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We study mechanisms of vortex nucleation in Nb3Sn SRF cavities using a combination of ex-
perimental, theoretical, and computational methods. Scanning transmission electron microscopy
(STEM) image and energy dispersive spectroscopy (EDS) of some Nb3Sn cavities show Sn segrega-
tion at grain boundaries in Nb3Sn with Sn concentration as high as ∼35 at.% and widths ∼3 nm
in chemical composition. Using ab initio calculations, we estimate the effect excess tin has on the
local superconducting properties of the material. We model Sn segregation as a lowering of the local
critical temperature. We then use time-dependent Ginzburg-Landau theory to understand the role
of segregation on magnetic vortex nucleation. Our simulations indicate that the grain boundaries
act as both nucleation sites for vortex penetration and pinning sites for vortices after nucleation.
Depending on the magnitude of the applied field, vortices may remain pinned in the grain boundary
or penetrate the grain itself. We estimate the superconducting losses due to vortices filling grain
boundaries and compare with observed performance degradation with higher magnetic fields. We
estimate that the quality factor may decrease by an order of magnitude (1010 to 109) at typical op-
erating fields if 0.03% of the grain boundaries actively nucleate vortices. We additionally estimate
the volume that would need to be filled with vortices to match experimental observations of cavity
heating.

I. INTRODUCTION

Superconducting Radio-Frequency (SRF) cavities are
used in accelerators to transfer energy to beams of
charged particles. Induced magnetic fields are a funda-
mental limit to performance due to stability of the of the
superconducting Meissner effect, i.e., perfect diagmag-
netism. For type-II materials, complete flux expulsion
is thermodynamically stable up to a lower-critical field,
Hc1, and a mixed state characterized by superconduct-
ing vortices is stable for fields up to an upper-critical
field, Hc2. Thus, by limiting the fields on the walls of
the SRF cavities, the superconductor can be kept in the
flux-free Meissner state, so that surface dissipation is ex-
tremely small and quality factors ∼ 1010 can be achieved.
For magnetic fields parallel to the cavity surface, the su-
perconducting Meissner state can be maintained above
the stability limit in a metastable state up to a limit
(for an ideal surface) of the so-called superheating field
Hsh[1]. Hsh has been studied extensively by the con-
densed matter community, primarily in the context of
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Ginzburg-Landau theory at ideal interfaces[2–5]. Be-
cause high-power SRF cavities routinely operate in the
metastable regime[6], there has been renewed interested
by condensed matter community of the behavior of su-
perconductors in large magnetic fields. Calculations ex-
tend results to the semi-classical theory of Eilenberger
theory in both the clean[7] and dirty[8] limits and Time-
Dependent Ginzburg Landau (TDGL) simulations that
account for material[9] and spatial inhomogeneities[10–
13]. In this paper, we explore the role of grain bound-
aries (GBs) in SRF cavity performance motivated by ex-
perimental observations of inhomogeneities in real-world
SRF cavities. This study brings together the expertise of
many areas of condensed matter and accelerator physics
to explore fundamental physics of superconductors in ex-
treme conditions and connect those results to real sys-
tems.

Recently there has been significant progress towards
the employment of Nb3Sn in SRF cavities as a higher
performance alternative to the industry standard Nb for
next generation particle accelerator applications [14, 15].
Nb3Sn cavities are prepared with Nb3Sn films ∼2 µm
(nearly 20 penetration depths) thick coated on the sur-
face of Nb cavities using the Sn vapor-diffusion process.
Nb3Sn is an intermetallic alloy with A15 crystal struc-
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ture; it is a promising material for next-generation SRF
cavities in large part because of its large (predicted) su-
perheating field (∼400 mT). It also has a higher critical
temperature (Tc ∼18K), making it possible for it to have
a higher quality factor (Q0, another critical metric of cav-
ity performance) at a given temperature compared to Nb
(Tc ∼9K).

In practice, however, real world Nb3Sn cavities quench
well-below the theoretically predicted value. The maxi-
mum accelerating gradient that has been achieved within
these cavities is about 22 MV/m, which corresponds to
the surface magnetic field of ∼90 mT. These cavities ex-
hibit a high Q0 of ∼ 1010 at 4.2 K [14, 16]; however,
in some cavities, Q0 begins to degrade significantly be-
fore the limiting quench field is reached, a phenomenon
described as “Q-slope”[17].

Understanding the mechanism underlying the Q-slope
phenomenon is an important question for cavity develop-
ment. Several mechanisms have been proposed in terms
of imperfections in the Nb3Sn coatings [6, 18, 19] such as
thin grains [20, 21] and Sn-deficient regions [22]. Another
potential mechanism that may have detrimental effects
on the performance of Nb3Sn cavities is Sn segregation at
grain boundaries [23]. In some Nb3Sn coatings, tin con-
centrations as high as ∼35 at.% have been observed in
grain boundaries with the segregated zone extending by
as much as ∼3 nm, comparable to the coherence length of
Nb3Sn (∼3 nm). Because of the inferior superconducting
properties, magnetic flux may penetrate the segregated
region, degrade Q0, and lead to premature quench.

In support of this hypothesis, witness samples coated
with high-performance (quench at ∼22 MV/m with
Q∼1010 at 4.4 K) Nb3Sn cavities at Fermilab did not
show Sn segregation at the grain boundaries in energy
dispersive X-ray spectroscopy (EDS) and in scanning
transmission electron microscopy (STEM). Similarly, a
direct cutout from a high-performance Nb3Sn cavity fab-
ricated at Cornell did not show Sn segregation at grain
boundaries within the detection limit of STEM-EDS. In
contrast, Nb3Sn cavities, which show Sn segregation at
grain boundaries in witness samples that coated together
with the cavities, displayed negative Q-slope for acceler-
ating fields in the 5-15 MV/m range, see Fermilab cavity
1 and 2, Fig. 1. These experimental results, summarized
in Fig. 1, suggest a potential link between Sn segregation
at grain boundaries and cavity performance [23].

Experimentally, it is difficult to isolate the effects of
Sn segregation at grain boundaries from other imper-
fections, such as Sn-deficient regions and surface rough-
ness. To overcome these challenges, we use numerical
tools to theoretically understand the role of segregation
in grain boundaries for SRF cavity performance. We use
density functional theory to estimate the effective Tc of
the material within the segregation zone. Next, we use
time-dependent Ginzburg-Landau simulations with spa-
tial varying material properties motivated by the ab ini-
tio DFT calculations. Time-dependent Ginzburg-Landau
theory allows us to conduct numerical experiments on

FIG. 1. Q vs E curve of various Nb3Sn SRF cavities coated
at Fermilab and Cornell. The GBs of a witness sample (Fer-
milab Cavity 3) and direct cutout (Cornell Cavity 2) of a
high-performance cavity are characterized in STEM-EDS and
showed no Sn segregation at GBs. On the other hand, wit-
ness samples of Fermilab Cavity 1 and 2, which show Q-slope
starting at 8 MV/m, were found to have Sn segregation at
GBs (reprint from [23]).

a mesoscale that probe the role of grain boundaries
and segregated zones for vortex nucleation, pinning, and
quenching. Finally, motivated by our TDGL simula-
tions, we estimate power dissipated by vortex nucleation
within segregated grain boundaries during an RF cycle
and make quantitative comparisons to actual SRF cavi-
ties.

This paper is organized as follows: First, we present
experimental images of defects in Nb3Sn cavities in sec-
tion II. We then report on first principles DFT calcula-
tions of superconducting properties for segregation zones
in section III and time-dependent Ginzburg-Landau sim-
ulations of flux penetration in section IV. We estimate
the effect on cavity performance in section V. Our numer-
ical experiments isolate the effects of Sn-segregated grain
boundaries from potentially confounding mechanisms.
Our results indicate that the effects of Sn-segregated
grain boundaries alone are consistent with observed be-
haviors. Specifically, grain boundaries may nucleate and
then trap a limited number of vortices, leading to de-
gredation in the cavity’s quality factor. We conclude by
discussing the implications of these results for cavity de-
velopment and further theoretical studies in section VI.

II. EXPERIMENTAL IMAGES OF NB3SN
DEFECTS

The high angle annular dark field (HAADF)-STEM
image in Figure 2 displays a Nb3Sn coating on Nb pre-
pared by the Sn vapor diffusion process using coating
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FIG. 2. HAADF-STEM image of a typical ∼2 µm thick
Nb3Sn coating on Nb prepared by Sn vapor-diffusion.

parameters from the early stage of the development of
Nb3Sn films at Fermilab [14]. EDS mapping is performed
across a GB in a Nb3Sn coating prepared by the same
coating parameters and it reveals that Sn is segregated at
the GB, Figure 3. A maximum concentration of Sn at the
GB is ∼33 at.% and a width of the Sn segregated region
is ∼3 nm. The Gibbsian interfacial excess of Sn is ∼16
atom/nm2. Previous studies on analyses of structures
of Sn-segregated GBs in Nb3Sn employing HR-STEM
and first-principle calculations indicated that most of the
segregated Sn exist as Sn-antisite defects near the GBs
rather than forming Sn-rich phases such as Nb6Sn5 or
other non-equilibrium phases [23, 24].

Another GB from a witness sample of a high-
performance cavity prepared at Fermilab is characterized
by HR-STEM EDS, Fig. 4. It is noted that there is no Sn
segregation at the GB within the detection limit of EDS
(∼1 at.%). This may indicate that there could be a pos-
sible correlation between the Sn segregation at GBs and
cavity performance. It has been reported that Sn segre-
gation is caused by Sn diffusion via GBs due to high Sn
supply and it can be controlled using carefully selected
coating parameters [23].

Also, the dips are formed on the surface at GBs and
HAADF-STEM image in Fig. 5 displays the geometry of
a GB on the top surface. It has ∼80 nm of depth and
∼420 nm of width. The composition and surface rough-
ness change at the GBs, possibly providing pathways for
flux to penetrate through the imperfections. These ex-
perimental observations are the motivation for our ab
initio and Ginzburg-Landau modeling to investigate the
effect of the imperfections on the vortex penetration.

III. THE EFFECT OF TIN-RICH
STOICHIOMETRY ON Tc

The presence of tin-rich stoichiometry near grain
boundaries has been established experimentally, but be-
cause these regions are so small, it is difficult to directly
probe their superconducting properties. We therefore

FIG. 3. The HAADF-STEM image and corresponding Nb
and Sn concentration profiles across the GB between Grain 1
and Grain 2. Sn is segregated at the GB up to ∼33 at.% Sn
and the width of the Sn segregated region is ∼3 nm.

FIG. 4. BF-STEM and corresponding Nb and Sn concen-
tration profiles across a GB from a witness sample of high-
performance Nb3Sn SRF cavity prepared at Fermilab.

consider ab initio Tc values calculated using Eliashberg
theory [25] and Density Functional Theory (DFT) [26].
Ref. [27] presents such results obtained using a Wannier-
based k-point sampling approach[28]. For the experimen-
tally measured stoichiometry range of the A15 phase, the
predicted Tc values are similar to or modestly higher than

FIG. 5. HAADF-STEM image of the cross-section of the top
surface of a Nb3Sn GB.
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FIG. 6. Experimental Tc [29] (grey squares) and calculated Tc

(black circles) for A15 Nb-Sn of different stoichiometries. For
some stoichiometries, multiple possible defect configurations
were considered. The calculated Tc reaches a minimum of
about 5 Kelvin in the tin-rich regime.

experimental values, as described in Table 1. For experi-
mentally inaccessible tin-rich stoichiometry, Tc values fall
to a minimum of about 5K at 31.25% Sn stoichiometry
(Fig. 6). This is well within the range that has been
observed around grain boundaries.

TABLE I. Calculated vs. Measured Tc

Composition Experimental Tc (K) Calculated Tc (K)
18.75% Sn 6 9.2†

20.83% Sn 9.5 11.3
23.44% Sn 16 16.1
25.00% Sn 18 18.2
31.25% Sn n/a 5.3†

† Averaged over multiple configurations.

IV. TIME-DEPENDENT GINZBURG-LANDAU
SIMULATIONS OF VORTEX NUCLEATION

A. Introduction to Methods

Time-dependent Ginzburg-Landau (TDGL) theory is
sophisticated enough to capture vortex dynamics without
becoming too algebraically complicated and computa-
tionally expensive. We solve the TDGL equations using
a finite element method implemented in FEniCS[30, 31].
We follow the finite element formulation described by
Gao et. al[9, 32]. Note that in this formulation length is
measured in units of the penetration depth λ.

This formulation reduces the full three-dimensional
problem into a two-dimensional problem by assuming
symmetry along the z-axis. The magnetic field points
along the z-axis, fixing variations in the order parameter
and magnetic vector potential to the x-y plane.

We consider the film geometry seen in Figure 7. We
take a rectangular cross-section lying in the x-y plane.
We enforce periodic boundary conditions on the left and
right side. On the top and bottom, we enforce Dirichlet

FIG. 7. The black square interior to the film geometry marks
our domain of simulation. It lies perpendicular to the applied
magnetic field Ha. We assume there are no variations in the
direction of Ha so that we can simulate a 2D domain.

boundary conditions for the magnetic field and Neumann
boundary conditions for the order parameter.

We model geometric defects by removing an exponen-
tial cut out from the top and bottom of the film. The

region removed is given by de−
|x|
w where d is the depth

of the cut out and w determines the width.The depth
and width are chosen to match experimentally observed
geometries.

To capture Sn segregation we allow Tc to vary over
the domain. This is done by varying the α ∝ T/Tc − 1
parameter as described in [9]. To mimic the distribu-
tion of material inhomogeneities shown in Figure 3, we
introduce α′ = (T/Tc − 1)/αref ≤ 1 in the GB region
|x| ≤ ξ/2 and αref = −1 elsewhere. The projection of
this onto the mesh is shown in Figure 8.

The Ginzburg-Landau parameter for Nb3Sn is κ =
λ/ξ ∼26, which is challenging to simulate because of
the extreme separation in length scales that require a
very refined mesh. However, the relevant physics for vor-
tex nucleation are variations in material parameters on
length scales comparable to the superconducting coher-
ence length, ξ. Therefore, we have simulated a moderate
type-II material (κ = 4) but scaled the width of the seg-
regated region (i.e., depleted Tc) so that its dimensions
relative to ξ are the same as that observed in Figure 3.
Although these assumptions may affect quantitative de-
tails, we expect the qualitative results are the same for
more extreme type-II materials.

B. Vortex Nucleation in Grain Boundaries

To simulate the nucleation of vortices into a grain
boundary, we set the value of the magnetic field at the
top and bottom boundary such that it is low enough
that an array of vortices do not penetrate directly into
the bulk, but large enough for vortices to enter into the
grain boundary[9]. As we evolve time (assuming a con-
stant applied field), two different behaviors are observed
depending on the magnitude of the applied field. In the
first scenario, vortices enter into the grain boundary at
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FIG. 8. Projection of α′ = 1 − T/Tc onto a mesh, where
α′ = 0 (i.e., T ≈ Tc) in the region |x|/λ ≤ 0.125 and α = 1
elsewhere. The width of this region comes from experimental
observations.

the geometric divot. With increasing field, the spacing
between vortices decreases until it reaches critical levels.
In the second scenario, vortices first fill the grain bound-
ary, as in the first case, but then begin to penetrate into
the grain from boundary.

Once a vortex has penetrated into the grain boundary,
it is pushed from the surface, allowing more vortices to
come in after it. Once space is available, another vortex
penetrates. This continues until the vortices have filled
the grain boundary, i.e. an optimal spacing between the
vortices inside grain boundary has been achieved. This is
illustrated by the sequence in Figure 9. Note that vortices
are manifest as regions in which the order parameter is
reduced to near zero at their center and exponentially
decay radially outward to unity.

If the applied magnetic field is sufficiently high, vor-
tices will also begin to penetrate into the bulk once the
grain boundary has been filled, Figure 9, bottom. The
field at which vortices penetrate from the grain bound-
ary into the grain is dependent on the distribution of
α′ = 1 − T/Tc. The shallower the slope of α′ the lower
the applied field needs to be to nucleate vortices into the
grain from the grain boundary. These results are sum-
marized in the phase diagram in Figure 10. Comparing
with results from section III, for a segregated region with
Tc ∼ 5K in a cavity operating at T = 4.2K (T/Tc ∼ 1),
we observe a non-trivial region of the phase diagram that
admits flux trapped at the grain boundary.

The value of the applied at which the vortices first leave
the grain boundary and penetrate the bulk depends on
the properties in the transition zone between the segre-
gated and non-segregated region. If the transition form
α′ < 1 (segregated region) to α′ = 1 (non-segregated
region) is very sharp (as the blue solid curve in Figure
11), then vortices will be trapped in the grain boundary
for larger fields. However, if the transition is more grad-
ual (such as the orange dashed curve), then it is easier
for vortices to escape the boundary and penetrate the

FIG. 9. Sequence of behaviors for increasingly large applied
magnetic fields. An applied magnetic field is set as a bound-
ary condition to the top and bottom of the film, with periodic
boundary conditions on the right and left sides. At moderate
applied magnetic fields, vortices penetrate only into the grain
boundary from the geometric defect (top). At higher fields, a
critical vortex spacing is reached (second pane) above which
vortices begin to penetrate the bulk from the grain bound-
ary (third pane). Finally, having entered the bulk, vortices
disperse and fill the grain with an equilibrium distribution
(bottom).

bulk. Figures [8, 9, 10] were generated with a very sharp
interface.

V. ESTIMATES OF VORTEX DISSIPATION AT
GRAIN BOUNDARIES

Inhomogeneous properties of superconductors have
high impact on the performance of SRF cavities, affect-
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FIG. 10. Phase diagram of TDGL predictions for flux pen-
etration in the presence of the grain boundary, interpolated
from simulations at α′ = −1, 0, 1. At small applied fields, no
flux penetrates (blues). At intermediate fields, flux penetrates
but is constrained to the grain boundary (yellow). At suffi-
ciently high fields, the flux penetrates from the grain bound-
ary in to the bulk material (red).

FIG. 11. Profiles of potential α′ for the transition between
the segregated and non-segregated regions. Sharp transitions
(such as the blue solid curve) keep the vortices constrained
to the boundary for larger applied fields. A more shallow
transition (such as the orange dashed curve), however, allow
vortices to escape into the grain more easily.

ing figures of merit such as the residual resistance due
to trapped magnetic flux [33–35], and the superheating
field [1, 2, 7, 36–38]. Grain boundaries well aligned with
the surface magnetic field can become weak spots for the
nucleation of superconducting vortices (see Fig. 12), and
could be ultimately responsible for the quench of an SRF
cavity. In this section, we discuss simple estimates for the
power dissipation and heat diffusion due to nucleation of
vortices at grain boundaries in Nb3Sn cavities.

We start with an estimate for the power dissipated in
an SRF cavity when a grain boundary is filled with n su-
perconducting vortices. We assume of order O(n) vortex
lines are annihilated once per cycle, their energy is lost,
and the power dissipated per vortex line is simply the

FIG. 12. Illustrating vortex nucleation (red lines) in a super-
conductor (light gray region) subject to a surface magnetic
field H. Vortex entry starts at regions where superconduc-
tivity is weakest (dark gray regions, here representing grain
boundaries).

drop in the energy of the outside magnetic field times the
RF frequency. Our estimate gives a rough estimate for
the actual power dissipated by vortices at grain bound-
aries, if the field reaches high enough values for them to
enter.

The drop in magnetic energy when a vortex line of
length D nucleates into the superconductor is given by:

∆E =

∣∣∣∣∣
∫

1

2µ

(
B − Φ0D

V

)2

dV −
∫
B2

2µ
dV

∣∣∣∣∣
≈ BΦ0D

µ
, (1)

where V is the volume, µ is the permeability of free
space, Φ0 is the fluxoid quantum, and λ is the pen-
etration depth. Note that ∆E is also approximately
the work done by the external magnetic field to push
a vortex into the bulk of the superconductor: W ≈
fL · D · λ = (Φ0B/(µλ))Dλ = ∆E, where fL is the
Lorentz force per length. Thus, our calculation gives
the vortex dissipation at grain boundaries assuming that
the vortices do not leave the grain boundary as the ex-
ternal field drops and changes sign, as our simulations
indicate, and as one would expect for vortices that en-
ter a distance more than λ, past the surface nucleation
barrier. The total energy drop for a grain boundary of
linear size D with vortices spaced by λ (see Fig. 12) is
∆EGB ≈ ∆E(D/λ) = BΦ0D

2/(µλ), and the power dis-
sipated per grain boundary is given by

PGB ≡ f∆EGB =
BΦ0

µ

fD2

λ
, (2)
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where f is the cavity frequency. For a 1.3GHz Nb3Sn
cavity with typical grain size of D ≈ 1µm, we find PGB ≈
621nW at B = 60mT.

Note that our estimate rely on the assumption that
vortices quickly fill the grain boundary before being an-
nihilated during the RF cycle. If the vortex line relaxes
slowly, the RF field might vanish and change sign before
vortices had time to fill the grain boundary, and our as-
sumption would not be valid. We now show that that is
not the case — vortices move at extremely high speeds
in the typical environment of Nb3Sn SRF cavities.

Consider the one-dimensional motion of a “train” of N
vortices moving through a grain boundary towards the
superconductor interior (see Fig. 13). Assuming over-
damped dynamics, the equations of motion for each vor-
tex line i of velocity vi read:

ηv1 = fL − f2,1,
ηv2 = f1,2 − f3,2,

...

ηvN−1 = fN−2,N−1 − fN,N−1,

ηvN = fN−1,N ,

where fL = Φ0Hrf/λ is the Lorentz force per length
at the surface, Hrf is the surface magnetic field, η =

Φo
2/(2πξ2ρn) is the Bardeen-Stephen viscosity [39], ρn is

the resistivity of the normal state and fi,j is the repulsion
force from vortex i into vortex j. Thus,

〈v〉 ≡ 1

N

N∑
i=1

vi =
fL
Nη

=
2π

µΦ0

ρnξ
2

λ

Brf

N
. (3)

For Nb3Sn at Brf = 60mT, we find 〈v〉 = 2.4µm/ns and
〈v〉 = 24µm/ns for ten vortices and one vortex, respec-
tively. The average velocity of the vortex train is clearly
high enough for vortices to quickly fill in the grain bound-
ary during the RF cycle, but the numerical value should
be taken with a grain of salt. The Bardeen-Stephen for-
mula is not valid at these high speeds, which also exceed
the pair-breaking limit of the superconducting conden-
sate [40]. In recent work [41], Gurevich and Sheikhzada
consider the dynamics of Abrikosov-Josephson vortices
to model the dissipation by vortices at grain boundaries.

fL

f1,2f2,1 f3,2 fN,N-1 fN-2,N-1 fN-1,N
...

FIG. 13. Illustrating a “train” of N vortex lines (blue disks)
moving through a grain boundary (dark gray) of a supercon-
ductor (light gray). The first vortex is subject to a surface
Lorentz force from the RF field and each vortex is repelled by
its nearest neighbors.

Grain boundary activation might be associated with
the degradation of the quality factor Q of SRF cavities

at high fields. We now use our estimates to calculate the
number of active grain boundaries needed to deplete Q
by a certain amount.

The quality factor is given by Q = GBrf
2/(2µ2P ),

where P is the dissipated power per unit area and G is
a geometry factor. We break up the total surface area
s of the cavity into N blocks, so that s = NsGB , where
sGB is the average area occupied by one grain boundary.
Assume inactive and active blocks dissipate power P1 and
P1 +PGB , respectively, where by active block we mean a
block with a grain boundary filled with vortices. For M
active blocks,

Q =
GBrf

2

2µ2(NP1 +MPGB)/(NsGB)

=
GBrf

2sGB

2µ2(P1 + xPGB)
, (4)

where x ≡ M/N is the ratio of active grain boundaries.
In the absence of active grain boundaries, we assume Q =
Q1 is constant (i.e. P1 ∼ Brf

2), so that

P1 =
GBrf

2sGB

2µ2Q1
. (5)

Plugging Eq. (5) into Eq. (4) and solving for x, we find

x =
GsGBBrf

2

2µ2PGB

(
1

Q
− 1

Q1

)
. (6)

Figure 14 shows a plot of the percentage of active grain
boundaries (100 x, blue curve) as a function of Brf cor-
responding to the artificial Q-slope profile shown in the
yellow curve (using Nb3Sn parameters with Q1 = 1010,
sGB = 0.5µm2 and G = 278Ω). Note that about 0.03%
of the surface grain boundaries need be filled with vor-
tices for Q to drop from 1010 to 109 for Nb3Sn at about
66mT.

0 10 20 30 40 50 60 70
10-4

10-3

10-2

10-1

100

Brf [mT]

x
[%

],
Q
/
Q
1

FIG. 14. Estimated percentage of active surface grain bound-
aries (blue curve) as a function of Brf , corresponding to the
quality factor profile displayed in the yellow curve for Nb3Sn
with Q1 = 1010.

We end this section with a simple model calculation
of the steady-state thermal heating at a grain bound-
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ary. Figure 15 illustrates our model for thermal diffu-
sion near an active grain boundary. Light and dark gray
regions represent cross sections of Nb and Nb3Sn lay-
ers, respectively. The Nb surface is in contact with a
low-temperature He bath. The Nb3Sn surface is in con-
tact with vacuum, and is subject to a parallel oscillat-
ing magnetic field. The grain boundary is represented
by a blue rectangle of linear size D. Red arrows repre-
sent the direction for heat diffusion in our model. First,
we assume one-dimensional heat diffusion away from the
grain boundary up to a distance r ≈ D. We expect
the heat front to attain a semi-spherical shape for dis-
tances r ' D. We then assume three-dimensional heat
diffusion away from a half-sphere of radius D for dis-
tances D ≤ r ≤ R1. For r ≤ R1 we consider the Nb3Sn
thermal conductivity κ = κNb3Sn. At last, we assume
three-dimensional heat diffusion away from a half-sphere
of radius R1 for distances R1 ≤ r ≤ R2, with κ given
by the Nb thermal conductivity κNb. Note that our as-
sumptions are stronger when R2 � R1 (R2/R1 ∼ 103 for
typical Nb3Sn/Nb SRF cavities).

RF field

Helium bath

Nb

Nb3Sn

D R1
R2

FIG. 15. Sketch of our model for heat diffusion near an active
grain boundary (blue rectangle at the top center). The light
and dark gray regions correspond to cross sections of Nb and
Nb3Sn. Red arrows represent the direction for heat diffusion.
Heat fronts move along one dimension for distances smaller
than the grain size D, and three dimensions otherwise.

The equilibrium temperature profile can then be cast
from the stationary solutions of the heat equation in each
region:

T (r) =


ζ(r), for 0 ≤ r ≤ D,
c/r + d, for D ≤ r ≤ R1,

e/r + f, for R1 ≤ r ≤ R2,

(7)

where c, d, e and f are constants, and ζ(r) is the station-
ary solution of the one-dimensional heat equation (the
Nb3Sn thermal conductivity strongly varies with temper-
ature in this region [42], which complicates the problem
of finding an analytical solution for ζ(r)) [43]. Note that
we relax the definition of the coordinate r here, which
should be interpreted as a lateral distance away from the
grain boundary for 0 ≤ r ≤ D, and a depth coordinate
towards the Helium bath for distances r > D.

To calculate ζ(r), we use Fourier’s law — Q̇ =

−κ dT/dr, where Q̇ is the heat flux. The stationary solu-
tion of the heat equation can be found from the solution
of dQ̇/dr = 0, i.e.

−κNb3Sn(T )
dT

dr
= a, (8)

where a is constant.
The thermal conductivity κNb3Sn(T ) in the supercon-

ducting layer has two important contributions: a phonon
contribution and an an electronic component (carried by
superconducting quasiparticles). The low-temperature
phonon thermal conductivity is strongly dependent on
the morphology of the crystal [44]; in clean insulating
crystals it is dominated by scattering off of grain bound-
aries and sample boundaries, and varies as T 3. Scat-
tering off of impurities can cut off the contribution of
high-frequency phonons, or even resonantly cut off cer-
tain frequency bands. All of these mechanisms lead to a
thermal conductivity that monotonically increases with
temperature, so we avoid the complexity by using a con-
stant phonon thermal conductivity k1, giving a lower
bound for the conductivity and hence an upper limit to
the heating. The electronic portion of the thermal con-
ductivity k2 in the normal metal at low temperatures is
roughly independent of temperature, and is set by the
electronic mean-free path. In the superconductor, it de-
creases exponentially as exp(−∆(0)/kBT ), as seen exper-
imentally [42]. Using the BCS relation between the gap
and the transition temperature, we therefore use

κNb3Sn(T ) = k1 + k2 exp (−1.76Tc/T ). (9)

We use the normal electron thermal conductivity k2 =
2 × e1.76 W/m·K from [42]. Because the electronic con-
tribution is negligible at the operating temperature of
the cavity, we set k1 = 10−2W/m·K as the approximate
total thermal conductivity of Nb3Sn at 2K [42]. Both of
these constants are dependent upon the preparation of
the film, and also could vary from one region of the film
to another as the growth conditions or the underlying Nb
grain orientations vary.

Integration of Eq. (8) results in

Π (T ) = −a r + b, (10)

where b is constant, and

Π (T ) =k1 T + k2 T e
−1.76Tc/T

+ 1.76 k2 TcEi

(
−1.76

Tc
T

)
, (11)

with Ei(x) ≡
∫∞
−x[e−t/t]dt denoting the exponential inte-

gral function. ζ(r) is then the solution of Eq. (10) for T .
Note that our simple model assumes that the quasipar-
ticles and the phonons remain at the same effective tem-
perature (the inelastic electronic mean free path is small),
and that both remain diffusive (the elastic phonon and
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electron mean free paths are small). Violating either of
these assumptions would likely lower the transport of en-
ergy away from the grain boundary, making the heating
more dangerous.

We focus our attention on grain-boundary activation
and ignore other sources of power dissipation (which
could be added later using the principle of superposi-
tion). Thus, we assume that the heat flux is the power
dissipated per grain boundary (PGB) per unit area. We
use Fourier’s law to determine the coefficients a, c and e
in Eqs. (7) and (10). For 0 ≤ r ≤ D, Q̇ = PGB/D

2, so
that:

a =
PGB

D2
. (12)

For D ≤ r ≤ R1 (R1 ≤ r ≤ R2), Q̇ = PGB/2πr
2, κ =

κNb3Sn (κNb) and dT/dr = −c/r2 (−e/r2), so that:

c =
PGB

2πκNb3Sn
, e =

PGB

2πκNb
. (13)

To find f , we use T (R2) = THe, where THe is the tem-
perature of the Helium bath:

f = THe −
PGB

2πκNbR2
. (14)

To find d and b, we use the continuity of T (r) at r = R1

and r = D, respectively (we ignore the Kapitza resistance
at the interface between Nb3Sn and Nb). Thus,

c/R1 + d = e/R1 + f ⇒ d =
e− c
R1

+ f, (15)

and

b = aD + Π
( c
D

+ d
)
. (16)

Figure 16 shows temperature profiles (Eq. (7)) near an
active grain boundary for Nb3Sn/Nb systems at B =
60mT. Note that the temperature of an active grain
boundary increases to about 10K near the boundary sur-
face for a Helium temperature of 2K. Although this in-
crease in temperature is not large enough to drive Nb3Sn
into the normal state, it certainly has significant impact
on the superconducting properties. Also, note that the
temperature decays to nearly THe as r approaches twice
the grain size D, suggesting that heating due to grain-
boundary activation is mostly localized.

A temperature rise of 10K at the grain boundary is
over half of the critical temperature of the film, sug-
gesting that larger grain boundaries or multiple nearby
boundaries could raise the temperature high enough to
quench the cavity. Cavities with tin-rich grain bound-
aries and more pristine grain boundaries show the same
quench fields, suggesting that another mechanism con-
trols the quench fields of existing Nb3Sn cavities. If the
excess dissipation in the cavities with tin-rich boundaries
is due to vortex penetration (Fig. 14), one would expect

10-8 10-7 10-6 10-5 10-4 0.001 0.010

0
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4

6

8

10

r [m]

T
[K

]

FIG. 16. Temperature as a function of distance from the
grain boundary for the Nb3Sn/Nb system at a bath of 2K
(blue) and 4K (yellow). Vertical dashed lines correspond to
D = 1µm, R1 = 2µm and R2 = 3mm, from left to right.
Bottom and top red dashed lines correspond to THe = 2K
and 4K, respectively. We have used temperature-dependent
κNb3Sn given by Eq. (9), κNb = 10W/m·K, and PGB = 621nW
at B = 60mT, according to our previous estimates.

rare events with large or multiple grain boundaries would
happen, suggesting that our grain-boundary heating es-
timate is unduly pessimistic. Alternatively, it remains
possible that the grain boundaries have high superheat-
ing fields, and the excess dissipation has another expla-
nation. In any case, our estimates suggest that vortex
entry at grain boundaries should be expected for tin-rich
boundaries well below the superheating field for a perfect
crystal, and that the subsequent heat release should be
important both as a contribution to the overall dissipa-
tion and as a quench mechanism for the cavity.

VI. CONCLUSION

In this work we have presented an interdisciplinary,
multi-scale study of vortex nucleation in Sn-segregated
grain boundaries and its subsequent effect on SRF perfor-
mance. Scanning transmission electron microscopy im-
ages and energy dispersive spectroscopy show Sn concen-
tration as high as ∼35 at.% and widths ∼3nm in chemical
composition in grain boundaries. We used density func-
tional theory to estimate the effective critical tempera-
ture for the material in the segregation zone and find that
the effective Tc can be reduced to as low as 5 K for Sn
concentrations in excess of ∼30 at.%. Next, we used these
calculations as inputs into time-dependent Ginzburg-
Landau simulations. These simulations demonstrate that
grain boundaries can act as nucleation sites for magnetic
vortices. The grain boundaries then act as a kind of
pinning sites for vortices after nucleation. The pinning
is non-traditional, however, as vortices are free to move
vertically along the grain boundary, but are constrained



10

from moving laterally into the bulk. We have seen that
for a range of applied fields, vortices may nucleate at but
remain constrained to the grain boundary. These vortices
will nucleate and annihilate once per RF cycle, and we
estimate the superconducting losses of this phenomenon
at the scale of SRF cavities. We have shown that as long
as vortices do not penetrate the bulk grain, losses are
localized near the grain boundary and will not lead to
a global quench. However, the annihilation process each
cycle will lead to a reduction in the quality factor that
increases with larger applied fields, consistent with the
experimentally observed Q-slope.

SRF cavities are an important application area that
require multi-disciplinary talents to address. This study
has leveraged the skills of accelerator physicists, material
scientists, and condensed matter theorists with expertise
across a range of scales to explore a question fundamen-
tal to the advancement of next-generation SRF material,
Nb3Sn. This study has presented evidence that segrega-
tion zones in grain boundaries play an important role in
cavity performance. Understanding the mechanism be-
hind the Q-slope will motivate new manufacturing proto-
cols and help constrain the design space of future cavities.
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