potential.

At the trivial point HSM = HNSM = HS = 0, the matrix of the squared mass param-

eters is diagonal in the basis {Hd, Hu, S}, see eq. (2.3). Thus, we can directly infer the

presence and height of the barrier around the trivial point from the parameters m2
Hd

, m2
Hu

,

and m2
S . In the alignment limit, m2

Hu
− m2

Hd
= M2

A cos(2β). Note that cos(2β) < 0 for

tanβ > 1 and hence, m2
Hu

is the smaller of the doublet-like eigenvalues. In the alignment

limit,

m2
Hu = M2

A cos2 β − µ2 −
m2
h125

2
≈ µ2

tan2 β

(
1− κ

λ
tanβ

)
−
m2
h125

2
. (2.54)

This equation yields a critical value of |µ|, for which m2
Hu
≈ 0. This critical value of |µ|

is increasing with larger values of tan β and of κ/λ. For example, for tan β = 1.5 and

κ/λ = −0.1, the critical value is |µ| ≈ 125 GeV, while for the larger value κ/λ = 0.3
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eq. (2.54) implies m2
Hu
≈ 0 for |µ| ≈ 180 GeV. Instead, for a larger value of tan β = 3 and

κ/λ = −0.1, the critical value is |µ| ≈ 235 GeV. For values of |µ| larger than the critical

value, we expect large barriers around the trivial minimum in the Hu direction, while for

smaller values of |µ|, m2
Hu

becomes negative and the trivial point becomes a saddle point

at zero temperature.

A flat direction can also arise in the HS direction. The squared mass parameter of HS

at HSM = HNSM = HS = 0, see eq. (2.40), is

m2
S = 2

κ2

λ2
µ2 v

′
S

vS
. (2.55)

The alignment conditions enforce sizable values of λ ∼ 0.65, thus, the value of m2
S is

controlled by κ2µ2(v′S/vS). Since the temperature corrections to m2
S , eq. (C.7), are of

order 0.2T 2, one would expect that at the characteristic temperature of the EWPT of

order 100 GeV, the tunneling rate could only be large enough for successful nucleation if

the squared mass parameter controlling the barrier m2
S � (100 GeV)2. This condition can

be achieved in two ways: either, |v′S/vS | � 1, or |κµ| � 100 GeV.

Note that the conditions m2
Hu
≈ 0 or m2

S ≈ 0 are indicative for the possibility of a first

order phase transition to successfully nucleate at finite temperature since they imply the

presence of an approximately flat direction around the trivial minimum at zero temperature.

However, this analysis does not predict the transition pattern, which is determined by the

shape of the potential away from the trivial minimum (at the transition temperature). The

bounce solution of the fields (the trajectory in field space connecting the local minima) is,

in general, not a straight line in field space; in particular, m2
S ≈ 0 does not necessarily lead

to “2(I)” transition patters, and m2
Hu
≈ 0 does not directly imply “2(II)” patterns.

3 Numerical Results

In order to explore the EWPT in the NMSSM, and, in particular, find which regions of

parameter space give rise to phase transition patterns suitable for electroweak baryogen-

esis, we perform an extensive numerical study using CosmoTransitions v2.0.5 [48]. In

this section, we first describe our implementation of the NMSSM in CosmoTransitions

and sketch the steps of the calculations CosmoTransitions performs. As discussed in sec-

tion 2, in the alignment limit, the Higgs sector of the NMSSM can be described by the

four parameters {tanβ, κ/λ, µ, v′S/vS}, and we perform random scans in this parameter

space. We show the results of our numerical scans in figures 4–10. In section 3.1 we discuss

the regions of the parameter space where points satisfy the boundary conditions we imple-

ment in our CosmoTransitions calculation. In section 3.2 we discuss the phase transition

patterns suggested by the critical temperature calculation and we compare these results

with the thermal histories obtained by calculating the nucleation rate. As we shall see,

the phase transition patterns obtained from the nucleation calculation differ substantially

from those indicated by the critical temperature calculation, and thus, computing only

the critical temperatures provides a misleading picture of the regions of parameter space

favorable for electroweak baryogenesis. In section 3.3 we comment on the collider and dark
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matter phenomenology in the region of parameter space promising for baryogenesis via a

SFOEWPT.

The CosmoTransitions package provides a framework for calculating phase transitions

in single- and multi-field models (in the perturbative approach). The implementation of a

model into CosmoTransitions proceeds via the specification of the effective potential. We

have described the effective (temperature-dependent) potential of the NMSSM in section 2,

in particular, it consists of the terms

V1(T ) = V eff
0 + V CW

1−loop(m̃2
i ) + V T 6=0

1−loop(m̃2
i ) . (3.1)

V eff
0 is the tree-level potential of the effective theory obtained after integrating out the

sfermions and gluinos, V CW
1−loop is the Coleman-Weinberg potential (including counterterms

as shown in eq. (2.32)), and V T 6=0
1−loop contains the thermal corrections to one-loop order, see

section 2.2. Explicit formulae for the field-dependent masses, the counterterm coefficients,

and the Daisy coefficients are collected in appendices A, B, and C, respectively.

The calculation of the phase transition pattern with CosmoTransitions proceeds in

multiple steps:

• First, we compute the locations of the local minima at zero temperature7.

• Second, the phases, i.e. the temperature-dependent locations in field space and values

of the effective potential at the local minima, are computed from the list of zero-

temperature minima. Note that if a phase ends at some temperature, i.e. ceases to be

a local minimum, CosmoTransitions tries to find other local minima nearby in field

space and then traces the corresponding phases as well. Thus, CosmoTransitions

attempts to include phases which cannot be obtained from the list of zero-temperature

minima because they exist only at finite temperatures.

• Third, using the phases as input, CosmoTransitions analyzes the temperature-

dependent vacuum structure of the potential. The most relevant output from this

step is a list of critical temperatures, the temperatures at which two distinct local

minima of the potential have the same potential value. At the critical temperatures,

the role of the global minimum of the effective potential passes from one phase to

another, suggesting the phase transition pattern.

• Finally, for possible first order phase transitions indicated by the analysis of the vac-

uum structure, CosmoTransitions allows to compute the probability of the transition

taking place. First order phase transitions proceed via bubble nucleation, and the

nucleation rate is commonly parameterized via the bounce action SE, the Euclidean

space-time integral over the (effective) Lagrangian density. In practice, it typically

suffices to compute the three-dimensional effective Euclidean action, SE ' S3/T . The

7Note that it is crucial to find all relevant local minima at T = 0. To this end, we use a large number

of initial guesses (a three-dimensional grid spanned by each of the three fields HSM, HNSM, HS taking

values Φi = {−1000,−100,−10, 0, 10, 100, 1000}GeV) as input for CosmoTransitions default routines for

minimizing the effective potential.
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technically most challenging part of this computation is finding the bounce solution

for the scalar fields, i.e. the trajectory in field space connecting the two local minima

which minimizes the Euclidean effective action.8 The bubble nucleation rate per unit

volume at finite temperature T is given by Γ/V ∝ T 4e−S3/T ; requiring the nucleation

probability (for the EWPT) to be approximately one per Hubble volume and Hubble

time leads to the nucleation condition [95] (see, e.g., ref. [12] for a review),

S3(T )

T
' 140 . (3.2)

The nucleation temperature Tn is the (highest) temperature for which S3/T . 140.

If S3/T > 140 for all T > 0, the corresponding transition does not occur because the

tunneling probability through the barrier separating the respective local minima is

too small. Typically, this is caused by a too high barrier and/or a too large distance

(in field space) between the local minima.

Since the calculation of the nucleation temperature (involving the computation of the

bounce action) is numerically expensive, to date such calculations have only been presented

for a few benchmark points in the NMSSM, see refs. [33, 36, 40, 43, 45]. Here, we present

results based on the full nucleation calculation for a broad scan of the parameter space.

We focus our study on the region of parameter space where alignment without decou-

pling is realized, i.e. the region of parameter space for which the NMSSM features a Higgs

mass eigenstate which (at tree-level) couples to SM particles like the SM Higgs boson. As

discussed in section 2, the alignment conditions fix the values of λ and M2
A (or, equiva-

lently, Aλ), leaving {tanβ, µ, κ,Aκ} as the four free parameters which control the effective

potential. We fix the mass and mixing parameters of the stop sector (parameterized by the

threshold correction ∆λ2 in V eff
0 , see section 2.1) to obtain mh125 ' 125 GeV for the mass

of the SM-like Higgs boson. As discussed in section 2.3, we use v′S/vS to re-parameterize

Aκ. Here, vS = µ/λ is the vev of the CP-even singlet interaction state at the physical

minimum,
〈
HS
〉

=
√

2µ/λ, and v′S = − (µ/λ+Aκ/2κ) is the location of an extremum of

V eff
0 in the singlet-only direction,

{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

. In summary, we use

tanβ , µ ,
κ

λ
,

v′S
vS

, (3.3)

as input parameters for our numerical evaluation. Note that throughout our calculations,

we fix the bino and wino mass parameters, which enter the radiative corrections from the

charginos and neutralinos (see eqs. (A.22) and (A.23)), to M1 = M2 = 1 TeV.

The |µ| vs. v′S/vS plane lends itself particularly well to characterizing the vacuum struc-

ture of the NMSSM as discussed in section 2.3. We perform two-dimensional scans over

slices of the parameter spaces for fixed values of tan β and κ/λ, varying the values of µ and

v′S/vS by means of (linear-)flat distributions. While we have included counterterms to main-

tain the location of the physical minimum after including the Coleman-Weinberg potential

8CosmoTransitions uses a path deformation method to find the bounce solution, see ref. [48]. Other

publicly available codes for finding the bounce solution in multi-field potentials include AnyBubble [92],

BubbleProfiler [93], and FindBounce [94].
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(including
〈
HS
〉

=
√

2vS =
√

2µ/λ), we have not included a counterterm which would sim-

ilarly keep the location of the tree-level extremum at
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

fixed. As a result, the location of the corresponding minimum of the effective potential

after including V CW
1−loop is no longer

{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S
}

, but changes to a

new location we denote by
{
HSM, HNSM, HS

}
=
{

0, 0,
√

2v′S,CW

}
. We find the value of

v′S,CW by numerically solving

∂V1(T = 0)

∂HS

∣∣∣∣
HSM=0
HNSM=0

= 0 . (3.4)

This equation yields three solutions: HS = 0 and two non-trivial solutions. Of these two

non-trivial solutions, we identify the one further away (in HS space) from vS = µ/λ as

v′S,CW. We plot our numerical results in the |µ| vs. v′S,CW/vS plane.

For each randomly drawn parameter point, we first demand a number of boundary

conditions:

• We check compatibility with the phenomenology of the observed SM-like 125 GeV

Higgs boson by checking that (after including the radiative corrections and the coun-

terterms discussed in section 2.1) the parameter point features a CP-even Higgs mass

eigenstate with mass 122 < mh125/GeV < 128, and admixtures of the non-SM-like

interactions states less than
∣∣CNSM

h125

∣∣ tanβ < 0.05 and
∣∣CS

h125

∣∣ < 0.1,9 where the Cji
denote the mixing angles in the extended Higgs basis,

h125 = CSM
h125

HSM + CNSM
h125

HNSM + CS
h125

HS . (3.5)

Note that since we fix λ and M2
A via the alignment conditions, eqs. (2.19) and (2.20),

and include a counterterm to preserve the HSM–HS alignment after including the

Coleman-Weinberg corrections, see eq. (2.32), most of our parameter points have

admixtures of HNSM and HS to h125 much smaller than these thresholds. The excep-

tion are points where the mass parameters of the interaction eigenstates HSM and

HS are approximately degenerate; in this case, relatively small off-diagonal entries in

the CP-even squared mass matrix can still lead to sizable mixing of HSM and HS.

• In order to ensure compatibility with the null-results from chargino searches at the

Large Electron Positron collider (LEP) (see, for example, refs. [96, 97]) we exclude the

parameter region |µ| < 100 GeV. Recall that the alignment conditions lead to a mass

scale of the doublet-like Higgs bosons of |MA| ∼ 2 |µ| / sin(2β). Thus, such values of

|µ| allow for doublet-like Higgs bosons as light as |MA| ∼ 200 GeV if tan β ' 1, which

potentially are in conflict with null results from direct searches for non-SM-like Higgs

bosons at the LHC. We will return to this issue in section 3.3. Note that searches

for neutralinos and charginos at the LHC do not constrain the parameter space for

|µ| & 100 GeV in a relevant way, see, for example, ref. [98].

9Admixtures of HNSM and HS of this size modify the production cross sections and branching ratios of

h125 by . 10 % compared to the SM prediction. The currently best-measured production cross section of

the observed Higgs boson is via the gluon-fusion mode with a 1σ uncertainty of ∼ 15 % [71, 72]. Similarly,

the largest branching ratios of the observed Higgs bosons are measured with ∼ 15 % uncertainty [71, 72].
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• We check that, at zero temperature, the physical minimum is the global minimum of

the effective potential.10

For each point satisfying all boundary conditions, we compute the phase transition pattern

with CosmoTransitions as discussed above.

Figures 4–9, to be discussed in detail in sections 3.1 and 3.2, show the results from our

parameter scans for tan β = {1.5, 3} and κ/λ = {−0.1, 0.1, 0.3} in the |µ| vs. v′S,CW/vS
plane; these are the same slices of parameter space for which we have shown constraints

from the zero-temperature vacuum structure of the effective tree-level potential, V eff
0 , in

figures 1–3. In order to compare the results of the respective calculations, we color-code

the points according to the transition patterns indicated by the critical temperature cal-

culations in the left panels of figures 4–9, while in the right panels, points are color-coded

according to the thermal history obtained from the full nucleation calculation; see sec-

tion 2.4 for our shorthand notation of the phase transition patterns. Points violating the

boundary conditions described above are labeled “failed BC” in figures 4–9. Points which

satisfy all boundary conditions, but for which CosmoTransitions fails to return a phase

transition pattern starting from the trivial minima at high temperature and ending in the

physical minimum at zero temperature are labeled “no transitions”. Note that the left

and right panels show the same set of points in parameter space, the only difference is the

color-coding of the points.

3.1 Boundary Conditions

Let us begin the discussion of the results of our parameter scans with the regions of param-

eter space where points fail to satisfy the boundary conditions. The boundary conditions

are independent of the thermal calculation, hence, the same points are labeled “failed BC”

in the left and right panels of figures 4–9.

We observe that, for large values of |µ|, the range of v′S,CW/vS where points satisfy the

boundary conditions is −1 . v′S,CW/vS . 0.5. This range is only weakly dependent on the

values of tan β and κ/λ; only in the case of κ/λ = −0.1, shown in figures 4 and 5, we observe

a different lower bound on v′S,CW/vS at large |µ|, being v′S,CW/vS & −0.5 for tan β = 1.5

and v′S,CW/vS & −0.8 for tan β = 3. The range of v′S,CW/vS where points satisfy the

boundary conditions widens at small values of |µ|, and here, the behavior depends more

strongly on the values of κ/λ and tanβ, as we can see by comparing the different slices

of parameter space shown in figures 4–9. We note that the boundary conditions widen

for values of |µ| . 120 GeV/
√
|κ/λ|. Furthermore, we observe that for κ/λ = −0.1 and

tanβ = 1.5 (figure 4), points fail the boundary conditions for |µ| . 150 GeV regardless of

the value of v′S,CW/vS , while we do not observe such a lower bound on the value of |µ| for

the other slices of parameter space.

This behavior can largely be understood from the discussion of the zero-temperature

vacuum structure in section 2.3, see also figures 1–3. The analysis of the vacuum structure

10Thus, in this study we exclude the region of parameter space where the physical minimum is a metastable

vacuum (with sufficiently long lifetimes to allow for feasible cosmology). While interesting in its own right,

considering this scenario is beyond the scope of this work.
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in section 2.3 was based on V eff
0 , the potential of our effective model after integrating out

all sfermions and the gluinos, but prior to including the Coleman-Weinberg corrections.

We indicate the region of parameter space for which, per the analysis in section 2.3, the

physical minimum is the global minimum of V eff
0 at zero temperature with the thin black

contours in figures 4–9. Since these contours are derived from V eff
0 , the y-axis for these

contours is v′S/vS , where v′S = − (µ/λ+Aκ/2κ) is the tree-level value. We see that, al-

though these contours are derived from V eff
0 , they describe well many of the features of the

boundary conditions seen in our parameter scan, which incorporates radiative corrections.

The largest deviations appear for κ/λ = −0.1, see figures 4 and 5. While the contours

here allow only a narrow range of v′S/vS values, we see that the points from our parameter

scan satisfy the boundary conditions for a much wider range of values of v′S,CW/vS than

what the contours suggest. Comparing with figure 1, we see that this discrepancy occurs

in regions of parameter space where the analysis of V eff
0 suggested that a minimum with

〈HNSM〉 6= 0 was the global minimum of the potential (indicated by the orange shade in

figure 1). This constraint was derived numerically in section 2.3, and hence is challenging

to understand quantitatively. However, it is not surprising that the region of parameter

space disfavored by vacua with 〈HNSM〉 6= 0 becoming the global minimum of the poten-

tial changes considerably after including the Coleman-Weinberg corrections: the potential

is subject to larger radiative corrections in the doublet-like directions of the effective po-

tential than in the singlet-like direction, and furthermore, the HNSM direction is affected

by the counterterms we have included to maintain the location of the physical minimum,{
HSM, HNSM, HS

}
=
√

2 {v, 0, µ/λ}.
Before moving to the discussion of the phase transition patterns we observe for points

satisfying the boundary conditions in section 3.2, let us briefly mention a few features

visible in figures 4–9. First, we can see a gap in the points around v′S,CW/vS ≈ 1, which

widens for small values of |µ|. This gap is due to numerical difficulties in our algorithm

to find v′S,CW if v′S,CW ≈ vS . Identifying the value of v′S,CW is particularly challenging for

small |µ|, because |µ| controls the size of vS = µ/λ.

Second, an arc of points failing the boundary conditions crosses the region of parameter

space consistent with the physical vacuum being the global minimum at zero temperature,

starting at small values of |µ| and negative v′S,CW/vS and ending at larger values of |µ|
and positive v′S,CW/vS . This feature is particularly pronounced for tan β = 1.5, and is due

to the mass parameters of the interaction states HSM and HS becoming approximately

degenerate for those points. As discussed below eq. (3.5), in this situation, even small

deviations from the alignment conditions lead to a sizable HS component of h125, and

thus, these points are forbidden by our requirement
∣∣CS

h125

∣∣ < 0.1.

Neither of these issues is related to the thermal history of a given parameter point,

and these issues do not occur in regions of parameter space which are of special interest

for the phase transition calculation. Hence, we ignore them in the following.

We also note that in the left panels of figures 4–9, where we show the results of the

critical temperature calculation, points labeled “no transition” appear. As discussed in

section 2.4, the trivial minimum is guaranteed to be the global minimum of the potential

at high temperatures, and for any point passing the boundary conditions, the physical
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minimum is the global minimum at zero temperature. For points labeled “no transition”,

CosmoTransitions failed to return a transition pattern starting in the trivial minimum

at high temperatures and ending in the physical minimum at zero temperatures. This is

due to numerical errors arising in the second step of the numerical calculation described

above, i.e. the step in which CosmoTransitions attempts to trace the local minima of

the effective potential with changing temperatures. We have investigated these numerical

issues, and have not found any indication that they bias our results towards particular

regions of parameter space. Thus, we expect that our scanning over a large number of

points throughout the parameter space gives an accurate picture of the regions of parameter

space suitable for electroweak baryogenesis.

3.2 Comparison of Critical Temperature and Nucleation Results

In this section, we compare the phase transition patterns obtained from the nucleation

calculation with the ones suggested by the analysis of the temperature-dependent vacuum

structure at the critical temperatures. In figures 4–9, the color-coding of the points in

the left panels shows the phase transition patterns suggested by the critical temperature

calculation. In the right panels of figures 4–9, we color-code the points according to the

thermal histories obtained from the nucleation calculation. Comparing the left and right

panels, we see that the thermal histories obtained from the nucleation calculation differ

significantly from those the critical temperature analysis suggests, leading to a marked

shift in the regions of parameter space which allows for a SFOEWPT.

Let us begin by discussing the results for tan β = 1.5 and κ/λ = −0.1, shown in

figure 4. For the critical temperature results, shown in the left panel, we observe that one-

step SFOEWPT patterns (“1-a”, dark green points) occur at the upper range of the values

of v′S,CW/vS allowed by the boundary conditions, and that the range of v′S,CW/vS for which

we find such “1-a” transition patterns becomes wider for smaller values of |µ|. For smaller

values of v′S,CW/vS and larger values of |µ|, we find two-step transition patterns where the

intermediate phase is in the singlet-only direction (“2(I)”, blue points). However, except

for a few “2(I)-a” points at values of µ ' 250–300 GeV and small values of
∣∣∣v′S,CW/vS

∣∣∣,
the EWPT for these points is weakly first order (“2(I)-b”) or a second order transition

(“2(I)-c”) as indicated by the lighter blue shades of the points.

Qualitatively, the patterns suggested by the critical temperature calculation can mostly

be understood from the discussion of the zero-temperature vacuum structure in section 2.3.

The left panel of figure 1 shows the different constraints on the zero-temperature vacuum

structure (at tree level) for the same slice of parameter space as figure 4. At large values of

v′S/vS , the trivial minimum is deeper than the physical minimum, indicated by the green

shade in figure 1. Thus, towards large v′S,CW/vS , we expect the trivial minimum to play

a large role in the thermal history, and accordingly, we find one-step transitions from the

trivial to the physical minimum in this region of parameter space in the left panel of figure 4.

Similarly, for small values of v′S/vS , the minimum in the singlet-only direction is deeper

than the physical minimum (blue shaded region in figure 1), hence, the singlet-only phase

plays a larger role in the thermal history, explaining the appearance of “2(I)” transition
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Figure 4. Results from our parameter scans in the |µ| vs. v′S,CW/vS plane for the same slice of

parameter space as shown in the left panel of figure 1: tanβ = 1.5 and κ/λ = −0.1. The left

panel shows points categorized according to the phase transition patterns suggested by the critical

temperature calculation. In the right panel, points are instead categorized by the thermal histories

obtained from the nucleation calculation. For points labeled “no transition”, CosmoTransitions

did not return a transition chain starting in the trivial minimum at high temperatures and ending

in the physical minimum at zero temperature, and points labeled “failed BC” do not satisfy our

boundary conditions defined in the text. The solid lines enclose the region of parameter space for

which we find feasible zero-temperature vacuum structure in section 2.3. These bounds are obtained

from tree-level relations, hence, for these bounds, the y-axis is v′S/vS , where v′S = − (µ/λ+Aκ/2κ)

is the location of an extremum of V eff
0 in the singlet-only direction.

patterns for smaller values of v′S,CW/vS .

Focusing now on the results of the nucleation calculation, we should recall that elec-

troweak baryogenesis requires a SFOEWPT, i.e. one of the phase transition patterns

labeled with an “a” in our shorthand notation. The only such patterns we observe for

tanβ = 1.5 and κ/λ = −0.1 in the right panel of figure 4 are direct one-step transitions

(“1-a”, dark green points), that occur for a narrow range of values v′S,CW/vS ∼ 0. At

small values of |µ|, the range of values of v′S,CW/vS for which we find SFOEWPTs widens

slightly, before being truncated by the boundary conditions. For values of v′S,CW/vS just

below the “1-a” patterns, we find one-step transitions from the trivial to the physical min-

imum which are not strong first order (“1-b” and “1-c”, lighter green colors). For even

smaller values of v′S,CW/vS , we find two-step transitions where the intermediate phase is

in the singlet-only direction and where the second transition step, in which electroweak

symmetry is broken, is weakly first order or second order (“2(I)-b” or “2(I)-c”, light blue

points). Note that outside of these bands in v′S,CW/vS , we do not find points for which the

nucleation calculation indicates thermal histories ending in the physical minimum. This

should be contrasted with the phase transition patterns suggested by the critical tempera-

ture calculation, where we observe “1-a” patterns at much larger values of v′S,CW/vS . The
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Figure 5. Same as figure 4, but for tan β = 3 and κ/λ = −0.1

nucleation calculation points to a very different region of parameter space for SFOEWPTs

than the critical temperature calculation, except for a small overlap of the “1-a”-regions

at
∣∣∣v′S,CW/vS

∣∣∣� 1 and the smallest values of |µ| allowed by the boundary conditions.

The reason for the mismatch between the critical temperature and nucleation results

was discussed in section 2.4: While the behavior of the critical temperatures can be under-

stood from the zero-temperature vacuum structure, the nucleation probability is controlled

by the height of the barrier separating the local minima, and the distance in field space

between the local minima. For all parameter points, the thermal evolution starts in the

trivial minimum at high temperatures. For large values of v′S/vS , the barriers around the

trivial minimum are large, making the tunneling probability prohibitively small. Hence,

for larger values of v′S/vS , the fields are “stuck” at HSM = HNSM = HS = 0, even if at

zero temperature the trivial minimum is no longer the global minimum of the potential

as required by the boundary conditions. For v′S/vS → 0, the zero-temperature effective

potential becomes flat in the singlet direction around the trivial point, and for v′S/vS < 0

the trivial point turns into a saddle point of the potential, see eq. (2.55). For small values

of |v′S/vS |, thermal effects can still give rise to a barrier around the trivial minimum at

finite temperatures, while for large negative values of v′S/vS , thermal effects can no longer

overcome the zero-temperature shape of the potential to give rise to the barrier required for

a SFOEWPT. This behavior of the barrier explains why the nucleation calculation singles

out the region around v′S,CW/vS = 0 for a SFOEWPT in the right panel of figure 4.

For tan β = 3, shown in figure 5, we find similar results as for tan β = 1.5. Beginning

with the critical temperature results (left panel), the main difference is that for the larger

values of tan β, we observe that two-step transition patterns (“2(II)”, orange and magenta

points) appear at small values of |µ|. This is somewhat difficult to understand from the

analysis in section 2.3. The constraints coming from local minima in the doublet-like
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directions (orange shade in figure 1) are the only vacuum structure constraints depending

on the value of tan β. However, as mentioned in section 3.1, the doublet-like directions are

subject to large radiative corrections, explaining the mismatch between the region where

“2(II)” patterns appear in our numerical results and the orange shaded region of the tree-

level vacuum structure analysis in figure 1. The appearance of the “2(II)” patterns can

however be understood from the region of parameter space for which m2
Hu

< 0, eq. (2.54).

In section 2.4, this condition was discussed in the context of the zero-temperature barrier

in the Hu-direction disappearing for m2
Hu

. 0, leading to large tunneling rates at finite

temperature. To understand the critical temperature results, it is more relevant to note

that for m2
Hu

< 0, the trivial point HSM = HNSM = HS = 0 becomes a saddle point in the

Hu-direction, suggesting that a local minimum should appear in the doublet-like direction.

For tanβ = 3 and κ/λ = −0.1, at tree-level, m2
Hu

. 0 for |µ| . 230 GeV, explaining the

appearance of “2(II)” patterns in the small-|µ| region of the left panel of figure 5. For

tanβ = 1.5 and κ/λ = −0.1, shown in figure 4, instead, m2
Hu

. 0 for |µ| . 125 GeV.

Such small values of |µ| are forbidden by the boundary conditions, and thus, we do not see

“2(II)” patterns appear in figure 4.

Comparing the nucleation calculation results for κ/λ = −0.1 and tan β = 1.5 with

those for tan β = 3, shown in the right panel of figures 4 and 5, respectively, we see that

the preferred region of parameter space for a SFOEWPT is almost independent of the

value of tan β. The main difference is that for tan β = 3, points with smaller values of

|µ| satisfy the boundary conditions, leading to the band of points around v′S,CW/vS = 0

for which we find SFOEWPTs (“1-a”, dark green points) extending to lower values of

|µ| than for tan β = 1.5. For tan β = 3, we also see the emergence of two-step transition

patterns, where electroweak symmetry is broken in the intermediate phase, (“2(II)”, orange

and magenta points) for positive values of v′S,CW/vS and small values of |µ|. As discussed

around eq. (2.54), for small values of |µ|, the barrier around the trivial point in the Hu

direction disappears. Note however that these points (except for one parameter point at

v′S,CW/vS ∼ 0) do not feature a SFOEWPT step, but both steps are weakly first order or

second order.

Let us now discuss the results for κ/λ = 0.1, shown in figures 6 and 7 for tanβ = 1.5

and tanβ = 3, respectively. Comparing the κ/λ = −0.1 critical temperature results (left

panels) with those for κ/λ = 0.1, we find that many of the features remain the same. The

two main differences are that the boundary conditions relax for small values of |µ|, allowing

a larger range of values for v′S,CW/vS , and that for tan β = 3, “2(II)” patterns appear

even more prominently in the low |µ| region. The behavior of the boundary conditions is

discussed in section 3.1, hence, we focus on the latter difference here. As for the κ/λ = −0.1

case, the appearance of “2(II)” patterns can be understood from the region of parameter

space where m2
Hu

< 0. From eq. (2.54), we find that, for tan β = 3 and κ/λ = −0.1,

the mass parameter for Hu becomes tachyonic for |µ| . 230 GeV, while for κ/λ = 0.1,

this critical value increases to |µ| . 320 GeV. Accordingly, we see that “2(II)” patterns

appear for larger values of |µ| for tan β = 3 and κ/λ = 0.1 (left panel of figure 7) than for

κ/λ = −0.1 (left panel of figure 5).

Let us now concentrate on the nucleation results for κ/λ = 0.1. For tan β = 1.5, see
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Figure 6. Same as figure 4, but for tan β = 1.5 and κ/λ = 0.1.

Figure 7. Same as figure 4, but for tan β = 3.0 and κ/λ = 0.1.

the right panel of figure 6, we find SFOEWPTs in the same regions of parameter space as

for κ/λ = −0.1 (figure 4), with the exception of the |µ| . 150 GeV region, in which points

failed the boundary conditions for κ/λ = −0.1. For κ/λ = 0.1, the boundary conditions

are satisfied in this region of parameter space, and we see that for these small values of

|µ|, one-step SFOEWPT patterns (“1-a”, dark green points) appear for virtually the entire

range of v′S,CW/vS allowed by the boundary conditions. As discussed above, for small

values of |µ|, the barrier in the Hu direction can become small. More important for the

small |µ| region in this slice of the parameter space, the barrier in the singlet direction also

becomes small for |κµ| � 100 GeV, since m2
S ∝ κ2µ2(v′S/vS), see eq. (2.55), allowing for a
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SFOEWPT even if v′S,CW/vS takes values far from zero.

For tan β = 3, we likewise find similar behavior for κ/λ = 0.1 (right panel of figure 7)

and for κ/λ = −0.1 (right panel of figure 5). Here, the main difference is that for κ/λ = 0.1,

two-step transition patterns where electroweak symmetry is broken in the intermediate

phase (“2-II”) play a larger role than for κ/λ = −0.1, restricting the values for which we

find SFOEWPTs to a narrower band of values of v′S,CW/vS . This can again be understood

from the range of values for which Hu becomes tachyonic around the trivial point. Note

that the presence of this tachyonic direction in the effective potential (at zero temperature)

makes it more difficult to achieve transition patterns favorable for baryogenesis, which we

see reflected in the absence of “1-a” transition patterns for |µ| . 200 GeV in the right panel

of figure 7.

Considering finally the critical temperature results for κ/λ = 0.3 (left panels of figures 8

and 9), we find that compared to the results for smaller values of κ/λ, two-step transition

patterns play a much larger role. Comparing eq. (2.45) with eq. (2.48), we see that the

depth of the singlet-like minimum is much more sensitive to the value of κ/λ than the

depth of the physical minimum, and thus, the minimum in the singlet-only direction plays

a larger role in the thermal history for larger values of κ/λ, leading to “2(I)” patterns (blue

points) appearing more prominently for κ/λ = 0.3 than for κ/λ = −0.1 and 0.1. Likewise,

we see “2(II)” patterns (orange and magenta points) appearing more prominently in the

region of parameter space not ruled out by the boundary conditions. For tan β = 1.5 and

κ/λ = 0.3, we find from eq. (2.54) that m2
Hu

< 0 (at zero temperature) for |µ| . 180 GeV,

while for κ/λ = 0.3, the critical value is |µ| . 840 GeV.

Regarding the nucleation results, for tan β = 1.5 and κ/λ = 0.3, shown in the right

panel of figure 8, we find SFOEWPTs for small values of |µ| and
∣∣∣v′S,CW/vS

∣∣∣. The scaling

of the depths of the respective local minima with v′S/vS becomes faster the larger the value

of |κ/λ|, making the change in phase transition behavior with the value of v′S,CW/vS more

rapid for this larger value of κ/λ than what we have observed for lower values of κ/λ.

Thus, the range of v′S,CW/vS leading to (one-step) SFOEWPTs is smaller for all values of

|µ| than what we found for κ/λ = ±0.1. Furthermore, we observe that “2(II)” transition

patterns appear for small values of |µ| due to the disappearance of the barrier in the Hu

direction. This behavior is even more pronounced for tan β = 3 and κ/λ = 0.3, see the

right panel of figure 9. In this slice of parameter space, m2
Hu

< 0 (at zero temperature) for

|µ| . 840 GeV, and we do not find any parameter points with a SFOEWPT.

We stress that for all slices of parameter space shown in figures 4– 9, the region pro-

viding favorable conditions for electroweak baryogenesis via a SFOEWPT differs markedly

when the thermal history is inferred from the nucleation calculation instead of the simpler

calculation of studying only the vacuum structure at the critical temperatures. While the

critical temperature results can be explained from the zero-temperature vacuum structure,

the regions of parameter space where SFOEWPTs actually nucleate can only be under-

stood when considering the barriers of the effective potential. We find that SFOEWPTs

can only nucleate if
∣∣∣v′S,CW/vS

∣∣∣ � 1 and |κ/λ| is not too large, leading to a small barrier

in the singlet direction. If |κµ| is significantly smaller than the weak scale, larger val-
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Figure 8. Same as figure 4, but for tan β = 1.5 and κ/λ = 0.3.

Figure 9. Same as figure 4, but for tan β = 3.0 and κ/λ = 0.3.

ues of v′S,CW/vS can still lead to a small barrier in the singlet direction and a successful

SFOEWPT. For larger values of κ/λ and tanβ, the barrier in the Hu direction disappears

in the small |µ| region, leading to multi-step phase transition patterns where electroweak

symmetry is broken in the intermediate phase, and typically, no SFOEWPT is realized.

In figure 10, we collect the results of our scans over the different slices of parameter

space shown separately in figures 4– 9. As before, we classify points based on the thermal

histories suggested by the critical temperature calculation in the left panels, while in the

right panels, parameter points are color-coded according to the results of the nucleation

calculation. In order to highlight the region of parameter space for which the respective
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calculations indicate a SFOEWPT, we show only the points falling in one of the transition

patterns “1-a”, “2(I)-a”, “2(II)-aa”, “2(II)-ab”, “2(II)-ac”, “2(II)-ba”, or “2(II)-ca” in

figure 10. In the upper panels, we show results in the |µ| vs. v′S,CW/vS plane. Comparing

the left and the right panels, it is evident that the critical temperature calculation gives a

misleading picture of the parameter space favorable for electroweak baryogenesis. We note

also that a one-step SFOEWPT (“1-a”, green points) is by far the most generic possibility to

realize a SFOEWPT in the NMSSM. While multi-step transitions including a SFOEWPT

step can occur in the NMSSM, our results suggest that such transition patterns require

very particular combinations of parameters, making them rare in a (random) parameter

scan.

3.3 Collider and Dark Matter Phenomenology

In this section we discuss the prospects for collider searches to cover the region of parameter

space where we find SFOEWPTs and comment on the possibility of realizing a dark matter

candidate in this parameter space.

In the lower panels of figure 10, we show the points from our parameter scans for which

we find a SFOEWPT in the plane of the masses of the two non-SM-like neutral CP-even

Higgs bosons. Recall that we denote the state with the largest HS component by hS , and

the state with the largest HNSM component by H. Comparing the left and the right panels,

we observe that, similar to what we saw in the |µ| vs. v′S,CW/vS plane, the results based on

the full nucleation calculation lead to a considerably tighter relation between mH and mhS

for points with SFOEWPTs than the results of the critical temperature calculation, as well

as a significant shift of the preferred region of parameter space. As we have seen above,

SFOEWPTs occur in the region of parameter space where |v′S/vS | � 1, or |κµ| � 100 GeV.

In this limit, the mass of the singlet-like mass eigenstate (at tree-level and in the alignment

limit), is approximately given by

m2
hS
≈ sin2(2β)

{
κ2

λ2

M2
A

2
+ λ2v2

[
1− κ

λ

(
1 + 2 cos2(2β)

sin(2β)

)]}
, (3.6)

while the mass of the doublet-like mass eigenstate is approximately

m2
H ∼M2

A ∼ 4µ2/ sin2(2β) . (3.7)

Due to the overall dependence mhS ∝ MA sin(2β)|κ/λ|, the mass of hS decreases with

growing values of tan β. Furthermore, mhS grows faster with mH for larger |κ/λ| values,

and the dependence of mhS on the sign of κ/λ is small unless |κ/λ| takes large values.

These properties, together with the distribution of points in the |µ|–v′S,CW/vS plane for

the respective values of κ/λ and tanβ shown in figures 4–9, allow us to understand the

relation between mH and mhS visible in the lower right panel of figure 10. For instance,

points on the right, for which one obtains the largest values of MH and the smallest values

of mhS for a given MH , correspond to tan β = 3 and κ/λ = ±0.1. The points on the left,

which correspond to tan β = 1.5, separate in two branches. The branch with the lowest

values of mhS corresponds to κ/λ = ±0.1, while the branch with the largest values of mhS

correspond to κ/λ = 0.3.
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Figure 10. Points collected from our combined parameter scans (tan β = 1.5, 3 and κ/λ =

−0.1, 0.1, 0.3) for which the critical temperature calculation (left panels) or the nucleation cal-

culation (right panels) indicates a SFOEWPT. In the upper panels, we plot the points in the same

plane as in figures 4–9, while in the lower panels we show parameter points in the plane of the

masses of the non-SM-like CP-even Higgs mass eigenstates.

While we leave a study of the collider phenomenology of the region of parameter space

where we find a SFOEWPT for future work, we can make some broad statements. As we

have seen in section 3.2, see also figures 4–10, SFOEWPTs can be realized in the NMSSM

for small values of |κ/λ| and tan β, and not too large values of |µ|, leading to relatively

light non-SM-like Higgs bosons. From eq. (3.7) we find that the doublet-like state can

be as light as mH ∼ 200 GeV for tan β = 1.5 and |µ| ∼ 100 GeV, as shown in the lower

right panel of figure 10. Similarly, the singlet-like state can be as light as mhS ∼ 70 GeV

for tan β = 3, κ/λ = 0.1, and |µ| ∼ 100 GeV. Despite the relatively small masses, this
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region of parameter space is challenging to probe at colliders: The direct production cross

section of the singlet-like state is suppressed by its small doublet component, we find∣∣∣CNSM
hS

∣∣∣ . 10 % for the points featuring a SFOEWPT. The doublet-like state H has sizable

production cross sections. However, its decay patterns make it challenging to probe for the

small values of tan β preferred by a SFOEWPT. Considering the decays into pairs of SM

fermions, due to the small value of tan β, the decay mode into top-quark pairs will dominate

if kinematically accessible. Thus, for mH & 350 GeV, the branching ratio into pairs of top

quarks will be large and this final state is very challenging to probe at hadron colliders such

as the LHC [99–106]. For mH . 350 GeV on the other hand, the H → τ+τ− channel could

provide some sensitivity. However, due to the preference for small values of |µ| and |κ/λ|,
the Higgsinos and singlinos will be relatively light; their mass parameters are µ and 2κµ/λ,

respectively. Thus, decays of H into pairs of neutralinos will be kinematically allowed in

the parameter region preferred by a SFOEWPT, and the associated branching ratios will

be sizable, suppressing H → τ+τ− decays. The final states arising from decays of H into

neutralinos are challenging to probe at the LHC, see, for example, refs. [98, 104, 107–110].

Out of the di-boson final states, decays of H into two SM(-like) states, e.g. h125h125,

ZZ, and W+W− will be strongly suppressed due to alignment [49, 111]. However, the

branching ratios into final states containing at least one singlet-like boson, such as h125hS
or aSZ, will be sizable if kinematically allowed [49, 69, 70, 111–117], making these channels

a promising means to explore the region of parameter space preferred for a SFOEWPT.

Considering the neutralino sector, we find that the region of parameter space where

a SFOEWPT is realized features light singlinos. However, a singlino-like neutralino is

only a good dark matter candidate if its spin-independent cross section is suppressed by

the so-called blind-spot cancellations, see, for example, refs. [20, 22, 28]. For a singlino-

like dark matter candidate, the blind-spot condition in the NMSSM is 2κ/λ ≈ sin 2β,

requiring larger values of κ/λ or tanβ than those for which we find SFOEWPTs. On the

other hand, the value of the bino mass parameter M1 has practically no influence on the

SFOEWPT11. Thus, the most promising dark matter scenario in the region of parameter

space where we find SFOEWPTs is a bino-like lightest neutralino. The interaction cross

sections of such a bino-like neutralino can be sufficiently small to be compatible with the

null results from direct detection type experiments without requiring additional (blind-

spot) cancellations [28, 118]. However, its couplings are too small to provide the correct

dark matter relic density via standard thermal production. For |M1| & mt, the correct

relic density for a bino-like lightest neutralino can be achieved via co-annihilation with

the singlino-like neutralino in the so-called new well-tempered scenario, where |M1| ∼
|2κµ/λ| [28]. The bulk of the region of parameter space where we find SFOEWPTs features

smaller values of |µ|. There, the correct relic density for a bino-like lightest neutralino could

be achieved via resonant annihilation through the singlet-like CP-even or CP-odd states,

hS or aS , requiring the mass of the lightest neutralino χ1 to satisfy mχ1 ' mhS/2 or

mχ1 ' maS/2, respectively. Alternatively, the NMSSM neutralinos may be unstable (on

11In our calculation, M1 enters only via the radiative corrections, see eq. (A.22). Any effect on the phase

transition pattern of a given parameter point from changing the value of M1 can be counteracted by, e.g.,

modifying the value of M2.
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cosmological scales) and the dark matter may be provided by particles not included in the

NMSSM, like axions and axinos (see, for example, ref. [119]).

4 Summary and Conclusions

Electroweak baryogenesis is a compelling scenario for the generation of the baryon asym-

metry of the Universe. It relies on the presence of a Strong First Order Electroweak

Phase Transition (SFOEWPT). The Standard Model (SM) of particle physics does not

provide appropriate conditions for electroweak baryogenesis, hence, new physics is needed

for realizing a SFOEWPT. Calculating the phase transitions in models of new physics is

numerically expensive, and hence, most studies in the literature content themselves with

studying the vacuum structure at the critical temperatures. At the critical temperature,

the role of the global minimum of the potential passes from one local minimum to an-

other, hence, this calculation ensures that a necessary condition for a first order phase

transition is met. However, the critical temperature calculation does not ensure that the

(quantum-mechanical) tunneling rate through the barrier separating the false from the true

vacuum is large enough for such a first order phase transition to occur. In this work, we

have investigated if a more complete calculation including the computation of the nucle-

ation probability is necessary to understand the phase transition patterns in models of new

physics. As an example model, we chose the Next-to-Minimal Supersymmetric extension

of the Standard Model (NMSSM).

We focused our case study of the NMSSM on the region of parameter space where

alignment-without-decoupling is realized. For the purposes of the phase transition, the

remaining four-dimensional parameter space is well described by the set of parameters

κ/λ, tanβ, |µ|, and v′S/vS , where v′S is the vev of the singlet HS at an extremum of the

effective potential in the singlet-only direction, and vS is the vev of HS at the physical

minimum.12

Using extensive parameter scans, we have demonstrated that successful nucleation of a

SFOEWPT occurs mostly in a narrow region of parameter space where |v′S/vS | takes small

values, and that the range of v′S/vS leading to a SFOEWPT becomes increasingly narrow

for larger values of κ/λ, tan β, and |µ|. This region of parameter space differs markedly

from what one would have inferred from the critical temperature calculation alone, that,

in general, suggests a SFOEWPT for much larger values of v′S/vS . The difference between

the two results can be understood from the shape of the effective potential. In the region of

the parameter space suggested by the critical temperature calculation, the barriers around

the trivial minimum, where the thermal evolution of the model begins at very high tem-

peratures, are large, leading to prohibitively small tunneling rates. However, the barrier

in the singlet direction diminishes for small values of |v′S/vS |, enabling tunneling from the

trivial minimum. As we have shown, the requirement on the values for v′S/vS loosens for

values of |κµ| far below the weak scale. The dependence of the parameter region where we

12We will suppress the subscript “CW” which we use to differentiate between the vev of the tree-level

potential (v′S) and of the effective potential after including radiative corrections (v′S,CW) in the main text

here. We refer the reader to section 3 for a more detailed discussion of our results.
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find a SFOEWPT on the value of tan β arises mainly from the disappearance of the barrier

in the Hu-direction, triggering a phase transition which tends to lead to thermal histories

incompatible with electroweak baryogenesis. The barrier in the Hu-direction disappears

for small values of |µ|, and the range of values of |µ| for which this occurs is broader for

larger values of tan β and κ/λ.

Note that our findings are obtained in a perturbative expansion of the effective poten-

tial (to one loop, improved by relevant resummations), and, hence, may be affected by the

well-known shortcomings associated with this expansions [7, 120–128]. Nonetheless, our

results stress the relevance of computing the nucleation probability to obtain the regions

of parameter space promising for electroweak baryogenesis via a SFOEWPT. Our compu-

tations strongly rely on the accuracy of CosmoTransitions, thus, they would profit from

corroboration with an independent calculation of the tunneling rate.

While we have focused on the phase transitions, the region of parameter space where

a SFOEWPT occurs also leads to interesting collider and dark matter phenomenology. We

find masses of the singlet-like state 70 GeV . mhS . 200 GeV. The mass of the new doublet-

like Higgs H, on the other hand, depends more strongly on tan β. At moderate values of

tanβ, we find mH & 350 GeV, and hence, H decays prominently into pairs of top quarks.

For smaller values of tan β ∼ 1.5, H can be lighter than the top pair production threshold.

Although in principle this enhances the branching ratio into tau leptons, collider searches in

conventional SM decay modes of these non-SM-like Higgs bosons are quite challenging due

to the presence of decays into light non-standard Higgs, neutralino, and chargino states.

The most promising search channels seem to arise via the so-called Higgs cascade decays,

e.g., H → h125 + hS . We reserve a more detailed study of the collider phenomenology for

future investigation.

The preference for small values of κ/λ for a SFOEWPT implies the presence of a light

singlino in the spectrum. While the spin-independent cross section of such a singlino is too

large to be compatible with the null results from direct detection experiments in the region

of parameter space where we find a SFOEWPT, a viable dark matter candidate could

be realized via a bino-like lightest neutralino, if its annihilation cross section is enhanced

through co-annihilation or resonant annihilation.

In closing, we would like to stress that arguably the most important result of this

work is that the nucleation calculation yields qualitatively different results for the phase

transition patterns in the NMSSM than what the simpler analysis based only on the vacuum

structure at the critical temperatures suggests. While our numerical results are obtained

in the NMSSM, we expect similar behavior to appear in other models where multiple scalar

fields participate in the EWPT. Our results emphasize that, in order to infer the regions of

parameter space where electroweak baryogenesis can be realized, it is critical to compute

the thermal histories based on the nucleation probabilities.
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A Field-dependent masses

In this appendix, we present explicit expressions for the field-dependent masses after inclu-

sion of the leading stop corrections, but without corrections from the Coleman-Weinberg

potential. As argued in section 2, it suffices to study the potential as a function of the

three neutral CP-even degrees of freedom
{
HSM, HNSM, HS

}
.

Let us begin by presenting the expression for the field-dependent (squared) masses in

the scalar sector. These can be directly obtained from the scalar potential,

m̂Φi,Φj = m̂i,j(H
SM, HNSM, HS) ≡ ∂2V

∂Φi∂Φj

∣∣∣∣ HSM 6=0
HNSM 6=0
HS 6=0

. (A.1)

The entries involving the CP-even interaction states are

m̂2
HSM,HSM =

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

){
1 +

3
[
(HSM)2 − 2v2

]
4v2

}

+
λ2

2

(
1− κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)

+
(HNSM)2

4v2

[
m2
Zs

2
2β + λ2v2c2

2β −
(
m2
Z − λ2v2

)
c4β

]
− 3HSMHNSM

4v2

(
m2
Z − λ2v2

)
s4β

+
3HNSM

4v
∆λ2vsβs2β

(
2HSMsβ +HNSMcβ

)
, (A.2)
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m̂2
HSM,HNSM = −

(
m2
Z − λ2v2 −∆λ2v

2
s2
β

c2β

)
s2βc2β

{
1 +

3
[
(HSM)2 − 2v2

]
4v2

}

+
HSMHNSM

4v2

[
m2
Z (1− 3c4β) + λ2v2 (1 + 3c4β) + 3∆λ2v

2s2
2β

]
+

3(HNSM)2

4v2

(
m2
Z − λ2v2 + ∆λ2v

2
c2
β

c2β

)
s2βc2β

− λ

2
c2β

(
κHS +

M2
A√

2µ
s2β

)(
HS −

√
2µ

λ

)
, (A.3)

m̂2
HSM,HS = 2λvµ

[
HSM

√
2v

HS

√
2µ/λ

− M2
A

4µ2

HSM

√
2v
s2

2β

−κ
λ

(
HSM

√
2v
s2β +

HNSM

√
2v

c2β

)(
1

2
+
HS −

√
2µ/λ√

2µ/λ

)]

−
√

2λM2
A

8µ
HNSMs4β , (A.4)

m̂2
HNSM,HNSM = M2

A +

(
m2
Z − λ2v2 +

∆λ2v
2

2

)
s2

2β

+
[
m2
Z (1− 3c4β) + λ2v2 (1 + 3c4β) + 3∆λ2v

2s2
2β

] (HSM)2 − 2v2

8v2

+
λ2

2

(
1 +

κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
+

λ√
2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)

+
3HSMHNSM

4v2

(
m2
Zs4β − λ2v2s4β + 2∆λ2v

2s2βc
2
β

)
+

3(HNSM)2

4v2

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2c4
β

)
, (A.5)

m̂2
HNSM,HS = −H

SM

√
2
λµc2β

{
κ

λ

[
1 +

2
(
HS −

√
2µ/λ

)
√

2µ/λ

]
+
M2
A

2µ2
s2β

}

+
√

2HNSMλµ

{
M2
A

4µ2
s2

2β +
λ√
2µ
HS +

κ

2λ
s2β

[
1 +

2
(
HS −

√
2µ/λ

)
√

2µ/λ

]}
,

(A.6)

m̂2
HS,HS =

λ2v2

2
s2β

{
M2
A

2µ2
s2β −

κ

λ

[
1 +

(HSM)2 − 2v2

v2

]}
+
κµ

λ

{
Aκ

[
1 +

2
(
HS −

√
2µ/λ

)
√

2µ/λ

]
+ 4

κµ

λ

[
1 +

(HS)2 − 2µ2/λ2

4µ2/3λ2

]}

+ λ2v2 (HSM)2 − 2v2

2v2
− λκHNSM

2

[
2HSMc2β −HNSM

(
λ

κ
+ s2β

)]
.

(A.7)
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The entries involving the the CP-odd states are

m̂2
ANSM,ANSM = M2

A +
[
λ2v2 (3 + c4β)− 2m2

Zc
2
2β + ∆λ2v

2s2
2β

] (HSM)2 − 2v2

8v2

+
λ2

2

(
1 +

κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
+

λ√
2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)

+
(
λ2v2s2

2β +m2
Zc

2
2β + 2∆λ2v

2c4
β

) (HNSM)2

4v2

−
(
λ2v2s4β −m2

Zs4β − 2∆λ2v
2s2βc

2
β

) HSMHNSM

4v2
, (A.8)

m̂2
ANSM,AS = λv

HSM

√
2v

[
M2
A

2µ
s2β − 3

κµ

λ

(
1 +

HS −
√

2µ/λ

3µ/
√

2λ

)]
, (A.9)

m̂2
ANSM,G0 = −

(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

(HSM)2 − 2v2

4v2

+
(
m2
Zc2β − λ2v2c2β + ∆λ2v

2c2
β

)
s2β

(HNSM)2

4v2

+

(
m2
Z − λ2v2 +

∆λ2v
2

2

)
s2

2β

HSMHNSM

2v2

− λκ

2
c2β

[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
c2β

(
HS −

√
2µ

λ

)
,

(A.10)

m̂2
AS,AS =

λ2v2

2
s2β

(
M2
A

2µ2
s2β +

3κ

λ

)
− 3κµAκ

λ

+ κ2

[
(HS)2 − 2µ2

λ2

]
−
√

2κAκ

(
HS −

√
2µ

λ

)

+ λ2v2
(

1 +
κ

λ
s2β

) (HSM)2 − 2v2

2v2
+ λ2v2

(
1− κ

λ
s2β

) (HNSM)2

2v2

+ λκc2βH
SMHNSM , (A.11)

m̂2
AS,G0 = λHNSM

(
κHS +

κµ√
2λ
− M2

A

2
√

2µ
s2β

)
, (A.12)

m̂2
G0,G0 =

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

) (HSM)2 − 2v2

4v2

−
[
2m2

Zc
2
2β − λ2v2 (3 + c4β)−∆λ2v

2s2
2β

] (HNSM)2

8v2

−
(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

HSMHNSM

2v2

+
λ2

2

(
1− κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)
.

(A.13)
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Note that as required, at the physical minimum, i.e. where m̂ΦiΦj

(
HSM, HNSM, HS

)
→

m̂ΦiΦj

(√
2v, 0,

√
2µ/λ

)
≡ mΦiΦj ,

mG0,G0 = mANSM,G0 = mAS,G0 = 0 , (A.14)

or in words, the neutral Goldstone mode G0 is massless and decouples from the other

CP-odd neutral states ANSM and AS.

The elements involving the charged states are

m̂2
H+,H− = M2

A − λ2v2 +m2
W

−
(
m2
Zc

2
2β + λ2v2s2

2β − 2m2
W −

∆λ2v
2

2
s2

2β

)
(HSM)2 − 2v2

4v2

+
(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2c4
β

) (HNSM)2

4v2

+
(
m2
Zc2β − λ2v2c2β + ∆λ2v

2c2
β

)
s2β

HSMHNSM

2v2

+
λ2

2

(
1 +

κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
+

λ√
2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)
,

(A.15)

m̂2
H+,G− = m̂2

H−,G+ = −
(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

(HSM)2 − 2v2

4v2

+
(
m2
Zc2β − λ2v2c2β + ∆λ2v

2c2
β

)
s2β

(HNSM)2

4v2

+

(
m2
Zs

2
2β + λ2v2c2

2β −m2
W +

∆λ2v
2

2
s2

2β

)
HSMHNSM

2v2

− λκ

2
c2β

[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
c2β

(
HS −

√
2µ

λ

)
, (A.16)

m̂2
G+,G− =

(
m2
Zc

2
2β + λ2v2s2

2β + 2∆λ2v
2s4
β

) (HSM)2 − 2v2

4v2

−
(
m2
Zc

2
2β + λ2v2s2

2β − 2m2
W −

∆λ2v
2

2
s2

2β

)
(HNSM)2

4v2

−
(
m2
Zc2β − λ2v2c2β −∆λ2v

2s2
β

)
s2β

HSMHNSM

2v2

+
λ2

2

(
1− κ

λ
s2β

)[
(HS)2 − 2µ2

λ2

]
− λ√

2

(
M2
A

2µ
s2β −

κµ

λ

)
s2β

(
HS −

√
2µ

λ

)
.

(A.17)

At the physical minimum, we again find

mG+G− = mH+,G− = mH−,G+ = 0 , (A.18)
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or in words, the charged Goldstone mode G± is massless and decouples from the charged

Higgs H±.

The remaining entries of the (symmetric) (10 × 10) matrix of the m̂Φi,Φj not listed

above vanish due to CP- and charge conservation.

The field-dependent masses for the electroweak gauge bosons are given by

m̂2
W± =

g2
2

4

[
(HSM)2 + (HNSM)2

]
, (A.19)

m̂2
Z =

g2
1 + g2

2

4

[
(HSM)2 + (HNSM)2

]
, (A.20)

with the weak mixing angle cos θW = g2/
√
g2

1 + g2
2 = mW /mZ . The masses of the vector

bosons at the physical minimum are related to the gauge couplings as

g1 =
√

2 sin θW
mZ

v
, g2 =

√
2
mW

v
. (A.21)

For the 5 neutralinos, the (symmetric) matrix of field-dependent masses in the basis{
B̃, W̃ 3, H̃0

d , H̃
0
u, S̃

}
can be written as

M̂χ0 =


M1 0 −g1

2

(
cβH

SM − sβHNSM
) g1

2

(
sβH

SM + cβH
NSM

)
0

M2
g2

2

(
cβH

SM − sβHNSM
)
−g2

2

(
sβH

SM + cβH
NSM

)
0

0 − λ√
2
HS − λ√

2

(
sβH

SM + cβH
NSM

)
0 − λ√

2

(
cβH

SM − sβHNSM
)

√
2κHS

 .

(A.22)

In the basis ψ±i =
{
W̃+, H̃+

u , W̃
−, H̃−d

}
the field-dependent mass terms for the charginos

can be written as

L ⊃ −1

2
(ψ±)T

(
0 X̂T

X̂ 0

)
ψ± + h.c. , (A.23)

where

X̂ =

(
M2

g2√
2

(
sβH

SM + cβH
NSM

)
g2√

2

(
cβH

SM − sβHNSM
)

λ√
2
HS

)
. (A.24)

Finally, the field-dependent mass of the top quark is given by

m̂t =
1√
2
ht
(
sβH

SM + cβH
NSM

)
, (A.25)

where the Yukawa coupling ht is related to the (running) top quark mass mt via ht =

mt/sβv.

We compute the contributions to the Coleman-Weinberg potential as well as to the

thermal potential in the Landau gauge. This is useful since in the Landau gauge the ghosts

decouple and we do not have to include them in our calculations. The quantities entering

the Coleman-Weinberg and the thermal potential are the eigenvalues of the respective mass

matrices. Recall that the number of degrees of freedom are ni = 1 for the three neutral

CP-even and three neutral CP-odd states, ni = 2 for the two charged Higgs states, ni = 6
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for the W± bosons, and ni = 3 for the Z-boson. Out of the fermions, the top quark has

ni = 12 and the five neutralinos have ni = 2 each. Since we wrote the chargino mass

matrix, eq. (A.23), in terms of four Majorana states (which combine to two physical Dirac

fermions), the four eigenvalues of eq. (A.23) enter with ni = 2 each.

B Counterterm coefficients

In order to maintain the location of the physical minimum at
{
HSM, HNSM, HS

}
=
√

2 {v, 0, µ/λ},
preserve mh125 = 125 GeV, and M2

S,13 → 0 (i.e. alignment of HS and HS) after including

the Coleman-Weinberg corrections, we include the counterterms given in eq. (2.32). The

solutions for the counterterms to satisfy these conditions are

δm2
Hd

= − 1

2v

(√
2
∂V1

∂HSM
−
√

2 tanβ
∂V1

∂HNSM
− µ

λ cos2 β

∂2V1

∂HSM ∂HS

)
, (B.1)

δm2
Hu

=
1

2v sin2 β

[
cos(2β)− 2√

2

∂V1

∂HSM
− sin(2β)√

2

∂V1

∂HNSM

+v

(
∂2V1

∂HSM ∂HSM
−m2

h125

)
+
µ

λ

∂2V1

∂HSM ∂HS

]
, (B.2)

δm2
S

= − λ

2µ

(√
2
∂V1

∂HS
− v ∂2V1

∂HSM ∂HS

)
, (B.3)

δλAλ =
1

v sin(2β)

∂2V1

∂HSM ∂HS
, (B.4)

δλ2 =
1

2
√

2v3 sin4 β

[
∂V1

∂HSM
+
√

2v

(
m2
h125
− ∂2V1

∂HSM ∂HSM

)]
, (B.5)

where

V1 = V1(T = 0) = V eff
0 + V CW

1−loop , (B.6)

is the effective potential including the Coleman-Weinberg corrections V CW
1−loop at zero tem-

perature, all derivatives are evaluated at the physical minimum,
{
HSM, HNSM, HS

}
=√

2 {v, 0, µ/λ}, and mh125 is an input parameter which sets the mass of the HSM interac-

tion eigenstate of the Higgs basis.

C Daisy coefficients

The Daisy coefficients ci for the thermal masses

m̃2
i = m̂2

i + ciT
2 , (C.1)

can be obtained from the high-temperature limit of the thermal corrections to the effective

potential,

cij =
1

T 2

∂2V T 6=0
1−loop(m̂2)

∂φi ∂φj

∣∣∣∣∣
T�m̂2

. (C.2)

Note that for the derivation of the Daisy coefficient, V T 6=0
1−loop = V T 6=0

1−loop(m̂2
i ) is computed

with the temperature independent field-dependent masses m̂2
i , while when computing
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the temperature-dependent effective potential, the Daisy-resummation improved thermal

masses m̃2
i are inserted in V T 6=0

1−loop as well as in the Coleman-Weinberg potential.

Note also that while we gave explicit expressions for the m̂2
i as a function of the three

neutral CP-even Higgs boson interaction states, HSM, HNSM, and HS, in appendix A,

when computing the Daisy coefficients via eq. (C.2), the field-dependent masses must be

inserted as a function of all bosonic fields, i.e.

m̂2
i,j = m̂2

i,j(H
SM, HNSM, HS, ANSM, AS, H±, G0, G±, Z0,W±) . (C.3)

The non-vanishing coefficients involving the neutral Higgs bosons are

cHSMHSM = cG0G0 =
λ2

4
+
m2
Z + 2m2

W

4v2
+
m2
t

4v2
+

∆λ2

4
s2
β , (C.4)

cHSMHNSM = cANSMG0 =
m2
t

4v2

1

tβ
+

∆λ2

8
s2β , (C.5)

cHNSMHNSM = cANSMANSM =
λ2

4
+
m2
Z + 2m2

W

4v2
+
m2
t

4v2

1

t2β
+

∆λ2

4
c2
β , (C.6)

cHSHS = cASAS =
λ2 + κ2

2
, (C.7)

and those involving the charged Higgs bosons are

cH+H− =
λ2

6
+
m2
Z + 2m2

W

6v2
+
m2
t

4v2

1

t2β
+

∆λ2

4
c2
β , (C.8)

cH+G− = cHSMHNSM (C.9)

cG+G− =
λ2

6
+
m2
Z + 2m2

W

6v2
+
m2
t

4v2
+

∆λ2

4
s2
β . (C.10)

The Daisy coefficients for the longitudinal modes of the gauge bosons are [129, 130]

cW+
LW

−
L

= cW 3
LW

3
L

=
5

2
g2

2 = 5
m2
W

v2
, cBLBL =

13

6
g2

1 . (C.11)

Note that the photon gets a temperature-dependent mass. In order to properly account for

this appearance of the longitudinal degree of freedom of the photon, the Daisy resummation

improved thermal masses of the neutral electroweak gauge bosons must thus be included

as the eigenvalues of mass matrix,

m̃2
ZL,AL

(HSM, HNSM, HS;T ) =
(HSM)2 + (HNSM)2

4

(
g2

2 −g1g2

−g1g2 g2
1

)
+T 2

(
5g2

2/2 0

0 13g2
1/6

)
.

(C.12)

After removing the contribution from the neutralinos and charginos to V T 6=0
1−loop(m̂2),

these results agree with the results in ref. [45] (where the neutralino and chargino contri-

bution were neglected).
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