
Sensitivity of a tonne-scale NEXT detector for

neutrinoless double beta decay searches

The NEXT Collaboration
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Abstract: The Neutrino Experiment with a Xenon TPC (NEXT) searches for the

neutrinoless double beta (0νββ) decay of 136Xe using high-pressure xenon gas TPCs with

electroluminescent amplification. A scaled-up version of this technology with ∼ 1 tonne

of enriched xenon could reach, in a few years of operation, a sensitivity to the half-life of

0νββ decay better than 1027 years, improving the current limits by at least one order of

magnitude. This prediction is based on a well-understood background model dominated

by radiogenic sources. The detector concept presented here represents a first step on a

compelling path towards sensitivity to the parameter space defined by the inverted hierarchy,

and beyond.
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1 Introduction

Neutrinos are the only particles in the Standard Model that could be Majorana fermions,

that is, completely neutral fermions that are their own antiparticles. Light Majorana

neutrinos imply the existence of a new energy scale at a level inversely proportional to

the observed neutrino masses [1]. This scale provides a simple explanation for the striking

lightness of neutrinos [2–5], and is probably connected to several other open questions in

fundamental physics. In particular, Majorana neutrinos could be related to the cosmological

asymmetry between matter and antimatter through a mechanism known as leptogenesis [6].

The most sensitive known experimental method to verify whether neutrinos are Majo-

rana particles is the search for neutrinoless double-beta (0νββ) decay [7]. In this hypothetical

second-order weak process, a nucleus with atomic number Z and mass number A transforms

into its isobar with atomic number Z + 2 emitting two electrons only. Such a process does

not conserve total lepton number and requires the neutrino be a Majorana particle.

No evidence of 0νββ decay has been found so far. The best current limits on the

half-life of the decay have been set by the KamLAND-Zen [8] and GERDA [9] experiments

using, respectively, 136Xe and 76Ge as 0νββ source:

T 0ν
1/2(

136Xe) > 1.07× 1026 years (90% CL),

T 0ν
1/2(

76Ge) > 0.90× 1026 years (90% CL).
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The experimental goal for the coming decade is the exploration of the region of half-lives

up to 1028 years. This will require experiments with exposures well beyond 1 tonne yr and

background rates of the order of 1 count tonne−1 yr−1 or better [10]. Only a few of the

experimental techniques presently considered will be able to attain those levels.

In this paper we discuss the reach of a tonne-scale version of the Neutrino Experiment

with a Xenon TPC (NEXT) considering only minimal (and largely proven) improvements

over the design of NEXT-100, the latest stage of the NEXT detector series, which is expected

to start operation in 2021 at the Laboratorio Subterráneo de Canfranc (LSC), in Spain.

NEXT combines good energy resolution, tracking, radio-purity and shielding to achieve

strong sensitivity to 0νββ decay. As we discuss in this paper, a NEXT detector with active

mass in the tonne range would be able to improve by more than one order of magnitude

the current limits in T 0ν
1/2.

The NEXT Collaboration is also pursuing a more radical approach to a tonne-scale

experiment based on the efficient detection of the Ba++ ion produced in the 0νββ decay of
136Xe using single-molecule fluorescence imaging (SMFI) [11–15]. This technique has the

potential to realize an effectively background-free experiment that could reach a sensitivity

to T 0ν
1/2 better than 1028 yr, but it is still the subject of intense R&D beyond the scope of

the present article.

2 The NEXT experiment

2.1 Present status

NEXT is an international effort dedicated to the search for 0νββ decay in 136Xe using

high-pressure xenon gas time projection chambers (HPXeTPC) with amplification of the

ionization signal by electroluminescence (EL). Such detectors take advantage of the inherently

low fluctuations (i.e., small Fano factor) in the production of ionization electrons in xenon

gas to achieve an energy resolution significantly better than those of other xenon-based

experiments [16]. Moreover, in gaseous xenon double-electron and single-electron tracks

— the 0νββ signal and its main background, respectively — at the energy of the decay

(Qββ = 2458.1 keV [17, 18]) have distinct features that can be used for event classification.

A series of detectors have proven the performance of the HPXeTPC technology in the

key parameters required for the observation of 0νββ decay. The NEXT concept was initially

tested in small scale, surface-operated detectors [19–23]. This phase was followed by the

underground operation at the LSC of NEXT-White [24], a radiopure detector of ∼ 3.5 kg

of active xenon mass at 10 bar. The results obtained with NEXT-White include the

development of a procedure to calibrate the detector using 83mKr decays [25], measurement

of an energy resolution at 2.5 MeV better than 1% FWHM [26,27], demonstration of robust

discrimination between single-electron and double-electron tracks [28], and characterization

of radiogenic backgrounds, demonstrating both the low radioactive budget of the apparatus

and the accuracy of the background model [29, 30].

The NEXT-100 detector [31, 32], scheduled to start data taking in 2021, constitutes

the third phase of the program. It is a radiopure HPXeTPC containing about 100 kg of

xenon, enriched at ∼ 90% in 136Xe, at 15 bar pressure. The active region of the detector is
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a cylinder 130 cm long and 100 cm in diameter (about 1 m3). Three highly-transparent

metallic grids — known as cathode, gate and anode — separate the two main electric-field

regions of the detector. The so-called drift region, between cathode and gate, contains

a uniform field of ∼ 500 V/cm, while a more intense field of 20 to 30 kV/cm accelerates

the ionization electrons sufficiently to produce EL light in the 1-cm gap between gate and

anode. Track reconstruction will be performed with the EL signals registered by a matrix

of approximately 3 600 Hamamatsu silicon photomultipliers (SiPM) of 1.3× 1.3 mm2 active

area placed 5 to 10 millimeters beyond the anode. The event energy will be measured with

an array of 60 Hamamatsu R11410-10 photomultiplier tubes located behind the cathode.

These PMTs will also record the primary scintillation that signals the initial time of the

event. All of these elements are housed inside a 12 cm thick solid copper structure contained

in a stainless-steel pressure vessel, and surrounded by a 20-cm thick shield made of staggered

lead bricks held by a stainless-steel frame.

NEXT-100 will reach a sensitivity of about 6 × 1025 years after a run of 3 effective

years [32]. The combination of good energy resolution, tracking-based signal identification

and low-radioactive contamination results in a predicted background index for the detector

of at most 4× 10−4 counts keV−1 kg−1 yr−1.

2.2 A NEXT detector with a tonne of xenon

The NEXT technology can be scaled up to 0νββ source masses in the tonne scale introducing

several technological advancements already available. Figure 1 shows a possible design

for a detector with an active volume of 2.6 m in diameter and an axial length of 2.6 m

that would hold a mass of 136Xe (when enriched to ∼ 90% in that isotope) of 1109 kg at

15 bar. These dimensions and operational conditions are informed by R&D performed by

the NEXT collaboration on the scalability of the NEXT-100 design in terms of number

of electronic channels, size of the field-cage electrode grids and rating of the high-voltage

feedthroughs. In what follows we refer to this general design as NEXT-1T.

Arguably, the most important change with respect to NEXT-100 would be the replace-

ment of PMTs, expected to be the leading source of background in NEXT-100, with SiPMs,

which are radiopure, pressure resistant and can provide large photosensitive coverage with

high granularity at acceptable cost. Their use would not only remove a significant source

of radioactivity, but also reduce the mechanical complexity of the detector, given that the

PMTs have to be housed in a separate low-pressure region. However, SiPMs introduce one

notable challenge: the dark count rate (DCR) in commercially-available SiPMs at the time

of writing is still orders of magnitude higher than that of PMTs. While this DCR does

not represent a problem for the detection of the EL-amplified ionization signal (known as

S2), it does form accidental coincidences that can mimic the primary-scintillation signal (or

S1) of low-energy events. While improvements in commercial SiPM technology continue

to proceed rapidly, the collaboration is also pursuing R&D to enable the measurement of

the drift position using existing SiPM technology. The most promising approaches are

the use of large-area photon collectors surrounding the active volume of the TPC, or to

moderately cool down the gas to reduce the SiPM DCR (typically, a temperature drop of

20 K results in a reduction of the DCR by up to an order of magnitude). With promising
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Figure 1. Left: Conceptual design of a tonne-scale NEXT detector inside a water tank. Right:

Zoom-in on the internal structures of the detector.

preliminary results from both methods already in hand, we assume in this study that

the axial position of events will be reconstructed with similar precision to what has been

achieved in NEXT-White.

The other major adjustment from NEXT-100 would be changing to a symmetric TPC

design with a central cathode and two EL gaps. This modification halves the maximum drift

length, easing the requirements on gas purity and high voltage. For example, the detector of

2.6 m would require ∼ 65 kV at the central cathode to achieve a NEXT standard drift field of

500 V cm−1, a value already within the target specifications of the NEXT-100 high-voltage

feedthrough. The shorter drift length would reduce as well the average electron diffusion

(proportional to the square root of the drift length), which impacts track reconstruction.

Moreover, no buffer region would be required to protect sensors and electronics against

high voltage discharges from the cathode, effectively increasing the active volume available

for physics and maximizing the isotope use.

The field cage itself is expected to be an extrapolation of the current NEXT-100 design,

which has been developed with scalability to the tonne scale and minimization of material

mass and radioactivity as central concerns. The current design secures the field shaping

rings using high-density polyethylene (HDPE) bars of the same length as the detector

active region. Teflon panels are then fitted to the HDPE bars making the light reflector

seen in Fig. 1. These Teflon reflectors are ∼ 5 mm thick and constitute the majority

of the mass of the field cage. The field cage is surrounded by an inner shield of 12 cm

of copper that attenuates external gammas by several orders of magnitude before they

reach the active volume. Developing the possibility to operate an EL readout at the meter

scale was a major R&D effort performed by the Collaboration. Recent progress through

R&D with photo-etched hexagonal meshes shows promise, with manufactures capable of

producing meshes of the scale required for the tonne-scale experiment. These meshes can be

tensioned sufficiently to operate at the field strengths envisioned and can sustain high energy
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sparks without deformation. These developments indicate that the scaling of HPGXeTPC

technology from the size of NEXT-100 to the tonne scale, according to the approaches

discussed here, is technically viable.

For the purposes of this study, the detector is assumed submerged in a cylindrical

water tank with dimensions to give 3 m of water shield on all sides of the active volume.

This tank would allow for the tagging of muons if instrumented with PMTs as well as

mitigating possible backgrounds emanating from the lab walls. Pure water is considered for

this study but some level of doping to improve neutron-absorption cross sections is also

under consideration. In any case, as will be discussed below, cosmogenic backgrounds from

neutrons are not expected to be limiting in the present configuration.

3 Backgrounds at the tonne scale

Neutrinoless double beta decay events in NEXT consist of two electrons emitted from a

common vertex and reconstructed as a single track with higher-energy deposits (or blobs)

at both ends (see Figure 2) and total energy around the Q value of 136Xe.

The relevance of any potential background source depends on its probability of gen-

erating a 0νββ-like track in the active volume of the detector with energy in the region

of interest (ROI) around Qββ. Our background model, described in this section, includes

gamma rays from the uranium and thorium decay chains, radon-induced backgrounds, and

activations of xenon and copper from neutrons generated by cosmic-ray muons. Other

sources of background such as other muon-spallation products or solar neutrino interactions

were considered and found to be sub-dominant.

3.1 Gamma ray backgrounds from solid detector materials

The main background source for most 0νββ experiments is natural radioactivity from

long-lived contaminants in the detector materials. The uranium and thorium decay chains

are particularly troublesome due to two de-excitation gamma lines from the decays of
214Bi and 208Tl. The latter (2614.5 keV, 99.75% intensity) is above the Qββvalue of 136Xe,

but single-electron tracks from its photo-peak can lose energy via bremsstrahlung and fall

in the region of interest. Likewise, succesive Compton scatters occurring closely may be

reconstructed sometimes as a single track with energy around Qββ . The gamma line from
214Bi (2447.7 keV, 1.55% intensity) is situated just below Qββ , and thus its photo-peak can

overlap with the signal peak due to the finite energy resolution of the detector.

These backgrounds can be mitigated and understood by careful radio-assay of all

materials used in the construction of the detector. The NEXT Collaboration has undertaken

extensive campaigns for the characterization of all materials used for the NEXT-White

and NEXT-100 detectors [33,34], primarily using germanium spectroscopy and ICP-MS.

Tonne-scale experiments will require measurements at even higher precision. Assays of new

materials and at higher precision are ongoing at low radiation facilities at the LSC and

Pacific Northwest National Laboratory (PNNL).

Gamma radiation emanating from laboratory walls and external support structure is

unlikely to reach the inner detector through the water tank. For this reason we focus here on
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sources close to the active volume. When selecting materials for these components a detailed

study of the expected rate in the gammas mentioned above must be performed. Below we

discuss the current status of material screening and the rejection power of the analysis, and

in section 5 calculate the effect on the sensitivity of tonne-scale NEXT detectors.

The most important contributions to the NEXT background model derive from materials

closest to the active volumes, particularly those with large mass such as copper. The NEXT-

100 background model, which serves as the basis for our estimated backgrounds in NEXT-

1T, includes only materials we have counted directly for NEXT. Recent literature reports

materials with still lower contamination that are available. We report here sensitivities

using both established activites based on the the NEXT-100 background model, and those

that incorporate improvements using materials that have been reported in the literature

by other collaborations we refer to the latter as the NEXT-1T background model. As our

program of assay continues, it is in fact expected that the final background budget will be

somewhat better than either of these cases, as new and cleaner materials are identified.

There are two primary materials where better radiopurity than that implied by the

NEXT-100 background budget appears to be available. First, Teflon with an activity of

approximately one order of magnitude less than the present NEXT-White measurements

in uranium and thorium have been reported [35, 36]. Second, the Kapton substrates for the

SiPM support boards is likely to be improved. A new board design using fewer layers of

Kapton in the laminate is presently being assayed at LSC with projections suggesting a

reduction of a factor of 10. Recently-published work on radio-pure Kapton also suggests

further reduction is possible [37].

After making these improvements, the material that dominates the radioactivity budget

is copper. The NEXT copper is similar in activity to that assayed by other low-background

experiments [38]. Further reductions in the activity of copper could be possible through

advanced techniques such as electroforming [39]. However, these techniques are slow and

expensive, and we do not consider electroformed copper in our baseline design, some further

discussion is given in Sec. 6.

Backgrounds from the pressure vessel as well as any additional infrastructure outside

the detector are efficiently mitigated by the inner copper shielding. They are assumed here

to contribute at or below the 5% level to the full radioactive budget in this study. This

number is informed by experience from NEXT-White and NEXT-100, where present upper

limits sit at approximately 5% of the total activity budget. Any additional external sources

can be effectively mitigated by increasing the thickness of inner copper shielding without

significant detriment to the total activity. This is because it effectively self-shields. Table 1

summarises the expected contributions given the simulated material masses.

3.2 Backgrounds from material radon emanation

Radon is another potential source of background, since it can diffuse from materials in

the detector or gas system and enter the active xenon region. The primary radon-induced

background derives from the daughter 214Bi. This is a product of the 222Rn chain, which

has a half life of 3.8 days, making it more likely to diffuse into the active region than its

shorter-lived relative 220Rn, the latter being an insignificant background source for NEXT.
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Fortunately, 222Rn undergoes two decays before becoming 214Bi, and previous NEXT

measurements [29] show that these daughters plate out onto the cathode, with recombination

being relatively infrequent in xenon gas. 214Bi decays on the cathode are rejected with

high efficiency by the detection of the emitted beta electrons (through fiducial cuts) and

coincident decays of 214Po. Rejection efficiency should only increase in a symmetric design.

For the present study we consider the internal radon backgrounds at a similar rate than

that of the present generation of NEXT detectors [29], a pessimistic baseline. Additional

contributions from airborne radon backgrounds are expected to be negligible. This is well

justified based on experience with present-generation NEXT experiments, continuously

flushed with radon-free air [29]. Considering that the NEXT-1T system will be submerged

in purified water that effectively removes any contribution from radon in the surrounding

environment, airborne radon is expected to be irrelevant for the ultimate background

budget.

3.3 Backgrounds of cosmogenic origin

Cosmogenic backgrounds in NEXT derive from the neutron capture on detector materials,

especially copper isotopes and 136Xe. The main source of the neutrons that creates these

potential backgrounds are atmospheric muons that reach the laboratory through the rock

overburden.

Muons that produce significant fluxes of neutrons in underground laboratories are those

with energies up to a few TeV. For this study we estimate the cosmogenic backgrounds from

these muons in two example laboratory locations: Laboratori Nazionali del Gran Sasso

(LNGS) and SNOLAB. The muon spectra are calculated using the MUSUN muon transport

simulation code [40]. The most recent measurements for these locations give total fluxes of

3.432× 10−8 cm−2 s−1 [41] for LNGS and 3.31× 10−11 cm−2 s−1 [42] for SNOLAB, which

are used to normalize the spectra.

Muons are simulated originating from outside the water tank, evenly distributed over

the upper surface and uniformly distributed in energy between 1 GeV and 3 TeV, then re-

weighted to the predicted muon spectrum. Muons and all secondary particles are simulated

through the water tank and detector geometry. The resultant activity considered in the same

way as the other backgrounds with a few caveats: the activation expectation is calculated

as an additional normalisation, and, since the events can induce activity over several ms,

the activity must be considered as multiple possible triggers. These muon simulations are

used to calculate the activation expectation of 136Xe to 137Xe per muon and per year. The

resulting beta electrons from 137Xe decay are passed through the NEXT analysis framework

and are found to be rejected at the level of 10−4.

Neutron capture produces two types of potential background, in the form of prompt

activity from gamma radiation post capture, and the creation of long lived nuclei with decays

at energies close to Qββ. The former is dominated in NEXT by contributions from the

capture of neutrons on the two main copper isotopes via the reactions 63,65Cu(n, γ)64,66Cu as

well as contributions from captures on plastics and in the steel pressure vessel. The cascade

photons from these reactions have energies up to tens of MeV, but tend to interact in the

gas within a few ms of the passage of a muon. Most can be effectively vetoed by temporal
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proximity to a muon, and the analysis need only select those without a muon detected in

the water tank or TPC. A veto dead-time of 2 ms after the detection of a muon makes a

negligible impact on detector live-time but drives the contribution of prompt cosmogenic

backgrounds well below that of other backgrounds, to a level of ∼ 10−7 keV−1kg−1yr−1for

LNGS and ∼ 10−9 keV−1kg−1yr−1for SNOLAB. This is sufficiently low that we do not

consider it within the final background index.

Non-prompt backgrounds derive from production of long lived isotopes that later beta

decay with Q-values above Qββ . The dominant of these that can constitute background to

the 0νββ search in 136Xe is the beta-emitter 137Xe which is produced by single neutron

capture on 136Xe (136Xe(n,γ)137Xe). 137Xe decays with a half life of 3.8 minutes and a Qβof

4.17 MeV. This background is difficult to veto by time coincidence with a selected muon

due to the excessive deadtime that would be required.

Combining simulated expectations of 137Xe production in the detector (implemented

as in Ref. [43]) with the predicted muon flux yields an estimate for the yield of 137Xe

per year is obtained. This can be multiplied by the simulated acceptance factor to yield

a background index contribution from cosmogenic 137Xe. At the LNGS site this results

in ∼ 5× 10−7 keV−1kg−1yr−1, which is approximately 7% of the radiogenic contribution,

whereas SNOLAB is ∼ 5 × 10−9 keV−1kg−1yr−1, which is approximately 0.1% of the

radiogenic contribution. Further detailed studies of additional, sub-leading sources of

cosmogenic background are ongoing, but these are not expected to make a significant impact

to the ultimate experimental background, which remains primarily driven by radioactive

contributions.

4 Simulation and analysis

This study follows the same methodology that was used to estimate the background index

and sensitivity of the NEXT-100 detector [32], broadly validated with the data of NEXT-

White [23, 44]. Large datasets (of the order of 2 × 1010 simulated events) of the main

backgrounds and a smaller dataset of the 0νββ signal (1.25× 106 simulated events) were

produced with NEXUS, the Geant4-based detector simulation developed by the NEXT

Collaboration. NEXUS provides an output for each event as a collection of three-dimensional

hits representing the ionization tracks left by charged particles in the active volume. An

example of this is shown in the left column of Figure 2.

Each background source was simulated with sufficient statistics to give a statistical

error at or below 10% in the final selected sample, signal events were generated to give a

similar statistical error. However, unlike the gamma background events whose kinematics

are built into Geant4, the ββ events were generated using the DECAY4 event generator [45]

which accounts for the energy and angular distributions in ββ decays. A parameterization

of the NEXT reconstruction was then used to form tracks according to the specific spatial

resolution to be studied. A cut-based analysis was then used to assess the ability of the

experiment to filter out backgrounds while retaining signal events.

For this study, two indicative parameterizations of the spatial resolution were used

to assess the detector’s performance with pure xenon (standard diffusion) and with a gas
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Figure 2. Monte-Carlo simulation of signal (0νββ decay of 136Xe) event; top panels) and background

(single electron of energy equal to Qββ ; bottom panels) events in gaseous xenon at 15 bar. The

ionization tracks left by signal events feature large energy deposits, or blobs, at both ends. In the

left column, the tracks are shown as generated by the simulation, whereas in the right they have

been binned into 10× 10× 10 mm3 voxels.

additive, such as CF4 or He (low diffusion). Energy resolution of 0.7% FWHM at Qββwas

considered in all simulations. All energy deposits recorded in the detector were smeared

according to a Gaussian distribution with a standard deviation which gives a FWHM energy

resolution of 0.7% corresponding to the nominal energy resolution expected to be achieved

in NEXT-100. An improved energy resolution of 0.5%, closer to the intrinsic resolution of

pure xenon [19], was also studied, but the corresponding sensitivity improvements were

marginal.

The impact of the differing spatial resolution was simulated by grouping energy deposits

into cuboids (voxels) with dimensions chosen to mimic different possible diffusion conditions.

The first parameterization chosen used voxels of dimension 10× 10× 10 mm3 which gives a

good representation of the reconstruction possible given a transverse root-mean-square (rms)

diffusion of ∼ 8.5 mm/
√

m and longitudinal rms diffusion of ∼ 4−5 mm/
√

m corresponding
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Figure 3. Left: histogram of all simulated events normalized by activity with the analysis cuts

applied. Right: the track multiplicity for signal and background events.

to the measurements made by the collaboration for pure-xenon operation [22, 46]. A second

parameterization at 3× 3× 3 mm3 assumes an improvement in diffusion due to the addition

of molecular or He additives to the gas [47–50]. An example of the hits being grouped into

10× 10× 10 mm3 voxels can be seen in the right column of Figure 2.

All tracks built are subject to a series of cuts designed to accept only 0νββ events.

The initial steps involve rejecting events with reconstructed energy far from Qββ. This

is achieved by strictly requiring energy between 2.4–2.5 keV (the broad energy cut). The

surviving events are then required to have no voxels within 2 cm of the field cage nor within

2 cm of the anode or cathode. With these first two cuts, events which obviously enter

from outside the active volume or which have energies far from the region of interest are

efficiently rejected.

Once the broad energy and fiducial cuts have been applied, the surviving events are

subject to the basic NEXT topological analysis. The voxels are grouped into tracks by

treating each voxel as a node in a graph and applying the Breadth First Search (BFS)

algorithm [51]. The details of the specific implementation of this algorithm can be found in

Ref. [23]. The expected topology of a ββ event is a single continuous energy deposition as

the two electrons share the same initial vertex and will be reconstructed together. At the two

extremes there are high-density energy deposits, described hereafter as blobs, corresponding

to the two Bragg peaks. Multi-particle background events will be reconstructed with more

than one track, and those induced by single electrons either from the interaction of gamma

radiation or from beta decays, while often producing a single track, can only have a blob

at one extreme. Figure 2 shows an illustration of a signal (top) and background (bottom)

event, in Monte Carlo truth (left) and after voxelization (right) at 10 × 10× 10 mm3 scale,
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Figure 4. Histograms of the blob energies of signal and background events. The blobs are defined

such that blob1 has higher energy.

respectively.

Events with more than one track are rejected as being most likely background. However,

a non-negligible number of signal events are also reconstructed as multiple tracks. Energy

loss via bremsstrahlung is possible and the photons can travel a significant distance before

interacting which frequently results in multiple track signal events. The track multiplicity

for signal and background events can be seen in Figure 3 right. The corresponding energy

distribution for the signal and background events can be seen in Figure 3 (left) using a

double beta decay half life of 1027 years, the NEXT-1T background model, and pure xenon

(for example).

The remaining single-track events are then checked for the double electron condition

(two-blob cut). The end-points of the tracks are identified as the two voxels at greatest

distance from each other along the track and the energy is integrated within a sphere

of fixed radius from each end-point. The radius chosen was optimised for each tracking

parameterization with 18 mm chosen for 10× 10× 10 mm3 voxels (pure xenon) and 15 mm

for 3 × 3 × 3 mm3 (low diffusion). The integrated energy in the regions is required to

exceed a threshold chosen for each parameterization by using a test statistic to find the cut

value which optimized the figure of merit ε/
√
b, where ε is the signal efficiency and b is the

residual background. Figure 4 shows the blob distributions for all signal and background

events generated, the figure of merit indicated a threshold of 500 keV as the best minimum

for the integrated signal at the extreme with lower energy (blob 2). In this way we can

effectively reject Compton electrons and other remaining backgrounds.

All events that remain are inherently fiducial, single track, with a blobs at both ends
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Figure 5. Left: Total background activity by region given for both background models considered.

Right: Activity remaining after cuts applied for both background and for both detector performance

considerations.

Pure xenon Acceptance Factor [10−7] Total Background Index

NEXT-100 / NEXT-1T

Region 208Tl 214Bi c keV−1kg−1yr−1

Field cage 2.83(17) 5.01(22) 8.307e-06 / 1.525e-06

Readout planes 3.29(19) 4.65(21) 4.080e-06 / 7.228e-07

Inner Shielding 1.47(12) 0.68(02) 7.429e-06 / 7.327e-06

Low-diffusion

Field cage 0.86(09) 1.42(12) 2.388e-06 / 4.323e-07

Readout planes 0.95(10) 1.56(12) 1.352e-06 / 2.212e-07

Inner Shielding 0.50(07) 0.19(01) 2.292e-06 / 2.292e-07

Table 1. Acceptance factor, the probability of accepting an event as signal, combined with the

activity produces the background index. Here for each detector region with an energy resolution

of 0.7% FWHM for both spatial resolution cases. The background index is given for both activity

cases studied: the NEXT-100 / NEXT-1T background models.

and have a total energy between 2.4–2.5 MeV, this subset of events is then searched for

events that falls in a region of interest (ROI). The ROI is defined in an asymmetric manner

around Qββ; this was done to optimize the figure of merit previously mentioned ( ε/
√
b).

Utilizing an asymmetric ROI aids in rejecting 214Bi photo-peak as seen in Figure 3 left.

The events remaining in the ROI are then used to calculate the acceptance factors, the

– 12 –



Total Broad Energy
2.4 to 2.5MeV

Fiducial
20mm

Single
Track

Two
Blobs

Energy ROI
0.7%FWHM

10 3

10 2

10 1

100

101

102

103

104

105
To

ta
l B

ac
kg

ro
un

d 
[

Bq
]

0  [T1/2=1027yr]
208Tl
214Bi
137Xe
222Rn

10 2

10 1

100

101

102

103

104

105

106

co
un

ts
 to

nn
e

1  y
r

1  R
OI

1

Figure 6. Total background activity as a function of the cuts for all sources considered. Here

the half life of 136Xe was assumed to be 1027 and is just for reference. The detector performance

used here is 0.7% FWHM energy resolution and assuming Pure xenon for the diffusion, with the

NEXT-1T background model and a location of LNGS.

ratio of events in the ROI to the total generated events.

For both the pure xenon and low diffusion configurations a set of unique acceptance

factors were calculated for each detector component and for each background source.

These are then combined with the mass of each material and the expected radioactive

contamination. Wherever possible NEXT measured materials are considered, with reference

to other published results complementing. This combination then yields a background

index, which can be used to establish the expected sensitivity in each configuration and for

each background model.

Background Index =
Acceptance Factor×Activity (per unit mass) × Component Mass

Active Mass× ROI
(4.1)

The mass of each detector component is determined from the volume of the Geant4 geometry

and the density of the material, with the exception of the read-out planes, which are scaled

according to surface area. These masses are summarised in Figure 5. In this figure we use

the term equivalent activity to describe the activity that would have resulted in the level

of background remaining after applying all cuts. The acceptance factors and background

index for the radiogenic sources considered for each analysis set are reported in table 1.

The effectiveness of the cut-based analysis can be seen in Figure 6, where the effect

of each cut on each background source can be seen. The fiducial cut does not reduce the

activity from the gammas from bismuth and thalium since the attenuation length of gammas
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Figure 7. Left: Projected sensitivity to the 136Xe 0νββ half-life with both the NEXT-100 and

NEXT-1T background models for the pure xenon and low-diffusion cases; the band represents the

span of the background model for the given diffusion assumption. Right: Background index for both

background models and pure xenon and low diffusion mixtures.

of thee energies is long so interaction within the fiducial volume is likely. However, when

theses gammas interact their energy and topology can be scrutinized and the power of the

topological analysis is evident.

5 Predicted background index and sensitivity

The sensitivity of an experiment is defined as the median half-life which can be excluded at

a given confidence level in many repetitions of an experiment providing a null observation.

Based on the predicted activities and acceptance factors presented we can evaluate the

median sensitivity of the tonne scale NEXT-like detector.

The total background index for each analysis configuration was calculated by taking

the radiogenic contribution plus an additional 20% to account for material contributions

outside the copper shielding, the cosmogenic background for a siting location, and the

possibility of radon contamination. Due to the low background nature the additional 20%

do not impact the sensitivity in a major way. Figure 7 (right) summarises these numbers.

The background index from each set was used to generate a sensitivity curve following

the Feldman-Cousins method for a 90% unified confidence interval [52]. These sensitivities

were then used to construct a band that is dependent on detector performance for both

NEXT-100 and NEXT-1T background models. The width of the band shows the difference

between the models, as seen in Figure 7-left. Siting of the detector is not yet specified, though

candidate underground laboratories include SNOLAB (6 km.w.e), SURF (4.3 km.w.e.),

LNGS (3.3 km.w.e.) and LSC (2.2 km.w.e.). For these studies, we assume siting at LNGS
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and the cosmogenic background contributions expected there. The resulting sensitivity

bands can be seen Figure 7 (left).

The baseline detector design assumed in this study for NEXT-1T uses ∼1230 kg of

xenon gas (1109 kg 136Xe). Alternative detector masses were also studied to investigate the

expected scaling behaviour. In addition to the default configuration, simulation sets were

generated for detectors with dimensions of 2 m×2 m (505 kg), and 3 m×3 m (1704 kg).

Each detector was analysed with the pure xenon configuration and both radiogenic models.

A comparison of the rejection factors can be seen in Figure 8. No strong dependence of

background index on detector size was observed.

High pressure xenon gas technology offers a scalable and modular approach to 0νββ

searches, with tonne-scale sensitivity that depends primarily on exposure and not on the

details of phasing or modularity. This can be elaborated on further by studying the radial

dependence of of the events which can be seen in Figure 9, which shows the uniformity

of events in the detector. At the density of xenon considered the signal events are about

10 cm in length. The signal events are reduced when they are within 10 cm of the field cage

due to event containment. In xenon gas the background will be uniform throughout the

detector, since there is no self shielding such as that in liquid xenon detectors. However, the

gas phase allows for a more detailed topological analysis such as that described in previous

sections, which drastically reduces the backgrounds. This also implies that the gas phase

detector utilizes a larger portion of total total volume as an active detector.

The symbiotic effects of the gas detector size and radial event profile imply the detector

can be scaled to a significant size (3 m×3 m) without major consequences, and due to the

radial nature multiple independent detectors could be operational without the need for

excess isotope which is a major cost factor in building such experiments. Implying that
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activity.

the exposure from several identical tonne or multi-tonne detectors could be added to reach

arbitrary large exposures as in Figure 7 (left).

6 Discussion and improvements

Presented in this paper is an example of a NEXT-like detector which holds a metric ton of

enriched 136Xe with an assumed energy resolution of 0.7% FWHM at Qββand two cases of

diffusion. While energy resolution better than 0.7% is theoretically and possibly achievable

in xenon gas it is not a requirement. The effects of improved energy resolution were

also considered and they do enhance the sensitivity however the enhancement is not very

significant when compared to the cases of diffusion.

We consider the analysis presented to be conservative by design. For example previous

studies showed radiogenic contribution form outside the copper shield to be approximately

5%. Assuming the siting location at LNGS is also a pessimistic, other experiments in this

class only consider the deeper labs such as SURF and SNOLAB.

A particularly interesting development in the siting that shows the flexibility of a

NEXT-like detector, is the suppression of neutron activations on 136Xe by addition of a

small amount of 3He [53]. Reducing the yield 137Xe inherently reduces the cosmogenic

background index. With the addition of 0.1% 3He by mass the activations will be reduced

by an order of magnitude. This implies that the detector is not confined to operate at the

deepest labs, and a shallower lab with the a muon flux one order of magnitude above LNGS

would provide the same impact on the sensitivity as that presented in Figure 7.

A robust analysis is currently under development and could enhance the sensitivity

reported here. A topological likelihood based analysis is also under consideration with

improvement also expected. The main aim of these analyses is to improve signal efficiency
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without increasing the background index. At the levels of background expected from the

present analysis, the signal efficiency becomes the dominant factor affecting the projected

sensitivity. This improvement will likely come from the handling of ambiguous cases, for

example when a signal event undergoes bremsstrahlung and fails to pass the single-track

cut.

As mentioned in section 3.1, radiopurity in NEXT-100 can be significantly improved

through the replacement of PMTs by SiPMs, the availability of 10-fold purer PTFE and

the reduction in Kapton thickness. However, the leading component in the NEXT-1T

background model is the nearly 40 tonnes of copper that forms the inner shield. Presently,

the only known method for improving the cleanliness of radiopure copper is by electroforming,

which is a slow and expensive task. However, based on the attenuation length of the 214Bi

and 208Tl gammas in copper, manufacture of the whole mass would not be necessary to gain

a significant improvement. An inner shell of ∼2 cm thickness would suffice to attenuate

the flux, effectively self shielding the copper. Manufacturing 2 cm of copper on the scale

required, equates to ∼3800 kg, which is similar to amounts that other collaborations have

produced. While electroformed copper is not considered as a baseline design its impact on

the sensitivity is rather large since copper is the dominant background as seen in Figure 5,

adding the electroformed copper would reduce this contribution by approximately one order

of magnitude.

7 Conclusions

The NEXT experimental program has pursued a rigorous campaign of material radio-assay

and R&D to advance the capabilities of xenon gas optical TPCs, with the goal of developing

a discovery-class technology for neutrinoless double beta decay. The culmination of these

developments is a technology that is flexible in terms of its operating conditions and

environment, while still being a robust and modular detector with a background index that

is very low, even at modest scales.

We have shown NEXT-like gas detector holding slightly over a tonne of active isotope

can efficiently reject all background sources via topological and energy analysis, achieving

a background index in the range of 0.09 to 0.27 ton−1yr−1ROI−1. As a baseline we have

considered a single detector with a tonne of active isotope. Larger detectors do not exhibit

an increase in background rate, and several detectors can be deployed in parallel to reach

multi-tonne target masses while still taking advantage of the full volume of active isotope.

The techniques presented here offer a compelling path to achieve the sensitivity needed to

cross the inverted hierarchy in neutrino mass-scale sensitivity, using high-pressure xenon

gas TPC experiments.
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