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Numerous astrophysical and cosmological observations are best explained by the

existence of dark matter, a mass density which interacts only very weakly with

visible, baryonic matter. Searching for the extremely weak signals produced by this

dark matter strongly motivate the development of new, ultra-sensitive detector tech-

nologies. Paradigmatic advances in the control and readout of massive mechanical

systems, in both the classical and quantum regimes, have enabled unprecedented

levels of sensitivity. In this white paper, we outline recent ideas in the potential use

of a range of solid-state mechanical sensing technologies to aid in the search for dark

matter in a number of energy scales and with a variety of coupling mechanisms.
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I. INTRODUCTION

A significant and growing body of astrophysical [1–3] and cosmological [4, 5] observations
strongly suggests the existence of “dark matter”, a massive substance which interacts very
weakly—perhaps only through gravity—with ordinary, visible matter. This dark matter has
not yet been observed at particle colliders or in dedicated searches [6]. Many dark matter
direct detection experiments to date have focused on weakly interacting massive particles
(WIMPs) with masses around 100 GeV. These technologies are reaching full maturity, and
will have either detected or largely excluded WIMPs as viable dark matter candidates within
the next generation of experiments [7]. There is thus a clear need for searches of new dark
matter candidates, with new experimental techniques [8].

Precision measurement techniques have already been deployed in the search for dark
matter (see e.g. [9, 10] for reviews). In this white paper, we discuss approaches to searching
for dark matter using massive, mechanical sensing devices. We include applications of
purely classical mechanical sensors, as well as many devices which are now operating in
the “quantum-limited” regime, in which the dominant noise contributions come from the
quantum mechanics of measurement itself. These ultra-high precision systems can enable
tests of a wide range of dark matter models with extremely small couplings to ordinary
matter (both electromagnetic and otherwise). These approaches complement existing search
strategies, and in many cases provide better sensitivity than other available options.

The development of mechanical detectors has a rich history. Precision measurement in
the context of gravitational physics has utilized a range of large-scale systems such as opti-
cal interferometers [11], atom interferometers [12, 13], torsion balances [14, 15], and Weber
bars [16, 17]. The broader landscape of study of mechanical systems, as both classical and
quantum detectors, is wide reaching–ranging from single ions [18, 19], to tens of thousands
of atoms [20], to microscale resonators [21, 22] and up to kilogram-scale devices [11, 14]. In
this white paper, we consider how a variety of mechanical systems can open fundamentally
new avenues to search for dark matter over a large range of energy scales. In particular,
monitoring solid, massive objects allows for coherent integration of long-wavelength inter-
actions, and for integration of small cross sections over large volumes or large numbers of
target atoms or nuclei. Mechanical devices that are read out interferometrically at the shot-
noise limit, or even at or below the standard quantum limit (SQL) enforced by quantum
backaction [23], have been demonstrated across a wide range of mass scales, with natural fre-
quencies ranging from millihertz to terahertz in recent years (see [24] for a review). Hence,
multiple technologies are at an opportune point for contemplating their role in precision
experiments.

Dark matter detection is a particularly compelling and challenging problem, which may
require the development of fundamentally new technologies. Mechanical detection may be
poised to contribute to these challenging searches in both near-term and long-term exper-
iments. Development of new technologies will necessarily proceed with researchers in the
sensing and particle physics communities working in tandem. In the following, we outline
opportunities and objectives in this new direction in the search for dark matter. We note
that the mechanical sensing techniques we focus on have many similarities to proposed dark
matter searches with atom interferometry [25–27] and atomic clock systems [28–30], but
here we focus on the domain of solid objects.
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FIG. 1. Range of available dark matter candidates. Current observations allow for dark matter to

consist of quanta with an enormous range of masses. Here we classify these candidates as particle-

like when m & 1 eV, and ultralight, wave-like dark matter when m . 1 eV. A few prototypical

models are listed as examples.

II. MOTIVATIONS FOR MECHANICAL SENSORS

The present landscape of viable dark matter candidates is enormous, leading to a wide
variety of potential experimental signatures. Dark matter particles could range in mass
from 10−22 eV up to hundreds of solar masses, a range of some 90 orders of magnitude.1

Moreover, dark matter could interact with the standard model through many possible in-
teractions, although perhaps only through gravity. To span this diverse range of possible
models, different regions of parameter space will require different detector architectures and
measurement techniques. In particular, for models interacting with the standard model only
through mass or other extensive quantities such as nucleon number, massive mechanical sen-
sors may be required. Mechanical sensing technologies offer an extensive set of platforms,
as discussed in section IV, and thus have the potential to search for a wide range of such
dark matter candidates in regions of parameter space that are complementary to existing
searches.

The ability to monitor a large number of atoms in aggregate offers two key advantages over
other approaches. The first advantage is the large volume integration of any putative dark
matter signal. Any dark-visible interactions are necessarily tiny, so using a large volume (or a
large mass of target nuclei or atoms, for models that can resolve the underlying substructure
of the masses) is key to meaningful detection prospects. The second advantage is that long-
wavelength signals can be integrated coherently across the full device, leading to greatly
enhanced sensitivities. Such coherent detection has applications in the search for signals
from wave-like dark matter signals like the axion or other ultralight bosons, as well as in
the case of impulses delivered with extremely small momentum transfers. In section III,
we give some examples of dark matter models leading to these types of signals, and discuss
prospects for their detection with mechanical sensors.

III. DETECTION TARGETS AND TECHNIQUES

Possible signals of dark matter are controlled by a few key parameters. Astrophysical ob-
servations tell us that the dark matter mass density in our neighborhood is ρ ∼ 0.3 GeV/cm3

1 In this paper, we use natural units ~ = c = 1 to quote particle physics quantities like masses and momenta.
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[31]. Assuming this dark matter consists of a single component, with (unknown) mass of an
individual dark matter quantum, mχ, this means that the local number density is around

nχ =
0.3

cm3
×
(

1 GeV

mχ

)
. (1)

Moreover, the Earth is moving through the virialized background dark matter with “wind
speed” vDM ∼ 200 km/s. These parameters fix the kinematics of any detection experiment.
The only additional information is what non-gravitational couplings, if any, the dark matter
has with visible matter. See eg. [32] for a review and further references.

Broadly speaking, the above properties mean that potential dark matter signals fall into
two classes determined by the dark matter particle mass (see Fig. 1). Traditional DM
detection has focused on dark matter candidates of masses greater than around mχ & 1 eV,
which appear as distinct particles. If these interact with visible matter, they will deposit
tiny, discrete impulses (on the order of p = mχvDM) when they collide with a detector. On
the other hand, ultralight dark matter fields of mass 10−22 eV . mχ . 1 eV have enormous
occupation numbers, given Eqn. (1). The low mass and high occupation number of the
quanta mean that the field is bosonic and behaves as a background of oscillating waves
of wavelength λdB & 1 mm. This background of waves will be coherent over a timescale
Tcoh ∼ 106/ωχ set by Doppler broadening, where ωχ = mχc

2/~ is the natural frequency of
the field [33, 34]. These models thus produce extremely weak, coherent, persistent signals.
Searching for these two classes of signals requires different measurement techniques, which
we now discuss separately in more detail.

A. Ultralight searches

Consider a scenario where a sizeable fraction of the dark matter mass density is made
up of a single ultralight field. Examples of such ultralight dark matter candidates include
the axion [33], vector bosons arising by gauging the conservation of baryon minus lepton
number (B − L) [25], scalar and pseudoscalar fields coupled through the Higgs portal [44]
or the stress tensor [29] (see Table 1 of Ref. [25] for a collation of allowed couplings). These
models are minimal in the sense that they add only a single field to the standard model of
particle physics, and introduce no ultraviolet anomalies. The axion couples directly to the
electromagnetic and gluon fields, and can thus be searched for using a variety of systems
including microwave cavities [45, 46] and NMR systems [47]. The other candidates, however,
can couple to quantities proportional to mass density. It is thus natural to search for these
types of DM with massive sensors.

If DM consists primarily of one of these ultralight fields, the observable signature is
an oscillating background of ultralight bosons. This produces a nearly monochromatic,
sinusoidal force signal in a massive detector, with strength proportional to the mass, leading
to a variety of physical effects. For scalar DM the variations of fundamental constants such
as the electron mass, or fine structure constant would lead to a periodic strain in macroscopic
devices, and the possibility of detecting it has been explored in several mechanical structures
[37, 40, 41, 48]. For pseudoscalar DM candidates, observable signatures can include time-
varying nucleon electric dipole moments, spin-torques, and EMFs along magnetic fields
[25]. For vector DM one can obtain material dependent couplings, leading to differential
accelerations. For a concrete example, consider a vector boson field Aµ arising from a gauged
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FIG. 2. Ultralight dark matter searches. Left: Detection reach for accelerometer searches of

ultralight dark matter [25, 35], taking a vector B − L boson as an example. We assume one day

of integration time, and the use of a pair of accelerometers with differential neutron-to-nucleon

ratio ∆ = N1/A1 −N2/A2 = 0.05. Upper shaded regions are ruled out by existing torsion-balance

[15, 36, 37] and satellite experiments [38, 39]. Right: Detection reach for strain sensors [37, 40],

using a scalar field coupled to electrons as an example. The AURIGA Weber bar experiment

provides an additional narrow-band constraint [41]. In both plots, the colored lines labeled by

sensitivities represent the lower limit of dark matter parameter space which can be probed with

a detector of the given sensitivity. The lower shaded regions give some examples of conjectural

theory input: the region in the left plot conflict with a version of the weak gravity conjecture

[42, 43], here applied assuming the lightest B − L coupled particle is a neutrino of mass 0.01 eV.

In the right plot, the lower shaded region is favored by naturalness arguments [37].

B − L symmetry. This couples to the neutron field n through the neutron number density,
that is, through a coupling gB−L /Ann. The dark matter background of vector bosons then
leads to a force on a sensor given by

F (t) = F0NngB−L cos(mχc
2t/~) (2)

where Nn is the number of neutrons in the sensor, F0 ∼ 10−15 N is set by the dark matter
density (1), and gB−L is an unknown but weak coupling strength [25, 35]. Since the coupling
is to neutron number as opposed to total mass, a pair of sensors with different neutron-
to-nucleon ratios N/A can be used to search for the differential acceleration produced by
(2). In Fig. 2, we plot the available parameter space in this scenario and the acceleration
sensitivities needed for novel searches.

At the core, the detection problem here is to sense a weak, persistent, narrow-band signal.
Coherent sensing of narrowband forces is a prototypical application of mechanical sensors,
and so these are ideal detection targets for which mechanical sensors are poised to make
an immediate impact, particularly at higher frequencies (Hz-GHz) and/or using multiple
sensors to coherently integrate the signal.
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FIG. 3. Schematic of a phonon-counting exper-

iment with liquid helium in an optomechanical

cavity [52]. Darker blue indicates superfluid he-

lium, light blue is glass. Blue shading indicates

a typical paraxial acoustic mode, and the red

shows the optical mode to which it couples. Op-

tical modes with wavelength 1550 nm couple to

acoustic modes with frequency 315 MHz, corre-

sponding to energies around 1.5 µeV. An excited

phonon mode can convert into an off-resonance

photon through a Stokes or anti-Stokes process.

By filtering out the resonant photons, this enables

counting of the phonon excitations with temporal

resolution set by the photodetector (here on the

order of 50 ns). In this example, the fluid is held

at a temperature 25 mK and individual thermal

phonons are being counted. These phonons can

be cooled out of the cavity mode, to enable de-

tection of athermal phonons (as e.g. produced by

dark matter collisions with the helium).
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B. Particle-like searches based on recoils

To detect heavier (mχ & 1 eV), particle-like dark matter candidates, a variety of tech-
niques can be used. The key challenges in this regime can be illustrated by reviewing
traditional WIMP detection (see Ref. [49] for a review). In a liquid noble detector, the
WIMPs would occasionally strike an atomic nucleus, causing it to recoil. If sufficient energy
was deposited, the nucleus ionizes or excites nearby atoms, leading to either electron-ion
pairs or emission of scintillation photons which can then be detected by charge sensors or
photodetectors at the edges of the detector. This example demonstrates the basic issues: the
events are very rare (owing to the tiny dark matter-nucleon cross sections, σ . 10−36 cm2

[50]) and the energy deposition is very small (a given WIMP has mass of about ∼100 protons
and velocity 105 m/s) leading to only small amounts of ionization or scintillation. Thus any
detection program needs to have sufficient target mass to see enough events, as well as very
low detection thresholds to see these small energy deposits. We note that many other signals
of interest, in particular low-energy neutrinos [51], have precisely the same properties.

The massive mechanical sensing paradigm offers a straightforward solution to the issue
of mass: for example, the LIGO detectors have mechanical elements (the interferometer
mirrors) with masses of tens of kilograms! On the other hand, smaller mechanical detectors
can also enable extremely low-threshold energy detection. There are two basic strategies:
detection of localized phonons in bulk materials, and direct monitoring of impulses to the
center of mass motion of a single device.

A number of proposals for the detection of dark matter through bulk phononic excitations
currently exist [53–57], which may extend the sensitivity beyond existing implementations
of phonon sensing in cryogenic calorimeters (e.g. [58–60]). For example, when a dark matter
particle interacts with a nucleus in a bulk crystal, it generates a distortion of the lattice. In
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FIG. 4. Searches for particle-like dark matter. Here we consider dark matter consists primarily

of particles of mass mX , coupling to neutrons through a light mediator (eg. through a potential

V = αn/r, where αn is a small, unknown coupling strength) as an example search target for

mechanical impulse sensors. In the left plot, each curve represents a hypothetical sensor (labeled

by its mass, readout frequency, and noise level benchmarked to (3)). Sensitivity is lost at low

mass because the incoming DM will not have enough momentum to deliver to the device, and at

high mass because of the loss of flux (see Eqn. (1)). In the right plot, we use a nanogram-scale

sensor operated at the SQL as an example and show projected constraints compared to currently-

existing bounds. To draw the current bounds, we assume a microscopic realization in which dark

matter consists of “nuggets” of total mass mX made of multiple constituents of mass mχ ∼ 1 MeV,

coupled to neutrons through a B − L vector boson of mass mφ ∼ 0.05 eV (for discussion of the

parametrization of the fiducial DM-nucleon cross section σXn, see Ref. [65, 66]). The XENON1T

[67] and CDMS [68] bounds come from pre-existing particle physics experiments while the fifth-force

bounds come from torsion-balance searches [15, 36, 37, 69].

particular, if the inverse momentum transfer is larger than the lattice spacing, phonons are
excited. The phonons then travel through the material, and can be sensed by calorimetric
detectors at the edges of the material. As an example, state-of-the-art transition edge sensors
can resolve a total deposited energy in phonons down to energies around few× 10 meV [61].
This means that searches of this type are sensitive to “light” dark matter candidates, of
masses in the eV-MeV range. Optomechanical readout of phonons in small samples can
reach substantially lower thresholds. For example, single phonons at the micro-eV level can
be read out in micromechanical oscillators [62, 63] superfluid helium [52] or bulk crystals [64];
we show the superfluid helium example in Fig. 3. The primary challenge in such systems is
not energy threshold, but instead coupling energy into the phonon modes of interest (which
are often purposefully decoupled from the bulk phonon modes in the system to avoid thermal
noise). In addition, such systems are small (with mode masses at the µg to mg scale), so
scaling up to a sufficient volume for non-trivial dark matter detection reach is an interesting
open problem. If coupling of phonons into the modes of interest could be engineered (even
with relatively low efficiencies) such techniques would provide an exciting complement to
calorimetric phonon detection experiments.

Alternatively, one can monitor the center of mass motion of an entire object (i.e. the
zero-mode phonon). This technique could be particularly advantageous in the setting where
the collision acts coherently on the entire mechanical component, for example when the dark
matter couples to the sensor through a long-range force. Here one continuously monitors the
center of mass position and looks for small transfers of momenta greater than the typical
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noise on the device. The noise floor is ultimately limited by thermal coupling with the
environment and by quantum mechanical measurement noise coming from the monitoring
of the device [23, 70]. Concretely, the standard quantum limit (SQL) provides a benchmark
for a detectable impulse [71, 72]:

∆pSQL =
√
~mω ≈ 1.5 MeV ×

(
m

1 ng

)1/2 (
ω/2π

1 kHz

)1/2

, (3)

where m,ω are the mass and frequency of the mechanical sensor.2 While methods exist to
go below this noise level (see Sec. IV), currently existing devices acting at or even slightly
above the SQL are already capable of searching novel regions of DM parameter space, as
demonstrated by the initial search in [66]. We describe an example in Fig. 4.

C. Direct gravitational interaction with particle-like dark matter

As an ultimate long-term goal, mechanical sensing could open the possibility of direct
detection of particle dark matter purely through its gravitational interaction with visible
matter [73–75]. This coupling is the only one guaranteed to exist, so an experiment with
sufficient sensitivity would have the ability to find or completely rule out any dark matter
candidate in the mass range for which it is sensitive. This proposal involves the direct
monitoring of impulses delivered to sizeable (gram-scale) mechanical sensors, and exploits
the coherent nature of the gravitational interaction. Achieving this goal would require
realizing noise levels well below the SQL impulse sensing limit, as well as the ability to build
and read out a large array of sensors. However, the concept employed is precisely the same
as that described in the previous section, namely observation of an impulse to the center of
mass of an object. The basic idea can thus be tested in prototype experiments, for example
[66].

IV. AVAILABLE MECHANICAL SENSORS AND FUTURE CHALLENGES

Mechanical devices have been demonstrated with masses from single ions to kilograms,
and on frequency scales from millihertz to terahertz. Precision sensing has long used massive
detectors in the context of gravitational wave searches employing interferometric or resonant
detectors, e.g. LIGO. On a smaller scale, accelerometers and other mechanical devices are
ubiquitous in modern technology, and increasingly specialized mechanical systems with ex-
treme environmental isolation are important tools for storage and transduction of quantum
information [24].

As discussed above, many of the scientific motivations favor larger volumes or masses
to increase the rate of dark matter interactions in the detector. This motivates use of
more massive systems, which also provide better sensitivity to accelerations (scaling as the
square root of the mass). However, also important are the energy range of interest, the
available probes of specific mechanical modes, ever-present noise sources, and scalability. To
understand the scope of different available platforms, we present in Table I different detector
types and a sampling of sensitivities achieved to date in specific experiments. This list is

2 Here, the frequency ω should be replaced by the inverse measurement times scale when this exceeds the

mechanical frequency, such as the free-mass case ω → 0.
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Physical device Mass Frequency Temp. Quantum limit Sensitivity, e.g. acceleration, strain, force...

Resonant acoustic wave:

BAW/Weber bar [41] 1000 kg 1 kHz 4 K hs ∼ 10−21/
√

Hz

HBAR/phonon counting [76] 50 µg 10 GHz 10 mK single phonon σE ∼ 30 µeV

hs ∼ 10−15/
√

Hz

(hs ∼ 10−9/
√

Hzbroadbandbelowres)

superfluid helium cavities [52] 1 ng 300 MHz 50 mK single phonon σE ∼ 1 µeV

Resonant and below-resonance detectors:

cantilever optomechanical ac-
celerometer [77]

25 mg 10 kHz 300 K
√
Sa ∼ 3× 10−9 g/

√
Hz

(
√
Sa ∼ 10−7 g/

√
Hz broadband below res)

SiN-suspended test mass ac-
celerometer [78, 79]

10 mg 10 kHz 300 K
√
Sa ∼ 10−7 g/

√
Hz

(
√
Sa ∼ 10−6 g/

√
Hz broadband below res)

membrane optomechanics [80–
86]

10 ng 1.5 MHz 100 mK at SQL
√
Sa ∼ 10−7g/

√
Hz√

Sf ∼ 10−17 N/
√

Hz

crystalline cantilever for force
sensing [87]

0.2 ng 1 kHz 200 mK
√
Sa ∼ 3× 10−7g/

√
Hz√

Sf ∼ 10−18 N/
√

Hz

Pendula above resonance:

LIGO mirror [88] 10 kg 10 Hz – 10 kHz 300 K SN limited above
100 Hz

√
Sa ∼ 4× 10−15 g/

√
Hz at 100 Hz√

Sx ∼ 10−19 m/
√

Hz

suspended mg mirror [89–91] 1 mg 1 – 10 kHz 300 K factor of 20 in
displacement from
(off-resonant) SQL

√
Sa ∼ 7× 10−11 g/

√
Hz at 600 Hz√

Sx ∼ 5× 10−17 m/
√

Hz

crystalline cantilever [92] 50 ng 10 – 100 kHz 300 K at (off-resonant)
SQL

√
Sa ∼ 2× 10−7 g/

√
Hz at 20 kHz√

Sx ∼ 10−16 m/
√

Hz

Levitated and free-fall systems:

LISA pathfinder [93] 15 kg 1 – 30 mHz 300 K
√
Sa ∼ 10−15 g/

√
Hz

mm magnetically-levitated
sphere [94]

4 mg 20 Hz 5 K
√
Sa ∼ 2× 10−7 g/

√
Hz√

Sf ∼ 8× 10−12 N/
√

Hz

sub-mm magnetically-levitated
sphere [95]

0.25 µg 1–20 Hz laser cool
to < 9 K

√
Sa ∼ 10−7 g/

√
Hz√

Sf ∼ 2× 10−16 N/
√

Hz

optically trapped microsphere
[96]

1 ng 10 – 100 Hz laser cool
to 50 µK

factor of 100 in
displacement from
(off-resonant) SQL

√
Sa ∼ 10−7 g/

√
Hz√

Sf ∼ 10−18 N/
√

Hz

optically trapped nanosphere
[97, 98] (rotational [99])

3 fg 300 kHz laser cool
to 12 µK

ground state
√
Sa ∼ 7× 10−4 g/

√
Hz√

Sf ∼ 2× 10−20 N/
√

Hz√
Sτ ∼ 10−27 Nm/

√
Hz

trapped ion crystal [18] 10−6 fg 1 MHz
√
Sa ∼ 50 g/

√
Hz√

Sf ∼ 4× 10−22 N/
√

Hz

TABLE I. Examples of currently-available mechanical sensors. Sensitivities for continuous sensing

are represented by the relevant noise power spectral densities (e.g. Sa is the acceleration noise

power), or threshold (σE is the single-phonon detection threshold). Here we summarize solid-state

mechanical detectors, although atom interferometers can be characterized by similar metrics.

meant to be exemplary, and not exhaustive. It can also be considered a starting point,
i.e. rapid progress in mechanical detectors is being made in many fields, and as exemplified
in the workshop on which this white paper is based, there is increasing cross-development
between sensors of widely differing scales that will lead to fruitful technical improvements.

A central issue is to map the advantages of different physical architectures to differ-
ent searches. For cases where an impulse detector is desired, an essentially free mass can
be created by using a low-frequency pendulum measured above its resonance frequency,
i.e. at time-scales faster than an oscillation period. An interesting alternative is to lev-
itate particles and then release them after state preparation to perform measurements in
free-fall. Ultralight searches are likely to be first pursued by resonant detectors—ideally
tunable resonant detectors. The center of mass motion of a cantilever, membrane [100], or
even levitated sphere are appropriate in this situation. For ultralight searches that result
in changes in atomic strain due to effective signatures that appear as time-variations in
fundamental constants or atomic length scales, and hence excitation of effective breathing
modes, bulk acoustic modes are of interest [40]. Importantly, detection of such bulk acoustic
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waves may scale to large volumes using clever readout techniques, as exemplified by recent
single-phonon detection of a bulk acoustic resonator [76], and in the long-standing ability
to read out motion of very large Weber bars [16, 17]. Athermal phonon detection may also
benefit from this scaling if athermal phonons created in the bulk of a material could be
coupled into the readout modes of interest, but could also be pursued in arrays of smaller
sensors. Different devices can also support detection of additional signatures or couplings,
e.g. electric or magnetic charges or the material polarizability.

The quest to go beyond the sensitivities presented in Table I is ongoing, and we list here
a few examples of how advances in both conventional and non-conventional technologies for
precision sensors are poised to make interesting progress. Superfluid helium is a pristine
system that hosts mechanical modes; recent advances [52] in observing the quantum motion
of this liquid in a small cavity are promising, and this system could be easily scalable to larger
volumes and number of samples by simply immersing more probes in a single vat of liquid
helium. SiN micromechanical membranes offer a unique possibility to use strain to move the
resonant frequency of a mechanical detector by orders of magnitude while maintaining low
dissipation [101], allowing searches over a wide range of DM masses. By expanding to larger
membranes [100, 102] it should be possible to achieve kHz-scale resonant detectors with
much larger masses than traditional cantilevers. While optical readout is typical of precision
interferometry, electrical readout is poised to make important contributions, both in the
context of phonon readout through superconducting qubits [76], but also through advances
in magnetic couplings [103]. Detection of the motion of levitated nanospheres is reaching
quantum measurement limits [97]. Scaling the mass of levitated systems in the quantum
regime to the ng scale and above may offer extremely low threshold mechanical sensors with
substantial mass that are well-isolated from environmental noise [94, 96, 104]. Readout of
ultra low-energy phonons is currently achieved in small devices; if these techniques could
be adapted to read out larger volumes—and if the challenging problem of coupling energy
from such a volume into the modes of interest could be overcome—the potential gains
are significant. Lastly, the growth of gravitational wave astronomy will undoubtedly bring
advances in materials for mirrors, mirror coatings, and suspensions that will advance all
precision measurements based upon suspended pendula.

Reducing both technical and quantum measurement-added noise sources will allow for
progressively increasing sensitivity to dark matter. In general, devices operating at lower
frequencies tend to be dominated by thermal or other technical noise sources, while higher-
frequency devices are limited by shot noise or more generally by quantum measurement
noise. For systems in a 10 mK dilution refrigerator, for example, the cutoff is at ω ∼
kT/~ ∼ 1 MHz. The primary contaminant in a dark matter search is the heating rate of
a sensor, Γ ∼ Tbath/Q, where Q is the mechanical quality factor. Thus fabrication of lower
dissipation (higher-Q) devices will be of critical importance.

We can see directly in Table I that a range of experiments are now impinging on quantum
noise limits, and so methods to operate devices well into the quantum-limited regime (i.e.
true “quantum sensors”) are of substantial interest. Measurement-added noise has been
suppressed below the shot noise limit at LIGO [105], and it has likewise been driven to the
standard quantum limit [80, 92] and beyond [81] with membranes and cantilevers. Quan-
tum sensing techniques can further reduce these noise levels using squeezed readout light
[106, 107] and/or a variety of backaction-evasion techniques [108–111]. In the context of
free-mass targets, nanogram levitated spheres have been cooled to their quantum ground
state [97]. Ultimately, to detect momentum transfers far below the SQL, it may be necessary
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to prepare the mechanics in a more extreme non-classical state, such as a coherent spatial
superposition, and then perform interferometric measurement [112–114]. The sensitivity of
such superpositions to small impulses is in principle unbounded, scaling with the spatial
extent and temporal duration of the quantum coherence that is achieved. In addition to
sub-SQL sensitivities to classical forces, such an approach can offer the unique possibility
of detecting sources of anomalous test-mass diffusion (e.g., DM-induced Brownian motion),
which can cause decoherence in a matter interferometer [115, 116] even when the mean
momentum transfer is negligible [117].

Construction and operation of an array of mechanical sensors poses an interesting tech-
nical challenge with applications to many of the dark matter searches described above.
Performing differential measurements on multiple sensors would allow for rejection of many
backgrounds. In particular, use of sensors with different materials will enable discrimina-
tion against signals which act in a material-independent fashion, for example gravitational
noise. Relative accelerations between objects with different numbers of neutrons could iden-
tify ultralight fields coupling to B − L. Coherent integration of multiple sensors would be
highly valuable, enabling scaling in sensitivity that is linear with the number N of sen-
sors as opposed to the incoherent

√
N enhancement. Understanding the detailed nature of

sensor-sensor interactions in a tightly packed array will be important. These interactions
could be exploited to enhance measurement sensitivity, in particular through entanglement
of multiple sensors [118].

In the near term, a number of demonstrator experiments could pave the way for future,
scalable dark matter detection. Given the current constraints on ultralight dark matter, cur-
rent or near future devices could already perform non-trivial searches in this parameter space.
Operating a small array of sensors as a coherent detector of ultralight dark matter would
demonstrate the basic techniques needed as well as help to identify challenges in scaling
to larger numbers. Moving toward detection of short impulses, demonstration of ultra-low
threshold phonon readout in a meaningful volume would be of substantial value. Demon-
strating that optomechanical impulse sensing allows for backaction noise evasion would like-
wise be extremely valuable, and allow for a more detailed understanding of the potential
limitations of such a technique, in particular due to optical losses.

V. CONCLUSIONS

Dark matter constitutes one of the most fundamental mysteries in modern science: what
is the nature of this strange mass, taking up a quarter of the universe’s energy budget? As
the search for dark matter enters maturity, new theoretical and experimental directions are
needed. Mechanical sensing technologies, especially with quantum-sensing techniques that
can enable measurement past traditional quantum limits, offer an exciting route to new
experimental searches.

Deploying currently available technology could have immediate impact, while longer-term
prospects will require some technical advances. On the experimental side, a number of basic
technological challenges to be overcome and demonstrations of the core search techniques
will be of critical importance. Data processing techniques and the application of lessons
learned from previous experiments about the nature of potential background signals will
require development tailored to these experimental approaches. Looking toward the longer
term, interdisciplinary collaborative efforts and the construction and use of multiple sensors
as a coherent detector offer a fascinating set of problems.
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Overall, the wide variety of platforms and scales available with these techniques has the
potential to make significant impact across a wide swath of the dark matter landscape. Fu-
ture developments should only continue to improve sensitivities and detection reach. Further
collaboration between the mechanical quantum sensing and particle physics communities will
undoubtedly lead to even more possibilities than those outlined here.
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mission: first constraints on the violation of the weak equivalence principle by a light scalar

dilaton,” Physical review letters 120 no. 14, (2018) 141101.

[40] J. Manley, R. Stump, D. Wilson, D. Grin, and S. Singh, “Searching for scalar dark matter

with compact mechanical resonators,” arXiv preprint arXiv:1910.07574 (2019) .

[41] A. Branca, M. Bonaldi, M. Cerdonio, L. Conti, P. Falferi, F. Marin, R. Mezzena,

A. Ortolan, G. A. Prodi, L. Taffarello, et al., “Search for an ultralight scalar dark matter

candidate with the auriga detector,” Physical Review Letters 118 no. 2, (2017) 021302.

[42] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, “The String landscape, black holes and

gravity as the weakest force,” JHEP 06 (2007) 060, arXiv:hep-th/0601001.

[43] C. Cheung, J. Liu, and G. N. Remmen, “Proof of the weak gravity conjecture from black

hole entropy,” Journal of High Energy Physics 2018 no. 10, (2018) 4.

[44] F. Piazza and M. Pospelov, “Sub-ev scalar dark matter through the super-renormalizable

higgs portal,” Physical Review D 82 no. 4, (2010) 043533.

[45] N. Du, N. Force, R. Khatiwada, E. Lentz, R. Ottens, L. Rosenberg, G. Rybka, G. Carosi,

N. Woollett, D. Bowring, et al., “Search for invisible axion dark matter with the axion dark

matter experiment,” Physical review letters 120 no. 15, (2018) 151301.

[46] L. Zhong, S. Al Kenany, K. Backes, B. Brubaker, S. Cahn, G. Carosi, Y. Gurevich,

W. Kindel, S. Lamoreaux, K. Lehnert, et al., “Results from phase 1 of the haystac

microwave cavity axion experiment,” Physical Review D 97 no. 9, (2018) 092001.

[47] A. Arvanitaki and A. A. Geraci, “Resonantly detecting axion-mediated forces with nuclear

magnetic resonance,” Physical review letters 113 no. 16, (2014) 161801.

http://dx.doi.org/10.22323/1.333.0009
http://arxiv.org/abs/1904.07915
http://arxiv.org/abs/1908.04797
http://dx.doi.org/10.1088/1126-6708/2007/06/060
http://arxiv.org/abs/hep-th/0601001


16

[48] A. A. Geraci, C. Bradley, D. Gao, J. Weinstein, and A. Derevianko, “Searching for

ultralight dark matter with optical cavities,” Physical review letters 123 no. 3, (2019)

031304.

[49] M. Schumann, “Direct Detection of WIMP Dark Matter: Concepts and Status,” J. Phys.

G46 no. 10, (2019) 103003, arXiv:1903.03026 [astro-ph.CO].

[50] LUX Collaboration, D. S. Akerib et al., “Results from a search for dark matter in the

complete LUX exposure,” Phys. Rev. Lett. 118 no. 2, (2017) 021303, arXiv:1608.07648

[astro-ph.CO].

[51] B. Cabrera, L. M. Krauss, and F. Wilczek, “Bolometric detection of neutrinos,” Physical

Review Letters 55 no. 1, (1985) 25.

[52] A. Shkarin, A. Kashkanova, C. Brown, S. Garcia, K. Ott, J. Reichel, and J. Harris,

“Quantum optomechanics in a liquid,” Physical review letters 122 no. 15, (2019) 153601.

[53] W. Guo and D. N. McKinsey, “Concept for a dark matter detector using liquid helium-4,”

Physical Review D 87 no. 11, (2013) 115001.

[54] K. Schutz and K. M. Zurek, “Detectability of Light Dark Matter with Superfluid Helium,”

Phys. Rev. Lett. 117 no. 12, (2016) 121302, arXiv:1604.08206 [hep-ph].

[55] S. Griffin, S. Knapen, T. Lin, and K. M. Zurek, “Directional detection of light dark matter

with polar materials,” Physical Review D 98 no. 11, (2018) 115034.

[56] S. Knapen, T. Lin, M. Pyle, and K. M. Zurek, “Detection of light dark matter with optical

phonons in polar materials,” Physics Letters B 785 (2018) 386–390.

[57] N. A. Kurinsky, T. C. Yu, Y. Hochberg, and B. Cabrera, “Diamond Detectors for Direct

Detection of Sub-GeV Dark Matter,” Phys. Rev. D99 no. 12, (2019) 123005,

arXiv:1901.07569 [hep-ex].

[58] SuperCDMS Collaboration Collaboration, R. Agnese et al., “Projected sensitivity of

the supercdms snolab experiment,” Phys. Rev. D 95 (Apr, 2017) 082002.

[59] CRESST Collaboration Collaboration, A. H. Abdelhameed et al., “First results from

the cresst-iii low-mass dark matter program,” Phys. Rev. D 100 (Nov, 2019) 102002.

[60] EDELWEISS Collaboration Collaboration, E. Armengaud et al., “Searching for

low-mass dark matter particles with a massive ge bolometer operated above ground,” Phys.

Rev. D 99 (Apr, 2019) 082003.

[61] C. Fink et al., “Characterizing TES Power Noise for Future Single Optical-Phonon and

Infrared-Photon Detectors,” arXiv:2004.10257 [physics.ins-det].

[62] J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini,
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