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ABSTRACT

We present the weak lensing mass calibration of the stellar mass based µ? mass
proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the
first time we are able to perform a calibration of µ? at high redshifts, z > 0.33.
In a blinded analysis, we use ∼ 6, 000 clusters split into 12 subsets spanning the
ranges 0.1 6 z < 0.65 and µ? up to ∼ 5.5 × 1013M�, and infer the average masses
of these subsets through modelling of their stacked weak lensing signal. In our model
we account for the following sources of systematic uncertainty: shear measurement
and photometric redshift errors, miscentring, cluster-member contamination of the
source sample, deviations from the NFW halo profile, halo triaxiality and projec-
tion effects. We use the inferred masses to estimate the joint mass–µ?–z scaling
relation given by 〈M200c |µ?, z〉 = M0(µ?/5.16 × 1012M�)Fµ? ((1 + z)/1.35)Gz . We find
M0 = (1.14 ± 0.07) × 1014M� with Fµ? = 0.76 ± 0.06 and Gz = −1.14 ± 0.37. We discuss
the use of µ? as a complementary mass proxy to the well-studied richness λ for: i)
exploring the regimes of low z, λ < 20 and high λ, z ∼ 1; ii) testing systematics such
as projection effects for applications in cluster cosmology.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology:
observations

? Contact e-mail: mariaeli@brandeis.edu

1 INTRODUCTION

Galaxy clusters are an important tool for studying the for-
mation and evolution of structure in the Universe, the dis-

© 2020 The Authors

ar
X

iv
:2

00
6.

10
16

2v
1 

 [a
st

ro
-p

h.
C

O
]  

17
 Ju

n 
20

20
FERMILAB-PUB-20-250-A-AD-AE-SCD

This document was prepared by Dark Energy Survey collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), 
a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under 
Contract No. DE-AC02-07CH11359.

mailto:mariaeli@brandeis.edu


2 M. E. S. Pereira et al.

tribution of matter, and for testing modified gravity mod-
els. The count of galaxy clusters as a function of mass and
redshift is potentially one of the most powerful cosmologi-
cal probes (Haiman et al. 2001; Voit 2005; Allen et al. 2011;
Kravtsov & Borgani 2012; Ettori & Meneghetti 2013; Penna-
Lima et al. 2014; Harvey et al. 2015; Dodelson et al. 2016). In
order to achieve this potential, it is necessary to understand
and correct for the systematics involved in the cluster mass
calibration, which is currently the dominating source of un-
certainties for using clusters to probe cosmology (Rozo et al.
2010; Mantz et al. 2015; Planck Collaboration et al. 2016;
Costanzi et al. 2019; Murata et al. 2019; DES Collaboration
et al. 2020).

Galaxy clusters act as powerful gravitational lenses be-
cause their large gravitational fields produce distortions in
the shape of the background galaxies. This effect does not
depend on the dynamical state of the cluster (as does the
X-ray luminosity) and is sensitive to all of its matter con-
tent (both baryonic and dark matter). Therefore, using this
effect we can assess their matter content and perform very
precise mass measurements. Only the most massive clusters
have weak lensing signals sufficiently strong to be individ-
ually measured in the current generation of wide-field sur-
veys. Thus, we combine the lensing signal of a large number
of clusters with similar properties (i.e. stacking) to obtain
measurements of higher signal-to-noise.

Observationally, we cannot assess the true mass of
galaxy clusters, but we can rank them by some proxy for
mass. A mass-observable relation (MOR) must be calibrated
to connect the observable and the halo mass. The technique
of stacking the weak lensing signal of many systems in a
given observable interval provides one of the most direct
and model independent methods to calibrate the MORs.
The community has made a concerted effort to determine
the scaling relations empirically (Sheldon et al. 2001; John-
ston et al. 2007; von der Linden et al. 2014a,b; Applegate
et al. 2014; Oguri 2014; Hoekstra et al. 2015; Ford et al.
2015; Wen & Han 2015; Wiesner et al. 2015; Mantz et al.
2015; Okabe & Smith 2016; Simet et al. 2017; Melchior, P.
and Gruen, D. et al. 2017; Murata et al. 2018; Medezinski
et al. 2018; Pereira et al. 2018; Miyatake et al. 2019; Dietrich
et al. 2019; McClintock, T. and Varga, T. N. et al. 2019; Bel-
lagamba et al. 2019; Murata et al. 2019). The MORs are not
the same for these cluster samples and mass proxies. How-
ever, one should expect the cosmological constraints from
using these different MORs to be consistent.

Currently, the state-of-the-art mass calibration of opti-
cally selected clusters is performed by the Dark Energy Sur-
vey (DES) with cluster catalogs from the redMaPPer cluster
finder (Rykoff et al. 2014, 2016), using the optical count of
red galaxies, λ, as the mass proxy, and DES shear catalogs
for the weak lensing mass calibration. The red galaxy count
λ (a.k.a. “richness”) is computed as the sum of the mem-
bership probabilities of red galaxies within a cluster scale
radius and brighter than some luminosity threshold, where
the membership probabilities are assigned based on a model
for the red-sequence as a function of the redshifts (z) and on
a radial filter. In the most recent result from McClintock,
T. and Varga, T. N. et al. (2019) with DES Year 1 (Y1)
data, the mass calibration was performed in the range of
0.2 < z < 0.65 and λ > 20. For the last analysis with DES

Y1 through Year 6 (Y6) data, we expect to have a cluster
sample going to z ∼ 1.

The key assumption that redMaPPer uses to identify
clusters is that each cluster has a well defined red sequence
population. At low redshifts this is a powerful assumption
and allows efficient cluster finding. It is unclear at what red-
shift all clusters gain a red sequence. The evolution of the
red sequence is still a topic of considerable debate (Bram-
mer et al. 2009; Sommariva et al. 2014; Feldmann et al.
2016; Girelli et al. 2019; Cecchi et al. 2019). Several compet-
ing or complementary processes are responsible for driving
or ceasing the star formation in the member galaxies. The
dominant processes are expected to differ across redshifts,
stellar masses, halo masses and environment (e.g. Overzier
2016). For this reason, it is still a challenge to model the
red-sequence population, in particular, at high redshifts (e.g.
Sommariva et al. 2014; Darvish et al. 2016; Davé et al. 2017;
Chauke et al. 2019).

The redMaPPer cluster catalogues contain clusters at
λ > 5, but the DES does not use clusters at 5 < λ < 20
for cosmology as this low richness sample is unreliable as
many of the lowest-richness clusters are subject to strong
projection effects in the line-of-sight. However, these low
mass samples are very interesting for astrophysical studies
(e.g. Conroy & Wechsler 2009; Wechsler & Tinker 2018). By
definition these systems have few members and problems
with Poisson statistical noise become important. However,
even a modest shift towards lower λ values could potentially
have a significant impact on cosmology. This is a challeng-
ing regime but the potential impact makes it worth exploring
alternative mass proxies that might be more robust against
projection effects. Alternative optical mass proxies are pos-
sible (Andreon 2012; Mulroy et al. 2017; Pereira et al. 2018;
Bellagamba et al. 2019; Palmese et al. 2020; Sampaio-Santos
et al. 2020). For example, one could incorporate the count
of star-forming galaxies into the richness. This would be of
particular interest at low masses and high redshifts.

In Pereira et al. (2018) and Palmese et al. (2020) we
introduced and studied a physically motivated mass proxy
named µ?, which is based on the total stellar mass and there-
fore accounts for the red and blue members of the clusters.
Andreon (2012) was the first to propose a stellar mass-based
mass proxy for clusters, but since then such kind of proxy
has mostly been studied in simulations (Ascaso et al. 2016,
2017; Kravtsov et al. 2018; Farahi et al. 2018; Bradshaw
et al. 2020).

In particular, Bradshaw et al. (2020) showed that a stel-
lar mass proxy similar to µ? has less intrinsic scatter with
halo mass than a richness proxy and is less affected by pro-
jection effects. They used a set of simulations for this com-
parison, in which they identify halos and compute the in-
trinsic scatter in the virial mass at fixed proxy by: i) using
the true redshifts, i. e. no projection effects; ii) simulating
a spectroscopic survey with precise redshift measurements
and iii) simulating a photometric survey with redshift un-
certainty of σz/(1+ z) = 0.01. In all these cases, they showed
that the proxy based in the total stellar mass presented lower
intrinsic scatter than the λ–like proxy (see their Figure 3).

In Pereira et al. (2018) we provided a first calibration
of the mass–µ? relation at low z using the SDSS Stripe 82
data. In this work, we use stacked weak lensing signal to
measure the mean galaxy cluster mass of redMaPPer clus-
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ters identified in DES Y1 data using µ? as a mass proxy.
For the first time, we calibrate the mass–µ?–redshift rela-
tion of these clusters at moderate redshifts (z ≤ 0.7). We
also incorporate a variety of improvements to the weak lens-
ing modelling and perform a blinded analysis.

This paper is organised as follows. In Section 2, we de-
scribe the cluster and the lensing shear catalogues. In Sec-
tion 3, we present the methodology for the measurement
and modelling of the stacked cluster masses. We present the
modelling and the derived mass-calibration in Section 4 and
Section 5, respectively. Finally, in Section 6, we present our
concluding remarks and we summarise our results in Sec-
tion 7.

In this paper, the distances are expressed in physical
coordinates, magnitudes are in the AB system (unless oth-
erwise noted) and we denote logarithm base 10 as log and
logarithm base e as ln. We assume a flat ΛCDM cosmology
with a matter density Ωm = 0.3 and a Hubble parameter
h = H0/100 km s−1Mpc−1 = 1.

2 THE DES Y1 CATALOGUES

The Dark Energy Survey (The Dark Energy Survey Collabo-
ration 2005, 2016) is an optical imaging survey that observed
5,000 square degrees of the celestial southern hemisphere us-
ing the 4m Blanco Telescope and the Dark Energy Camera
(DECam; Flaugher et al. 2015) at the Cerro Tololo Inter-
American Observatory (CTIO) in Chile. The main goal of
the survey is to constrain the distribution of dark matter in
the Universe, and the amount and properties of dark energy,
including its equation of state. DES used the grizY bands to
obtain photometric redshifts and reaching limiting magni-
tudes of i ∼ 24. Due to the large area, depth, and image
quality of DES, we expect to have an optical identification
of a large number of galaxy clusters and groups (∼ 100, 000)
up to a redshift z ∼ 1.

The DES observations were carried out during roughly
one semester per year, and the first full operating season
took place from August 2013 to February 2014, DES Y1
(Diehl et al. 2014; Drlica-Wagner et al. 2018). Before this, a
small Science Verification (SV) survey was conducted from
November 2012 to February 2013. The SV data covered 250
square degrees reaching almost the depth of the complete
survey.

During the DES Y1 observations, 1,839 square degrees
of the southern sky were observed in three to four tilings
in the griz bands as well as 1,800 square degrees in the Y -
band. The resulting imaging is shallower than the SV data
but covers a significantly larger area. In the DES Y1 we
have ∼ 1, 500 square degrees of the main survey, divided
into two large non-contiguous areas. The reduction in the
area is due to a series of survey masks. These masks are ap-
plied to avoid bright stars, satellite tracks, the Large Mag-
ellanic Cloud, among others. The two non-contiguous areas
are the “SPT” area (1,321 square degrees), which overlaps
the footprint of the 2,500 square degrees South Pole Tele-
scope Sunyaev-Zel′dovich Survey (Carlstrom et al. 2011),
and the “S82” area (116 square degrees), which overlaps the
Stripe-82 deep field of the Sloan Digital Sky Survey (SDSS;
Annis et al. 2014). In this study, we utilise data from the
SPT region.

The data from the first three seasons was the basis for
the first DES public data release1 (Abbott et al. 2018b).
The data processing for Y5 has already been completed and
the final observing season, Y6, was finalised on January 9th,
2019.

In the following, we briefly describe the catalogues used
in this analysis and refer the reader to the corresponding
papers for more details. The photometric redshift and weak
lensing shape catalogues were used in the main DES cosmo-
logical analysis combining galaxy clustering and weak lens-
ing (Abbott et al. 2018a).

2.1 redMaPPer cluster catalogue

In this work, we use the“volume-limited”catalogue of photo-
metrically selected clusters identified in DES Y1 data by the
redMaPPer cluster-finding algorithm v6.4.17 (Rykoff et al.
2014, 2016). In this catalogue, a galaxy cluster is included
in the sample only if all cluster member galaxies brighter
than the luminosity threshold used to define cluster richness
in redMaPPer are above 3σ limiting magnitude in g, 5σ in
r and i, 10σ in z according to depth maps of the survey
(Drlica-Wagner et al. 2018).

As previously mentioned, redMaPPer uses multiband
colours to find overdensities of red-sequence galaxies around
candidate central galaxies. In DES Y1 data, redMaPPer uses
the four band magnitudes (griz) and their errors to spatially
group the red-sequence galaxies at similar redshifts into clus-
ter candidates. Starting from an initial set of spectroscopic
seed galaxies, the algorithm iteratively fits a model for the
local red sequence, and for each red galaxy, redMaPPer esti-
mates its membership probability (pmem) following an iter-
atively self-trained matched-filter technique. At the end, for
each identified cluster, redMaPPer returns an optical rich-
ness estimate λ (the sum over the membership probabilities
of all red galaxies within a pre-defined, richness-dependent
projected radius Rλ = (λ/100)0.2h−1Mpc), a photo-z esti-
mate zλ (obtained by maximizing the probability that the
observed colour-distribution of likely members matches the
self-calibrated red-sequence model of redMaPPer), the posi-
tions (RA, Dec) and a vector with the probabilities of the
five most likely central galaxies (Pcen).

This catalogue contains more than 76,000 clusters down
to λ > 5 and out to zλ ∼ 0.8, of which more than 6,000 are
above λ > 20. For each cluster in this catalogue, we com-
puted the value of the mass proxy µ?, which will be de-
scribed in the next section. In Figure 1 we show the cluster
µ? and redshift distributions for the volume-limited catalog
(λ > 5) in blue. Because the spectroscopic training sam-
ple goes only to z ∼ 0.65, the catalogue should be robust
just within this range. To avoid complications with selec-
tion functions and unreliable detections due to projection
effects, in this work we just use the sample with λ > 20,
which is the sample used in the main cosmology analysis
of DES. Thus, in grey we show the cluster sample we use:
0.1 < z < 0.65 and µ? < 5.5 × 1013 M� with a total of 6,124
galaxy clusters.

In Pereira et al. (2018) we performed the first mass-
calibration of µ? for the SDSS Stripe 82 redMaPPer cata-

1 https://www.darkenergysurvey.org/
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Figure 1. Redshift–µ? distribution of the redMaPPer clusters in

the volume limited DES Y1 cluster catalogue with λ > 5 (blue
dots) overlapped with density contours to highlight the densest

regions and the redshift-µ? distribution of the clusters (λ > 20,

0.1 ≤ z < 0.65) used in this analysis (grey dots). At the top and
on the right are normed histograms of the projected quantities,

zλ and µ?, respectively, for the full catalogue (in blue) and for

the subsample used in this work (in grey).
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Figure 2. Normalised redshift distribution: 230 clusters in the

SDSS Stripe 82 sample (purple) and 6,124 clusters in DES Y1
sample (orange). In both histograms, the catalogue used corre-
sponds to the λ > 20 samples. The vertical dotted line shows the

z limit (z = 0.33) in which the previous calibration of µ? has been
performed.

logue of λ > 20 and 0.1 < z < 0.33 with a total of 230 clus-
ters and using shear data from the CFHT Stripe 82 Survey
(CS82; Moraes et al. 2014). In Figure 2, we show the com-
parison of the normalised redshift distribution of the SDSS
Stripe 82 sample (purple) with the DES Y1 sample (orange)
of λ > 20 and 0.1 < z < 0.65. It illustrates the increase to-
wards higher redshifts and the statistical gain compared to
the previous work, which allows to study the redshift evo-
lution of our MOR and reduce the statistical errors in our
mass measurements.

2.2 Photometric redshift catalogue

To estimate physical quantities such as µ? and the mass
from the lensing signal we need to know the redshift of the
member galaxies and the source galaxies being lensed, re-
spectively. We also need the information about the individ-
ual P(z) of source galaxies for computing the boost-factors
profiles.

We use the photometric redshift catalogue2 of DES Y1
produced and validated by Hoyle, B. and Gruen, D. et al.
(2018) using the template-based BPZ3 algorithm (Beńıtez
2000; Coe et al. 2006). Hoyle, B. and Gruen, D. et al.
(2018) found that these photo-z estimates were biased and
needed an overall multiplicative systematic correction in the
recovered weak lensing profiles. Following McClintock, T.
and Varga, T. N. et al. (2019) we determine this correction
and present it in Section 3. We also use two separate BPZ
catalogues: one generated from the single epoch metacal-
ibration-measured photometry for selecting and weighting
sources, and one from a multi-epoch, multi-object fitting
(MOF) photometry for determining the resulting source red-
shift distributions.

2.3 Assigning µ? for redMaPPer clusters

The µ? mass proxy relies on the clear physical meaning of
the total stellar mass of a cluster and, in particular, Palmese
et al. (2020) showed that the scatter in the µ? to X-ray
temperature relation is comparable to other mass proxies
(in particular, to the redMaPPer λ), for an X-ray sample.

In Pereira et al. (2018) and Palmese et al. (2020) we
describe in detail how the mass proxy µ? is computed. The
assignment of µ? is the last step in the modular pipeline vt-

clustertools � that we are developing and which consists
of: i) cluster finding (optional, since any cluster catalogue
can be given as input); ii) probabilistic membership assign-
ment; iii) total stellar-mass measurements and µ? estima-
tion.

We use DES Y1 redMaPPer catalogue as input and per-
formed the membership assignment and stellar mass mea-
surements. First, we compute the membership probability
Pmem for each cluster galaxy as

Pmem = PzPr, (1)

where the two components represent the probability of the
galaxy to be a member given its redshift (Pz) and its distance
from the cluster centre (Pr). In practice, Pz is the integrated
photometric redshift probability distribution of each galaxy
within a ∆z = 0.1 window around the cluster redshift. Pr is
computed assuming a projected Navarro-Frenk-White pro-
file from Wright & Brainerd (2000), where r200 is defined
as the radius at which the mass density of the cluster is
200 times greater than the critical density of the universe
ρcrit = 3H2(z)/8πG, where H(z) is the respective Hubble pa-
rameter. For the concentration parameter we assume a fixed
value of c = 3.

After computing the membership probabilities for each
galaxy i within 3 Mpc of each cluster j, we compute their

2 https://des.ncsa.illinois.edu/releases/y1a1/

key-catalogs/key-photoz
3 http://www.stsci.edu/~dcoe/BPZ/
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stellar masses assuming that every member galaxy is at the
redshift of its host, M?,i(zj ). Since the cluster redshifts have
smaller uncertainties than individual galaxies’ redshifts, this
minimizes the uncertainties on M?,i measurements. The stel-
lar masses are computed using the Bayesian Model Aver-
aging (BMA; Hoeting et al. 1999) method, as described in
Palmese et al. (2020). Once the stellar masses are computed,
we define the mass proxy µ? as the sum of the individual
galaxy stellar masses weighted by their membership proba-
bility

µ? =
∑
i

Pmem,iM?,i . (2)

The membership assignment and µ? computation were
performed in the full DES Y1 volume-limited catalogue with
λ > 5, but through this work we only use the clusters with
λ > 20 to make sure our analysis is done in the same regime
as the current λ-sample to facilitate comparisons between
the two mass proxies.

2.4 Weak lensing shear catalogue

We use the shape measurements from the metacalibration
(Sheldon & Huff 2017; Huff & Mandelbaum 2017) shape cat-
alogue4 of DES Y1 presented in Zuntz, J. and Sheldon, E.
et al. (2018). The Metacalibration � code utilises images
taken in riz bands to measure the ellipticities of the galax-
ies. The algorithm works by distorting the image with a
small known shear and calculating the response of a shear
estimator to that applied shear. In this method, there is no
need for prior information about galaxy properties or a cal-
ibration from simulations. The fiducial shear estimates are
obtained from a single Gaussian fit by using the ngmix �
model-fitting algorithm (Sheldon 2015). The produced DES
Y1 metacalibration catalog has an effective source density
of 6.28 arcmin−2.

The main systematic effect in this shape estimation is
a multiplicative bias, i.e. an over- or underestimation of the
gravitational shear inferred from the mean tangential ellip-
ticity of the lensed galaxies. To characterize and correct for
this bias, Metacalibration uses the galaxy images them-
selves to “de-bias” the shear estimates.

The metacalibration shear catalogue and the associ-
ated calibration of the source redshift distributions (Hoyle,
B. and Gruen, D. et al. 2018) was extensively tested and val-
idated by Zuntz, J. and Sheldon, E. et al. (2018) and Prat, J.
and Sánchez, C. et al. (2018), making this lensing catalogue
well tested for different applications.

3 THE STACKED CLUSTER PROFILES

We measure the mass of the DES Y1 redMaPPer clusters
from their stacked weak lensing signal using the metacali-
bration shear catalogue and BPZ photo-z’s. For the stack-
ing of the lenses, we define bins of redshift and µ?. The
redshift bins are defined as zlow (0.1 6 z < 0.33), zmid
(0.33 6 z < 0.5) and zhigh (0.5 6 z < 0.65). To remove
the few outlier cases in which the stellar-mass fitting code

4 https://des.ncsa.illinois.edu/releases/y1a1/

key-catalogs/key-shape

Table 1. Binning scheme and properties of the DES Y1 redMaP-
Per cluster sample. We split the clusters into three redshift bins

and choose the µ? bins to have a similar number of clusters in
each of the four bins. Here µ? is in units of 1012 M�.

z range Mean z µ? range Mean µ? No. of clusters

[0.1, 0.33)

0.232 [0, 3.3) 2.38 318

0.233 [3.3, 5.0) 4.10 317
0.243 [5.0, 7.5) 6.15 313

0.259 [7.5, 60) 12.6 402

[0.33, 0.5)

0.424 [0, 4.04) 3.06 571

0.420 [4.04, 5.65) 4.83 567

0.420 [5.65, 8.05) 6.73 567
0.427 [8.05, 60) 12.98 744

[0.5, 0.65)

0.572 [0, 3.88) 2.96 554
0.574 [3.88, 5.42) 4.67 555

0.573 [5.42, 7.68) 6.46 556

0.570 [7.68, 60) 11.71 660

generated nonphysical values for one or more of the member
galaxies, we apply an upper limit cut in the µ? range such
that the clusters in these three redshift bins lie within the
range µ? < 5.5 × 1013M�. In each redshift bin, we separate
the samples into four µ? bins, in such a way that we have a
similar number of clusters in each bin. In Table 1, we sum-
marise the binning scheme for our stacking measurements.

3.1 Projected surface mass density profiles

In the weak lensing regime, a non-linear combination of the
gravitational shear γ and convergence κ defines an estimator
for the “reduced shear” (Bartelmann & Schneider 2001)

g ≡ γ

1 − κ . (3)

In practice, we assume 〈g〉 ≈ 〈γ〉 ≈ 〈R〉−1〈e〉. Here R is a
joint response matrix computed as R ≈ Rγ + Rsel, where the
terms on the right are the responses of the ellipticity mea-
surement and the selection effects to the gravitational shear,
respectively (see Sheldon & Huff 2017 and McClintock, T.
and Varga, T. N. et al. 2019 for details).

The gravitational field from a foreground mass distri-
bution induces correlations in the shapes of source galax-
ies, such that, on average, galaxies images are stretched and
aligned tangentially to the centre of mass. Miralda-Escude
(1991) found that, for any distribution of projected mass, it
is possible to show that the azimuthally averaged tangential
shear γT at a projected radius R from the centre of the mass
distribution is given by

γT(R) = ∆Σ
Σcrit

≡ Σ(< R) − Σ(R)
Σcrit

, (4)

where Σ(R) is the projected surface mass density at radius
R, Σ(< R) is the mean value of Σ within a disc of radius R
given by

Σ(< R) = 2
R2

∫ R

0
dR′ R′Σ(R′), (5)

and Σ(R) is the azimuthally averaged Σ(R) within a ring of
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radius R computed as

Σ(R) =
∫ +∞
−∞

dχ ∆ρ
(√

R2 + χ2
)
, (6)

where χ is the separation along the line of sight and ∆ρ is an
average excess of a given three-dimensional matter density.
Finally, Σcrit is the critical surface mass density expressed in
physical coordinates as

Σcrit =
c2Ds

4πGDlDls
, (7)

where Dl and Ds are angular diameter distances from the
observer to the lens and to the source, respectively, and Dls

is the angular diameter distance between lens and source.
To perform precise measurements of the surface density

contrast ∆Σ, we need to estimate the redshifts of the lens
(i.e. galaxy clusters) and the source galaxies robustly. We
use the photometric redshift estimates from the redMaPPer
algorithm as the lens redshifts. Due to a negligible statisti-
cal uncertainty on these estimates (∆zl ≈ 0.01, Rykoff et al.
2016), compared to other sources of error in the lensing mea-
surement, we can treat these redshifts as exact. The redshift
of source galaxies are also photometric, and are described
by a probability distribution pphot(zs) for each source galaxy.
Therefore, we estimate an effective critical surface density
for each lens-source pair

〈Σ−1
crit〉j,i =

∫
dzs,ipphot(zs,i)Σ−1

crit(zs,i, zl, j ), (8)

that averages over the pphot(zs,i) of source i, evaluated for
lens j. For computational reasons, we do not use the full
integral over pphot(zs,i), but rather replace Equation 8 by Σ−1

crit
evaluated at a random sample of the pphot(zs). This kind of
approximation is justified in Malz et al. (2018), for example.

From Equation 4, we can compute ∆Σ over several lenses
with similar physical properties (e.g. redshift, stellar mass)
to increase the signal-to-noise and average over the effect of
substructures, uncorrelated structures in the line of sight,
shape noise and variations in the shape of individual halos.
However, in practice, using the shear and selection responses
(Rγ and Rsel, respectively) provided in metacalibration’s
catalogue we define a minimum variance estimator for the
weak lensing signal as

∆̃Σ ≡

∑
j,i
ωi, j eT; i, j

∑
j,i
ωi, j Σ

′−1
crit;i, j RT

γ,i
+

(∑
j,i
ωi, j Σ

′−1
crit;i, j

)
〈RT

sel〉
, (9)

where the summation goes over all source-lens pair in a given
radial bin and eT;i, j is the tangential component of source

i relative to the lens j. The quantities RT
γ,i and 〈RT

sel〉 are

proportional to the trace of the shear and selection response
matrices, respectively, and their detailed definitions can be
found in Zuntz, J. and Sheldon, E. et al. (2018) and Mc-
Clintock, T. and Varga, T. N. et al. (2019), but it is impor-
tant to note that these selection responses were defined by
the photometric redshift estimates derived from the sheared
METACALIBRATION photometry.

To speed up the computation of Equation 9, we use
two simplifications: i) replace the expectation value of the
normalisation Σ

′−1
crit by a Monte Carlo estimate

Σ
′−1
crit;i, j = Σcrit(zl j , z

MC
si ) , (10)

where zMC
si is a random sample from the pphot(zs) distribution

estimated with BPZ using MOF photometry; ii) choose the
weights as

ωi, j ≡ Σ−1
crit

(
zl j , 〈z

MCAL
si 〉

)
if 〈zMCAL

si 〉 > zl j + ∆z , (11)

where 〈zMCAL
si 〉 is the mean redshift of the source galaxy es-

timated from metacalibration photometry. We use sepa-
ration of ∆z = 0.1 from the lens-redshift for source selection.
McClintock, T. and Varga, T. N. et al. (2019) found that
including the source weights provided by metacalibration
does not introduce a significant improvement in the signal-
to-noise of the measurement. They also argue that the use
of two different photometric estimators is necessary because
when calculating the selection response, the internal pho-
tometry of the metacalibration must be used for all se-
lections and weightings of sources.

In addtion to that, Hoyle, B. and Gruen, D. et al. (2018)
found that photo-z estimates from metacalibration have
a greater scatter than the ones estimated with MOF pho-
tometry. Therefore, we follow the approach of McClintock,
T. and Varga, T. N. et al. (2019) expressed in Equation 9,
where we use the metacalibration photo-z estimates for
selecting and weighting the source-lens pairs and we use the
MOF-based photo-z estimates for computing the normalisa-
tion of the shear signal to find ∆Σ.

To estimate the weak lensing signal ∆Σ from Equation 9,
we use a modified version of the xshear� code implemented
in the xpipe � Python package. The clusters are grouped
into three bins in redshift: z ∈ [0.1; 0.33), [0.33; 0.5), and
[0.5; 0.65), as well as four bins in µ? as described in Table 1.
We measure the ∆Σ profiles in 20 logarithmic radial bins in
the range (0.1 − 10) h−1 Mpc. The measured ∆Σ profiles are
shown in Figure 3. We computed the cross-component of the
lensing signal (∆Σ×) and found no evidence of spurious cor-
relations in the weak-lensing signals, i.e. the measured ∆Σ×
are consistent with zero. McClintock, T. and Varga, T. N.
et al. (2019) described a series of tests and validation for
systematics of the source catalogue such as shear and pho-
tometric redshift bias and cluster members contamination.
Since we rely on the same catalogue, the treatment of this
systematics could be applied to our work and is described
in detail in the next sections.

3.2 Covariance matrices for ∆Σ

In Pereira et al. (2018), the measurements were shape-noise
dominated such that the covariance between adjacent radial
bins was not noticeable and the ∆Σ measurements in each
bin were treated as independent. However, for the DES Y1
sample, this assumption does not hold anymore. Besides the
shape noise, the uncertainty in the ∆Σ measurements have
contributions from the uncertainty in the photometric red-
shift estimations, and the intrinsic variations of cluster pro-
files. Furthermore, in a stacked cluster lensing analysis in a
given survey area, source galaxies are paired with multiple
clusters, possibly generating covariance between different ra-
dial bins as well as different cluster bins in µ? and redshift.
Therefore, the cluster ∆Σ measurements are not fully inde-
pendent, and we need to estimate the covariance matrix C

∆̃Σ
that will have significant off-diagonal terms, in particular, on
large scales.
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Figure 3. The mean ∆Σ for cluster subsets separated in zl (increasing from top to bottom) and µ? (increasing from left to right) with

errors from jackknife resampling (see Section 3.2). The best-fit model (red curve) includes the corrections in Equation 31, see Section 3

for details. In the legend, µ? is in units of 1012 M�.

Following McClintock, T. and Varga, T. N. et al. (2019),
to estimate C

∆̃Σ
we use a spatial jackknife (JK) scheme de-

signed to account for the covariance of the measurements.
We use a JK resampling with K = 100 simply-connected
spatial regions Rk selected by running a k-means � algo-
rithm on the sphere. The JK covariance is defined as in
Efron (1982) by

C
∆̃Σ
=

K − 1
K

K∑
k

(
∆̃Σ(k) − ∆̃Σ(·)

)T
·
(
∆̃Σ(k) − ∆̃Σ(·)

)
, (12)

where ∆̃Σ(·) =
1
K

∑
k ∆̃Σ(k), and ∆̃Σ(k) is the lensing signal

estimated through Equation 9, using all lenses except those
in the region Rk . In Figure 4, we present an example of the
estimated JK correlation matrix for the bin z ∈ [0.1; 0.33)
and µ? ∈ [0; 3.3) × 1012M�. We can see that on smaller
scales the diagonal is dominant, but off-diagonal terms are
present for the largest scales, as expected. We check the
cross-correlations between the profiles measured in different
z and µ? subsets, and find them to be small (cf. upper right
and lower left panel of Figure 4). Therefore, we will assume
no cross-correlation between different cluster subsets in our
likelihood for fitting ∆Σ.

3.3 Projected surface mass density model

To infer the average masses from the weak lensing signal
around each lens we use a two-components model given by
a perfectly centred dark matter halo profile and an offsetted
profile where the assumed centre does not correspond to
the dynamical centre of the dark matter halo (“miscentring
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Figure 4. Correlation matrix of ∆̃Σ of a single profile with
z ∈ [0.1; 0.33) and µ? ∈ [0; 3.3) × 1012M�, estimated from 100 jack-

knife regions (upper left panel). The off-diagonal blocks show the
correlation matrix between the reference profile and the neigh-
bouring bin, µ? ∈ [3.3; 5.0) × 1012M� (upper right panel), and the
neighbouring redshift bin z ∈ [0.33, 0.5) (lower left panel).
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term”), such that our ∆Σ model is given by

∆Σmodel = pcc∆Σcen + (1 − pcc)∆Σmisc, (13)

where pcc is the fraction of correctly centred clusters. For
the centred profile, we could also consider the contribution
of neighbouring halos through the“2-halo”term for the outer
regions of the halo. However, for computational reasons, we
choose to apply a radial cut (R < 2.5 Mpc) while performing
the profile-fitting of ∆Σ to minimise the effects of the 2-halo
term. We have tested in simulations that this approach has
negligible effects in the amplitude of the recovered ∆Σ (i.e.
changes of 1–3 per cent).

We model the centred term as a Navarro-Frenk-White
(NFW; Navarro et al. 1996) three-dimensional density pro-
file given by

ρ(r) = δcρcrit

r
rs

(
1 + r

rs

)2 , (14)

where rs is the cluster scale radius, δc is the characteris-
tic halo overdensity and ρcrit is the critical density of the
Universe at the lens redshift.

In this paper, we use the mass M200 contained within
a radius r200 where the mean mass density is 200 times the
critical density of the Universe. The scale radius is given
by rs = r200/c200, where c is the concentration parameter. In
our fitting procedure, we fix c by assuming the semi-analytic
concentration model of Diemer & Joyce (2019) available in
the Colossus [ (Diemer 2015) Python package.

Bartelmann (1996) and Wright & Brainerd (2000) pro-
vide an analytical expression for the projected NFW profile,
∆ΣNFW, and we use the Python code NFW � (Dietrich 2016)
that implements these results for our profile-fitting proce-
dure. Thus, the centred term in Equation 13 is given by this
∆ΣNFW. In the next section, we describe our model for the
miscentring term, i.e. the ∆Σmisc for NFW density profiles.

3.3.1 Miscentring modelling

Miscentring can be caused by a simple failure in the cen-
tre assignment by the cluster finder algorithm. Also, many
cluster finders assume as centre the position of the brightest
cluster galaxy (BCG). Zitrin et al. (2012) show that some
BCGs present an offset from the centre of their host dark
matter halo. The redMaPPer code does not assume, neces-
sarily, the position of the BCG as the cluster centre. Instead,
redMaPPer uses a probabilistic approach to identify the top
5 most likely central candidates. Thus, the cluster position
is given by the highest likelihood central galaxy. However,
Rykoff et al. (2016) found that ∼ 80 − 85 per cent of the
redMaPPer central galaxies are BCGs and then subject to
miscentring. In fact, Zhang et al. (2019a) using high quality
X-ray data found that 75 ± 8 per cent of redMaPPer clus-
ters are well centred. The miscentring affects the observed
shear profile (Yang et al. 2006; Johnston et al. 2007; Ford
et al. 2014) and should be corrected. Therefore, we should
estimate the miscentred differential mass density profiles as

∆Σmisc(R) = Σmisc(< R) − Σmisc(R) (15)

We follow the modelling scheme presented in Johnston

et al. (2007); George et al. (2012); Ford et al. (2015); Simet
et al. (2017); Pereira et al. (2018) to compute the terms in
Equation 15. For a 2-dimensional offset in the lens plane Rs,
the azimuthal average of the profile is

Σmisc(R) =
∫ ∞

0
dRsP(Rs)Σ(R|Rs), (16)

where

Σ(R|Rs) =
1

2π

∫ 2π

0
dθΣ

(√
R2 + R2

s + 2RRs cos θ
)
. (17)

That is, the angular integral of the profile Σ(R) is shifted
by Rs from the centre. The probability distribution of Rs is
given by

P(Rs) =
Rs

σ2
off

exp

(
−1

2
R2
s

σ2
off

)
, (18)

which is an ansatz assuming the mismatching between the
centre and Rs follows a Rayleigh distribution. The mean
surface density inside the radius R is

Σmisc(< R) = 2
R2

∫ R

0
dR′R′Σmisc(R′). (19)

We use the Python code cluster-lensing � (Ford &
VanderPlas 2016; Ford 2016) that implements the equations
15–19 to compute the miscentring term ∆Σmisc(R) for NFW
profiles. For this miscentring profile we only have one free
parameter, the width of the offset distribution σoff . Together
with the parameter pcc in Equation 13, i. e. the fraction of
correctly centred clusters, we would have two free parame-
ters in our miscentring modelling.

We decided to fix σoff with the typical value derived by
Zhang et al. (2019a) for the DES Y1 redMaPPer clusters.
In that work, they use a Gaussian instead of a Rayleigh dis-
tribution to model the distribution of offsets. However, our
miscentring parameter σoff is connected to their parameter
τ as

σoff = τ × Rλ. (20)

Zhang et al. (2019a) found that τ = 0.17 and in our sample,
the average value of Rλ is 0.78 h−1Mpc. Therefore, we fix
σoff = 0.133h−1Mpc and keep pcc as a free parameter when
performing the profile-fitting.

3.3.2 Boost-factor model

The lensing signal can be diluted due to errors in the photo-
metric redshift estimates that can cause some of our back-
ground sources to be either in the foreground (zs < zl) or to
be physically associated with the lens (zs = zl). To alleviate
this effect, we can try to exclude all galaxies that are likely
cluster members from the shape catalogue. However, due to
intrinsic imperfections in the cuts, some of these galaxies
leak into the source catalogue used in the weak lensing mea-
surement. Since foreground and physically associated galax-
ies are unlensed, the inclusion of these galaxies will cause
∆Σ to be underestimated (the dilution effect). Therefore, the
∆Σ measurements must be boosted to recover the true lens-
ing signal, the so-called boost-factor correction (Kneib et al.
2003; Sheldon et al. 2004; Applegate et al. 2014; Hoekstra
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Figure 5. Boost-factor measurement of a single profile with z ∈
[0.1; 0.33) and µ? ∈ [0; 3.3) × 1012 M� (black dots). The blue curve
is the best-fit for fitting the boost-factor data alone and the red

curve is the best-fit for the joint fit of the lensing and boost-factor

data as described in Section 3.4. The vertical dashed line shows
the inner radial limit in which we performed our boost-factor fits.

et al. 2015; Simet et al. 2017; Leauthaud et al. 2017; Mel-
chior, P. and Gruen, D. et al. 2017; McClintock, T. and
Varga, T. N. et al. 2019; Varga et al. 2019).

We determine the boost-factor correction by following
Gruen & Brimioulle (2017); Melchior, P. and Gruen, D. et al.
(2017); McClintock, T. and Varga, T. N. et al. (2019); Varga
et al. (2019) that make use of the estimated p(z) of the source
galaxy sample to calculate the cluster contamination frac-
tion fcl and the corresponding covariance matrix Cfcl esti-
mated from jackknife resampling. Then, fcl is used to recover
the lensing profile corrected from contamination as

∆̃Σcorr(R) =
∆̃Σ(R)

1 − fcl(R)
. (21)

The p(z) decomposition method for obtaining the boost fac-
tor fcl is described in detail and validated on simulated DES-
like mock catalogues in Varga et al. (2019). In Figure 5 we
show an example of the measured boost-factor profile for the
stack with z ∈ [0.1; 0.33) and µ? ∈ [0; 3.3) × 1012 M�.

Following McClintock, T. and Varga, T. N. et al. (2019)
we do not apply Equation 21 directly to our data but instead
we dilute the amplitude of our model for the predicted pro-
files. By parameterising the boost-factor as B ≡ (1 − fcl)−1

we model the cluster-member contamination by an NFW-
like profile, with two free parameters (B0 and Rs), in the
form

B(R) = 1 + B0
1 − F(x)

x2 − 1
, (22)

where x = R/Rs, and

F(x) =


tan−1

√
x2−1√

x2−1
: x > 1

1 : x = 1
tanh−1

√
1−x2√

1−x2
: x < 1

. (23)

The implementation of this model is available in the Python
library cluster_toolkit �.

For each stack, we fit the measured boost-factors along

Table 2. Best-fit parameters from fitting the boost-factors with-
out the lensing profiles. We use the following flat priors: Rs =

[0, 10] and B0 = [0, 1].

µ? [1012M�] z B0 Rs [Mpc]

[0.0; 3.3)

[0.1; 0.33)

0.57 ± 0.23 0.19 ± 0.06
[3.3; 5.0) 0.26 ± 0.12 0.46 ± 0.21
[5.0; 7.5) 0.30 ± 0.10 0.49 ± 0.15
[7.5; 60.0) 0.20 ± 0.03 1.01 ± 0.17

[0.0; 4.04)

[0.33; 0.5)

0.23 ± 0.34 0.01 ± 0.03
[0.04; 5.65) 0.22 ± 0.26 0.14 ± 0.11
[5.65; 8.05) 0.15 ± 0.10 0.23 ± 0.09
[8.05; 60.0) 0.07 ± 0.02 0.84 ± 0.24

[0.0; 3.88)

[0.5; 0.65)

0.22 ± 0.34 0.02 ± 0.03
[3.88; 5.42) 0.23 ± 0.34 0.13 ± 0.34
[5.42; 7.68) 0.08 ± 0.23 0.34 ± 0.65
[7.68; 60.0) 0.29 ± 0.26 0.16 ± 0.09

with the respective lensing profile, which introduces two ad-
ditional parameters in our ∆Σ model, the normalisation B0
and the scaling radius Rs. When performing this joint fit of
the lensing and boost-factor profiles, we try to follow Mc-
Clintock, T. and Varga, T. N. et al. (2019) and use their flat
priors for the boost-factor parameters. However, this choice
leads to “unrealistic” values for B0 and Rs. For instance, we
expect a small value for the scaling radius (Rs << 1h−1Mpc),
since we have a peak in the contamination fraction at low
radii (see Section 4.1 of Varga et al. (2019)). However, in the
joint fit, we find large values for Rs, dominated by the upper
limits of our priors. McClintock, T. and Varga, T. N. et al.
(2019) also have shown that B0 and Rs are highly degenerate
(see their Figure 10), and this might have an impact in our
ability to constrain these parameters when performing the
joint fit with lensing using flat priors. Therefore, we decide
to perform a separated fit of the boost-factor profiles alone
and use the derived values for the parameters (see Table 2)
as input in a Gaussian prior when performing the joint fit
with the lensing profiles (see Section 3.4).

3.3.3 Reduced shear

In practice, we measure the reduced shear g instead of the
true shear γ (see Equation 3). To account for this approxi-
mation, we multiply our ∆Σ model by the factor

G(R) = 1
1 − κ =

1
1 − Σ(R)Σ−1

crit
, (24)

where Σ−1
crit is defined in Equation 7 and Σ(R) is

Σ(R) = pccΣcen + (1 − pcc)Σmis , (25)

where Σcen comes from Equation 6 and Σmis from Equa-
tion 16. However, this correction is expected to have a neg-
ligible effect in our results.

3.3.4 Shear and photo-z bias

In the weak lensing analysis, two major sources of systemat-
ics are the shape measurements and photo-z uncertainties.
The former can lead to wrong shear estimates and the latter
can bias the distance measurements leading to a biased Σcrit,
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Figure 6. The photo-z correction factor to Σ−1
crit as described in

Section 3.3.4. The gray hatched region indicates the 1σ range of

the correction factor. Red points with error bars show the correc-

tion factors applied in each redshift bin.

consequently affecting our ∆Σ estimates. Zuntz, J. and Shel-
don, E. et al. (2018) have tested for several sources of bias
in the shear measurements, in particular, self-calibration of
the images allowed them to determine the multiplicative m
and the additive c biases. They found no evidence of a sig-
nificant additive bias term but estimated the multiplicative
bias to be m = 0.012 ± 0.013.

Hoyle, B. and Gruen, D. et al. (2018) and McClintock,
T. and Varga, T. N. et al. (2019) present a method to cali-
brate the photo-z estimates with precise measurements from
COSMOS bands to determine the bias and its uncertain-
ties. Briefly, they match the DES lensing source galaxies
and the COSMOS galaxies according to their flux in each
band and their intrinsic size. Following the same selection
and weight as in Section 3.1, we compute the true weighted
mean Σ′−1

crit,TRUE from the matched COSMOS sample. The
MOF griz BPZ redshift distribution samples provide a mean
Σ′−1

crit,MEAS that connects the weighted mean tangential shear
to the ∆Σ profile. Since the source selection for these mea-
surements depends on the lens redshift, we need to repeat
them in the cluster redshift range sampled in our analysis
zl = 0.1 − 0.65.

Following McClintock, T. and Varga, T. N. et al. (2019),
the model for the bias takes into account four sources of un-
certainty in the calibration of photometric redshift distribu-
tions: i) cosmic variance; ii) photometric zeropoint offsets;
iii) morphology matching; iv) systematic uncertainty of the
matching algorithm, and it is given by

Σ
′−1
crit,MEAS

Σ
′−1
crit,TRUE

≡ 1 + δ , (26)

where the quantity δ is the offset between the true mean
inverse critical surface density from COSMOS and Σ

′−1
crit from

our photo-z estimates. We show in Figure 6 the dependence
of this ratio on lens redshift in the range of our analysis.

We incorporate δ in our analysis as a prior that varies
between each stack. The variation across the cluster redshift

bins are

δ =


0.009 ± 0.021 for z ∈ [0.1, 0.33)
0.002 ± 0.020 for z ∈ [0.33, 0.5)
0.004 ± 0.022 for z ∈ [0.5, 0.65).

(27)

We combine the shear and photo-z bias (m and δ) to
define the factor Am = 1 + m + δ, which is included in the
final likelihood as the prior

Am =


1.021 ± 0.024 for z ∈ [0.1, 0.33)
1.014 ± 0.024 for z ∈ [0.33, 0.5)
1.016 ± 0.025 for z ∈ [0.5, 0.65).

(28)

3.3.5 Triaxiality and projection effects

Cluster finders that rely on photometric data to identify
galaxy clusters typically select systems that are aligned
along the line-of-sight with higher probability. The photo-
metric cluster selection can also be affected by the presence
of other objects along the line-of-sight. We refer to these two
effects as triaxiality and projection effects, which both affect
the measured cluster MOR (White et al. 2011; Angulo et al.
2012; Noh & Cohn 2012; Dietrich et al. 2014).

Melchior, P. and Gruen, D. et al. (2017) determined the
projection effect correction factor by modelling the ratio be-
tween the average cluster stack mass not affected by projec-
tions 〈M〉0 and the average mass 〈M〉 of the cluster affected
by projections. They model the projected cluster as a sum
of a primary halo that must have at least a mass 0.5〈M〉0
and an excess mass ε 〈M〉0, where ε ∈ [0.0, 0.5]. Then, for a
fraction p of clusters affected by projections, they write the
average mass of the cluster stack as

〈M〉 = (1 − p)〈M〉0 + p(0.5 + ε)〈M〉0. (29)

To recover the mass in the absence of projections, i. e. 〈M〉0,
we should multiply the recovered weak lensing masses by

〈M〉0
〈M〉 =

1
1 + p(ε − 0.5) = 1.02 ± 0.02 , (30)

where the numerical value above was estimated from 104

Monte Carlo realisations of p and ε . They adopted a Gaus-
sian prior for ε of ε = 0.25 ± 0.15 such that ε = 0 and ε = 0.5
are within 2σ of the central value, and p = 10% ± 4% as
estimated from Simet et al. (2017). In our analysis we are
using the same clusters as McClintock, T. and Varga, T. N.
et al. (2019), i. e. a richness-selected sample, therefore we
believe that it is reasonable to apply the same correction for
the projection effects.

Using simulation of richness-selected clusters, Dietrich
et al. (2014) estimated that triaxiality can overestimate clus-
ter masses by 4.5%±1.5%. Melchior, P. and Gruen, D. et al.
(2017) argued that this estimate can be understood as cor-
related scatter between richness and weak lensing masses
leading weak lensing masses to overestimate cluster masses
by an amount of exp(−βrσln M |λσln M |MWL ), where β is the
slope of the halo mass function, r is the correlation coeffi-
cient between richness and weak lensing mass and σ’s are
the intrinsic scatters in the correspondent scaling relations.
Melchior, P. and Gruen, D. et al. (2017) adopted r ∈ [0, 0.5]
(Noh & Cohn 2012), σln M |λ = 0.25 ± 0.05 (Rozo & Rykoff
2014), σln M |MWL = 0.25 ± 0.05 and β ∼ 3 to arrive at a

MNRAS 000, 1–20 (2020)



µ? mass-calibration on DES Y1 11

correction factor of 0.96 ± 0.02. Palmese et al. (2020) found
that σln M |µ? = 0.26+0.15

−0.10, then we could argue that we would
arrive at a similar correction factor for triaxiality as in Mel-
chior, P. and Gruen, D. et al. (2017) for our µ? sample.

Therefore, we follow Melchior, P. and Gruen, D. et al.
(2017) and McClintock, T. and Varga, T. N. et al. (2019)
and apply their corrections to triaxiality and projection ef-
fects. For triaxiality we use a multiplicative factor given by
the Gaussian G(0.96, 0.02) and for projection effects a factor
G(1.02, 0.02). In both cases we use a random draw to deter-
mine the multiplicative factors to be applied in the masses
together with the model bias correction, which will be de-
scribed in Section 3.5.

While this analysis was in internal review by the col-
laboration, the cluster cosmology results from DES Y1 was
released (DES Collaboration et al. 2020) and they found that
the σ8−Ωm posteriors are in 2.4σ tension with DES Y1 3x2pt
analysis, and in 5.6σ with Planck CMB results. They argue
that this tension is most likely driven by systematics in the
weak-lensing mass calibration that were not fully modelled.
Currently, photometric redshifts together with triaxiality
and projection effects are the systematics with the largest
contributions to the error budget in the mass-calibration
with richness (McClintock, T. and Varga, T. N. et al. 2019).
However, none of these systematics alone were found to ex-
plain the tension in the DES Y1 cluster cosmology result.
But it was shown that the proposed projections and triaxi-
ality corrections applied in Melchior, P. and Gruen, D. et al.
(2017); McClintock, T. and Varga, T. N. et al. (2019) are
probably not enough (see Figure 12 in DES Collaboration
et al. 2020) for our current measurements, in particular, for
clusters with λ ∈ (20, 30]. Therefore, we need to improve our
understanding of the low richness cluster sample to find a
better model for projections and triaxiality, both in a mass-
richness and in a mass-µ? calibration analysis. Since this is
beyond the scope of this paper, then, we present our results
with the corrections described in this section, acknowledging
that we may not be fully accounting for the projection and
triaxiality effects in our mass estimates.

3.4 The full model

The multiplicative corrections described in the previous sec-
tions are combined with our full model of the weak lensing
profile in the form

∆Σ =
AmG(R)
B(r) [pcc∆ΣNFW + (1 − pcc)∆Σmisc] . (31)

This model includes the multiplicative bias Am, the boost
factor B(r), the reduced shear correction G(R) and the mis-
centring parameter pcc. The log-likelihood of the kth ∆Σ
profile is

lnL(∆Σk | Mk, pcc,Am, B0, Rs) ∝ −
1
2

DT
k C−1
∆Σ

Dk (32)

where D = (∆̃Σ − ∆Σ)k with ∆̃Σ computed from Equation 9
and C∆Σ is the jackknife covariance matrix of ∆Σ. The cor-
responding log-likelihood of the measured fcl,k in the kth
cluster subset given the parameters in Equation 22 is

lnL( fcl,k | B0, Rs) ∝ −
1
2

BT
k C−1

fcl
Bk, (33)

Table 3. Parameters in the lensing likelihood L(∆Σ) (Equa-

tion 32) and boost-factor likelihood L(B) (Equation 33). Flat

priors are specified with limits in square brackets, Gaussian pri-
ors with means ± standard deviations.

Parameter Description Prior

M200c Halo mass [1011, 1018]
pcc Correctly centred fraction 0.75 ± 0.08
Am Shape & photoz bias Equation 28

B0 Boost magnitude Table 2

Rs Boost factor scale radius Table 2

where Bk = (B − Bmodel)k and Cfcl is the covariance matrix
of the boost-factor, also obtained from jackknife.

The weak lensing and boost-factor profiles are fitted si-
multaneously with the total log-likelihood for a single cluster
subset computed as

lnLk = lnL(∆Σk | Mk, pcc,Am, B0, Rs)+
lnL( fcl,k | B0, Rs) .

(34)

Note that while the fit of ∆Σ and boost-factor is performed
in conjunction, each cluster subset is fitted independently
of the other subsets. Also, note that in our approach, the
constraints on the boost-factor parameters are informed by
both their dilution effect on the ∆Σ profile (as shown in
Equation 31) as well as independent measurements of fcl
(see an example of such measurement in Figure 5).

A list of the model parameters describing each cluster
stack and their corresponding priors are summarised in Ta-
ble 3. We use the Bayesian formalism and the Monte Carlo
Markov Chain (MCMC) method through the package emcee

� (Foreman-Mackey et al. 2013) to perform the likelihood
sampling. We use 64 walkers with 10000 steps each, discard-
ing the first 2000 steps of each walker as burn-in. We also
verify the autocorrelation time of the chains to check their
convergence. To avoid confirmation bias, we blind the chains
before applying the corrections of triaxiality and projections
effects and model bias, which we will describe in the next
section. Our blinding procedure relies on randomly shifting
the peak of the posterior distribution of M200c in the chains.

3.5 Modelling systematics

The analytical model for the centred term, ∆ΣNFW (Bartel-
mann 1996; Wright & Brainerd 2000), can present differ-
ences from the true ∆Σ profiles of the cluster halos of mean
mass M. These deviations are due to the mismatch of den-
sity profiles in simulations (Melchior, P. and Gruen, D. et al.
2017; Murata et al. 2018; McClintock, T. and Varga, T. N.
et al. 2019), in particular, in the transition between the one
and two halo regimes, which can bias the recovered weak
lensing masses. Therefore, we need to calibrate our model
with simulations.

In order to achieve that, we measure the weak-lensing
masses of dark matter halos in N-body simulations using
the same formalism we employ to the DES data. The ha-
los are drawn from an N-body simulation of a flat ΛCDM
cosmology run with Gadget (Springel 2005). The simula-
tion uses 14003 particles in a box with 1050 h−1Mpc on a
side with periodic boundary conditions. The force softening
is 20 h−1kpc. The simulation was run with the cosmology
Ωm = 0.318, h = 0.6704, Ωb = 0.049, τ = 0.08, ns = 0.962,

MNRAS 000, 1–20 (2020)

https://github.com/dfm/emcee


12 M. E. S. Pereira et al.

Table 4. Parameters in the model bias fit. Flat priors are specified
with limits in square brackets.

Parameter Description Prior

C0 Normalisation [0,∞]
α Slope in µ? [−10, 10]
β Slope in z [−10, 10]
ln (σ2

C) Intrinsic scatter [−10, 10]

and σ8 = 0.835. Halos of mass 1013 h−1M� are resolved with
100 particles. Halos are defined using a spherical overdensity
mass definition of 200 times the background density and are
identified with the ROCKSTAR halo finder (Behroozi et al.
2013).

The simulation is used to construct the synthetic
∆Σ profiles of halos at four different snapshots: z ∈
[0, 0.25, 0.5, 1]. We assigned a µ? to each halo by inverting
the mass–µ? relation of Pereira et al. (2018) and adding 25
per cent scatter. Then, we grouped our halos into (z, µ?)
subsets identical to how we grouped our real clusters. For
each of these halo subsets we measured the halo-matter cor-
relation function with the Landy & Szalay (1993) estimator
implemented in Corrfunc � code (Sinha & Garrison 2017).
We numerically integrate the halo-matter correlation func-
tion to obtain the ∆Σ profile. The resulting simulated ∆Σ
profile is a combination of the ∆ΣNFW and a 2-halo term.

Note that this ∆Σ profile does not contain any of the
systematics that exists in the real data. To incorporate the
systematics, we modify the simulated ∆Σ profiles by apply-
ing the corrections in Equation 31. The miscentring profile
∆Σmisc is computed by providing as input the true mass from
the simulation and the miscentring distribution discussed in
Section 3.3.1. The values of pcc andAm are the central values
described in Table 3. For the boost-factor correction B(R)
described in Section 3.3.2, the values for B0 and Rs are ob-
tained from modelling the boost-factors data independently.
To apply the reduced shear correction G(R) described in Sec-
tion 3.3.3 in the simulation we use the same Σ−1

crit of the real
data. Note that in the real data we just have three bins of
redshifts, therefore we repeat the values of the third z-bin
for the snapshot with z = 1 in the simulations.

We obtain the observed mass Mobs for this simulated
profile by using the same pipeline we apply on the real data,
restricting ourselves to the same radial scales employed in
the weak lensing analysis, and utilising the covariance ma-
trices recovered from the data to ensure that the simulated
data are weighted in the same way as the observed data.

Defining Mtrue as the mean mass of the halos in the
simulated stack, the calibration for each simulated pro-
file is shown in Figure 7. The model bias calibration C =
Mtrue/Mobs was modelled as a function of the mean µ? and
redshift snapshot z of the simulated stack as

C(µ?, z) = C0

(
µ?

5.16 × 1012M�

)α (
1 + z
1 + z0

)β
, (35)

with z0 = 0.5 as pivot redshift. The free parameters in the fit
are C0, α, β and the intrinsic scatter σC of the calibration,
and they are determined via a Bayesian fit using flat priors
for the parameters (see Table 4).

The mean model bias for our simulated stacks is ∼ 5
per cent with C0 = 0.978 ± 0.029, α = 0.042 ± 0.055, β =

0.8
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Figure 7. The mass bias calibration C = Mtrue/Mobs caused by

the adopted analytical form of the ∆Σ profile, as a function of µ?
for each simulated redshift bin. The solid line and shaded region
are the best-fit bias model from Equation 35 and 1σ uncertainty

of the calibration, respectively. Error bars on the measured cali-

brations are the fitted intrinsic scatter σC . Here we multiply the
error bars by a factor of 3 for a better visualisation.
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Figure 8. Parameters of the C(µ?, z) relation in Equation 35.
Contours are the 1σ, 2σ and 3σ confidence areas.

−0.231 ± 0.090 and intrinsic scatter σC = 0.016. In Figure 8
we show the contour plots for these parameters.

We repeated this analysis for profiles assuming different
amounts of intrinsic scatter in the M−µ? relation from 10 per
cent up to 45 per cent. We found that the amount of model
bias does not present a significant change with scatter in the
M−µ? relation. We also have checked that the model bias has
negligible changes when we consider the effect of selecting in
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λ but binning in µ?. To mimic this effect in the simulations
we populated the halos with λ and µ?, by inverting the M−λ
relation from Melchior, P. and Gruen, D. et al. (2017) and
the M − µ? relation from Pereira et al. (2018), with scatters
σM |λ and σM |µ? . Then, we selected halos with λ > 20 and
stacked them in bins of z and µ?, verifying the change in the
model bias with the different scatters in the M − µ? relation.
No relevant changes was found. So, we concluded neither the
selection effect of selecting in λ but ranking in µ? nor the
different amount of scatters have significant impact in our
model bias correction.

In our analysis we focus on the modelling of the cen-
tred term by choosing a radial cut, R = (0.2 − 2.5) Mpc, to
avoid the 2-halo term and we use an analytical expression
for the NFW profile. However, the simulated profiles were
generated by an integration of the halo-matter correlation
function that accounts both for the centred and 2-halo con-
tributions. This might be causing a significant model bias
between our model and the simulated profiles, in particular,
at the high redshifts snapshots z = 1 as seen in Figure 7.
Besides that, we are not considering the effect of baryonic
physics that might have some impact, especially in the cen-
tral regions of the halo. Once we apply a radial cut in the
inner profile before performing the fit, we expect to minimise
the impact of baryonic effects as argued in McClintock, T.
and Varga, T. N. et al. (2019). However, this will not be true
for halos that are miscentred by a large amount.

After this model calibration, the correction for the mean
weak lensing mass of a cluster stack in a given bin of µ? at
redshift z should be

M ′ = C(µ?, z)MWL, (36)

where MWL is the uncalibrated mass estimate and the cal-
ibration factor C(µ?, z) is determined by randomly picking
one value from the simulation posteriors.

The final posteriors for our weak lensing masses are
properly marginalised over the uncertainty in the calibra-
tion factor C as well as triaxiality and projection effects such
that

M = G(0.96, 0.02) × G(1.02, 0.02) × M ′ (37)

after fitting the lensing and boost-factor data but before
modelling the mass–µ?–z relation. The final unblinded and
corrected masses are shown in Table 5.

4 THE MASS–µ?–REDSHIFT RELATION

We obtain a mass calibration for the galaxy cluster stacks
using their weak lensing masses shown in Table 5. We char-
acterise the mass–µ?–redshift relation of these clusters as

〈M |µ?, z〉 = M0

(
µ?

µ0
?

)Fµ? (
1 + z
1 + z0

)Gz

, (38)

where M0, Fµ? and Gz are the free parameters of our model

with pivot values µ0
? = 5.16 × 1012M� and z0 = 0.35. We

model the likelihood for our model as

lnL(Mobs | M0, Fµ?,Gz ) ∝ −
1
2
(∆M)T C−1

M (∆M) , (39)

where ∆M = M − 〈M |µ?, z〉. Here, the mass M is the value
after unblinding and applying the correction in Equation 37.

CM is the covariance matrix between the mass bins obtained
following Section 6.2 of McClintock, T. and Varga, T. N.
et al. (2019).

Briefly, to construct the mass covariance, we combine
the errors in the mass obtained by performing the profile-
fitting in three configurations: i) our fiducial run called Full,
where we vary all the 5 parameters of our lensing likelihood
using the priors in Table 3, and for which the posteriors
are reported in Table 5; ii) FixAm, where the shear+photo-z
parameter Am is fixed to 1 and the other four parameters
are free; iii) OnlyM, where the only free parameter is the
mass. We do not report the posteriors for FixAm or OnlyM

configurations.
Besides being used for constructing the full mass co-

variance, we can perform the mass calibration for each of
these configurations and use the estimated uncertainties in
each parameter to determine the statistical and systematic
uncertainties in our final mass calibration. The statistical
error is computed by the difference in the variance of the
parameters obtained with the masses from Full and FixAm

configurations. The systematic uncertainties are obtained by
the difference in the parameter’s variance between the Full

and OnlyM.
Our final mass calibration is performed using the masses

from our fiducial Full configuration together with the mass
covariance described in this section. The posteriors of the
fitted parameters are summarised in Table 6. The corre-
sponding confidence contours are shown in Figure 9. This
result shows that a galaxy cluster with µ? = 5.16 × 1012 M�
at z = 0.35 has a mean mass of log10 M200c = 14.06 ± 0.03.

For a direct comparison with our previous work (Pereira
et al. 2018), we show in Figure 10 our estimated M200m–µ?–z
relation (blue, grey and red solid lines) and the correspond-
ing 1σ confidence intervals (blue, grey and red shaded re-
gions) for redMaPPer clusters in DES Y1 overlapped with
the 2σ confidence intervals (orange shaded regions) for the
mass-calibration of CS82’s redMaPPer clusters.

5 RESULTS

We perform a weak lensing mass calibration of the total
stellar-mass based mass proxy µ? using DES Y1 redMaPPer
clusters. We divide our sample in 12 stacks binned by red-
shift and µ? in the range 0.1 ≤ z < 0.65, µ? < 5.5× 1013 M�,
using the sample with λ > 20. Therefore, we use the same
redMaPPer-selected cluster sample as in McClintock, T. and
Varga, T. N. et al. (2019), but compute µ? for each of
the identified clusters and perform the weak-lensing anal-
ysis binning in this new proxy.

We model the weak lensing signal by taking into ac-
count: cluster miscentring (Section 3.3.1); model calibration
systematics (Section 3.5); source sample dilution by clus-
ter members (Section 3.3.2); shear measurement system-
atics and source photometric redshift uncertainties (Sec-
tion 3.3.3, Section 3.3.4); triaxiality and projection effects
(Section 3.3.5). We perform the modelling of the weak lens-
ing signal and apply a blinding factor in the derived posterior
of the masses to avoid confirmation bias in our estimates.

We performed the unblinding after reaching the final
version of our modelling pipeline �, which was validated by
an internal review from members of the DES collaboration
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Table 5. Best-fitting results for redMaPPer clusters in Figure 3. In the fitting, we use a concentration-mass relation from Diemer & Joyce
(2019) to fix c200c and we also fix the width of miscentring distribution as σoff = 0.133h−1 Mpc. Our final model has five free parameters,

the mass M200c, the fraction of clusters that is correctly centred pcc, the shear+photo-z bias Am and the boost-factor parameters B0 and

Rs. The weak lensing and boost-factor profiles were fitted simultaneously, but each cluster subset is fitted independently of each other.
We note that the posteriors of pcc is dominated by the priors and one could say that the measurement is non-informative. However, since

we are using the values determined by a previous measurement of the corrected centred redMaPPer cluster in comparison to a X-ray

sample (Zhang et al. 2019a, von der Linden et al., in preparation), we believe that it is reasonable to assume that the used informative
prior in pcc will not bias the recovered masses. For convenience, we also present here the estimated masses converted to the definition

M200m by using the Colossus code.

µ? [1012M�] z M200c [1014 h−1M�] M200m [1014 h−1M�] pcc Am B0 Rs [Mpc]

[0.0; 3.3)

[0.1; 0.33)

0.70 ± 0.06 0.90 ± 0.08 0.73 ± 0.08 1.019 ± 0.024 0.59 ± 0.21 0.20 ± 0.06
[3.3; 5.0) 1.18 ± 0.11 1.52 ± 0.14 0.72 ± 0.08 1.017 ± 0.023 0.36 ± 0.11 0.61 ± 0.18
[5.0; 7.5) 1.38 ± 0.12 1.77 ± 0.15 0.69 ± 0.08 1.016 ± 0.024 0.40 ± 0.08 0.63 ± 0.13
[7.5; 60.0) 2.46 ± 0.16 3.16 ± 0.20 0.64 ± 0.07 1.009 ± 0.024 0.24 ± 0.03 1.21 ± 0.16

[0.0; 4.04)

[0.33; 0.5)

0.81 ± 0.09 0.98 ± 0.11 0.77 ± 0.08 1.015 ± 0.023 0.33 ± 0.25 0.02 ± 0.02
[0.04; 5.65) 0.89 ± 0.10 1.07 ± 0.12 0.76 ± 0.08 1.015 ± 0.023 0.26 ± 0.20 0.14 ± 0.09
[5.65; 8.05) 1.34 ± 0.12 1.64 ± 0.14 0.69 ± 0.07 1.011 ± 0.023 0.21 ± 0.09 0.27 ± 0.09
[8.05; 60.0) 2.24 ± 0.14 2.73 ± 0.17 0.74 ± 0.07 1.012 ± 0.023 0.07 ± 0.02 0.86 ± 0.23

[0.0; 3.88)

[0.5; 0.65)

0.66 ± 0.12 0.77 ± 0.14 0.75 ± 0.08 1.015 ± 0.025 0.33 ± 0.25 0.03 ± 0.02
[3.88; 5.42) 0.83 ± 0.12 0.97 ± 0.14 0.74 ± 0.08 1.016 ± 0.025 0.26 ± 0.22 0.12 ± 0.09
[5.42; 7.68) 1.09 ± 0.14 1.28 ± 0.16 0.74 ± 0.08 1.016 ± 0.025 0.09 ± 0.10 0.33 ± 0.25
[7.68; 60.0) 1.91 ± 0.17 2.24 ± 0.19 0.73 ± 0.08 1.014 ± 0.025 0.29 ± 0.15 0.16 ± 0.05

Table 6. Parameters of the M–µ?–z relation from Equation 39

with their posteriors. The mass is defined as M200c in units of

h−1M�. The pivot µ? and pivot redshift correspond to the median
values of the cluster sample. Flat priors are specified with limits

in square brackets. Uncertainties are the 1σ confidence intervals

and are split into statistical (first) and systematic (second). The
posterior of M0 is in units of h−1M�.

Parameter Description Prior Posterior

M0 Mass pivot [1011, 1018] 1.14 ± 0.05 ± 0.05
Fµ? Mass proxy scaling [-10, 10] 0.76 ± 0.01 ± 0.06
Gz Redshift scaling [-10, 10] −1.14 ± 0.04 ± 0.38

prior to unblinding. No changes to the analysis and mod-
elling pipeline were made post-unblinding.

We use the derived average masses to determine the
cluster mass calibration of M200c as a function of µ? and
redshift according to Equation 38. The summary of our
constraints on the scaling relation for clusters at pivots
µ0
? = 5.16× 1012 M� and z0 = 0.35 is a mean cluster mass of

M0 = [1.14 ± 0.05 ± 0.05] · 1014 h−1M�, (40)

with the slope Fµ? for the mass-proxy’s term of

Fµ? = 0.76 ± 0.01 ± 0.06, (41)

and the slope Gz for the redshift’s term of

Gz = −1.14 ± 0.04 ± 0.38, (42)

where the first and second terms in the errors correspond to
statistical and systematic, respectively.

6 DISCUSSION

Here we present a detailed discussion of the relationship be-
tween µ? and λ to check the impact on the MOR of our
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Figure 9. Parameters of the M200c–µ?–z relation. Contours show
the 1σ, 2σ and 3σ confidence areas from the fiducial FULL run.

At the top label, we show the 1σ total uncertainties. For easy

comparison with other results in the literature we are plotting
log10 M0 converted from M0, in which we performed the fit.

λ-selected sample binned in µ?. We also discuss our find-
ings in the context of our previous work and present some
possible ways to use µ? for applications in cluster cosmology.
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Figure 10. The mass calibration in three redshift bins for the
mass definition M200m in units of h−1 M�. The solid lines are the

result of our best-fit with the corresponding 1σ confidence inter-

vals as shaded regions. For comparison, we also present the 2σ
confidence intervals of the previous mass-calibration of Pereira

et al. (2018) as the orange shaded region.

6.1 The relationship between λ and µ? and
implications for the slope Fµ?

In this section, we describe how to build a model for the
relationship between λ and µ? from simulations to check for
potential selection effects. We start with a dark matter halo
catalogue from a simulation of sufficient scale to contain rare
massive halos. As our work uses a λ ≥ 20 catalogue to bin
in µ?, we will need to assign each halo µ? and λ.

Following Rozo et al. (2014), Evrard et al. (2014), Simet
et al. (2017) and Oguri et al. (2018), we assume the relation-
ship of mass and an observable s follows a power-law form.
For λ, this 〈log M |s〉 is

〈log M |λ〉 = a log
(
λ

40

)
+ b , (43)

where from McClintock, T. and Varga, T. N. et al. (2019)
we have a = 1.36 ± 0.05, b = 14.49 ± 0.02 (we will assume
redshift evolution is zero), and from Farahi et al. (2019) we
have σlog M |λ = 0.13. For µ?, the relation is

〈log M |µ?〉 = a log
(

µ?

5.2 × 1012

)
+ b , (44)

where from this paper we have a = 0.77±0.06, b = 14.30±0.02,
and by converting the scatter from Palmese et al. (2020) to
logarithmic base 10, we have that σlog M |µ? = 0.11. Note
that we have made the proper conversions of these results
to work with masses from simulations that are in units of
M200m[M�].

To assign properties to our dark matter halos we will
need p(log s|M), where s is our vector of observables, i. e.
s = {λ, µ?}. Following Evrard et al. (2014) and Oguri et al.
(2018), through the Bayes theorem p(log M |s) can be con-
verted to p(log s|M) by

p(log s|M) = p(log M |s)p(log s)∫
d(log s)p(log M |s)p(log s)

. (45)

Using the locally power-law model of Rozo et al. (2014) and
Evrard et al. (2014), we find that this has a log-normal dis-
tribution with mean

〈log s|M〉 =
[
αTC−1(µ − π) − β ln (10)

]
σ2

log s |M, (46)

and variance

σ2
log s |M =

(
αTC−1α

)−1
, (47)

where α = {aλ, aµ? }, µ = log M, π = {bλ, bµ? } and β is the
slope of the observable’s function. For λ this is p(log λ) ∝ λ−β .
Working iteratively, we find that βλ = 3.5 and βµ? = 1.67
for mocks near thresholds of interest. The elements of the
covariance matrix C are computed by Ci j = ri jσiσj , where r
is the correlation coefficient between λ and µ?. The scatters
σ are given by the components {σlogλ |M, σlogµ? |M }.

We took the halo catalogue from the DES Buzzard sim-
ulation v1.9.2 (DeRose et al. 2019), selecting a total of 16,000
square degrees. We paint on the observables accounting for
the correlation between them: to a given halo, each observ-
able s has a property computed via Equation 46 with a ran-
dom normal deviation given by Equation 47.

The mock catalogue is used to construct observable
vectors that may be compared against data or simula-
tions. To verify whether our observable vectors are reliable
we can check: i) the observed p(λ |µ?) and ii) the fraction
p(log µ? − M | log M). We will start with the latter. The stel-
lar mass in clusters is known to be a few per cent of the
halo dark matter mass. In the simulations studied by Farahi
et al. (2018), Figure 3 shows a p(log M?−M | log M) that goes
from 2 to 1 per cent over the mass range of interest. We note
here that in their work they use the stellar mass M? and not
µ?, but since we derived µ? from stellar mass, we expect to
recover similar values for the stellar fraction computed with
µ?, i. e. p(log µ?−M | log M). Using Equation 46, we can paint
stellar masses on top of dark matter halos. In order to recre-
ate a physical behaviour for the p(log µ?−M | log M) relation
of halos with log M/M� ≈ 14.30, the value for the slope needs
to be between Fµ? ≈ 0.75 and 1. We checked that values of
Fµ? lower than this (e.g. ∼ 0.5) start to deviate from what
is known about the cluster stellar fractions.

A mock catalogue generated using values for the pivot
mass and the mass proxy scaling for µ? that recreates the
cluster stellar fractions in the simulations of Farahi et al.
(2018) and the scaling relation of McClintock, T. and Varga,
T. N. et al. (2019) for λ, then reproduces the observed
p(λ |µ?) relation in the log-space, that is

log λ = (−5.06 ± 0.17) + (0.52 ± 0.01) log µ?, (48)

with intrinsic scatter of σλ |µ? = 0.16. For the mocks, per-
forming a simple linear fit with Python Polyfit, we obtained
a relation that is log λ = (−6.42±0.02)+ (0.626±0.002) log µ?,
with scatter of σλ |µ? = 0.08. Therefore, when using the fit-
ted intrinsic scatter σλ |µ? as the 1σ uncertainty of the mean
relation, the derived observed and simulated relations are in
good agreement.

Having produced acceptable mocks we can explore the
question of the effect of selecting on λ > 20 on the slope of
the 〈log M |µ?, z〉 relation measured by weak lensing having
stacked in µ?.

In order to do this, we divided the halos in 3 bins of
z [0.1 − 0.33, 0.33 − 0.5, 0.5 − 0.65] and 4 of µ? [0.5 − 3, 3 −
5, 5−10, 10−100]×1012M� for samples that have cuts of λ ≥
[0, 10, 20]. We took the average values of M, µ? and z in these
bins and then performed an MCMC fit in the same form we
did in real data. We found that the slope between the lowest
and second λ-cut is basically unaffected, changing by ∼ 2 per
cent. The slope between the second and third λ-cut changed
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by ∼ 7 per cent. Considering the error bars from the MCMC,
we can see that this change in the slope is not too significant.
In summary, we believe that selecting on one observable and
binning on another should have an effect (e. g. changes in the
slope), but looking into simulations that reliably reproduce
our observables, we find that there was no significant change
in the slope when we mimic this selection. Therefore, we do
not believe there is a significant signal of this selection effect
in our results. Second, for plausible stellar mass fractions,
i. e. p(log µ? − M | log M) relations, one expects power-law
relations for 〈log M |µ?〉 to have exponents between 0.75 and
1, which is consistent with the slope of 0.77 that we found
in our data.

6.2 The redshift evolution of the M–µ?–z relation

The M–µ?–z relation presented in the Section 5 shows a
marginal dependence on redshift. Gz is in fact 3σ away from
the Gz = 0 case. However, as can be noted from Figure 10,
there is a 0.1 − 0.2 dex difference in µ? at fixed M200m be-
tween the lowest and highest redshift bin. This number is
consistent with the typical intrinsic scatter in stellar mass
at fixed halo mass (e.g. Pillepich et al. 2018), implying that
the found redshift evolution is not significant. The stellar
mass functions in DES galaxy clusters studied in Palmese
& DES Collaboration (2020) also find no significant redshift
evolution, using the same stellar masses.

Given the current uncertainties, the simple redshift evo-
lution model used in this work is appropriate, but for fu-
ture analyses with DES clusters including larger statistics,
a more sophisticated model shall be tested. In fact, Farahi
et al. (2018) showed that the slope and scatter in the stel-
lar mass–halo mass relation show some evidence for running
with z, although this is not as strong of an effect as the one
found for the gas fraction.

When comparing our result to the literature, one should
also note that intra-cluster light (ICL) is not taken into ac-
count in this work, since simulation studies will often include
the diffuse component when quoting the total stellar mass.
The ICL can constitute a significant fraction of the total
stellar mass (up to 40 per cent, e.g. Pillepich et al. 2018 and
Zhang et al. 2019b), and it has been shown to build up since
z ∼ 1 (e.g. Burke et al. 2015).

6.3 Comparison with previous work and
considerations about selection effects

The comparison of the result obtained in this work with
a previous calibration of µ? at low redshifts is tricky, be-
cause there we used a different cluster sample identified by
redMaPPer and Voronoi-Tessellation (VT) cluster finders in
the SDSS Stripe 82 region, and we assumed a MOR without
redshift evolution. For SDSS redMaPPer clusters, we found
a slope for the mass proxy of 1.74±0.62, which is compatible
at ∼ 2σ with our present result.

It is known that at z < 0.1, nearly all cluster mem-
bers are red (e.g. Aguerri et al. 2007). However, at higher
redshifts (z > 0.1), the number of blue galaxies is observed
to increase and the number of red members is observed to
decrease (e.g. Butcher & Oemler 1984; Rakos & Schombert
1995; Gerke et al. 2007; Nishizawa et al. 2018). Furthermore,

at low z almost all galaxies more massive than 1010.3 M�
are red, and this corresponds roughly to the 0.4 L? lumi-
nosity threshold of redMaPPer. Thus, at low z, λ and µ?
red-sequence selected samples should have, approximately,
the same number of total members and the same stellar
mass. At higher z, richness and stellar mass are expected
to evolve differently. We believe that this effect is related to
the evidence for redshift evolution in our MOR results (as
the redshift slope Gz is not consistent with zero, see section
6.2) that is not observed in McClintock, T. and Varga, T. N.
et al. (2019). In fact, previous works (e.g. Farahi et al. 2018)
have found evidence that the stellar mass content of clusters
may evolve with redshift.

We have checked that the potential selection effect on
〈M |µ?, z〉 introduced by the fact that the cluster sample has
been selected with a cut in richness at λ > 20 is subdomi-
nant for our results (see Section 6.1). In fact, in the absence
of scatter between λ and µ?, selecting in λ or in µ? would
have the same meaning. However, Palmese & DES Collabo-
ration (2020) find that the scatter in µ? at fixed richness is
σµ? |λ ∼ 0.25 dex for the λ > 5 sample, result which is largely
dominated by the scatter at the low-richness end (λ < 20).
The largest impact of this scatter on our result is expected to
be at the lowest µ? binning, where some clusters may have
scattered to λ < 20. We tested the impact of this effect by
removing from our fit the lowest µ? binning, and found no
significant change in our parameter estimates of the MOR.

With this work, we complete the program of establish-
ing µ? as a reliable mass proxy in the same regime as the
λ-based mass calibration work by the DES collaboration,
opening the possibility of exploring the novel regimes of low
mass–low z and high mass–high z in a forthcoming paper.

6.4 Possible implications for cluster cosmology

Since there is a tight connection between galaxy masses and
halo masses (e.g. Conroy & Wechsler 2009; Behroozi et al.
2010; Coupon et al. 2015; Shan et al. 2017; Niemiec et al.
2017; Wechsler & Tinker 2018; Huang et al. 2020; Palmese
& DES Collaboration 2020), stellar-mass based mass proxies
such as µ? show great potential to be accurate halo mass
estimators in photometric galaxy surveys. They can be used
to probe galaxy evolution and can also help to improve the
constraints on cosmological parameters.

In the review by Wechsler & Tinker (2018), they present
a series of application for the galaxy-halo connection in cos-
mology, e. g. systematics in cluster cosmology, the impact
of baryons and galaxy clustering at small scales. For clus-
ter cosmology, in particular, several studies have shown that
projection effects have a non-negligible impact on the mass-
richness relationship (Wojtak et al. 2018; Costanzi, M. and
Rozo, E. et al. 2019; Murata et al. 2019; Sunayama et al.
2020), most likely due to a dependence on the details of the
galaxy-halo connection, such as the colour dependence of the
cluster members. Since µ? is a colour-independent proxy and
has a well-defined physical interpretation, we believe it has
the potential to contribute in the understanding of the pro-
jection effects in the cluster cosmology context. In a future
work, we plan to perform a comparison of projection effects
between µ? and λ, using the new version of the DES Buz-
zard simulation (DeRose et al. 2019) that has stellar-mass
information.
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7 SUMMARY

We have measured the stacked weak lensing signal around
6,124 clusters in the DES Y1 redMaPPer catalogue with
λ > 20 and 0.1 ≤ z < 0.65. We have computed the stellar-
mass based proxy µ? for these clusters and performed the
lensing measurements in bins of µ? and z. In the mass mod-
elling, we have accounted for several systematics including
cluster miscentring, model calibration, boost-factors, shear
and photo-z bias, triaxiality and projection effects.

Then, we use the fitted weak-lensing mass to perform
the mass calibration of this sample. We find a mass–µ?–z
relation of

〈M200c |µ?, z〉 =1.14 ± 0.05 stat. ± 0.05 sys. · 1014

×
(

µ?

5.16 × 1012M�

)0.76±0.01 stat.±0.06 sys.

×
(

1 + z
1.35

)−1.14±0.04 stat.±0.38 sys.
,

(49)

in units of h−1M� . This scaling relation is consistent within
2σ with previous µ? measurements using the SDSS redMaP-
Per clusters and lensing data from CS82 survey (Pereira
et al. 2018).

We have used mock catalogues from DES Buzzard simu-
lations to check for a signal of selection effects since we have
a λ–selected sample binned in µ?, but we found that such
signal is negligible. We also concluded that if such an effect
is present, we should have seen a considerable change in the
slope due to the lowest µ? bin in comparison to the other
bins. We test this hypothesis in the data by removing the
lowest bin of µ? and performing the mass-calibration again.
We found no significant change in the slope of our relation.
Therefore, we conclude that our analysis is not significantly
affected by this selection effect. However, we understand that
further work to properly quantify this selection effect is nec-
essary. We also show from these mocks that shallower slopes
in the mass proxy term are possible for stellar-mass based
proxies.

We found evidence for redshift evolution in our scaling
relation. However, the difference in µ? at fixed halo mass
between the lowest and highest redshift bin is ∼ 0.1−0.2 dex,
which is consistent with intrinsic scatter in stellar mass at
fixed halo mass, and this implies that the redshift evolution
we found might not be significant.

This work provides the most careful weak-lensing mass
calibration of µ? to date. It is an important step towards
establishing µ? as a reliable mass proxy not only for study-
ing systematics such as projection effects and low richness
clusters but also for future applications in cluster cosmology.
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de Janeiro, Conselho Nacional de Desenvolvimento Cient́ı-
fico e Tecnológico and the Ministério da Ciência, Tecnologia
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Beńıtez N., 2000, ApJ, 536, 571

Bradshaw C., Leauthaud A., Hearin A., Huang S., Behroozi P.,

2020, MNRAS, 493, 337

Brammer G. B., et al., 2009, ApJ, 706, L173

Burke C., Hilton M., Collins C., 2015, MNRAS, 449, 2353

Butcher H., Oemler Jr. A., 1984, ApJ, 285, 426

Carlstrom J. E., et al., 2011, Publications of the Astronomical
Society of the Pacific, 123, 568

Cecchi R., Bolzonella M., Cimatti A., Girelli G., 2019, ApJ, 880,
L14

Chauke P., et al., 2019, ApJ, 877, 48
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25 Laboratório Interinstitucional de e-Astronomia - LIneA,
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