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Abstract

LUX-ZEPLIN (LZ) is a second generation direct dark matter experiment with spin-
independent WIMP-nucleon scattering sensitivity above 1.4 x 10~*® cm? for a WIMP
mass of 40 GeV/c? and a 1000d exposure. LZ achieves this sensitivity through a
combination of a large 5.6t fiducial volume, active inner and outer veto systems, and
radio-pure construction using materials with inherently low radioactivity content.
The LZ collaboration performed an extensive radioassay campaign over a period of
six years to inform material selection for construction and provide an input to the
experimental background model against which any possible signal excess may be
evaluated. The campaign and its results are described in this paper.

We present assays of dust and radon daughters depositing on the surface of com-
ponents as well as cleanliness controls necessary to maintain background expectations
through detector construction and assembly.

Finally, examples from the campaign to highlight fixed contaminant radioassays
for the LZ photomultiplier tubes, quality control and quality assurance procedures
through fabrication, radon emanation measurements of major sub-systems, and be-
spoke detector systems to assay scintillator are presented.

Keywords: Radio-purity, Gamma-ray spectroscopy, Mass spectrometry, Neutron
Activation, Alpha counting, Low background, Dark matter, LZ, Surface assay,
Radon emanation

1. Introduction

The LUX-ZEPLIN (LZ) experiment operates a 7t purified liquid-xenon target
in a time projection chamber (TPC) and has a design sensitivity capable of exclud-
ing at 90% confidence level spin-independent WIMP-nucleon cross sections above
1.4 x 1078 cm? for a 40 GeV /c? mass WIMP, providing excellent discovery potential
for WIMPs through nucleon elastic scattering and subsequent detection of light and
charge from the collisions [I]. The detector is currently being installed in the Davis
Cavern of the Sanford Underground Research Facility (SURF) at a depth of approxi-
mately 4850 ft which is equivalent to approximately 4300 meters of water (henceforth
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referred to as meters of water equivalent - m w.e.). The detector is described in detail
in [2] and [3]. The sensitivity of the experiment is achieved through a combination
of very low backgrounds, a large fiducial mass of 5.6t, and a 1000d WIMP search
exposure. The detector backgrounds are predominantly of two kinds: electron re-
coils (ER) which occur through interaction with the atomic electrons of the target
xenon material; and nuclear recoils (NR) which occur through interaction with the
nucleus of the xenon. The background levels in LZ are suppressed and characterized
by employing two veto detectors: an instrumented layer of liquid-xenon known as
the xenon skin veto, and an outer detector (OD) that uses a Gd-loaded liquid scin-
tillator (GdLS) detection medium. The inner 5.6t fiducial volume further benefits
from attenuation of background radioactivity penetrating the TPC.

The construction of LZ requires materials very low in radio-contamination to limit
the background in the target, thus maximizing sensitivity. Furthermore, an accurate
knowledge of expected low levels of background from remaining radioactivity and
irreducible sources is necessary to ascribe confidence to any possible observation of
signal excess. This article presents the results from the radioassay and screening
campaign used to inform selection of LZ construction materials and to develop the
experiment’s comprehensive background model.

Section [2| describes the gamma-ray spectroscopy and mass spectrometry tech-
niques and the facilities used to determine levels of radioactivity fixed within ma-
terials, including efforts to cross-calibrate the various detectors deployed. Section
presents the radon emanation facilities available to LZ which were used to inform
selection of materials making contact with liquid xenon and to characterize compo-
nents used in LZ construction. Section [4| describes our techniques to limit surface
depositions of environmental dust and atmospheric radon decay-daughters, with par-
ticular emphasis on the period of detector assembly at SURF. Section |5 presents a
selection of highlights from the assay program that illustrates our fixed-contaminant
radioassays for the LZ PMTs; demonstrates the importance of our quality control
(QC) and quality assurance (QA) procedures for construction of the cryostat; revisits
a dedicated detector constructed to survey the scintillator for the OD first discussed
in [4]; and presents radon emanation measurements from key components, including
in-situ assays of the cryostat with the complete detector within.

Upon completion of any assay, results are uploaded to a dedicated database. This
database links assay results to individual components of the LZ detector, greatly
simplifying the process of building the expected background model which, in turn,
helps to define the expected sensitivity of the detector. The results from the assays
performed are tabulated in the Appendix to this article.



2. Fixed Contamination

2.1. Origin of Fized Contamination

Fixed contaminants are embedded in materials and typically consist of naturally
occurring radioactive materials (NORM), the most prevalent being 23U, 23°U, 232Th,
and their progeny which emit various radioactive species through their decay eventu-
ally to stable isotopes of lead; and gamma-ray emitting isotopes, *°K, %°Co and 37Cs.
Neutrons are produced through (a,n) reactions and through spontaneous fission in
the uranium and thorium decay chains. The **U and 23?Th chains are divided into
‘early’ and ‘late’; for 238U, the early part of the chain (*3®U,) contains the isotopes
above ??Ra since chemical processes may induce a break of secular equilibrium at
this point, and it will take thousands of years (7;/2 1600 years) to be restored. The
late part of the chain (**®Uj) is counted from #*Ra and below. Typical p-type high-
purity germanium (HPGe) detectors are not sensitive to the low-energy gamma-ray
lines from 219Pb at the bottom of the chain but broad energy germanium (BEGe),
n-type and well-type detectors available to LZ are.

Secular equilibrium breaking is observed by differences in long-lived isotope con-
centrations in early and late chain values. However, it should be noted that the ?*2Th
chain, as defined, includes ??*Ra which has a relatively long half-life of 5.7y. If 2*Th
and ?2Th are depleted in production of a material, it is possible for 22*Th to grow
back in from ?2®Ra on a time scale of several years, such that assays may underesti-
mate the ultimate activity. It is difficult to measure ?*®Ra with sufficient sensitivity,
but the risk is generally mitigated by using materials where batches of different ages
have been measured over the course of a long material selection campaign [5].

The collaboration also performs assays with in-house inductively-coupled plasma
mass spectrometry (ICP-MS) (Section and some limited use of glow discharge
mass spectromety (GDMS).

2.2. High-Purity Germanium Screening

Gamma-ray spectroscopy was used to identify the bulk of the radio-isotopes con-
tributing to neutron and gamma-ray emission. In order to achieve sensitivity to the
required low levels, these measurements were typically of 1 to 2 week duration. As-
says were made using 12 HPGe detectors, or variants of HPGe detectors, available
to the LZ collaboration across four sites, described in the following subsections and
with key parameters summarized in Table [1| and performance characteristics sum-
marized in Table 2] In the early stages of the LZ screening program a campaign of
blind cross-calibration across all detectors was undertaken to verify the consistency



of analysis and interpretation across the different sites. The cross-calibration cam-
paign is described in Section [2.3] HPGe assay sensitivity to both early and late chain
activities was critical to the comprehensive modeling of backgrounds.

2.2.1. BHUC

The Black Hills Underground Campus (BHUC) [6] is a facility located at the
4850 ft level of SURF which hosts a class 2000 cleanroom containing six low- and
ultra-low background HPGe detectors: MAEVE, MORGAN, MORDRED, SOLO, and
the TWINS. MAEVE, an Ortec 85% relative efficiency p-type detector (where the
efficiency is defined as relative to that of a 3-inch x 3-inch Nal detector exposed to
1332 keV ®¥Co gamma-rays with a source-detector distance of 25 cm) has previously
been situated in the Davis campus at SURF and, before that, at LBNL’s Oroville
site for 15 years. MORGAN, an Ortec 85% relative efficiency p-type detector, is
effectively identical to MAEVE in performance. MORDRED, an Ortec 60% relative
efficiency n-type detector, was retrofitted with ultra-low background electronics to
improve its performance for low-background assay. MORDRED has good sensitivity
to low-energy gamma rays and is therefore particularly well-suited for early chain
U assays. SOLO, a 30% relative efficiency p-type detector, was previously sited
in the Soudan Underground Laboratory and played an important role in the LUX
experiment’s low background counting [7, 8, ©0]. While the crystal is small, it has
exceptionally low backgrounds. The newest detectors in the BHUC are referred to
as the TWINS, a pair of Ortec 90% relative efficiency p-type detectors in a common
shield. The TWINS can operate in coincidence or anti-coincidence and in combined
singles data acquisition mode where spectra from each detector are combined without
any regard for events which are detected in coincidence.

In the BHUC, MAEVE, MORGAN, MORDRED, and SOLO are situated in separate
graded shields. The TWINS are installed in a common shield. Each shield provides at
least 20 cm of low-activity lead shielding with 2.5 cm of oxygen-free, low conductivity
copper within the lead. The shield surrounding MAEVE has an inner layer of 2.5 cm
of ultra-low activity lead and the shield surrounding SOLO has an inner layer of 5 cm
of ancient lead. The study of low-background lead for detector shielding is discussed
in detail in [10]. All HPGe detectors are constructed using low-background designs
and include remote preamplifiers. All detectors are filled with liquid nitrogen from
a fully automated filling system. To provide the nitrogen gas flows necessary for
purging the six detectors inside the BHUC cleanroom, a dedicated gas generator was
installed, producing low activity nitrogen gas from a liquid nitrogen dewar. The gas
purge flushes the detector counting cavities as well as the lead and copper shields.
An additional detector, Ge-1V, operated by the University of Alabama, is installed



outside the cleanroom, although this has not been used for assays discussed in this
paper.

2.2.2. BUGS

The Boulby Underground Germanium Suite (BUGS) hosts seven gamma spec-
troscopy detectors 1.1km underground at the Boulby Underground Laboratory in
a class 1000 cleanroom. Since 2013, the majority of screening efforts for the LZ
experiment were performed using the Chaloner, Lunehead, and Lumpsey detectors.
These detectors are, respectively, a Mirion (formerly Canberra) BE5030 broad-energy
ultra-low background (ULB) HPGe detectol] a Mirion ULB SAGe well-detector, and
a refurbished 100% relative efficiency Ortec p-type detector used previously for the
ZEPLIN-II and ZEPLIN-III experiment’s low background counting [11], 12, 13]. The
BUGS detectors are housed in custom shields designed and built by Lead Shield En-
gineering Ltd. The shields comprise 9 cm thickness of lead and an inner layer of 9 cm
thickness of copper with interlocking retractable roofs to simplify sample loading.
The lead used in these shields has mostly been recycled from lead used to shield pre-
vious low-background experiments hosted at the Boulby Underground Laboratory.
The characterizations and sensitivities of these detectors are discussed in [5].

In addition to these detectors, BUGS has installed additional Mirion “specialty
ultra-low background” (S-ULB) detectors which have been used to screen later LZ
samples since 2017. These comprise two p-type detectors, Belmont and Merrybent,
with relative efficiencies of 160% and 110%, respectively, and Roseberry, a BE6530
BEGe type detector. For uniformity, these detectors are housed in similar shields to
those used for the ULB standard Mirion detectors with the exception of the shield
used for the Belmont detector which includes an inner liner of very low-background
copper. These three detectors display substantially lower backgrounds than those of
the ULB standard to significantly enhance the throughput rate of assays for LZ. The
Belmont detector in particular, was used to further lower the 2**U; upper limits for
titanium reported in [14].

The shields used for all detectors are purged using nitrogen from a Wirac NG6
gas generator. The Boulby Underground Laboratory benefits from a low baseline
radon level (averaging ~2.5 Bq/m?). To remove residual radon in the nitrogen purge
gas, charcoal traps containing approximately 6 kg of Carboact activated charcoal are

Tt is inappropriate to classify BEGe and SAGe well detectors by their relative efficiency as they
are designed to maximize efficiency to low-energy gamma-rays rather than to maximize efficiency
to a 1332keV %°Co gamma-ray. For the BEGe type detector, the model number signifies the area of
the front face and the thickness of the crystal. In the case of the BE5030 detector, it has a 50 cm?
front face and a thickness of 30 mm.



deployed in a Labcold ULTF416 —80 °C chest freezer. This radon reduction system
is based on the design of a radon emanation detector developed at the Centre de
Physique des Particules de Marseille (CPPM) [15].

2.2.3. LBNL

Lawrence Berkeley National Laboratory (LBNL) has two HPGe detectors devoted
to assay [L6]. These are housed in a near-surface room shielded with over 1.5m of
low radioactivity concrete. The MERLIN detector is an Ortec 115% n-type detector.
MERLIN is shielded by 20 cm of lead with an inner layer of 2.5cm of copper and is
equipped with a plastic scintillator cosmic-ray veto. The BIG-8 detector is an 85%
p-type detector shielded with 10 cm of lead and 1.2 ¢cm of copper. It is equipped with
a Nal veto that encloses the Ge crystal. Both detectors are flushed with nitrogen
boil-off gas. The cosmic-ray vetos and local shielding result in detector performance
equivalent to being sited at a depth of approximately 500 m.w.e.

2.2.4. Alabama

The University of Alabama operates two above-ground Canberra p-type low-
background HPGe detectors [I7]. These are Ge-II and Ge-III which have relative
efficiencies of 60% and 105%, respectively. Each of these detectors is housed in
shielding comprising 20 cm of lead with an inner layer of 5 cm of copper, instrumented
with 5cm thick plastic scintillator cosmic-ray veto detectors. The sample chambers
are continuously flushed with nitrogen boil-off gas to displace radon. Despite their
above-ground location, the background rates achieved this way are comparable to
some of the underground devices, as reported in Table 2] Ge-II and Ge-III have
been used for items assayed using Neutron Activation Analysis (NAA), described
in Section 2.5l Ge-III was further utilized extensively for studies of 2!°Pb surface
activities, their deposition through radon exposure, and their removal.

2.8. HPGe Cross-Calibration

Early in the LZ assay efforts, it was recognized that samples would be distributed
amongst a large variety of detectors with different backgrounds, shielding arrange-
ments, and histories. To cross-calibrate and evaluate the systematic uncertainties in
assays performed with the detectors listed in Table [2] a sample of latite with well-
characterized uranium, thorium and potassium content was prepared. This material
has been used by LBNL for more than 30 years to characterize its detectors. The
uniformity of the radioactivity has been studied and is confirmed to be flat across
a variety of sample sizes from ~1mm up to several cm. An S5 Marinelli beaker of
this mineral was prepared and sealed. The content and activity was not known by
the rest of the collaboration and the same beaker was subsequently analyzed by all
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Table 1: Key characteristics of the 12 detectors used in the LZ HPGe screening campaign. Crystal
mass and volume is included to give an idea of the relative sizes of the crystal. In addition the
relative efficiency is given for the p-type detectors and the area of the front face is given for the

BEGe detectors.

v M Relative Face
Location Detector Type lcm?] [ke] Efficiency Area
¥ (B [em?
Belmont  p-type 600 3.2 1.92 -
Merrybent p-type 375 2.0 1.87 -
BUGS Lunehead p-type 375 2.0 1.86 -
Roseberry BEGe 170 0.9 - 181.1
Chaloner BEGe 150 0.8 - 1053.0
Lumpsey  SAGe well 263 14 - .
LBNL MERLIN n-type 430 2.2 3.59 -
MAEVE p-type 375 2.0 3.19 -
MORGAN  p-type 375 2.0 2.68 -
BHUC MORDRED n-type 253 1.3 2.44 -
SOLO p-type 113 0.6 5.52 -
Ge-I1 p-type 260 14 3.6 -
Alabama 1y p-type 406 2.2 271 :
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Table 2: Performance characteristics for each detector used in the LZ fixed contaminant screening
campaign. For each detector, as is standard, the full-width at half maximum (FWHM) of the
1332 keV %°Co gamma-ray is shown. It can be seen that BEGe and SAGe-well type detectors
(Roseberry, Chaloner & Lumpsey) typically achieve the best resolution. A comparison of the
integral counts between 60-2700 keV is given scaled to the mass of the detector crystal. Finally, a
comparison between count rates for several peaks of interest are given corresponding to standard
NORM (or in the case of %°Co, anthropogenic) isotopes.
FWHM Integral (60 -  TI-208 Bi-214 Co-60 K-40 Pb-210
Detector 1332 keV ~ 2700) keV ~ 2614.5 keV  609.3 keV  1332.5 keV 1460.8 keV  46.5 keV
[keV]  [kg 'day!] [kg 'day '] [kg 'day'] [kg 'day '] [kg 'day '] [kg '-day ']

Belmont 1.92 135.0 0.3 1.4 1.6 1.0 -
Merrybent 1.87 167.4 0.4 1.8 0.6 1.9 -
Lunehead 1.86 582.4 2.0 4.7 1.5 9.2 -
Roseberry 1.58 181.1 <04 <0.4 0.6 0.7 0.3
Chaloner 1.56 1053.0 1.7 9.5 1.2 8.3 1.7
Lumpsey 1.66 4256.8 12.2 60.3 1.6 7.0 13.7
MERLIN 3.59 68868.3 9.7 7.5 - 20.0 80.2
MAEVE 3.19 956.1 1.8 1.4 0.5 3.5 49.6
MORGAN 2.68 1338.8 3.2 8.8 3.8 4.8 4.6
MORDRED 2.44 2103.2 2.1 3.9 1.6 7.4 29.0
SOLO 5.52 786.9 - 3.3 - - -
Ge-I1T 3.6 9600 <14 3.6 10.3 2.3 -
Ge-III 2.71 8600 <0.5 9.6 1.7 2.5 1.6
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groups on all their detectors. The analyses were sent to a central site, amassed and
compared by one individual who had knowledge of the true contamination of the
calibration source material.

This comparison uncovered some issues with several analyses, mostly due to prob-
lems with the Monte Carlo simulations of the detectors. After discrepancies were
highlighted by the individual who amassed the results, these issues were identified
and corrected. The results were again compared across all the detectors. Table [3]lists
reference values for each isotope; compares results from each detector; and gives their
combined average and standard deviation. A visual comparison between detectors
used in the calibration program for potassium is shown in Figure [I} It is important
to note at this point that when a concentration is reported, in parts per value e.g.
ppm, ppb, ppt (g of U/Th per g of material), it is no longer pertinent to refer to
late chain or early chain values as the concentration defines the concentration of the
progenitor isotope (***U | 25U, ?*2Th) assuming secular equilibrium [I8]. The vast
majority of the assays performed as part of the LZ campaign were performed on
the detectors shown in this figure. The cross-calibration effort confirmed that the
modeling of detector geometries and efficiencies were correctly handled and provides
a reasonable estimate on the systematic variation among the assays of ~10% thus
giving the collaboration confidence that each individual facility is able to produce
consistent and accurate assay results. This being the case, newer detectors that
were used later in the campaign (such as the S-ULB detectors added to BUGS) were
not required to be characterized using the latite sample. Each facility was able to
implement their own calibration and characterization methods and the subsequent
assay results were accepted to be accurate within statistical errors and within the
systematic errors of the detector used.

For some materials, such as the titanium, additional steps were taken to increase
our confidence in the assay precision. This cross-calibration also verified that all
counters had effective Rn-reducing purge systems. Periodically, the LZ assay cam-
paign screening of selected samples was repeated on different detectors to monitor for
stability of assays. These ongoing comparisons spanned a variety of source materials
and a wide range of contamination levels, while also probing for Th in-growth in
particular LZ components. For many materials we complemented the HPGe assays
with Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and, after their in-
stallation at Boulby, with the new S-ULB detectors to further verify our measured
concentrations of 22U, and ?*?Th,.

Results from the assays deploying gamma spectroscopy are presented in Table[AT]
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Table 3: Results from the HPGe cross-calibration performed using a sample of Rhyolite. For
the 238U, and 238U; columns, the contamination reported is that of the progenitor isotope 233U
assuming secular equilibrium and for the 232Th, and 232Th; columns, the contamination reported
is that of 232Th assuming secular equilibrium.

Detector ?*U, (ppm) **U; (ppm) #**Th, (ppm) *?Th; (ppm) K (%)

Reference 8.87(4) 8.5(1) 12.1(1) 12.1(1) 2.82(1)
MERLIN 8.92(9) - 12.4(1) 12.4(1) 2.81(3)
MAEVE 8.6(1) 8.6(1) 11.9(1) 11.9(1)  2.74(3)
MORDRED  7.92(5) 10.2(1) 11.3(2) 11.3(1)  2.66(6)
SOLO 6.16(1) . 12.5(7) 0.94(1)  2.91(1)
Chaloner 8.73(5) 7.9(2) 11.1(1) 11.1(1)  2.81(1)
Lunchead 8.5(1) ; 11.8(1) 11.8(1)  2.85(1)
Ge-II 9.6(13) 11.4(15) 12(16) 12.2(17)  3.4(4)
Ge-111 9.2(9) 10.3(10) 12.1(12) 12.8(13)  3.3(3)
Average 7.61(3) 0.2(2) 11.9(1) 10.54(0.5)  2.84(2)
Std. Dev. 0.98 1.26 0.46 0.84 0.25
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Figure 1: Cross-calibration results for potassium concentration for the detectors used in the LZ
HPGe radioassay campaign. The reference value for potassium concentration in this sample is
(2.82£0.01)%. Excluding this, an error-weighted mean of (2.84 +0.02)% was derived from the
measurements of “°K. In this figure, the gray band represents the standard deviation of the mea-
surements with a value of 0.25%.
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2.4. Mass Spectrometry

Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) allows very precise
direct measurement of the elemental abundances of uranium and thorium in small
samples. The assays can be very quick, taking hours to days depending on requisite
sensitivity down to sub-ppt levels and depending on related sample preparation pro-
tocols. ICP-MS has been used extensively in LZ to quickly measure 28U and 232Th
in small samples to either reject or clear materials for use, or to pre-screen materials
prior to assay with gamma spectroscopy which can determine the complete activ-
ity through the ?*¥U and ?*?Th decay chains. The speed of ICP-MS allowed rapid
analysis of test pieces provided by manufacturers at specified points in the produc-
tion processes to detect potential issues and to ensure radioactivity and cleanliness
compliance. The manufacture of the Ti cryostat is one such example, highlighted in
Section .2

The majority of ICP-MS assays for LZ were performed using a dedicated mass
spectrometry laboratory at UCL, housed in a class 1000 cleanroom facility and oper-
ating an Agilent 7900 spectrometer installed in 2015 exclusively for LZ [19]. Sample
preparation and analysis procedures have been developed for materials with U/Th
concentrations in the ppt to 1ppb range: Samples are microwave-digested in pre-
cleaned modified-PTFE vessels using ultra-high purity acids. They are then diluted,
without further chemical treatment, into disposable 50 mL polypropylene (PP) ves-
sels ready for ICP-MS analysis. Fractional recoveries of 2°Th and 233U spikes added
prior to digestion are used to correct for ?*2Th and 238U signal loss from a range
of sources. In particular, this enables accurate analysis of samples with high total
dissolved solids (TDS) where the instrument response degrades throughout the run.
A full assay including digestion, ICP-MS measurement and analysis can be com-
pleted in a single day. The UCL facility was upgraded in 2019 with an Agilent 8900
ICP-MS.

In addition to the system at UCL, some material samples were assayed using
facilities at the University of Alabama, the Centre for Underground Physics in Korea,
and the Black Hills State University. At the University of Alabama, the LZ group
set up a sample preparation laboratory in a Class 500 cleanroom equipped with a
cryogenic mill, microwave digestion system, and digestion bomb. Further processing
of samples, including spiking and resin-based extraction of U/Th isotopes was carried
out in a separate cleanroom. The samples were then given to the Department of
Geological Sciences which processed the samples using a Perkin-Elmer SCIEX-ELAN
6000 system. In Korea and at Black Hills State University, samples were measured
using Agilent 7900 spectrometer, as was used at UCL. Results from ICP-MS assays
for LZ are presented in Table [A2]
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Finally, in the early days of the LZ assay program, a small number of items
were assayed using Glow Discharge Mass Spectrometry (GDMS). These assays were
performed using a Thermo-Fisher VG 9000 GDMS instrument operated by the Na-
tional Research Council of Canada (NRC). GDMS can achieve sensitivities of around
10 ppt for conductive materials. For this reason, GDMS was used for some assays of
titanium. Results from the GDMS assays for LZ are presented in Table [A3]

2.5. Neutron activation Analysis (NAA)

As with ICP-MS, NAA allows sensitive analysis of small concentrations of Th
and U in small samples. It only constrains the early decay series. It can be utilized
for materials where the matrix does not form long-lived radioactivity after neutron
capture. As such it is well-suited for plastics.

For NAA assay in LZ, the University of Alabama group utilizes the 6 MWy,
tank-type MIT Reactor II (MITR-II, located at the Massachusetts Institute of Tech-
nology) to activate samples. This technique is typically used for small size samples
of a few mm in diameter and several cm in length. LZ samples were prepared at
the University of Alabama in a cleanroom prior to their shipping to the reactor
for activation. Surfaces were leached extensively in ultra-clean acids to distinguish
bulk from surface activities. The polyethylene vials used for irradiation are cleaned,
welded shut, and leak tested. Samples are typically irradiated for 10h in the high-
flux sample insertion facility of MITR-II before being returned for counting analysis.
Storage within sealed polyethylene vials serves to protect the samples from cross-
contamination during transport and activation. There is a typical delay of around
24h between activation being completed and samples being assayed using Ge-II or
Ge-I1II, but this is acceptable when compared to the half-lives of the activation prod-
ucts used for NAA (e.g. K - 72 = 22.3h, *Pa - 71/» = 26.97 days, and ***Np -
T2 = 2.36 days). Assays typically lasted 2 to 4 weeks and a double-differential time-
energy analysis is used to determine elemental concentrations of samples. Neutron
capture cross sections, averaged over the energy distributions of the three reactor
neutron flux components, taken from the JENDL4.0 database are utilized in the
data analysis. For each of the LZ activation campaigns the neutron fluxes were de-
termined by activating the NIST reference material, fly ash, immediately following
the sample. This allows to reference the elements of interest directly to a standard.
This method is discussed in depth in [20].

The techniques employed by the University of Alabama group routinely achieve
a sensitivity of 107!2 ¢ U/Th per g of material and, indeed, sensitivities as good as
10714 g of U/Th per g of material have been reported by the same group for assays
related to the EXO-200 experiment [20], 21]. Such sensitivity has been key for assays
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and selection of raw materials not readily amenable to direct HPGe due to sample
mass or minimal detectable activity requirements, or to ICP-MS due to difficulties in
sample digestion and preparation. Selection of PTFE to manufacture the LZ TPC
reflectors are one such example where NAA has been deployed, with results presented
in Table [A4]

3. Radon Emanation

3.1. Origin of Radon Emanation

Radon is produced in the alpha decay of radium, part of the uranium and tho-
rium decay series. Due to the long lifetime of their progenitor isotopes, there is a
near-constant supply of ***Rn (71,5 = 3.82d) and **Rn (715 = 55.65) that may em-
anate out of materials over the lifetime of an experiment. The emanation rate of a
material can be broken down into two parts: emanation due to recoiling radon atoms
and emanation due to diffusion. Emanation due to diffusion can vary drastically de-
pending on chemical and lattice structures of a material, density, surface roughness,
and temperature. The diffusion length, L(m), of radon for a given material can be
represented as L(m) = /D/A, where D is the diffusion coefficient and A the decay
constant.

The background from radon emanation in LZ is dominated by the ground-state to
ground-state or “naked” 3-emission from the 2'*Pb progeny of the ?2Rn sub-chain as
it decays to 2'*Bi. The relatively long half-life of 2?2Rn leads to a homogeneous mixing
within the target volume, resulting in a uniform ER background with the 2!4Pb 3
spectrum up to 1019 keV. The background from ?2°Rn is expected to be significantly
suppressed due a much smaller diffusion length as a result of its shorter half-life,
hence most of it is expected to decay within the material volume in comparison to
222Rn before diffusing out, or before maximally mixing with the active xenon volume.

Radon emanation accounts for =~66% of the projected ER background in the
WIMP search region of interest in LZ [I], predominantly from a projected **?Rn
specific activity of 2pnBq/kg that corresponds to approximately 20mBq in the 10
tonnes of xenon, from which 11 mBq is in the fiducial volume. As demonstrated by
previous LXe-based rare-event search experiments, including LUX and ZEPLIN-III,
the amount of radon in the target can be deduced through analysis of the 2'“Pb
B-spectrum and from coincidence tagging of decaying radon daughter 2'*Bi and
2po [7, 12]. While such in-situ techniques are powerful in constraining the ob-
served radon emanation background once the detector is closed and operational, a
screening campaign akin to that for fixed contaminants is required to inform ma-
terial selection for detector and sub-system construction, and for the experiment
background prediction.
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3.2. Radon Emanation Screening

3.2.1. Screening Techniques

The techniques involved in screening for radon generally involve reconstructing
the radon emanation rate by measuring the radon sub-chain daughter isotopes. An
indirect way of achieving this uses gamma spectroscopy to measure the 2'“Bi (7, /2=
19.9min) and **Pb (73 = 26.8 min) decay rates, from which the radon decay rate
can be inferred. Although some useful constraints can be derived, it is extremely
difficult to distinguish between radon daughters decaying in the bulk of the material
and those that decay outside of the material, so emanation rates cannot be deduced
without a material-specific diffusion model.

The method utilized by LZ in four different facilities is to directly measure the
radon emanation rates from detector material, leading to a more accurate result in
constructing the radon-induced background rate. The sample material is initially
enclosed in an air-tight chamber that is filled with a low-radon carrier gas, typically
helium or nitrogen. This carrier gas prevents recoiling radon atoms from embedding
themselves in the walls of the chamber. After an emanation period that allows
the radon concentration in the chamber to approach equilibrium (&1 week), the
emanated radon atoms are transferred into a detector that can either measure the
rates of 2*Po (712 = 3.1m) and ?"*Po (11, = 164ps), with a mean decay time
of ~71min after the initial ?*2Rn decay. A second method of reconstructing the
emanation rate is by identify the delayed 2!Bi-*'*Po coincidence (with measurement
times also ~1week). In both cases, the radon emanation rate is reconstructed by
correcting for the detection and transfer efficiencies, measured during dedicated runs
with radon sources of known activity.

The first of these reconstruction techniques determines the radon emanation rate
by detecting the alpha particles emitted from the ?'¥Po and 2'*Po isotopes. These
systems use electrostatic silicon PIN-diodes to attract and capture the predominantly
positively charged ions (87.3 & 1.6)% of radon daughter nuclei by using an electric
field that is generated from the negative voltage applied on the PIN-diode [22]. The
alpha particles emitted from the 2'8Po and 2!*Po ions are detected by a PIN-diode as
they undergo alpha decay and are distinguished by the energies they deposit; 6.1 MeV
and 7.9 MeV, respectively. Of the four radon-emanation screening facilities used by
LZ, three use electrostatic PIN-diode detectors for radon emanation. The fourth
facility collects the harvested radon by dissolving it in organic liquid scintillator by
means of a carrier gas. The delayed 214Bi-21*Po coincidences are then counted to infer
the corresponding ?*?Rn decay rate. All operate at room temperature such that the
expected suppression of diffusion-dominated radon emanation at low temperature is
not probed.
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Table 4: Comparison of the key highlights of the four radon emanation facilities used by LZ. The
chambers detailed are those used in containing the sample material, where radon is collected. Some
facilities operate two chambers as detailed below. Chamber blank rates detail the emanation rate
from the chambers alone and are background subtracted for sample measurements. Detector effi-
ciency represents the fraction of activity measured from the total radon inside the detecting volume;
independent of chamber usage and transfer efficiency. The cross-calibration figures represent the
reconstructed emanation rate of a standard rubber sample previously used by other collaborations.
When not stated, overall uncertainties are estimated to be 10-20%.

Detector Type Chamber Volumes Chamber Blank Rates Transfer Efficiency Detector Efficiency Cross-Calibration
L] [mBq] [%] [%] [Measured /EXO-activity]

NG T 13 0.2 94 0.89+0.15
SDSM&T PIN-diode 300 0.2 80 » 1.1140.28
Maryland ~ PIN-diode 4.7 0.2 96 24 1.13 £ 0.19

. 2.6 0.2 97 . ) .
UCL PIN-diode 26 04 97 30 1.49+0.15
Alabama Liquid Scint. 26 <0.4 34 36 0.83+0.17

2.6

The LZ collaboration performed cross-calibrations for the four radon facilities
deployed as part of our assay program. A rubber sample previously screened by the
EXO collaboration [23, 24] was assayed at each of the radon emanation facilities.
Prior to the emanation period, the sample was prepared under the same conditions
to reduce the chances of environmental contamination. The surface of the sample
was scrubbed with isopropyl alcohol-soaked lint-free wipes and inspected with UV-
light to ensure no presence of surface contamination. The activity of the sample was
O(10mBq) and was thus well above the minimal detectable activities of the radon
systems. Table [4 presents the results of the cross-calibration and a summary of key
details of the LZ radon screening facilities.

LZ makes use of two portable radon collection systems for equipment that is too
large or delicate to move to the radon emanation facilities or for assays of systems
under construction in the SURF Surface Assembly Laboratory (SAL). Emanated
radon is transferred to a cold trap consisting of copper beads or wool that is double-
sealed and then transported by car or overnight shipping to the radon facility at South
Dakota School of Mines and Technology (SDSM&T) or University of Maryland. The
collected radon would then be transferred over into the respective radon detector with
transfer efficiencies taken into account from portable-system specific calibrations.
The activity is then reconstructed by correcting for the transportation time and
detector efficiency. These portable systems were critical for measurements of radon
emanation from the assembled LZ detector and from large instrumentation used in
the circulation path. Results from the radon emanation assay campaign are presented
in Table For majority of the measurements, smaller samples are sent to the
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facilities detailed below and radon is often collected in emanation chambers and
measured with their respective detectors.

3.2.2. SDSM&T

The SDSM&T system uses two electropolished stainless steel chambers as the
radon collection media: a 13 L vessel for smaller components and a 300 L vessel for
larger components. Emanation samples are placed in the chambers with care taken
not to introduce dust into the chambers or onto the samples. The chambers are then
filled with nitrogen gas that has been scrubbed of radon by an activated charcoal
trap cooled to 196 K by a mixture of dry ice and isopropyl alcohol.

After the sample has emanated, the radon is concentrated and transferred to the
1.7L detection chamber in a multi-stage process. In the first stage, the radon is
transferred from the emanation chamber to a large brass wool trap cooled to 77K
by liquid nitrogen (LN3). A high transfer efficiency is achieved even for the 300 L
vessel by repeatedly pumping the chamber out through the trap and refilling. The
radon is then transferred to a small brass wool trap by warming the large trap and
cooling the small trap and flowing clean nitrogen through first the large trap and
then the small trap. Due to the volume of gas allowed to flow, the transfer efficiency
from the large trap to the small trap is ~100%. Then with the small trap and
detection chamber at low pressure, the small trap is warmed and nitrogen is allowed
to flow through the small trap into the detection chamber to raise the pressure in
the detection chamber to 100 Torr. This process transfers ~95% of the radon to the
detection chamber, for overall transfer efficiencies of 80% (94%) for the 300L (13 L)
chamber. The detector is an electrostatic silicon PIN-diode detector as described
above. The detector efficiency was determined to be 23 £2 % for 2'8Po and 25 +2 %
for 2'4Po under standard operating conditions. A system for performing emanations
at LN temperatures is under construction.

3.2.3. Unwersity of Maryland

The Maryland system’s primary focus was to measure emanation rates from vol-
umes that act as their own emanation chambers, such as the LZ compressor system.
The Maryland system also contains a 4.6 L. stainless steel vessel, used to calibrate
the system and to perform measurements on smaller samples. The system uses an
activated charcoal trap operated at LNy temperature to initially scrub the radon
from the helium carrier gas. The radon from the emanation volume is captured by
a copper pellet trap also cooled to LN, temperature. The copper trap is a 0.5”
electropolished stainless steel tube bent into a U-shape and containing 180 g of cop-
per pellets (Atlantic Equipment Engineers CU-131). The pellets range in size from
1/16” to 3/32”. The radon is released from the copper at room temperature and
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transferred to a 1.7 L. chamber containing an electrostatic PIN diode detector. The
efficiency of the copper pellet trap was determined to be near 100% by repeated
trapping and counting of a radon sample. The absolute efficiency of the detector
was determined to be 24% by measuring a calibrated natural rock source purchased
from Durridge. Ion drift simulations were carried out to study the performance of
the detector. The predicted efficiency agrees with the measurements within the sys-
tematic uncertainty for both the Maryland and the SDSM&T detection chambers,
which have a near-identical design.

A second electrostatic PIN diode radon counting system is operated at Maryland
in flow-through mode to measure the elution curves of charcoal samples in helium
carrier gas. A piece of uranium ore acts as an uncalibrated radon source for these
measurements. Once the elution curve is determined, an appropriate radon har-
vesting time can be chosen for each charcoal sample during its subsequent radon
emanation measurement.

3.2.4. UCL

The UCL system’s custom-made electrostatic detector was originally developed
for high sensitivity radon measurements for the ELEGANT V and Super-Kamiokande
experiments [25]. The detector consists of a 70 L electropolished steel chamber with
a silicon PIN-diode located at the top, operating under the same principles as de-
scribed above. By the use of a calibration source of known activity (a 1.32kBq “flow-
through” ??°Ra source by Pylon Electronics, RN-1025), the detection efficiencies for
24Pg and '8Po are determined to be (31.6 £+ 1.6)% and (27.1 & 1.4)%, respectively,
with helium as the transfer gas. The system operates two 2.7 L stainless steel cham-
bers as the emanation media. The larger detector volume and the small emanation
volumes allow a single step transfer process, where helium gas is flushed through the
emanation chambers, directly into the detector. To eliminate the contamination of
background radon from the carrier gas, the gas is initially allowed to flow through
an activated carbon trap stored in an ultra-low temperate freezer (193K) and the
entire system is purged to remove accumulated radon emanating out of the transfer
lines.

A second mode of operation for the system uses 57g of activated carbon (a
synthetic charcoal sourced from Carbo-Act International [26]) as a radon collection
trap. In larger emanation volumes, the radon is initially absorbed into the cooled
trap while the carrier gas passes through. The trap is then heated to release the
radon and the carrier gas is then used to transfer the concentrated radon into the
detector volume. The trapping efficiency for this setup has been measured to be
~93% at 248 K. The cold trap was not generally necessary for the results reported
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in Table [A5]
A second facility with sensitivity to low-temperature emanation is under con-
struction and will be operated at the Rutherford Appleton Laboratory.

3.2.5. Unwersity of Alabama

The radon emanation facility at Alabama operates in a similar principle to those
of the other three detectors, with the exception of their detection technique. Two
2.6 L electropolished emanation chambers, of the same design as those utilized by the
UCL group, are used to accumulate the radon outgassed from samples of interest.
Boil-off nitrogen, selected for its low intrinsic radon content, serves as a carrier to
transfer the radon into about 150 mL of organic liquid scintillator. The carrier gas
is flowed for 48 min at a rate of 20 mL/min. Experiments with a calibrated Pylon
RN-1025 radon source showed that longer purge times and higher flow rates result in
more effective radon removal from the collection vessel but, on the other hand, lead
to radon loss in the liquid scintillator due to the dissolved radon being washed out.
The chosen parameters constitute the optimal compromise between these two mech-
anisms. Measurements with cascaded scintillator collectors showed that under these
conditions about 70% of the radon arriving at the scintillator-gas interface dissolves
in the scintillator. Use of the calibrated radon source yields an overall radon transfer
efficiency of 34.3%. The radon-loaded scintillator is transferred into a small acrylic
counting cell, equipped with one low-activity 3-inch Hamamatsu R-1307 PMT. The
measurement of delayed 2'*Bi-2*Po coincidences allows the determination of the de-
cay rate with low background. The analysis of the delayed-coincidence data sets
uses cuts on the - and a-like energy deposits. The distribution of time differences
between (- and a-like events is fit to an exponential plus a constant, with the corre-
lation time frozen to the known 2'*Po mean lifetime. The exponential component of
the fit determines the decay rate; the constant term unfolds the random background.
The efficiency of these cuts has been determined, by means of loading radon derived
from the calibrated source, to be 35.9%. However, because of the need to transfer
both the carrier gas and the scintillator, the limiting factor is not the detector back-
ground but the blank (radon introduced during transfer and handling). Repeated
measures of the handling blank allowed for estimation of the blank subtraction un-
certainty. A further source of background is steady state leakage of radon into the
sealed counting cells. Counting continued after allowing the radon to decay, thus,
quantifying this background directly. This leakage varied between counting cells.
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4. Surface Contamination

4.1. Origins of Surface Contamination

Radio-pure detector materials and components selected through the LZ screening
campaign may be contaminated during the assembly process. Indeed, exposure to
airborne radon at any stage of the assembly process results in the contamination of
detector materials by radon daughters (mainly the long-lived ?'°Pb, 71/, = 22.3y)
that plate-out onto surfaces [27]. Environmental dust also deposits on detector mate-
rial surfaces, and later, radon emanates from these surfaces and could yield daughter
decays in the LXe volume during the LZ data-taking period.

Of particular concern is 2'4Pb, which will emit naked betas leading to a continuous
ER background down to the WIMP energy window as described in Section Also,
210Ph will subsequently decay, with its granddaughter 2!9Po releasing 5.3 MeV alphas.
This induces neutrons via (a, n) reactions on low-Z nuclei in various detector mate-
rials, leading to NR backgrounds. Stable 2°°Pb from the decay of 2!°Po on material
surfaces may recoil into the LXe volume producing a complicated wall background
(0 to 103keV in energy), which, despite fiducialization, could yield leakage nuclear
recoil events in the region of interest due to poor position reconstruction because of
their high radius (near wall) and low s2 size (since low energy) [28]. Surface con-
tamination by radon daughters and dust thus contributes to LZ internal ER and NR
backgrounds (at the expected level of about 3% and 38%, respectively) and should
therefore be carefully controlled to meet the low level background requirements of
the LZ experiment [I]. To this effect, a stringent cleanliness campaign was developed
to monitor and mitigate this contamination during sub-systems assemblies, mainly
the TPC detector assembly in the SAL.

This section discusses the estimation of the TPC surface contamination from both
Rn and dust accumulated during the different phases of the TPC construction, along
with the cleanliness measures and procedures undertaken to ensure the contamination
levels remain below LZ requirements, and to minimize the internal backgrounds.

4.2. Dust Deposition

The ambient dust in the SAL cleanroom comes from two main sources: dust
from outdoor air flowing through the air filtration system, and dust carried in and
generated by personnel and material. The air filtration system consists of a series
of six high-efficiency particulate air (HEPA) filters with fiber glass membranes that
remove dust particulates from outdoor air fed into the cleanroom with an efficiency
>99.97% for particulates >0.3 pm [29]. Recorded dust level (from two Met One GT-
526S particle counters installed at different locations) within the cleanroom with and
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without personnel demonstrates that outdoor dust passing through the air filtration
system has a negligible contribution to the dust level within the cleanroom.

The main contribution to dust therefore comes from personnel who bring in dust
from their bodies, cleanroom garbs, or equipment they bring into the cleanroom, as
well as the dust they generate while working in the cleanroom. While continuous air
recirculation within the cleanroom takes part of this dust back out, a portion of it
does deposit onto open surfaces within the room, including those of the TPC, and
should therefore be carefully quantified and controlled. Two technical probes were
developed to estimate dust deposition on the TPC detector components surfaces,
and a dust fallout model was developed for the same purpose.

4.2.1. Technical Probes: Witness Coupons

Witness coupons are small samples ideally made of the same materials as the
detector component that is being assembled. Since dust deposits are expected to
accumulate at the same rate on the detector material, the coupons are then used to
infer the dust deposition on the component. For the LZ detector, the coupons are
mostly PTFE and glass, since these make up a vast majority of the most background-
sensitive surfaces of the TPC.

Although coupon surfaces should preferably be flat, PMT cable coupons with
curved surfaces were also deployed in an effort to thoroughly probe dust deposition.
All coupons are carefully cleaned with isopropyl alcohol (IPA) soaked non-shedding
wipes and then deployed in pairs, as close as possible to the detector, to collect
dust under similar conditions as the detector surfaces. They are typically harvested
after a couple of weeks, which, based on the cleanroom level and the sensitivity
of the assay technique, is enough time to collect the required amount of dust to
make an assay possible. The coupons are then assayed via optical or fluorescence
microscopy depending on material type in order to enable a contrast between the
dust particulates and the rest of the coupon surface. For the PTFE coupons, since
PTFE does not fluoresce but many dust particulates do, ultraviolet light is shone
on the exposed side of the samples. Glass coupons, on the other hand, may be
imaged under visible light. Both fluorescent or optical images are then processed
via software written in for ImageJ [30] for further contrast to reveal smaller dust
particulates down to 0.5 um, and accurately determine the size distribution of these
particulates and their contribution to the dust density accumulated on the coupons’
surfaces. Some dust from the optics, which shows up in the same place on each
image (of a clean or dirty coupon as seen on Figure , needs to be removed from
the analysis and provides some minor calibration which ensures a consistent imageJ
threshold is set for all images.
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Figure 2: Optical images of clean (Left) and dirty (Right) witness coupons, post optical processing.
The feature common to them are dust from the optics, and serves as a calibration check.

The number of particulates on the coupons decreases with increasing particu-
late size [31], such that large particles (>50 pm) are relatively uncommon but they
may dominate the total mass, as seen in Figure 8] Once the dust particulates size
distribution is determined, the dust density accumulated on the coupon surface (in
ng/cm?) is calculated by dividing the accumulated mass (assuming particulates are
spherical in shape with density of 1g/cm?® by the surface area of the coupons.

To obtain the dust fallout rate, witness coupons are assayed both before and
after their exposure. The pre-exposure dust concentration is subtracted from the
post-exposure dust concentration before dividing by the coupon exposure time to
determine the dust fallout rate. Occasionally, mishandling of coupons led to their
results being discarded.

4.2.2. Technical Probes: Tape lifts

Since rough, fluorescing materials cannot be imaged accurately, and because wit-
ness coupons never have exactly the history of the material itself, another, more
direct, probe of dust deposition was conducted. These so-called tape lifts are simple
pieces of acetate or carbon tapes that are stuck to an assembly piece, and are lifted
to remove dust for assay. The choice of tape material depends on the surface tex-
ture/roughness of the component: acetate tape works better on smooth surfaces, like
PTFE, while, for rougher surfaces like titanium, carbon tapes were found to perform
better. The tape lifts are assayed using the same fluorescence microscopy technique
utilized for the witness coupons. Unlike the coupons that collect dust throughout
the assembly process, the tape lift assessment is conducted at the end of a main as-
sembly. In addition to providing a more direct probe, tape lifts also mitigate against
improper use or mishandling of coupons. For example, while the witness coupons are
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Figure 3: Left: Dust particulate size distribution from fluorescent image analysis of a witness plate.
Particulates of size >50 um are rarely recorded. Right: Dust particulate mass distribution of the
same witness coupon showing contribution of particulate size to mass. Although most particulates
are small, most of the mass on the coupon is from a small number of larger particulates.

supposed to be wiped each time an assembly, sub-assembly or parts are being wiped,
this step can be overlooked, in which case the coupons will collect more dust than
the actual assembly. The tape lifts meanwhile give confirmation of the dust level on
a final assembly. However, tape lifts cannot be taken on particularly sensitive parts
of the TPC, and therefore, they do not negate the need for coupons, but rather com-
plement them. Both tape lifts and coupons are necessary for a full history of the dust
deposition on every component during the assembly process. In addition, having two
probes for dust deposition provided additional opportunities for the calibration and
validation of the dust deposition models used by the LZ collaboration.

4.2.3. Dust Deposition Modeling

As discussed above, the dust density inside the assembly cleanroom depends on
the influx and outflux of dust particulates in the room. Its value per unit particulate
size D could be described by Eq. originally developed by the SNO collabora-
tion [32], B3]:

g1
n(D) = R;,(D) {RAE + U(D)V] (1)

where R 4 is the cleanroom air exchange rate defined as the volumetric air circulation
rate in the cleanroom divided by the volume V' of the cleanroom, v(D) is the Stokes
settling velocity which is dependent on the particulate size [34], R;, (D) is the volume-
normalized dust-particulate carry-in rate mostly from personnel, and S is the area
of the projection of the cleanroom volume onto the horizontal plane.
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The fallout rate per particulate size in mass per unit area and time could then
be deduced using the continuity equation as shown in Eq.

™

m(D) = Zn(D)pD*v(D) (2)

where %D3 is the particulate volume assuming they are spherical in shape and p is
their mass density (= 1g/cm?). The total fallout rate is then obtained by integrating
over all particulate sizes (m = [‘m(D) dD); which for LZ ranges between 0.5 m to
100 pm as determined by the witness coupons assay results.

However, the carry-in rate per particulate size R;,(D) was not measured by LZ.
Only the air class within the cleanroom was measured using particulate counters.
Consequently, a model of air particulate-size distribution from dust carry-in was
assumed based on ISO-14644-1 and the measured air class (which generally aver-
ages less than 10 particles >0.5 um per cubic foot due to our developed cleanliness
protocols) was used to constrain the model. Also, a scaling factor n was added
to the fallout rate in Eq. and was then calibrated using results of fallout rate
measurements from witness coupon assays. Its average value was estimated to be
n = 26.86 £ 5.09. This modified fallout rate, written in Eq.(3) will be referred to as
the modified SNO model.

m:/%n(D)pD%(D)n dD (3)

The new modified SNO model was then compared with independent tape lift
measurements to ensure agreement within uncertainty between the model and the
measurements. Table [5| shows the agreement, hence validating the modified model.
The n factor may be influenced by several factors but the clearest observed correlation
for an increase in particle fallout rate was with a decrease in the relative humidity
in the cleanroom. It was observed that at the lowest relative humidity level of 25%,
the fallout rate was the highest (1.187035 ng/cm?/hour) while in normal relative
humidity levels (35-45 %), the fallout rate was as low as 0.03%)5% ng/cm?/hour.
This is expected as, when the cleanroom air is drier, surfaces accumulate more static
charges and attract more dust particulates.

Table 5: Comparison of calibrated modified SNO model with tape lift assay results

Tape lift date Exposure Air class (cts/ft? Dust deposition rate m xT' Dust deposition rate
time T (days) >0.5 pm) from model (ng/cm?) from tape lifts (ng/cm?)
09/27/2018 1 172£17 285 £ 53 22075
11/29/2018 64 8+1 829 + 154 885 + 197
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It is important to note that the high dust density recorded on some detector
components in Table |5 was reduced to about 20% of this value after cleaning was
performed, and is not the final level of dust density on the TPC surface. Indeed, tape
lift results taken before and after cleaning have demonstrated that cleaning protocols
developed by LZ (e.g. wiping surfaces under UV light with IPA soaked non-shedding
wipes) reduce dust accumulation on surfaces by 80% and serve as stringent mitigation
procedures against surface dust contamination. This is discussed in more detail in

Section 4.4

4.2.4. Dust Fallout Calculation for the TPC

The dust deposition rate in mass per unit area per unit time on the various
TPC components was estimated using the modified SNO model. Once individual
estimates are obtained for different components for each daily work shift, the overall
deposited dust density for the i** surface (M;) is obtained by taking into account the
exposure time 7" of that given surface and the mass of dust deposited per unit area
and time (m), and is then given by Eq.()):

Since different areas of the detector are exposed for different times during the
assembly process, one must also take into account the exposed area versus total
detector area. Therefore, the overall dust density (M) in ng/cm? for the entire

TPC is:

Z AzzxposedMi (5)

Z Aiotal

The surface areas, Al,,..q and Aj,,, are obtained from a sophisticated infor-
mation repository developed by LZ to smoothly manage and track detector parts,
their surface areas, and their exposure to ambient cleanroom air during TPC con-
struction. In addition, every instance of detector surface cleaning is recorded and
taken into account, as described above, which allows for an accurate estimation of
the dust contamination on TPC surfaces. The final estimation amounts to a to-
tal of (0.64 +0.05) g of dust accumulated on the entire TPC for a dust density of
(214 £ 22) ng/cm?, below LZ requirement of 500 ng/cm?.

M, =

4.8. Rn Progeny Plate-out

In addition to dust, another source of background in the experiment comes from
the environmental radon-laden air itself, with radon daughters plating out onto the
surfaces of materials [35] during assembly. To limit plate-out, most assemblies are
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done in a radon-reduced cleanroom (RCR) at the SAL. The radon-reduced system
used in the RCR was built by ATEKO, and is a continuous filtration system con-
stantly circulating air through a cold carbon column to filter out the radon at an over-
all reduction factor of 2200 leading to an ambient radon level averaging <0.5 Bq/m?
as measured by LZ. The RCR high recirculation rate of 8500 cubic feet per minute is
enough to mostly sweep out radon daughters (particularly 2®Po) before they plate-
out onto detector surfaces. Absolute plate-out prevention is however not possible,
and the remaining 2'8Po that plates out is problematic due to its long-lived 2!°Pb
daughter which will decay over time in the detector. Therefore, the plate-out rates
on assemblies must be calculated.

Plate-out rates onto materials are often estimated using the Jacobi model [306], 27]
, which, similar to the original SNO model, describes particle deposition from a bal-
ance of influx and outflux of particles in the room assuming that the room contents
are well-mixed. This Jacobi model can also be modified to reflect a cleanroom set-
ting, as is the case here [37]. In its original version, the Jacobi model assumes that
all surfaces within a given enclosure or a room are equivalent, with radon daugh-
ters ending up on all of them in equal concentrations. Under that assumption, the
area-normalized plate-out rate (surface activity) depends on the conditions of the
enclosure (air circulation rate, Rn concentration, volume, and surface area) within
which the material surfaces are exposed. The 219Pb plate-out rate expressed as the
decay rate per unit area (Bq/m?) and unit time, R, is thus described by Eq.@:

Ag V

R, = CR"/\PbmmZ (6)

where Cg, is the Rn concentration in the cleanroom (obtained from Durridge Rad7
radon monitors with the monitors’ blank rates subtracted off), Apy,,, is the 2!°Pb
decay rate, V is the volume of the cleanroom, A is the surface area within the
cleanroom, Ay = vé is the deposition rate that depends on the diffusion velocity v of
radon daughters measured to be between 5-15 m/h [36], A, = { is the air ventilation
rate obtained by dividing the recirculation rate R of the cleanroom HEPA filters by
its volume. The ratio ﬁ corresponds to the probability that a Rn daughter will
plate-out before being carried out by the ventilation; which, for the RCR, was around
0.17.

It is worth noting that the Jacobi model in Eq.@ is a direct analog of the
SNO dust deposition model, as seen by expanding n(D) from Eq.(l) into Eq.(2)
and making a number of associations of variables. While the SNO model describes
deposition of dust onto horizontal surfaces, the Jacobi model describes deposition of

Rn daughters on all surfaces, both controlled by a characteristic velocity in a similar
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filtration environment. In particular we can identify the particle deposition rate per
unit area per unit time in Eq.@ as R,/App,,,, whereas in Eq. it is expressed
as 6m/mpD3. The volume-normalized influx R;, of dust particulates in Eq. is
analogous to the volume-normalized rate of production of Rn daughters in Eq.@,
that is, the Rn activity per unit volume, Cg,. The volume-normalized filtration rate
R g from Eq. is directly associated with A\, from Eq.@. The fallout area S from
Eq. is associated with the available Rn daughter plate-out area A from Eq.@.
Finally, the stokes velocity v(D) from Eq. is physically similar and mathematically
analogous to the Rn daughter diffusion velocity v in Eq.@.

However, the assumption in the Jacobi model that plate-out does not depend on
material type has been shown to be incorrect, particularly for materials at the bottom
of the triboelectric series, such as PTFE [38], which could have a plate-out rate M
times higher than for neutral metallic materials. An experiment conducted by the
SDSM&T measured the M factor to be between 50 and 100 [37]. So for LZ, plate-
out rate estimations using the Jacobi model are thus corrected with a multiplicative
factor M which has a value of M = 1 for plate-out onto metals, and its highest value
M = 100 for plate-out rate on PTFE material surfaces which are naturally charged.

Much of the inner TPC is made from PTFE such that it is essential to mitigate
against this high Rn plate-out. This is achieved by neutralizing the PTFE by using
air deionizing fan units. These units are ISO 10 cleanroom compatible Simco 4008630
- 3 Fan Cleanroom Overhead Air Ionizer units which produce continuous ionized air
through corona discharge, thus neutralizing the otherwise negatively charged PTFE
material. Usage of the fans was taken into account in the plate-out estimations by
reducing the correction factor M to the value of 1 for PTFE surfaces, after the fans’
deployment. Indeed, electrostatic field measurements taken at regular time intervals
between metallic surfaces and PTFE surfaces placed under air deionizing fan units
showed a consistent reading of 0kV /inch within the uncertainty of the measurement
device, while similar measurement for PTFE material not placed under these fans
read ~ 1.5kV /inch, thus demonstrating the successful neutralization of PTFE under
these deionizer units.

The weighted plate-out rate R,, on a given TPC assembly for a single work shift
time period (exposure time T') is thus given by Eq.(7) where M is the plate-out rate
multiplicative factor described above, A is the surface area of the individual parts
making up the assembly, and R, is the Jacobi plate-out rate per unit area and time
obtained from Eq.():

exposed

Z Aiotal

S AL pea MR,)T

R, (7)
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The overall plate-out accumulated for all the work shift time periods for that
assembly is obtained by combining all the weighted rates as was done previously for
the dust estimation.

Plate-out rate estimations are drastically different during and outside working
hours (overnight and during weekends). As expected, the plate-out rates outside
working hours were found to be negligible, of the order of less than 1%. Overall,
the average plate-out for the inner TPC PTFE surfaces in contact with the LXe is
Ravy = (158 £ 13) pBq/m?, which is below the LZ requirement of 500 nBq/m?.

4.4. Cleanliness Protocols to Mitigate against Dust and Rn-progeny Contamination

Following manufacture, most detector components were sent to be cleaned at
AstroPak Inc, a certified professional precision cleaning company. After cleaning,
detector components were sealed in multiple Rn barrier bags under Ny purge. The
redundancy in the bags also provided layers to shed, thereby helping to reduce carry-
in dust when components were brought into the cleanroom after transportation.

Both aluminized mylar and nylon bags have been shown to be very efficient
against Rn penetration, with reduction factors of 2500 + 1042 and 130 =+ 3 respec-
tively [39]. Once properly bagged, the detector components were shipped to the
SAL facility where they were assembled in the RCR to mitigate, as previously men-
tioned, against surface contamination during assembly. The cleanliness protocols
implemented within the cleanroom allowed its air class to always be measured at a
significantly lower level (on average less than 10 particles with a size >0.5pm per
cubic foot) than its ISO 6 classification.

Upon arrival at the SAL, the outer layer of the shipping bags was removed before
sealed components were brought inside the RCR. Inside the cleanroom, each compo-
nent was un-bagged under deionizing fans to remove static charges on polymer-like
materials such as PTFE. They were then inspected under UV light to check for
dust particulates, which were cleaned off using Abgenics Essence Gold non-shedding
mono-filament wipes saturated with 99% pure IPA as a basic cleaning method. Other
cleaning methods involved IPA spray or bath followed by blow drying with filtered N,
ultra-sonic or high-pressure cleaning using deionized water or IPA, and CO4 blasting
depending on the material type and the amount and type of particulates to be re-
moved. In general, small hardware like screws and bolts were ultrasonically cleaned
in deionized water and IPA bath. Smooth surface components, like PTFE parts,
were wiped down using IPA saturated non-shedding wipes, but this cleaning method
could not be used on rough surfaces, like titanium, because of shedding residues.
Those were instead cleaned with high pressure deionized water. CO5 blasting was
also used to clean the titanium surfaces to remove chemical residues from Astropak
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Inc cleaning. As for the PMT cables, wiping them with IPA saturated wipes was
inefficient at removing dust. Instead, they were first sprayed with IPA within the
droplets of which the dust accumulated. The cable was then gently blow-dried with
Ny thus removing the IPA droplets and the dust contained within.

All these methods have been visually investigated for efficiency before usage,
but only the IPA cleaning was quantified, since it was the most used. Figure
shows images before and after cleaning of PTFE pieces under UV light, and visually
and qualitatively demonstrates the effectiveness of the cleaning. The quantitative
estimates of the IPA cleaning protocol were done using tape lifts, as described in
Section The tape lifts were taken on sample coupons before and after cleaning
for the various cleaning methods. The average dust removal efficiency was found to
be about 80%. For instance, tape lift on sample PTFE before cleaning was of 700*70)
ng/cm? and after cleaning was 10072 ng/cm? yielding ~ 90% efficiency.

Figure 4: Pictures of some PTFE components (used on the PMT arrays) under UV light before
(left and center) and after (right) cleaning with TPA saturated non-shedding mono-filament wipes.
Fluorescent specks are dust particulates which are removed after cleaning the pieces in an IPA bath
as seen in the right picture.

During assembly, several deionizing fans were used to surround the assembly
area, and ensured complete neutralization of materials, thereby reducing plate-out
as discussed in Section [£.3] Usage of these deionizing fans during assembly was
particularly important as the assembly process involved extensive manipulation and
rubbing which would have otherwise cause charging, increasing the dust and radon-
daughter plate-out, particularly on PTFE surfaces.

In addition to the deionizing fans, UV light inspections were conducted at regular
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time intervals to evaluate dust accumulation on assembly surfaces, and their cleaning
was done every day at the beginning of the work shift. When judged necessary, or
at the end of a sub-assembly, remedial cleaning of the surfaces was conducted (IPA
wiping, IPA bath, vacuuming) with the appropriate cleaning methods, thus remov-
ing most of the accumulated dust. Note that, as mentioned previously, remedial
cleanings did not remove all the dust, which is why the witness coupons and tape
lifts mentioned in Section were still invaluable in assessing the actual amount
of dust collected on the assemblies.

Finally, cleanroom garbs worn by personnel working on the assembly were changed
after every work shift to reduce carry-in dust, and wiped off with a lint roller multiple
times during work to remove particulates that could deposit onto detector surfaces.

At the end of all daily shifts, smaller detector components were sealed in double
nylon bags which prevented plate-out since the components were then no longer in
contact with the cleanroom air. Larger components like the PMT arrays, on the
other hand, had bespoke airtight enclosures, allowing them to be kept under filtered
and ventilated air from an extra HEPA filter unit or under Ny purge, allowing further
mitigation against Rn plate-out.

All of the described procedures have ensured that exposure to Rn and dust during
the assembly process was minimal, surpassing LZ requirements, as stated, for both
dust and plate-out of radon progeny.

5. Selected Highlights from the Assay Program

The LZ design sensitivity imposes limits to radioactivity from particular com-
ponents, principally items such as PMTs which are close to or in contact with the
fiducial volume, thus demanding dedicated fixed contamination screening campaigns
to meet requirements. The assay program also included dedicated QC and QA
elements to ensure radioactivity and cleanliness compliance throughout all manu-
facturing processes, such as through the construction of the Ti cryostat. Dedicated
radon emanation measurement campaigns were performed on complete purification
and recirculation sub-systems that may contribute to radon, as well as in-situ mea-
surements of the inner cryostat with the TPC sealed within. The assay program
also included construction and deployment of a dedicated detector system to deter-
mine radioactivity in the GdLS for the LZ OD system. In the following sub-sections,
we present these dedicated campaigns in order to illustrate through specific exam-
ples the deployment of fixed contaminant assays, QA, radon assays, and detector
construction and deployment.
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5.1. Hamamatsu R11410 PMT HPGe Assay Program

LZ employs three different models of PMT. The main active volume will be viewed
by 494 3-inch Hamamatsu R11410 PMTs. Other regions containing xenon are in-
strumented using a combination of 1-inch Hamamatsu R8520 and 2-inch Hamamatsu
R&778 PMTs with the latter having been repurposed having been used in the LUX
dark matter experiment [40]. Additionally, the LZ OD system is instrumented using
8-inch Hamamatsu R5912 PMTs.

The radioactive background of 3-inch PMTs is of particular importance as these
sit adjacent to the main active volume of LZ. In order to ensure that these met the in-
trinsic radioactivity requirements of 3.0/3.0/30/2.5 mBq/PMT for 2**U /#2Th /4K /% Co,
respectively, a comprehensive screening program was conducted. Initially, a subset of
the raw material used for the construction of the tubes was screened across detectors
both at SURF and at Boulby, and from these measurements, a bottom-up prediction
of the intrinsic radioactivity of the final tubes was calculated. This calculation is
discussed in detail in [3].

Following the raw material screening program, the collaboration was satisfied that
PMTs of the required radiopurity could be produced. However, even with knowledge
of the radiopurity of the raw materials, it was important to repeat the screening pro-
cess for the final tubes. This required substantial gamma-ray spectroscopy detector
time both at SURF and at Boulby. The program began with an initial batch of tubes
being screened at Boulby between August 2016 and February 2017. Over 32 weeks,
102 PMTs were screened and a substantial amount of background data was acquired.
Figure |5|shows comparisons between a combination of all PMT runs on the detectors
used in this campaign. For protection and cleanliness purposes, the 3-inch PMTs
assayed at Boulby were screened with PTFE tape wrapped around their body and
with protective foam on the pins at the base of the PMT. Subsequently, the tape
and foam were screened and their contribution (along with the contribution from the
holder and detector setup backgrounds) subtracted to give final contamination levels
for the tubes presented here. Screening of tubes at SURF was performed following
performance testing at Brown University for which the foam and PTFE tape needed
to be removed. No additional correction was required for this data. The full PMT
screening program assayed 229 of the 494 3-inch tubes used in the LZ detector.

The tests of individual components showed that the radioactive contaminants
were not uniformly distributed. Not only is this the case, but the relative levels of
2380, 232Th and “°K were different in each component. Ordinarily, when calculating
a geometric efficiency for an assayed material or component (using GEANT4 [41] in
this case), gamma-rays are fired uniformly from the component being studied. In
order to allow for non-uniform distribution of radioactivity when determining specific
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Figure 5: Combined spectra for all R11410 PMT runs using Chaloner (left) and Lunehead (right)
at the Boulby Underground Germanium Suite. In both cases, the background spectrum includes
the holders used to secure PMTs in place in the detector castles.

activities for the assayed PMTs, geometric efficiency curves had to be calculated
for individual isotopes. The distribution of simulated gamma-rays was determined
using the expected contamination distribution. This is detailed in Table [6] where
the three largest components (both by mass and, in the case of the ceramic stem,
by radioactive content) are used to represent the whole PMT. In the case of all
other isotopes (detailed in Tables [7] and [§)), the contamination was assumed to be
distributed uniformly.

The expected distributions of contamination detailed in Table [6] do not take
into account one important unknown factor: the distribution of °K as the process of
forming a PMT photocathode requires the evaporation of potassium onto the inside of
the quartz window face of the PMT. This adds a substantial systematic uncertainty to
the final measured values of *°K in this study. As an approximation, the distribution
of 'K in the PMTs was modified in order to give a reasonable systematic error on
each setup. The systematic error is set assuming a distribution of 0.1, 0.45 and
0.45 for the ceramic, the Kovar and the quartz face, respectively. In the case of
the Chaloner detector, where PMTs are placed so that the pins are the closest part
to the front face of the detector and the quartz window the furthest, a systematic
error of 125% is calculated. In the case of SOLO, where PMTs uniformly surround
the detector, there is no substantial systematic error as the geometric efficiency has
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a very weak dependence on the distribution of “°K in the PMTs. The systematic
errors for 'K are captured in Table @ In all other isotopes, it was assumed that the
distribution of radiocontaminants follows expectation so only statistical errors are
presented.

Table 6: Fractional contamination levels for 238U, 232Th and 4°K from individual R11410 compo-
nent assay. The PMT is split into major components and the expected distribution of activity is
calculated using individual component measurements. This distribution acts as weighting factor
when determining the contribution of each individual component to the overall efficiency. In the
2381 and 232Th, secular equilibrium is assumed.

[sotope Ceramic Kovar Quartz
Stem Bulb Face

238U 0.79 0.17 0.04
232 0.45 0.45 0.10
0K 0.71 0.23 0.06

Overall average values are calculated for assayed tubes and these are presented in
Table [7] Even allowing for the systematic error in the measurement, it is clear that
there is substantial variation in the levels of *°K found in the tubes. This is likely due
to variability in the manufacturing process as uniformity in “°K values is seen across
batches of PMTs produced at similar times. Additionally, some significant variation
in %°Co can be seen in the various batches of tubes. The combined values were calcu-
lated using two methods. The first ignores data where only upper limits are obtained
and relies solely on measured values whereas the second incorporates measured 90%
CL upper limits as measured values. For 2%2Th and ?*>U, the incorporation of upper
limits substantially reduces the combined value.

In addition to values for U (333U, 235U, 210Pb), 232Th, 9°K and %°Co, small levels
of contamination from other isotopes are observed. This includes isotopes of cobalt
(other than ®°Co), 1¥"Cs and the meta-stable "'"™Ag isotope as reported in [42].
Results from measurements of these isotopes made with the Chaloner and Lunehead
detectors at Boulby are shown in Table

As an example, the distribution of measured values of “°K in the assayed PMTs
along with their distribution in the upper and lower PMT arrays of LZ are shown in
Figure @ For those PMTs not assayed, the average value of 12.245(1131) mBq/PMT, as
given in Table [7]is used. Also shown in Figure [6]is the distribution of measured “°K
values. This figure incorporates both measured values and upper limits.
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Table 7: Combined activities for all runs in the LZ PMT screening program. In total, 233 PMTs
were screened across six detectors in batches of varying sizes. For each detector, all acquired
spectra are summed and the resultant peaks fitted for use in the calculation. For the combined
values, detection errors are combined in quadrature. Two combined values are presented. One
(MO) uses measured values only, ignoring upper limits and the other (UL) incorporates upper
limits as measured values. The component average comes from [3]. We include for comparison the
results from the equivalent assay campaign of an earlier model of Hamamatsu R11410 PMT by
XENON1T, taken from [42].

Detector # PMTs Total By, B8, 22T, 282 0K 60Co 257 210py,
Assayed Live Time all values in mBq/PMT
Chaloner 48 160 484+13 1.5+£0.3 < 0.3 < 0.1 54799 06403 0.7+£04 71429
Lunehead 54 144 <41 09403 < 0.2 <0.2 14.0134  0.7£0.1 0.6+0.6 -
SOLO 90 121 <71 09+0.1 <0.1 05+02 13.0£02 1.0+£01 <0.1 -
MORDRED 27 45 56+49 <0.2 09+£04 09+0.2 6.43:3 30£02 14£09 <28
MAEVE 10 28.7 <10 04403 19+15 09+03 11.0735 62+03 <03 -
MORGAN 4 17.4 <15 <08 30+£19 <08 637¢ 60+07 <04 -
Combined (MO) (5.0+2.1 09+02 1.4+08 08+02 122700 1.940.2 0.8+0.6 7.1£29
Combined (UL) [4.3+2.9 0.6+0.2 0.20+0.15 0.3+£0.1 ’ 02402 83+48
Component Average | < 13.3 < 0.6 < 0.6 < 0.6 <29 < 0.5 - < 0.1
LZ Requirement - < 3.0 <3.0 <3.0 < 30 <25 - -
XENONIT | <129 05+01 05+£01 04+£01 124+2 0.7£0.1 04+£0.1 -

Table 8: Combined contaminations from the Chaloner (BEGe) and Lunehead (p-type) detectors at
Boulby for the less common isotopes detected when combining all PMT runs together. As we have
no prior knowledge of the distribution of contamination for these isotopes we include a systematic
uncertainty due to potential variations in geometric efficiency.

137 110m 57 58

Detector Cs Ag Co Co
all values in mBq/PMT

Chaloner | 021754 0.07750%2 025708 0.200018

Lunehead | 0.51 £0.03 0.13£0.02 0.25+£0.03 0.37+0.03

5.2. ICP-MS Titanium QC and QA assays

In the early stages of the LZ experiment, an extensive R&D campaign was con-
ducted to source and produce enough titanium for the cryostat vessels of the detector.
The inner and the outer cryostat vessels (ICV and OCV, respectively), containing
the TPC and the 10 tonnes of LXe, make up a significant bulk of the LZ detector.
Due to their scale and proximity to the TPC, it was necessary to ensure ultra-low
levels of radiopurity for the 2**U and 232Th isotopes as well as °K and ®°Co. A de-
tailed analysis using ICP-MS and gamma-ray spectroscopy of 22 different titanium
samples was conducted, and the sample of the HN3469 product manufactured by
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Figure 6: Top: Distribution of measured value for 4°K in the LZ PMT assay program. Measured

values are plotted in blue and upper limits are plotted in red. Bottom, left and right: Distribution of

40K contamination for the top and bottom arrays, respectively. For tubes which were not measured,
the calculated average value of 12.2:1,:51, mBq/PMT, as given in Table |7|is used.

TIMET was found to have the lowest background. The measured activities for 234U,
22Th, %°Co and *°K from the sample are significantly lower than requirements and
were the lowest reported to date [14].

The titanium R&D campaign was followed by a radiopurity screening program to
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monitor and mitigate the risk of radioactive contamination during the construction
process of the vessels. Although the bulk titanium was found to be ultra-pure,
the manufacturing stage of the vessels possessed a large risk for contamination. In
assessing the radiopurity of the welding process a welding sample issued to the project
as one of the many regular samples for assessment in the LZ QC and QA program,
was measured to have 6 ppb of thorium—equating to roughly 100 times higher than
the concentration initially measured in the TIMET HN3469. Material used for the
test sample was from the LZ titanium stock and the welding was performed with
an automatic tungsten inert gas (TIG) machine purportedly using the lanthanated
tungsten electrodes commonly used by the manufacturer (Loterios).

The high levels of thorium found in the sample prompted a suspension of the
cryostat production and the start of a screening campaign to identify the source
of the contamination. Over a period of two months, the campaign performed 24
radioassays with HPGe detectors and 67 ICP-MS measurements, screening repre-
sentative samples from the titanium stock, welding wires and electrodes used by
Loterios. Assays of two welding electrodes used by Loterios and removed from the
TIG and plasma machines located in the cryostat production area showed a very
high level of thorium. The 232Th, levels, as measured by the ICP-MS system, re-
sulted in (3.20 £ 0.16) ppb of Th, in comparison to (0.069 £+ 0.007) ppb measured for
the TIMET HN3469 stock. This indicated that the unexpected excess in Th activity
was due to an isolated and erroneous use of a small number of thoriated electrodes,
as opposed to the pre-agreed lanthanated tungsten electrodes throughout.

Additionally, it was found that the standard lanthanated tungsten electrodes
used do contain a small amount of thorium which, in the welding process, gets
into the weld at the level of 0.7 ppb. Although this is not ideal, it would not have
explained the observed increase of thorium in the welded sample which prompted
this contamination study.

The rapid turnaround for uranium and thorium assays at sub-ppb levels made
possible by the ICP-MS system allowed LZ to arrest production, thoroughly in-
vestigate and precisely identify the contaminant introduced by the manufacturing
process. Upon these findings, appropriate control measures were implemented in
the cryostat manufacturing process to avoid additional inadvertent use of thoriated
welding electrodes. This is a key example of how the LZ QA program identified a po-
tentially serious manufacturing error which otherwise would have had the potential
to substantially increase the overall thorium background in LZ.
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5.3. Radon Emanation Studies

Sensitivity projections for LZ presented in [I] include the effect of the online
charcoal-based radon-removal system, operating continuously to scrub gaseous Xe
[3,26]. Projections also assume the expected suppression of radon diffusion in certain
materials at low temperatures. In this article, Table presents the as-measured
results from room temperature assays of individual materials and components. Room
temperature measurements from fully assembled LZ systems and contributions from
individually screened components within those systems are highlighted in Figure
Measurements for three of these assemblies are discussed in the following sub-sections,
with radon emanation results.

5.8.1. Inner Cryostat Vessel

Radon emanation from the ICV was measured several times during various inte-
gration stages of the construction of the skin veto region and the TPC installation.
The final assay was made following after the ICV was fully complete and sealed. The
cryostat at this stage housed both the top and the bottom PMT arrays for the TPC
and the skin veto regions, and their corresponding PMT bases and cables. Further-
more, the entire field cage, PTFE coating, various sensors, and conduit volumes of
the cables were a part of these measurement.

A portable radon trapping system was deployed underground at SURF with min-
imal plumbing due to space constraints. After leak-checking and purging, the trap-
ping system was opened to the ICV and the emanated gas was harvested over a
6.3 hour period—equivalent to 18.25% of the gas within the ICV. After the harvest,
the trap was carefully disconnected and transported to SDSM&T radon facility for
screening. The radon trap also captures outgassing molecular species that would
serve as neutralisers of positively charged radon-daughters, leading to a drop in de-
tection efficiency. An in-house procedure was followed to separate out these species
by transferring the sample from a cold trap held at -109°C to one at -196°C with
sufficient flow to effectively transfer all of the radon atoms while leaving most of the
contaminants behind. This process was repeated until measurements with a resid-
ual gas analyzer indicated no further reduction in contaminant concentration, after
which the sample was transferred to the detection chamber via a secondary small
cold trap.

Results indicate a room-temperature emanation rate of 46.1732 mBq under the
assumption of an even sampling of the radon within the ICV.

5.8.2. Xenon Clirculation System
The xenon gas circulation system brings together multiple components and sur-
faces that are potential radon emitters. The system consists of two gas compressors,
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a heated zirconium getter, and a main valve and instrumentation panel. The com-
pressors (model A2-5/15 from Fluitron) have two heads, each enclosing a flexible
all-metal diaphragm sealed with copper plating. Check valves, accumulation bottles,
and associated plumbing and instrumentation are also included in the compressor
assemblies. The compressors operate in parallel to achieve a gas flow rate of 500
standard liters per minute. Much of the system was fabricated at the University of
Wisconsin’s Physical Sciences Laboratory. Whilst there, a portable radon trapping
system was used to harvest emanation samples that were then shipped to shipped to
the U. Maryland radon facility for counting. Initial radon emanation measurements
of compressor 2 found that the heads emanated <1 mBq each; however, the integrated
compressor skid assembly presented ~17mBq. After replacing most of the welded
stainless steel plumbing and etching the accumulation bottles in citric acid, the rate
was reduced to 1.48 + 0.31 mBq. A similar treatment was applied to compressor 1
but this compressor was not radon emanated and hence is assumed to have the same
rate as compressor 2. The main circulation panel contains most of the valves and
instrumentation exposed to the xenon in gas phase, and it was found to contribute
0.74mBq of radon. The fully loaded getter (model PS5-MGT50-R-535 from SAES)
was emanated at its operational temperature of 400°C using helium carrier gas and
its emanation rate was determined to be 2.26 mBq. The entire circulation system
amounted to a total emanation rate of 5.22 + 0.75 mBq.

5.3.3. Xenon Tower

The xenon tower is a cryogenic system that thermally couples the gaseous and
LXe portions of the purification circuit for efficient heat transfer, serving to vaporize
and re-condense the liquid for continuous purification. It consists of a two-phase
heat exchanger (supplied from Standard Xchange), three cryogenic valves (manu-
factured by WAKE), a sub-cooler/phase-separator vessel to hold LXe returning to
the detector, a reservoir vessel to hold liquid exiting the detector, two liquid xenon
purity monitors, and several custom liquid xenon heat exchangers. The tower can
be viewed as having two sides: the heat exchanger assembly on one side and the
weir reservoir, sub-cooler and purity monitor on the other. Radon emanation from
sub-components was measured prior to full integration of the xenon tower and was
found to contribute a total of <1 mBq.

A preliminary measurement of the tower after integration found a very high radon
activity in the reservoir side, possibly due to a leak into the system from laboratory
air. As a precautionary measure, the reservoir vessel was flushed with a concentrated
solution designed for removing radioactive contamination (Radiacwash™) and rinsed
with deionized water. The portable radon trap was then deployed underground to
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measure the two sides of the complete xenon tower prior to the installation of the

. . . 086
purity monitor and found a total emanation rate of 3.1477 3 mBq.
CIRCULATION SYSTEM | % CADON REDUCTION
b 5.22 +0.75 mBq 3 €3
H ’ COMPRESSOR 1| __ : < PANEL
{7 1.48£0.62mBq : H 0.29 0.1 mBq
w : —y GETTER i RADON REMOVAL
3 4 2.26+0.28 mBq |: % 2.43 mBq
z i )| COMPRESSOR2| | ] z
E 7] 1.48£0.31 mBq S I
@ H 4 )
[=] b L4
" PN
> MAIN CIRCULATION
0.74 Z‘}JNZEOLmBq f%Bﬁ%éTn?g‘)] —l | ]
- INNER CRYOSTAT o

HXIGAS
GAP

CRYO-VALVES (3X)
0.18 £ 0.03 mBq

o |

e

VACUUM SPACE

46.1 (+4.00 -3.80) mBq
~

RADON TRANSFER
LINES

VACUUM BREAK

0.22 + 0.07 mBq

BOTTOM PMT TRU/

2" PMT & BASES
0.24 £ 0.06 mBq

XENON TOWER \\ TOP PMT TRUSS
v 43.14 (+0.86 -0.81) mBq 2
o
0.30 (+0.14 -0.30)) 0.71 (+0.52 -0.45), w TOP AR;:QASYEas" PMT & E‘ HV-UMBILICAL
mBq mBq -
z 1.61+1.07 mBq > CABLE
= ©| :1.30 £0.20 mBq
g = =
-
& g 3 = [
3 E: 9 = 1" SKIN PMT & BASES 2
9 S [ a 1.07 £0.29 mBq q s
) w 2 N~ T
3 5 L et N
¢ —F~PTFE (TOTAL)
CABLES BOTTOM ARRAY 3" 1.04 (+0.44 -0.84)
(BOTTOM) PMT & BASES mBq
- 4.11+0.88 mBq 1.54 + 0.50 mBq
.

WATER TANK

Figure 7: Approximate schematic of LZ highlighting key sub-systems and xenon circulation paths
in and out of the ICV. The diagram condenses some of the key radon emanation measurements that
will contribute to the overall radon budget of LZ. The results presented in green text are directly
from measurements and those in black show summed results for that particular component. All
of the results shown are measurements made at room temperature and does not include the cold
suppression expected under full operation.

5.4. GALS screener for the Outer Detector (OD)

Achieving a low level of radioimpurities in the 17.3t of GALS used in the LZ
OD is crucial for its performance as both an effective monitor of the experiment’s
backgrounds and as an efficient veto for coincident events in the TPC. The admissible
radioactive impurity levels in the GALS are derived from the LZ requirement for a
false veto rate of <5% assuming an energy threshold of 200keV and a maximum
coincidence window of 500 s between an interaction in the TPC and the OD. This
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restricts the event rate in the full 17.3t of GALS to be <100 Hz. Approximately
39 Hz is expected from a combination of radioactivity in LZ construction materials
and the flux of gamma-rays in the experimental hall which penetrate the water shield
to reach the OD [43]. This allows for at most 61 Hz of rate to arise from impurities
dissolved in the GdLS.

GdLS generally features a combination of common radioimpurities and more ex-
otic isotopes which enter during the Gd-loading process. Common radioisotopes
include C, ®Kr, %K, and those in the 238U and ?*?Th chains, while the more un-
usual isotopes include *¥La, 1"Lu, 4"Sm, %2Gd, and those in the ?*U decay chain.
Chemical processing and purification of the components of GALS alters the relative
abundance of these isotopes, often resulting in out-of-equilibrium activities within
decay chains [44].

Before it is added to LS, the raw gadolinium product (in the form of GdCly) is
purified via pH-controlled partial hydrolysis. During this process, certain actinides
including uranium and thorium are precipitated out of solution, but others such as
actinium itself tend to remain in solution [44]. The purified Gd is then combined
with the chelating ligand TMHA, or 3,5,5-trimethylhexanoic acid. The resulting
Gd(TMHA), compound is dissolved in the non-polar LS solvent, linear alkylbenzene,
to achieve a final concentration of 0.1% Gd by mass.

Measurements of the radioactive impurity concentrations in both Gd-loaded and
unloaded scintillator samples were made using a dedicated liquid scintillation counter
known as the “LS Screener”. The LS Screener was comprised of an acrylic vessel con-
taining approximately 23 kg of scintillator and three R11410 PMTs. For each sample
measurement, the detector was lowered into the ultra-low background environment
at the center of the filled LZ water tank. A detailed description of that detector and
the results from those measurement campaigns are published in [4]. Two results from
that work yielded results particularly significant for the OD’s performance. First, a
fit using the *C 3 shape (Q = 156keV) to the low-energy spectrum collected with
the unloaded scintillator sample measured the *C/!C atom fraction in the LS to
be (2.83 4 0.06(stat.) 4 0.01(sys.)) x 10717, This concentration of *C validates that
hydrocarbons used for the GALS chemicals are suitably derived from underground
sources (as opposed to biogenic sources). As a result, the expected rates of single
and pile-up pulses from *C near the OD threshold are negligible. Second, pulse
shape discrimination and delayed coincidence counting were used to measure the
concentrations of o and f-emitting radioisotopes with relatively small uncertainties.
In particular, a significant amount of activity from the 23°U series was measured by
identifying the unique pulse pair from 2Rn-?'Po in the GdLS sample. No such
activity was observed in the unloaded LS sample, confirming that this activity is
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introduced with the Gd.

To further characterize the impact of loading with Gd, a 0.307 kg sample of the
same purified Gd(TMHA), compound used in the LS Screener was counted by HPGe
at the BHUC. A large activity from "®Lu was easily detected above background
confirming the presence of rare earth impurities. Additionally, the strong ~-line
from 23°U was not detected, suggesting that equilibrium is broken during purification
causing either 2*!Pa or 227Ac to serve as the head of the decay chain.

These findings motivated a modification to the Gd purification procedure in which
a higher pH was used to more aggressively precipitate out impurities at the cost of
a slightly lower Gd yield. To confirm the effectiveness of this procedure, a larger,
1.44kg sample of the newly purified Gd(TMHA), was counted using HPGe at the
BHUC. Table[9reports the results before and after the new purification as well as the
reduction factor in each isotope’s central value or quoted upper limit. Concentrations
are given per kg of Gd(TMHA), and per kg of LZ GdLS, doped to 0.1% Gd by
mass. The observed reduction in the detected "®Lu concentration demonstrates
the effectiveness of the purification on rare earth metals. No significant signatures
from 22"Ac and its daughters in the newer sample were observed. By applying the
reduction factors in Table [9| to the results in [], the total OD rate from GdLS
radioimpurities above 200 keV is predicted to be <10 Hz, well below the requirement.

Table 9: Results from HPGe counting of two purified Gd(TMHA), powder samples given in mBq/kg
of GA(TMHA),. For GdLS, loaded to 0.1% Gd by mass, the values listed can be reduced by a factor
of 250. The reduction factors of the limits/central values for the improved purification results are
also given. Limits are given at 1o confidence level. The late 235U chain is defined as starting at
231pa as discussed in [4].

Isotope or | 0.307 kg, Initial Purification | 1.44 kg, Improved Purification Reduction
Subchain mBq/(kg Gd(TMHA),) mBq/(kg Gd(TMHA),)

88U, < 259 < 4.36 59.4
B8, 23(5) 2.6(9) 8.8
357, <28 < 4.5 0.6
850 26(10) < 3.0 8.7
22Th, < 6.7 < 0.89 7.5
22T < 5.1 < 0.76 6.7
0K < 56 <229 24.5
1384 <14 < 0.42 3.3
176y 75(18) 2.03(46) 36.9
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6. Conclusion

The LZ collaboration has concluded one of the most wide ranging and sensitive
assay programs performed to-date for a rare event search experiment. This program
began in October 2013 and has continued for more than six years, building a database
of over 1200 entries. The results obtained in the screening program have been used
to select the materials used in the final construction of the LZ detector, to ensure
radioactivity compliance through to detector assembly, and to inform the background
model used to determine the predicted sensitivity of LZ.

In parallel to these assay efforts, a comprehensive set of cleanliness quality as-
surance protocols were developed and implemented. These sought to ensure that
additional radiocontaminants were not introduced into the detector in the construc-
tion period, particularly during the time when the TPC was being constructed, up
until the point where it was sealed within the inner cryostat vessel for transportation
to the underground laboratory at SURF.

Comprehensive tables of results for the LZ assay program are presented in [Ap]

[pendix Al documenting the results from the LZ assays performed since 2013.
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Appendix A. Assay Results Tables

In this section, the results from the assay campaign of the LZ experiment are
captured. The tables are split into the various techniques which were used. Table
details all assays completed using the HPGe detectors available to the collaboration.
For this table, there are a number of repeat measurements. Where this is the case,
items are grouped with a single entry having multiple results. Each named item in
the table is unique even if it shares the same name as another. Tables and
detail results from NAA, ICP-MS and GD-MS, respectively. Finally, Table
details results from the radon emanation assay campaign.

For ease of interpretation, the tables are further subdivided to detail locations
within the LZ experiment where specific items were either used or where there in-
tended use would be. Those items which are constructed “in-house” by the LZ
collaboration are highlighted as such. Not all isotopes are detailed for all items as
the ability to do this may depend on the ability of the detector or method employed
or if the isotope is of particular interest (e.g. for ®Co in stainless steel components).
The upper limits reported are generally at 90% confidence level but upper limits
from the LBNL and BHUC detectors (MERLIN, MAEVE, MORGAN, MORDRED, and
SOLO) are quoted at 1o.
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