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Observing the clustering of galaxies allows us to calculate cosmological 
parameters necessary for understanding dark energy. However, as the 
density of observed objects increases, the probability of these objects 
blending likewise increases, causing multiple galaxies to be observed as 
one. This affects the inferred values of parameters such as the galaxy bias 
(b) and the matter energy density (ΩM). To see whether the bias from
incorrectly inferring the galaxy count is significant, we compare the
correlation functions in simulated data for “true” and “observed” data sets
with one-to-one and multiple-to-one correspondences, respectively. For
each data set, we create two correlation functions: one “measured”
function directly relying on the galaxies’ positions using the TreeCorr
python library, and one “model” derived mathematically from the
galaxies’ power spectrum using the Cosmological Core Library (CCL). By
minimizing the residual between these two functions, we compute the
ideal values for b and ΩM across the various possible redshifts that position
the galaxies in three dimensional space. This minimization is done with an
Markov chain Monte Carlo (MCMC) estimate that finds one value of ΩM
and ten values for b corresponding to the ten redshift bins ranging from z
= 0.2 to z = 1.2. We find that neither b nor ΩM is particularly affected by
inclusion of blended galaxies. Though there is room for improvement, the
data suggests that the fluctuations we found are a result of noise or
limitations on the modeling rather than blending explicitly.
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I. INTRODUCTION 
 
In order to determine certain parameters describing the distribution of dark energy, we 

can observe the clustering of galaxies. The Vera C. Rubin Observatory Legacy Survey of Space 
and Time (LSST) will probe more deeply than current surveys, with the expectation of reaching 
limiting magnitude i ≈ 27 after 10 years of operation as compared to, for example, the DES with 
i ≈ 24 (Melchior et al. 2018). However, partly as a result of Olber’s paradox, as the density of 
objects in the sky increases, the probability of these objects overlapping and blending likewise 
increases. The HSC survey with a limiting magnitude of i ≈ 26 found that 58% of measured 
objects are affected by blending, as compared to the 30% from DES (Melchior et al. 2018). This 
suggests that i ≈ 27 will find similarly more blended objects (~60% of the objects, Sánchez et al, 
in prep.).  

The authors in Dawson et al. 2015 find that 14% of objects in ground based imaging are 
blended to the degree that two or more objects are mistaken as a single object. Due to this, the 
perceived clustering might significantly differ from the true clustering, affecting the calculated 
values of parameters such as the galaxy bias (b) and the matter energy density (ΩM). The impact 
of this shape-affecting blending on photometric redshift and weak lensing is out of the scope of 
this work. It is unclear whether the sample incompleteness due to our inability to see all dim 
galaxies at a given redshift or the biases resulting from the measured counts and centroid 
positions dominates at small scales.  

To see whether the bias from incorrectly inferring the number of galaxies is significant, 
we examined simulated data representing blended objects in the sky and compared it to the 
“true” data set. We then calculated the correlation functions for the data points that had a 
one-to-one correspondence between the observed blended galaxies and the true ones as well as 
those data points with a multiple-to-one correspondence. These correlation functions are used to 
determine the bias in the optimal b and ΩM values. This document is structured as follows: in 
Section II, we describe the data used for these calculations. In Section III, we provide the 
methods used for calculating the correlation functions and for analysis. Finally, in Section IV we 
present some concluding remarks. 

 
 

II. DATA 
 
The data used in calculations was obtained from the second data challenge (DC2) 

simulations prepared for the analysis of the by the LSST Dark Energy Science Collaboration 
(DESC), which is well documented in DESC Collaboration et al., in prep. As it specifies, DC2 
generates and processes images created from the cosmoDC2 (Korytov et al. 2019) cosmological 
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catalog using Rubin’s LSST Science Pipelines  to account for weak gravitational lensing 1

correlations, large-scale structure statistics, galaxy cluster abundance, and inference of ensemble 
redshift distributions for samples based on photometric redshifts. This simulated data covers 400 
sq-deg, compared to the 18,000 of the full survey, and accurately portrays an output catalog.  

What is relevant to our study is the creation of “truth” catalogs. These catalogs contain 
the true measurable properties produced by the LSST Science Pipelines which can be used to 
assess the output catalogs after image processing. We can then compare the truth and the object 
output catalogs to determine which galaxies have a one-to-one correspondence and which have a 
many-to-one correspondence between catalogs. Ideally, each “true” galaxy should be observed 
as one “object” galaxy, though blending impacts this fit. Figure 1 provides a 2D histogram 
showing the correlation of the true and observed datasets. One-to-one correlations have the 
single greatest count of matches; we found that of the 131,118,359 galaxies in the whole 
matched dataset, 81,652,106 have a one-to-one fit. The entirety of the data takes up enough 
memory that analysis had to be run on separate tracts of the data for it to be manageable. A 
majority of the analysis was carried out at NERSC through the Jupyter hub interface.  In 2

principle, it offers up to 512 GB of memory with 64 cores, though the maximum recommended 
usage is 40 GB and 32 cores.  
 

 
FIG. 1. Histogram relating the number of galaxies matched between the truth and object 
catalogs. The color represents the logarithm of the number of groups found with N objects in the 
truth (input) catalog, and N’ objects in the object catalog (output). The groups were created using 
a Friends-of-friends algorithm  with one arcsecond linking length. 3

 
 
 

1 pipelines.lsst.io 
2 jupyter.nersc.gov 
3 https://github.com/yymao/FoFCatalogMatching 
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III. METHODS 

 
The two-point correlation function describes the probability of finding a pair of galaxies a 

given distance apart compared to if their distribution was random (Peebles, 1980). If we consider 
the residual between the measured correlation function and a model, we can fit for the ideal b 
and ΩM values that minimize this residual. We calculated the measured correlation function using 
the TreeCorr (Jarvis et al. 2004) python library and the model correlation with the Core 
Cosmological Library, or CCL (Chisari et al. 2019).  

With TreeCorr, estimating the correlation function involved just taking a data catalog and 
comparing it to a catalog of randomly distributed data. For every angle θ specified, TreeCorr 
finds a corresponding w(θ), where w is the two-point count-count (number density) correlation 
function in two dimensions. These two dimensions are given by the declination and right 
ascension angles; the redshift, z,  provides a third dimension as a galaxy’s redshift is correlated 
with its distance from Earth. Therefore, in order to accurately calculate how galaxies are 
clustered, the data is divided into ten redshift slices, ranging from z = 0.2 to z = 1.2 in steps of 
0.1 following the analysis choices in the LSST Science Requirements Document (DESC 
Collaboration et al., 2018). The redshift for the data is the most reliable in this range. Greater 
values of z are too noisy, and the main features of galaxies at smaller z fall in the u- and g-filters 
that are more difficult to process than r- and i-, making the redshift inference more troublesome. 
To a lesser extent, at small z there may also be interference from overlaying stars. The spacing of 
the redshift bins is narrow enough to allow us to treat each one as though it were a two 
dimensional plane, where the galaxies within it can accurately be described by w(θ). 

We also found the covariance matrix for the data using a jackknife approximation 
(Quenouille 1949) with TreeCorr. The approximation splits the data into 100 bins, and 
recalculates the correlation function that would have been computed if a given patch had been 
excluded. The covariance becomes relevant when minimizing the residual. 

CCL, on the other hand, provides a theoretical model of the correlation function derived 
from the (dark) matter power spectrum, given a certain set of cosmological parameters and 
integrating over contributions observed fluctuations of the tracers representing the number of 
counts in a redshift bin. Here, dn(z) is the redshift distribution, b2(z) is the bias (assumed to be 
constant in each redshift slice), H is the Hubble parameter, and P(k,z) is the matter power 
spectrum. For k, we use the Limber approximation k ≈ l+1/r where r is the comoving distance at 
redshift z. 
 

(1) 
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As given in equation (2), this is then summed over the angular wavenumbers used in 
calculating the power spectrum, which here ranged from 1 to 7500 (an approximation with error 
< 5%). Pl represents the Legendre polynomials. Full documentation concerning the inner 
workings of CCL is provided in Chisari et al. 2019  

 

 (2) 
 

Calculating the model correlation function for the different tracers requires cosmological 
parameters including the matter energy density. The galaxy bias, on the other hand, is used as a 
scaling factor when calculating the residuals.  

The variation in both the model and measured correlation function across redshift slices 
is given by figures 2.1 and 2.2. The analysis was ultimately done separately for the one-to-one 
and the many-to-one data so that after the fact the calculated b and ΩM values could be 
compared. By observing the change in the separation between the model and measured 
correlation functions, we can anticipate how the galaxy bias value will change between redshift 
bins. Furthermore, just by visual inspection, we can see from figure 3 that the difference in 
correlation functions for these two datasets is slight.  

 

 
FIG. 2.1, 2.2. The model and observed correlation functions calculated with CCL and TreeCorr, 
respectively, for the redshift bins between z = 0.2 and z = 1.2. FIG. 2.1 displays 0.2 < z < 0.7, 
and FIG. 2.2 displays 0.7 < z < 1.2. Each color corresponds to a different bin. The dashed lines 
represent the model function, and the solid lines with error bars represent the measured function. 
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FIG. 3. An example of the model and measured correlation function for both the data with a 
one-to-one fit and the data with a many-to-one fit, taken from the redshift bin where 0.6 < z < 
0.7. The blue plots are the one-to-one fit, and the red are the many-to-one; the dashed lines 
represent the model function, and the solid lines with error bars represent the measured function. 

 
An analysis is then done to minimize the residual between these two functions and find 

optimal values for b and ΩM. A separate value for b is found for each redshift slice, as it is known 
that b depends on z. In the lower redshift regime, we are able to observe both bright-massive 
galaxies that tend to form in the more overdense regions, and smaller galaxies, resulting in an 
overall lower bias value. However, this is no longer true in the case of high redshift, where, due 
to observational limitations, we are only able to see the most massive objects, resulting in a large 
value for the bias. Figure 4 illustrates this trend. On the other hand, we consider ΩM as ΩM,0, the 
value of ΩM at z = 0 where ΩM = ΩM,0(1+z)3, so this parameter as we calculate it should not 
depend on z. We therefore fit it for a single value that optimizes all the redshift slices at once.  

We performed a Markov chain Monte Carlo (MCMC) estimate using the package emcee 
(Foreman-Mackey et al. 2013) and found b for each bin as well as ΩM, as shown in figure 5 and 
table I. Table I provides the numerical estimates for the contours displayed in figure 5. Separate 
estimations were done for the one-to-one fit, a many-to-one fit that excludes all galaxies with a 
one-to-one fit, and a many-to-one fit that also includes one-to-one values. This latter match is 
what was used in previous calculations, and most accurately represents how we would actually 
observe the data. The many-to-one fit that excludes the one-to-one fit exists for purposes of 
comparison. 
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FIG. 4. The value obtained for the galaxy bias b for each redshift bin with a lower bound at z.The 
many-to-one matches, represented by “All”, closely follow the pattern of the one-to-one 
matches.  

 
FIG. 5. Markov chain Monte Carlo estimation of ΩM, calculating a different bias b for each 
redshift slice. The blue contours represent the one-to-one fit, the red the exclusively many-to-one 
fits, and the green the entire data set that includes both. 
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TABLE I. Estimated values for ΩM and the galaxy bias bi for each redshift bin i.  
 
 

 ΩM b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 

1 to 1            

2+ to 1            

All            

 
 

 
 
IV. CONCLUSION 
 

With the expected increase in the statistical power of the LSST with respect to previous 
surveys, the impact of systematic uncertainties will play a larger role. In particular, blending 
seems like a potential dominant source of uncertainty, which may lead to biases in the inferred 
shapes, fluxes and number of counts. These biases can affect the inferred cosmological 
information from LSST. Thus, careful analysis should be performed in order to quantify and 
potentially mitigate these effects. Blending, in particular, is difficult to quantify in real data, 
since there is no ground truth information available, and realistic end-to-end simulations such as 
DC2 offer a unique opportunity to characterize its effects. To this end we used the DC2 data, 
matched inputs and outputs, computed the correlation function, and obtained the best fit for the 
galaxy bias and ΩM.  

If the results were to show that the difference in the correlation function between the true, 
one-to-one correlation and the many-to-one observations resulting from blending affects the 
calculated parameters, we would need to account for this bias in measurement. However, the 
difference is largely negligible for both parameters. The variation in the galaxy bias across 
redshift slices is small enough to be attributed to noise or other error, as shown in table I. The ΩM 
values appear distinct when comparing the one-to-one fits to the exclusively many-to-one fits at 
high z, but this is not significant when comparing the one-to-one fits with all the data (as it will 
actually be observed). We can see in figure 5 how the corresponding blue and green plots mostly 
overlap and how the red exclusively many-to-one fit tends to be shifted. But although this is 
acceptable within the current error, there may be an issue once the error is reduced when using 
the full LSST footprint. It is also unclear whether the differences in the bias arise from the 
deblending algorithm used by the LSST Science Pipelines or as a natural effect of the geometric 
overlap of objects. Further investigation can be done to thus improve our estimates. 
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