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Abstract

The gradient-flow operator product expansion for QCD current correlators includ-
ing operators up to mass dimension four is calculated through NNLO. This paves an
alternative way for efficient lattice evaluations of hadronic vacuum polarization func-
tions. In addition, flow-time evolution equations for flowed composite operators are
derived. Their explicit form for the non-trivial dimension-four operators of QCD is
given through order α3

s.
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1 Introduction

The vacuum polarization functions (VPFs) for (axial-)vector and (pseudo-)scalar particles
are among the most important objects when studying QCD. On the one hand, this is
because their imaginary part is directly related to physical observables such as the decay
rates of the Z- or the Higgs boson, or the hadronic R-ratio. Since the characteristic
energy scale of these quantities is far above the QCD scale, a perturbative evaluation of
the polarization functions is sufficient in these cases to arrive at high-precision results (see,
e.g., Ref. [1]).

But VPFs also contribute indirectly to physical observables such as anomalous magnetic
moments [2,3], the definition of short-distance quark masses [4], or hadronic contributions
to the QED coupling [5, 6]. These applications involve an integration of the VPFs over
the non-perturbative regime, which is typically achieved with the help of experimental
data and dispersion relations. Only very recently, first-principle lattice calculations have
become competitive with these dispersive approaches. In the case of the hadronic vacuum
polarization contribution to the muon’s anomalous magnetic moment, the two approaches
turn out to lead to incompatible results [7]1. It would therefore be highly desirable to
have additional independent first-principle calculations of the VPF.

About ten years ago, the gradient-flow formalism (GFF) was suggested as a mechanism to
improve the efficiency of lattice calculations [10–12] (see also Refs. [13, 14]). Since then,
it has become a standard for the scale-setting procedure [15, 16]. However, also other
applications of the GFF have been studied, among them a new way to determine the
energy-momentum tensor on the lattice. The underlying idea in this case is the small-
flow-time expansion of composite operators [11], leading to the flowed Operator Product
Expansion (OPE) (also named smeared OPE in Ref. [17,18]), where the regular operators
are replaced by operators taken at finite flow time. Its main advantages with respect
to (w.r.t.) the regular OPE is the absence of operator mixing, and the improved efficiency
of the evaluation of operator matrix elements. The translation of the regular to the flowed
operators can be done perturbatively. For the energy-momentum tensor, it is available
through next-to-next-to-leading order (NNLO) [19–21]. Quite recently, the small-flow-time
expansion was applied at next-to-leading order (NLO) to CP-violating operators [22], and
to four-quark operators [23].

In this paper, we present the flowed OPE for the time-ordered product of two currents
through NNLO QCD. Taking the vacuum expectation value (VEV) leads to the VPF. This
should thus allow for an alternative first-principle evaluation of VPFs on the lattice. In
addition, we derive a general logarithmic flow-time evolution equation for flowed operators
which resembles the renormalization group (RG) equation of regular operators.

The remainder of this paper is organized as follows. Section 2 introduces the regular
OPE of current correlators with operators up to mass dimension four. This includes the
renormalization of these operators as well as an overview of the literature which provides
the corresponding perturbative Wilson coefficients. (The coefficients for the dimension-
four operators for various currents are reproduced in Appendix B.) The transition to the

1The lattice calculation of the light-by-light contribution to (g − 2)µ is in agreement with other deter-
minations though [8, 9].
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flowed OPE is presented in Sect. 3. Section 4 describes the calculation of the mixing matrix
between regular and flowed operators in the small-flow-time limit. While a large part
of this mixing matrix is already known [21] and recollected in Appendix C, the missing
components require higher order mass terms of the VEV of the flowed dimension-four
operators and their renormalization with the help of the vacuum-energy renormalization
constant. These results complete the ingredients required for the flowed OPE of the VPF

through NNLO. In Sect. 5, we derive a logarithmic evolution equation from the generic
flow-time dependence of the mixing matrix. Section 6 presents our conclusions and gives
a short outlook on possible extensions of this work.

2 Current-current correlators

Our results are presented for a general non-Abelian gauge theory based on a simple com-
pact Lie group with nf quark fields ψ1, . . . , ψnf

in the fundamental representation, of which
the first nh are degenerate with mass m, while the remaining nl are massless. The gen-
erators T a of the fundamental representation are normalized as Tr(T aT b) = −TRδab, and
the structure constants fabc are defined through the Lie algebra [T a, T b] = fabcT c. The
dimensions of the fundamental and the adoint representation are nc and nA, respectively,
and their quadratic Casimir eigenvalues are denoted by CF and CA. For SU(N), it is

nc = N , nA = N2 − 1 , CF = TR
N2 − 1

N
, CA = N , (1)

and QCD is recovered for TR = 1/2 and N = 3, i.e. CF = 4/3 and CA = 3. For brevity,
we often use “QCD” also to refer to the more general gauge theory in the following.

2.1 Operator product expansion

The role of the perturbative and the non-perturbative regime of VPFs can be made most
explicit through the OPE (see, e.g., Ref. [24]):

T (Q) ≡
∫

d4x eiQx〈Tj(x)j(0)〉 Q
2→∞∼

∑
d,n

C(d),B
n (Q)〈O(d)

n (x = 0)〉 , (2)

where j(x) generically stands for a scalar, pseudo-scalar, vector, axial-vector, or tensor
current. Fig. 1 shows sample Feynman diagrams which arise from the perturbative evalu-
ation of the current correlator in Eq. (2). In the following, we only consider the so-called
non-singlet diagrams, where the currents are connected by a common quark line. An
example for a singlet-diagram, on the other hand, is shown in Fig. 1 (e).

The coefficients C
(d),B
n on the right-hand side of Eq. (2) depend on the quantum numbers

of the current and may thus carry Lorentz indices. Apart from the explicit results for
specific currents in Appendix B, we suppress these indices throughout the paper. We
furthermore assume that, upon transition from the left- to the right-hand side, possible
global divergences are subtracted off of T (Q).
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(a) (b)

(c) (d) (e)

Figure 1: Sample diagrams contributing to the perturbative calculation of the
VPF, i.e., the left-hand side of Eq. (2). The currents are symbolized by wavy lines,
gluons by spirals. We consider the case where nl quarks are massless (thin straight
lines), and nh quarks are degenerate with mass m (thick straight lines). (a) One-
loop contribution for non-diagonal currents; (b-e) sample three-loop diagrams
for diagonal currents. In (d), the currents couple to massless quarks. (e) is a
“singlet” diagram. All diagrams in this paper were produced with the help of
FeynGame [25].

Up to mass dimension two, the only operators of QCD which contribute to physical matrix
elements are proportional to unity, i.e.,

O
(0)
1 ≡ O(0) = 1 , O

(2)
1 ≡ O(2) = m2

B 1 , (3)

where mB is the bare mass of the nh degenerate massive quarks. This means that

C
(0)
1 ≡ C(0) ≡ C(0),B , C

(2)
1 ≡ C(2) ≡ Z2

mC
(2),B (4)

are ultra-violet (UV)-finite, where Zm is the renormalization constant of the quark mass
defined in Appendix A.

At mass dimension four, we choose the following basis of operators (the space-time argu-
ment is suppressed in most of what follows):

O
(4)
1 ≡ O1 =

1

g2B
F aµνF

a
µν ,

O
(4)
2 ≡ O2 =

nf∑
q=1

ψ̄q
←→
/D ψq ,

O
(4)
3 ≡ O3 = m4

B ,

(5)

where

F aµν = ∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν ,

←→
Dµ = ∂µ −

←−
∂ µ + 2AaµT

a , (6)
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with the regular (as opposed to “flowed”, see Sect. 3) quark and gluon fields ψq(x) and
Aaµ(x), respectively, and the bare coupling gB.

We employ Euclidean space-time, but translation of the intermediate formulas and the
final results to Minkowski space is possible without difficulty. Working in

d = 4− 2ε (7)

space-time dimensions, the mass dimensions of O1 and O2 are actually equal to d, while
that of O3 is equal to 4. Higher dimensional operators are neglected in the following.

The set in Eq. (5) does not contain gauge dependent operators, or operators that vanish
due to the equations of motion when acting on physical states, since they are irrelevant
for the scope of this paper. In fact, in this respect the upper limit of the sum over q in
O2 could be replaced by nh, because the terms with massless quarks vanish on-shell. For
the same reason, one could use O′2 ≡ −2mB

∑nh
q=1 ψ̄qψq instead of O2 in the definition

of the operator basis (5). Other choices are possible as well, but the basis in Eq. (5) is
particularly suitable for our purposes, because it is most directly related to the operator
basis used in Refs. [20, 21,26].

Matrix elements of the dimension-four operators are divergent in general. However, one
may define “renormalized operators” OR

n as linear combinations among them, for which
physical matrix elements become finite:

OR
n =

∑
k

Znk Ok . (8)

Analogously, one defines renormalized coefficient functions through the condition∑
n

CB
nOn

!
=
∑
n

CnO
R
n ⇒ Cn =

∑
m

CB
m(Z−1)mn , (9)

where CB
n ≡ C

(4),B
n , cf. Eqs. (2) and (5). It is well known that, since the operators of

Eq. (5) are part of the QCD Lagrangian, the renormalization matrix Z can be expressed
in terms of the anomalous dimensions of QCD [27, 28]:

Z =

(
Z2×2 ~Z3

~0T Z−4m

)
, where Z2×2 =

(
−ε/βε −2γm/βε

0 1

)
,

~Z3 = 4µ̂−2εZ−4m

as ∂

∂as
Z0

2Z0

 , µ̂ ≡ µ√
4π
eγE/2 .

(10)

The ’t Hooft mass µ ensures that each renormalized operator OR
n in Eq. (8) has the same

mass dimension as the corresponding bare one, and µ̂ appears because we will adopt the
MS scheme by default (γE = −Γ′(1) = 0.577216 . . .). We also introduced the quantity
as = αs/π = g2/(4π2) here, where g is the renormalized strong coupling in the MS

scheme. Z0 is the MS renormalization constant for the vacuum energy [28]. It is given in
Appendix A, together with the anomalous quark mass dimension γm and the d-dimensional
beta function βε.
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2.2 Coefficient functions

The OPE form of the current correlators is usually inconvenient for their perturbative
evaluation. Instead, one rather evaluates the l.h.s. of Eq. (2) directly by calculating the
relevant two-point functions to the appropriate order. The exact analytical result for
general quark masses is known at the two-loop level [29–32], while higher orders up to the
four-loop level have been reconstructed by combining various kinematical limits [33–43],
or through integral reduction [44–46] and subsequent numerical evaluation of the resulting
master integrals [47].

Since the dimension-zero and -two operators in Eq. (2) are proportional to unity, the
coefficients C(0) and C(2) are immediately determined from the small-mass expansion of
these perturbative results for the VPF. They are thus known up to the four-loop level at
the moment [48–52].2

The Wilson coefficients Cn of the dimension-four operators, on the other hand, require a
dedicated calculation which keeps track of the contributions from the individual operators.
This has been done throughO(a3s) for C1 and C2, and throughO(a2s) for C3 in Refs. [57–60].
For the purpose of this paper, only the O(a2s) results are required. For completeness, we
include them in Appendix B.

3 Flowed operator product expansion

Having introduced the setup in the “regular” theory, we now translate this to the flowed
OPE for the current correlators.

3.1 Flowed operators

We introduce the flowed operators as

Õ1(t, x) =
Zs
g2B

Gaµν(t, x)Gaµν(t, x) =
µ̂−2ε

g2
Gaµν(t, x)Gaµν(t, x) ,

Õ2(t, x) = Z̊χ

nf∑
q=1

χ̄q(t, x)
←→
/D (t, x)χq(t, x) ,

Õ3(t, x) = m4 ,

(11)

where

←→
Dµ = Dµ −

←−
Dµ , Dµ = ∂µ +Ba

µT
a ,

←−
Dµ =

←−
∂ µ −Ba

µT
a . (12)

2The imaginary parts of the VPFs are known even at the five-loop level in the phenomenologically most
relevant cases [53–56].
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The flowed gauge and quark fields Ba
µ = Ba

µ(x, t) and χq = χq(x, t) obey the equations
[10,12]

∂tB
a
µ = Dabν Gbνµ + κDabµ ∂νBb

ν ,

∂tχq = ∆χq − κ∂µBa
µT

aχq ,

∂tχ̄q = χ̄q
←−
∆ + κχ̄q∂µB

a
µT

a ,

(13)

with the initial conditions

Ba
µ(t = 0, x) = Aaµ(x) , χq(t = 0, x) = ψq(x) , q ∈ {1, . . . nf} . (14)

Here we used the flowed covariant derivative in the adjoint representation,

Dabµ = δab∂µ − fabcBc
µ , (15)

and the flowed Laplace operators

∆ = DµDµ ,
←−
∆ =

←−
Dµ
←−
Dµ , (16)

where the flowed covariant derivatives in the fundamental representation are given in
Eq. (12).

Z̊χ is the non-minimal renormalization constant for the flowed quark fields χq, defined by
the all-order condition [20]

〈Õ2(t)〉
∣∣∣∣
m=0

≡ − 2ncnf
(4πt)2

, (17)

where 〈·〉 denotes the VEV. It reads

Z̊χ = ζχ Zχ , (18)

where Zχ is the MS part,

Zχ = 1 + as
γχ,0
2ε

+ a2s

[γχ,0
4ε2

(γχ,0
2
− β0

)
+
γχ,1
4ε

]
+O(a3s) , (19)

and

ζχ = 1 + as

(
γχ,0

2
Lµt −

3

4
CF ln 3− CF ln 2

)
+ a2s

{
γχ,0

4

(
β0 +

γχ,0
2

)
L2
µt +

[γχ,1
2
− γχ,0

2

(
β0 +

γχ,0
2

)
ln 3

− 2

3
γχ,0

(
β0 +

γχ,0
2

)
ln 2
]
Lµt +

c
(2)
χ

16

}
+O(a3s) .

(20)

The short-hand notation

Lµt = ln
µ2

µ2t
, µt =

1√
2teγE

(21)
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reflects our choice of the “central” renormalization scale µt [21].

The minimal renormalization constant Zχ is known analytically through NNLO [12, 21],

γχ,0 =
3

2
CF ,

γχ,1 = CF

[
CA

(
223

48
− ln 2

)
− CF

(
3

16
+ ln 2

)
− 11

12
TRnf

]
.

(22)

The finite coefficient in Eq. (20) has been obtained numerically in Ref. [61]:

c(2)χ = CACF cχ,A + C2
F cχ,F + CFTRnf cχ,R , (23)

with3

cχ,A = −23.7947 , cχ,F = 30.3914 ,

cχ,R = −131

18
+

46

3
ζ(2) +

944

9
ln 2 +

160

3
ln2 2− 172

3
ln 3 +

104

3
ln 2 ln 3

− 178

3
ln2 3 +

8

3
Li2(1/9)− 400

3
Li2(1/3) +

112

3
Li2(3/4) = −3.92255 . . . ,

(24)

with Riemann’s zeta function ζ(s) ≡
∑∞

n=1 n
−s and the di-logarithm Li2(z) =

∑∞
k=1 z

k/k2.
The strong coupling renormalization constant Zs in Eq. (11) ensures that matrix elements
of Õ1(t) are finite [10,11]. The reason for keeping track of the non-integer mass dimension
of Õ1(t) is clarified later.

Eq. (24) displays only the first six leading digits in numerical results. Results with higher
accuracy are provided in an ancillary file, which also includes the Lµt terms, see Ap-
pendix D. We expect that these floating point numbers can be considered equivalent to
their exact results for all practical purposes. This is why we often use the numerical values
for the coefficients in what follows, even if the exact result is available.

Similar to the regular operators in Eq. (5), one could trade the flowed operator Õ2(t) for
Õ′2(t) = −2mZ̊χ

∑nf
q=1 χ̄q(t)χq(t). However, in this case the final results to be derived

below would be different, because the equations of motion for the flowed operators relate
Õ′2(t) to both Õ2(t) and Õ1(t) (see Refs. [20, 21]). A transformation of the results in this
paper to Õ′2(t) is straightforward though.

3.2 Small-flow-time expansion

The small-flow-time expansion allows us to relate the QCD operators and coefficients with
the flowed quantities as follows:

Õn(t) = ζ(0)n (t)1 + ζ(2),Bn (t)m2
B1 +

∑
k

ζBnk(t)Ok + . . .

≡ ζ(0)n (t)1 + ζ(2)n (t)m21 +
∑
k

ζnk(t)O
R
k + . . . ,

(25)

3The sign on the r.h.s. of equation (B.3) in Ref. [61] is incorrect.
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where the ellipsis denotes terms that vanish as t→ 0, and

ζ(2)n (t) = ζ(2),Bn (t)Z2
m , ζnk(t) =

∑
l

ζBnl(t)Z
−1
lk (26)

are the renormalized, finite mixing coefficients. Inversion of Eq. (25) gives

OR
n =

∑
k

ζ−1nk (t) Ōk(t) + . . . ,

Ōn(t) ≡ Õn(t)− ζ(0)n (t)1− ζ(2)n (t)m21 ,

(27)

where ζ−1nk is the nk-element of the inverse of the mixing matrix ζ. This lets one define
the “flowed OPE” for the current correlator:

T (Q)
Q2→∞∼ C̃(0)(Q2, t)1 + C̃(2)(Q2, t)m21 +

∑
n

C̃n(Q2, t)Õn(t) + . . . (28)

where the corresponding coefficient functions are related to the regular Wilson coefficients
through

C̃n(Q2, t) =
∑
k

Ck(Q
2)ζ−1kn (t) ,

C̃(0,2)(Q2, t) = C(0,2)(Q2)−
∑
n

C̃n(t, Q2) ζ(0,2)n (t) .
(29)

The regular QCD coefficients C(0) and C(2) are given by the first two terms in m2/Q2

of the large-Q2 expansion of the VPFs. Through the required order, they can be found
in Ref. [49] for diagonal vector- and axial-vector currents, and in Ref. [50] for scalar-
and pseudo-scalar currents, for example. The dimension-four coefficients can be found in
Refs. [57, 60]. For convenience of the reader, they are also collected in Appendix B.

4 Calculation of the mixing matrix

We now determine the mixing matrix ζ in a perturbative calculation through NNLO. By
using the known results for the regular Wilson coefficients given in Appendix B, one can
determine the flowed coefficients to the same order. Together with an evaluation of the
flowed operator matrix elements on the lattice, the VPFs can be extracted and used in the
determination of various physical quantities.

The bare mixing matrix ζB can be determined with the help of the method of projectors:

ζ(0,2),Bn (t) = P (0,2)[Õn(t)] , ζBnk(t) = P
(4)
k [Õn(t)] , (30)

where the action of P (d) is to take suitable derivatives of a specific Green’s function of the
operator such that

P (n)[O(m)] = δnm , P (n)[Ok] = P
(4)
k [O(n)] = 0 , P

(4)
k [Ol] = δkl , (31)

9



for n,m ∈ {0, 2} and k, l ∈ {1, 2, 3}. For details, see Refs. [21,62,63].

Specifically, the projectors onto 1, m2
B1, and OB

3 are given by derivatives of vacuum matrix
elements w.r.t. mB:

ζ(0)n (t) = P (0)[Õn(t)] ≡ 〈Õn(t)〉
∣∣∣
mB=0

,

ζ(2)n (t) = Z2
m P

(2)[Õn(t)] ≡ Z2
m

1

2!

∂2

∂m2
B

〈Õn(t)〉
∣∣∣
mB=0

,

ζBn3(t) = P
(4)
3 [Õn(t)] ≡ 1

4!

∂4

∂m4
B

〈Õn(t)〉
∣∣∣
mB=0

.

(32)

A crucial point is that the derivatives and limits must be taken before loop integration. As
a consequence, even though physical matrix elements of Õn(t) are finite, the projections
can be divergent, and this is why we need to carefully account for a possible non-integer
mass dimension of these operators, see Eq. (11).

We directly obtain

ζB33 =
1

4!

∂4

∂m4
B

m4 = Z−4m , ζ
(0),B
3 = ζ

(2),B
3 = 0 , ζB31 = ζB32 = 0 , (33)

where the third set of equations follows from Õ3(t) = m4 = O3 and the projector property

P
(4)
1 [O3] = P

(4)
2 [O3] = 0, see Eq. (31).

The bare and renormalized mixing matrices for the dimension-four operators thus take
the form

ζB =

(
ζB2×2

~ζ B
3

~0T Z−4m

)
, ζ =

(
ζ2×2 ~ζ3

~0T 1

)
, (34)

where ~0T = (0, 0), and

ζB2×2 =

(
ζB11 ζB12

ζB21 ζB22

)
, ζ2×2 = ζB2×2Z

−1
2×2 ,

~ζ B
3 =

(
ζB13, ζ

B
23

)T
, ~ζ3 = (~ζ B

3 − ζ2×2 ~Z3)Z
4
m .

(35)

ζ2×2 can be obtained from the mixing matrix of the operators occuring in the energy-
momentum tensor and is accordingly known through NNLO [21]. Explicit results are
given in Appendix C.

The coefficient ζ
(0)
n is simply the VEV of Õn(t) for m = 0. For Õ1(t) it has been calculated

through NNLO in Refs. [10, 61,64]:4

ζ
(0)
1 (t) = 〈Õ1(t)〉

∣∣∣∣
m=0

=
3

4π2t2
nA
8

{
1 + ās

[
CA

(
13

9
+

11

6
ln 2− 3

4
ln 3

)
− 2

9
TRnf

]
+ ā2s

[
1.74865C2

A − 1.97283CATRnf

+ 0.306224CFTRnf + 0.121042T 2
Rn

2
f

]}
+O(ā3s) ,

(36)

4The coefficient of the C2
A term in Ref. [61] contains a typo: instead of 27.9786, it should read 27.9784.

10



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Sample diagrams contributing to ζ
(m)
n (m ∈ {0, 2}) and ζn3, for n = 1

(a-d) and n = 2 (e-h). The notation is the same as in Fig. 1; in addition, white
circles denote flow-vertices, and lines with arrows next to them denote flow-lines

(see Ref. [61] for details). Diagrams (a) and (b) only contribute to ζ
(0)
1 .

where ās = as(µt). Due to the RG invariance of asÕ1(t) [10, 11], the result for general
values of the ’t Hooft mass µ can be obtained by multiplying the result given in Eq. (36)
by ās/as, replacing

ās = as

[
1 + asβ0Lµt + a2sLµt

(
β1 + β20Lµt

) ]
+O(a3s) , (37)

and re-expanding in as.

For Õ2, on the other hand, we have Eq. (17) to all orders in perturbation theory by
definition, i.e.

ζ
(0)
2 (t) = 〈Õ2(t)〉

∣∣∣∣
m=0

≡ − 2ncnf
(4πt)2

. (38)

Therefore, the only coefficients that are not yet known through NNLO are

ζ
(2)
1 , ζ

(2)
2 , ζ13 and ζ23 . (39)

According to Eq. (32), they require the calculation of derivatives w.r.t. mB in 〈Õ1(t)〉 and
〈Õ2(t)〉 up to three loops. We achieved this using the setup described in Ref. [61], which
employs qgraf [65,66] and q2e/exp [67,68] for the generation and subsequent categoriza-
tion of the Feynman diagrams, FORM [69,70] for the manipulation of the ensuing algebraic

11



expressions, the color package [71] of FORM for the calculation of the gauge group factors,
and Kira⊕FireFly [72–76] for the Feynman integral reduction using integration-by-parts
identities and the Laporta algorithm [44–46] over finite fields [77–80]. For the evaluation
of the master integrals, we adopt the method described in Ref. [64], which performs sector
decomposition [81] with the help of FIESTA [82,83] in order to extract the UV poles, along
with a fully symmetric integration rule of order 13 for the numerical evaluation of their co-
efficients [84], implemented with high precision arithmetics by using the MPFR library [85].
Some intermediate steps of the calculation are done within Mathematica [86].

Multiplying the result by Z2
m suffices to obtain the renormalized expressions for ζ

(2)
n , and

we find, setting µ = µt,

ζ
(2)
1 (t) =

3nAnh
8π2t

TR ās

[
1 + ās

(
7.43789CA + 2CF −

10

9
TRnf

)]
+O(a3s) , (40a)

ζ
(2)
2 (t) =

ncnh
4π2t

[
1 + āsCF

(
7

4
− 3

4
ln 3

)
+ ā2sCF (2.10889CA + 2.05158CF − 0.268909TRnf)

]
+O(a3s) , (40b)

where again ās = as(µt). Since quark loops appear in 〈Õ1(t)〉 only at the two-loop level,

ζ
(2)
1 (t) starts at O(as). In the case of ζ

(2)
2 (t), the result for general µ can be obtained

through multiplication by

m2(µt)

m2(µ)
= 1 + as γm,0 Lµt + a2s Lµt

[
γm,1 +

1

2

(
β0 γm,0 + γ2m,0

)
Lµt

]
+O(a3s) , (41)

expressing ās by as through Eq. (37), and re-expanding in as. For ζ
(2)
1 (t) one needs to

multiply by Eq. (41), and in addition by ās/as.

ζ13 and ζ23 require the more sophisticated renormalization given in Eq. (35). It is important
here to work consistently in d space-time dimensions. Since ~Z3 contains a 1/ε pole already
at O(a0s), we need to keep the O(ε2) terms of ζ2×2 at NLO, and the O(ε) terms at NNLO.
They were not required in the calculation of Ref. [21], so we recalculated ζ2×2, keeping
these higher terms in ε. Using the identity nATR = ncCF [71], our final result for ~ζ3 reads:

ζ13(t) =
nhncCF

16π2
as

{
5− 6 ζ(2)− 6Lµt − 6L2

µt

+ as

[
− 3.31445CA − 27.5707CF − 15.0886TRnh + 19.5780TRnl

+ Lµt

(
− 5.68293CA − 32.7594CF − 4.17386TRnh + 19.8261TRnl

)
+ L2

µt

(
− 433

12
CA −

33

2
CF +

26

3
TRnf

)
+ L3

µt

(
− 22

3
CA − 6CF +

8

3
TRnf

)]}
+O(a3s) , (42a)

ζ23(t) =
ncnh
2π2

{
1 + Lµt + asCF

[
67

16
+

13

2
ln 2− 15

2
ln 3− 9

4
Li2(1/4)

12



+

(
33

8
− ln 2− 3

4
ln 3

)
Lµt +

3

2
L2
µt

]
+ a2sCF

[
− 0.710509CA + 6.97943CF − 6.43804TRnh − 2.87689TRnl

+ Lµt

(
1.53754CA + 4.22899CF − 4.47865TRnh − 1.47865TRnl

)
+ L2

µt

(
2.57807CA + 4.09934CF − 0.931798TRnf

)
+ L3

µt

(
11

24
CA +

3

2
CF −

1

6
TRnf

)]}
+O(a3s) . (42b)

The logarithmic terms at O(ans ) are determined by the RG equation derived in Sect. 5.
Nevertheless, for the convenience of the reader, we provide the result for general µ in this
case.

This, together with the results for ζ2×2 obtained in Refs. [21] and explicitely given in
Eq. (77), completes the result for the small-flow-time coefficients of the OPE up to dimen-
sion four of Eq. (28).

5 Flow-time evolution

In the final section of this paper we derive a general flow-time evolution equation for
flowed operators. It resembles the RG equation for regular operators but with a “flowed
anomalous dimension matrix”. While studies of the relation between the RG and the flow-
time evolution have also been performed elsewhere in the litarature (see, e.g., Refs. [26,
87–90]), to our knowledge the treatment described here has not been discussed before.

Let us return to the small-flow-time expansion of the operators Ō defined in Eqs. (25),
(27), employing a matrix rather than component-wise notation for the sake of clarity:

Ō(t) = ζB(t)O = ζ(t)OR . (43)

Since we work in the small-flow-time limit, the dependence of ζ(t) on t can be only through
Lµt, defined in Eq. (21). Taking the logarithmic derivative w.r.t. t of Eq. (43), one thus
obtains

t∂tŌ(t) = (t∂tζ(t))OR . (44)

Using Eq. (43) to eliminate the regular operators OR, we find the flow-equation for flowed
composite operators:

t∂tŌ(t) = γf(t) Ō(t) , where γf(t) ≡ (t∂tζ(t))ζ−1(t) . (45)

So far the discussion is general and holds for any flowed OPE. Specializing to our case
of the QCD dimension-four operators, we can write the “flowed anomalous dimension”

13



matrix as

γf =

(
γf2×2 ~γf3

0 0

)
, γf2×2(t) = (t∂tζ2×2(t)) ζ

−1
2×2(t) ,

~γf3(t) = −γf2×2(t)~ζ3(t) + t∂t~ζ3(t) .

(46)

Through O(a2s), the result can be directly evaluated from Eqs. (77) and (42). A consistency
check is obtained by noting that ζ(t) depends on t only through Lµt:

t∂tζ(t) = µ2
∂

∂µ2
ζ(t) = µ2

d

dµ2
ζ(t)− asβ

∂

∂as
ζ(t) . (47)

On the other hand, we know that asÕ1(t) and Õ2(t) are RG invariant [10, 11, 20] and
therefore, with Eq. (25), 0

0
4m4γm

 = µ2
d

dµ2
H−1(as)Õ(t) =

= µ2
d

dµ2
H−1(as)

(
ζ(0)(t)1 + ζ(2)(t)m21 + ζ(t)OR

)
,

(48)

where

H(x) =

(
H2×2(x) ~0
~0T 1

)
, with H2×2(x) =

(
(4π2x)−1 0

0 1

)
. (49)

Since operators of different mass dimensions do not mix under RG evolution and ζ
(0,2)
3 (t) =

0, we can drop the first two terms in the brackets on the r.h.s. of Eq. (48).5 We thus arrive
at

µ2
d

dµ2
ζ(t) =

0 0 0
0 0 0
0 0 4γm

−
β 0 0

0 0 0
0 0 0

 ζ(t)− ζ(t)γO , (50)

where γO is the anomalous dimension of the operators OR, defined through

µ2
d

dµ2
OR = γO(as)O

R . (51)

It can be written as

γO =

(
µ2

d

dµ2
Z

)
Z−1 =

(
γO2×2 ~γ O3

~0T 4γm

)
, (52)

with Z from Eq. (10). Using the expressions of Sect. 2.1, one derives [27,28]

γO2×2 =

(
µ2

d

dµ2
Z2×2

)
Z−12×2 =

−as ∂

∂as
β −2 as

∂

∂as
γm

0 0

 ,

~γ O3 = Z4
m

(
µ2

d

dµ2
~Z3 − γO2×2 ~Z3

)
=

4as
∂

∂as
γ0

8γ0

 .

(53)

5This can also be seen by noting that these two terms, multiplied by H−1(as), are as〈Õ1(t)〉 and 〈Õ2(t)〉,
expanded through order m2.

14



The QCD renormalization group functions β and γm have been defined in Eqs. (58) and
(60), respectively. Since they are of O(as), the explicit µ-dependence of ζ2×2(t) can be
derived through O(a3s) from the results of Ref. [21]. Thus, for γf2×2, Eq. (47) is not just a
consistency check, but a means to derive higher order terms. In our case, we can obtain
the result through O(a3s):

γf11 = a2s

[
3

32
C2
A +

1

8
CATRnf +

7

8
CFTRnf

]
+ a3s

[
− 7

48
CAT

2
Rn

2
f

− 35

36
CFT

2
Rn

2
f + CACFTRnf

(
11891

2880
+

27

40
ln 2− 81

160
ln 3

)
+ C2

ATRnf

(
1687

2880
+

29

40
ln 2− 9

20
ln 3

)
+ C3

A

(
6643

11520
− 319

160
ln 2 +

99

80
ln 3

)
+ C2

FTRnf

(
25

64
+

45

8
ln 2− 111

32
ln 3 +

3

4
Li2(1/4)− 3

8
ζ(2)

)
+

(
1

6
C2
ATRnf +

11

64
C3
A +

77

48
CACFTRnf −

1

12
CAT

2
Rn

2
f −

7

12
CFT

2
Rn

2
f

)
Lµt

]
+O(a4s) , (54a)

γf12 = −3

2
asCF + a2s

{
− 367

48
CACF +

5

3
CFTRnf + C2

F

[
− 3

16
− 3

2
ln 2− 9

8
ln 3

]

+

[
− 11

4
CACF + CFTRnf

]
Lµt

}

+ a3s

{
C2
FCA

[
− 391

768
− 431

24
ln 2 +

3

8
ln2 2 +

11

64
ln 3 +

9

8
Li2(1/4)− 33

64
ζ(2)

]
+ CFT

2
Rn

2
f

[
− 25

18
− 1

2
ζ(2)

]
+ C3

F

[
− 1401

256
+

339

16
ln 2− 9

8
ln2 2

− 657

64
ln 3− 9

4
ln 2 ln 3− 27

32
ln2 3 +

153

32
Li2(1/4) +

39

64
ζ(2)

]
+ C2

ACF

[
− 5291

144
− 2311

24
ln 2 +

4641

64
ln 3 +

11

32
Li2(1/4) +

11

8
ζ(2)

]
+ C2

FTRnf

[
8827

960
− 2089

120
ln 2 +

847

80
ln 3 +

3

8
Li2(1/4)− 3

16
ζ(2)− 9

2
ζ(3)

]
+ CACFTRnf

[
5861

360
+

4273

120
ln 2− 2139

80
ln 3− 1

8
Li2(1/4) +

7

8
ζ(2) +

9

2
ζ(3)

]
+

3

32
CF c

(2)
χ +

[
− 4445

192
C2
ACF +

647

48
CACFTRnf −

5

3
CFT

2
Rn

2
f

+ C2
FCA

(
− 33

64
− 33

8
ln 2− 99

32
ln 3

)
+ C2

FTRnf

(
15

16
+

3

2
ln 2 +

9

8
ln 3

)]
Lµt

+

[
− 121

32
C2
ACF +

11

4
CACFTRnf −

1

2
CFT

2
Rn

2
f

]
L2
µt

}
+O(a4s) , (54b)

γf21 = a3s

[
C2
ATRnf

(
599

5760
+

33

80
ln 2− 99

320
ln 3

)
+ CAT

2
Rn

2
f

(
41

1440
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− 3

20
ln 2 +

9

80
ln 3

)
+ CACFTRnf

(
209

1152
+

55

16
ln 2− 407

192
ln 3

+
11

24
Li2(1/4)− 11

48
ζ(2)

)
+ CFT

2
Rn

2
f

(
43

144
− 5

4
ln 2 +

37

48
ln 3

− 1

6
Li2(1/4) +

1

12
ζ(2)

)]
+O(a4s) , (54c)

γf22 = a2s

[
CACF

(
11

96
− 11

12
ln 2− 11

16
ln 3

)
+ CFTRnf

(
− 2

3
+

1

3
ln 2

+
1

4
ln 3

)]
+ a3s

{
CACFTRnf

[
2521

960
− 1709

90
ln 2− 1

6
ln2 2

+
1537

160
ln 3− 1

24
Li2(1/4)

]
+ C2

ACF

[
− 7397

2304
− 213

16
ln 2 +

11

24
ln2 2

+
107

16
ln 3 +

11

8
Li2(1/4)− 121

192
ζ(2)

]
+ CFT

2
Rn

2
f

[
− 749

720
+

763

90
ln 2

− 83

20
ln 3− 1

6
Li2(1/4) +

1

12
ζ(2)

]
+ C2

FTRnf

[
− 139

192
− 119

8
ln 2

+
1

6
ln2 2 +

261

32
ln 3 +

1

2
ln 2 ln 3 +

3

16
ln2 3− 23

8
Li2(1/4) +

5

48
ζ(2)

]
+ C2

FCA

[
253

384
+

209

8
ln 2− 11

24
ln2 2− 99

8
ln 3− 11

8
ln 2 ln 3− 33

64
ln2 3

+
187

32
Li2(1/4) +

143

192
ζ(2)

]
+

(
11

96
CA −

1

24
TRnf

)
c(2)χ

+

[
C2
ACF

(
121

576
− 121

72
ln 2− 121

96
ln 3

)
+ CFT

2
Rn

2
f

(
4

9
− 2

9
ln 2− 1

6
ln 3

)
+ CACFTRnf

(
− 187

144
+

11

9
ln 2 +

11

12
ln 3

)]
Lµt

}
+O(a4s) . (54d)

We verified that this agrees through O(a2s) with the result which is obtained by directly
inserting Eq. (77) into Eq. (46). Due to the factor of 1/g2 in Õ1 (see Eq. (11)), γf2×2 is not
RG invariant, while H−12×2γ

f
2×2H2×2 is. It may be useful to note that, by subtracting the

VEVs off of Õ1 and Õ2,

Õ1,sub(t, x) = Õ1(t, x)− 〈Õ1(t, x)〉 ,
Õ2,sub(t, x) = Õ2(t, x)− 〈Õ2(t, x)〉 ,

(55)

the resulting operators do not mix with Õ3 under t-evolution. Rather, their logarithmic
t-evolution is fully governed by γf2×2 and thus known through O(a3s).

Eq. (50) does not analogously allow one to derive the O(a3s) terms of ~γf3, because it in-
volves γ0 which, in contrast to β and γm, starts at O(a0s) rather than O(as), see Eq. (63).
Therefore, we can only give the result through O(a2s) for ~γf3:

γf13 =
3ncnh
8π2

asCF

{
1 + as

[
9.24729CA − 2.47340CF
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− 2.91787TRnh + 1.08213TRnl + Lµt

(
11

6
CA + 3CF −

2

3
TRnf

)]}
, (56a)

γf23 =
ncnh
2π2

{
1 + asCF

[
33

8
− ln 2− 3

4
ln 3 + 3Lµt

]
+ a2sCF

[
2.81363CA + 4.22899CF

− 4.31769TRnh − 1.31769TRnl + Lµt

(
6.43224CA + 8.19868CF − 1.70263TRnf

)
+ L2

µt

(
11

8
CA +

9

2
CF −

1

2
TRnf

)]}
. (56b)

We checked, of course, that Eq. (50) is consistent with the results for ζ13 and ζ23 of Eq. (42).

6 Conclusions

We presented the flowed OPE for general current correlators and its matching to regular
QCD through NNLO in the strong coupling αs and through mass dimension four by using
the small-flow-time expansion. Our calculation is based on the renormalization procedure
for the regular QCD dimension-four operators worked out in Ref. [27,28], the mixing matrix
between flowed and regular operators derived in Ref. [21], the method of projectors [62],
and the tools and results for perturbative calculations in the GFF presented in Ref. [61].

Overall, our results allow to combine the known perturbative results for the regular QCD

current correlators from the literature to gradient-flow lattice calculations. This lays
out the path for an alternative determination of hadronic contributions to observables
such as the anomalous magnetic moment of the muon. In addition, we derived a general
logarithmic flow-time evolution equation for flowed operators and presented its explicit
form for the dimension-four operators considered in this paper.

Our methods are sufficiently general to be applied to similar problems at higher orders
in perturbation theory, such as CP violating operators [22] relevant for the electric dipole
moment of the neutron, or four-quark operators occuring in flavor physics [23].
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A Renormalization group functions

The d-dimensional beta function is defined as

µ2
d

dµ2
as(µ) = as(µ)βε(as(µ)) , (57)

where as ≡ αs/π ≡ g2/(4π2). The renormalized coupling g = g(µ) is related to the bare

one through gB = µ̂ε Z
1/2
s g, where Zs is the MS renormalization constant. From this follow

the relations

βε(as) = −ε
(

1 + as
∂

∂as
lnZs(as)

)−1
= −ε+ β(as) ≡ −ε−

∑
n≥0

an+1
s βn ,

Zs(as) = 1− as
ε
β0 + a2s

(
1

ε2
β20 −

1

2ε
β1

)
+O(a3s) .

(58)

Through Sect. 5, we only need the first two perturbative coefficients, while β2 is required
in order to derive the O(a3s) terms of γf in Eq. (54):

β0 =
1

4

(
11

3
CA −

4

3
TRnf

)
, β1 =

1

16

(
34

3
C2
A − 4CFTRnf −

20

3
CATRnf

)
,

β2 =
1

64

(
2857

54
C3
A + 2C2

FTRnf −
205

9
CFCATRnf −

1415

27
C2
ATRnf

+
44

9
CFT

2
Rn

2
f +

158

27
CAT

2
Rn

2
f

)
.

(59)

The anomalous dimension of the quark mass is defined through

γm(as) = −asβε(as)
∂

∂as
lnZm(as) ≡ −

∑
n≥0

an+1
s γm,n , (60)

with the first three perturbative coefficients given by

γm,0 =
3

4
CF , γm,1 =

3

32
C2
F +

97

96
CACF −

5

24
CFTRnf ,

γm,2 =
1

64

[
129

2
C3
F −

129

4
C2
FCA +

11413

108
CFC

2
A

+C2
FTRnf(−46 + 48ζ(3)) + CFCATRnf

(
−556

27
− 48ζ(3)

)
− 140

27
CFT

2
Rn

2
f

]
.

(61)

It determines the MS renormalized mass m through

mB = Zmm, Zm = 1− as
ε
γm,0 + a2s

[
γm,0
2ε2

(γm,0 + β0)−
1

2ε
γm,1

]
+O(a3s) . (62)

Similarly to βε, the third coefficient γm,2 is needed only in Sect. 5.

The renormalization constant of the vacuum energy Z0 is related to the corresponding
anomalous dimension γ0 through

γ0(as) = [4γm(as)− ε]Z0(as) + βε(as)as
∂

∂as
Z0(as) ≡ −

ncnh
(4π)2

∑
n≥0

ans γ0,n , (63)
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which leads to

Z0(as) =
ncnh

(4π)2ε

{
1 + as

(
γ0,1
2
− 2γm,0

ε

)
+ a2s

[ 2

3ε2
(
β0 γm,0 + 4 γ2m,0

)
− 1

6ε
(β0 γ0,1 + 4 γ0,1γm,0 + 8 γm,1) +

1

3
γ0,2

]}
+O(a3s) .

(64)

The first three perturbative coefficients are given by [28,58]6

γ0,0 = 1 , γ0,1 = CF ,

γ0,2 = −C2
F

(
131

32
− 3 ζ(3)

)
− CFCA

(
−109

32
+

3

2
ζ(3)

)
− CFTR

(
5

8
nf + 3nh

)
.

(65)

B Perturbative coefficient functions

This appendix cites the results for the coefficient functions Cn of the regular dimension-four
operators appearing in the OPE of the current correlators defined in Eq. (2). We consider
scalar, pseudo-scalar, vector- and axial-vector currents, both diagonal and non-diagonal,
i.e. the currents assume the form

j(x) = ψ̄k(x)Γψl(x) , Γ ∈ {1, iγ5, γµ, γµγ5} ,
k, l ∈ N ∪M , M = {1, . . . , nh} , N = {nh + 1, . . . , nf} .

(66)

This means that ψk and ψl can be either both massive with mass m (k, l ∈ M), or both
massless (k, l ∈ N), or one of them is massless, the other massive (e.g. k ∈ M , l ∈ N).
While C1 is independent of k and l, the coefficient C2 of the quark operator takes the form

C2 = C2,N +
1

nh
(δkM + δlM ) (C2,M + C2,nd) , (67)

where δkM = 1 for k ∈M , and 0 otherwise. Also the results for C3 depend on whether the
quarks k and l are massive or not. This dependence will be indicated explicitely below,
using the δkM symbol defined above.

For convenience, we introduce the short-hand notation

lµQ ≡ ln
Q2

µ2
, (68)

and the dimensionless quantities

Ĉ1 = Q4C1 , Ĉ2 = −2Q4C2 , Ĉ3 = Q4C3 . (69)

The extra factor (−2) between C2 and Ĉ2 arises from using O′2 in Ref. [60] rather than O2

from Eq. (5). For the sake of brevity, we insert the SU(3) color factors.

6Higher orders have been computed in Ref. [91].
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B.1 Vector and axial-vector currents

In this case, the current correlator can be decomposed into a transversal and a longitudinal
part, each associated with a set of coefficient functions:∫

d4xeiqxjv/aµ (x)jv/aν (0)
Q2→∞−→

∑
n

(
(gµνQ

2 −QµQν)Cv/a,Tn −QµQνCv/a,Ln

)
OR
n . (70)

The upper sign refers to the vector, the lower sign to the axial-vector case. The results
have been taken from Ref. [60]:

Ĉ
v/a,T
1 =

1

12
as +

7

72
a2s , (71a)

Ĉ
v/a,T
2,N = a2s

(
−1 +

1

3
lµQ +

4

3
ζ(3)

)
, (71b)

Ĉ
v/a,T
2,M = −as + a2s

[
− 29

6
+

1

6
nf + lµQ

(
− 11

4
+

1

6
nf

)]
, (71c)

Ĉ
v/a,T
2,nd = ±

(
1 +

4

3
as + a2s

[
191

18
− 7

27
nf + lµQ

(
11

3
− 2

9
nf

)])
, (71d)

Ĉ
v/a,L
1 = 0 , Ĉ

v/a,L
2,N = 0 , Ĉ

v/a,L
2,M = 1 , Ĉ

v/a,L
2,nd = ∓1 , (71e)

Ĉ
v/a,T
3 =

3

16π2

{
δkMδlM

[
as

(
152

9
− 32

3
ζ(3)

)
+ a2s

[
1295

9
− 524

3
ζ(3) + 120 ζ(5) + nf

(
− 362

81
+

8

27
ζ(3)

)
+ lµQ

(
114− 72 ζ(3) + nf

(
−76

27
+

16

9
ζ(3)

))]]

± 2δkMδlM

[
− 4 lµQ + as

(
− 56

3
+ 16 ζ(3)− 32

3
lµQ − 8 l2µQ

)
+ a2s

[
− 18967

108
+

4588

27
ζ(3) +

4

3
ζ(4)− 280

27
ζ(5) + nf

(
337

54
− 40

9
ζ(3)

)
+ lµQ

(
− 3617

18
+

332

3
ζ(3) + nf

(
157

27
− 8

3
ζ(3)

))
+ l2µQ

(
− 77 +

22

9
nf

)
+ l3µQ

(
− 18 +

4

9
nf

)]]

+ (δkM + δlM )

[
− 2 + as

(
− 4− 4 lµQ

)
+ a2s

[
− 776

27
+

2996

27
ζ(3)− 3440

27
ζ(5) + nf

(
23

27
− 4

9
ζ(3)

)
+ lµQ

(
− 36 +

10

9
nf

)
− 8 l2µQ

]]
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+ nh a
2
s

[
− 80

9
+

16

3
ζ(3) + lµQ

(
40

9
− 16

3
ζ(3)

)
− 2

3
l2µQ

]

+ nh a
2
s

[
(δkM + δlM )

(
100

9
− 16

3
ζ(3)

)

± δkMδlM
(
− 64

9
+ 16 lµQ +

32

3
ζ(3)

)]}
, (71f)

Ĉ
v/a,L
3 =

3

16π2

{
δkMδlM

[
8 + as

(
152

3
+ 32 lµQ

)
+ a2s

[
7306

9
− 1292

9
ζ(3)− 640

9
ζ(5) + nf

(
− 212

9
+

8

3
ζ(3)

)
+ lµQ

(
1430

3
− 116

9
nf

)
+ l2µQ

(
108− 8

3
nf

)]]

± 2δkMδlM

[
4 lµQ + as

(
8− 16 ζ(3) +

16

3
lµQ + 8 l2µQ

)
+ a2s

[
− 6713

108
− 464

3
ζ(3)− 4

3
ζ(4) +

940

9
ζ(5) + nf

(
31

54
+

8

9
ζ(3)

)
+ lµQ

(
1429

18
− 332

3
ζ(3) + nf

(
−3 +

8

3
ζ(3)

))
+ l2µQ

(
155

3
− 14

9
nf

)
+ l3µQ

(
18− 4

9
nf

)]]

+ (δkM + δlM )

[
− 4− 4 lµQ + as

(
− 100

3
+ 16 ζ(3)− 64

3
lµQ − 8 l2µQ

)
+ a2s

[
− 37123

108
+

2038

9
ζ(3) +

4

3
ζ(4)− 620

9
ζ(5) + nf

(
605

54
− 20

9
ζ(3)

)
+ lµQ

(
− 5719

18
+ nf

(
85

9
− 8

3
ζ(3)

)
+

332

3
ζ(3)

)
+ l2µQ

(
− 317

3
+

26

9
nf

)
+ l3µQ

(
− 18 +

4

9
nf

)]]

+ a2snh

[(
32

9
+ 8 lµQ

)
(δkM + δlM )±

(
− 64

9
− 16 lµQ

)
δkMδlM

]}
. (71g)

B.2 Scalar and pseudo-scalar currents

Also the results for the scalar and the pseudo-scalar currents (upper and lower signs,
respectively) are taken from Ref. [60]:

Ĉ
s/p
1 =

1

8
as + a2s

[
11

16
+

1

4
lµQ

]
, (72a)
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Ĉ
s/p
2,N = a2s

[
− 5

6
+

1

2
lµQ

]
, (72b)

Ĉ
s/p
2,M =

1

2
+ as

[
11

6
+ lµQ

]
+ a2s

[
5437

288
− 17

4
ζ(3)− 79

144
nf + lµQ

(
155

12
− 4

9
nf

)
+ l2µQ

(
19

8
− 1

12
nf

)]
, (72c)

Ĉ
s/p
2,nd = ±

(
1 + as

[
14

3
+ 2 lµQ

]
+ a2s

[
7549

144
− 15

2
ζ(3)− 41

24
nf + lµQ

(
367

12
− 19

18
nf

)
+ l2µQ

(
19

4
− 1

6
nf

)])
, (72d)

Ĉ
s/p
3 =

3

16π2

{
δkMδlM

[
4 + as

[
32

3
+ 24 lµQ + 16 ζ(3)

]
+ a2s

[
9955

36
+

724

9
ζ(3)− 610

9
ζ(5) + nf

(
−463

54
+

32

9
ζ(3)

)
+ lµQ

(
583

3
+ 140 ζ(3) + nf

(
−46

9
− 8

3
ζ(3)

))
+ l2µQ (105− 2nf)

]]

± 2δkMδlM

[
− 4 lµQ + as

[
− 16 + 16 ζ(3)− 24 lµQ − 16 l2µQ

]
+ a2s

[
− 19003

108
+

574

3
ζ(3) +

4

3
ζ(4) +

50

9
ζ(5) + nf

(
245

54
+

16

9
ζ(3)

)
+ lµQ

(
−14399

36
+

518

3
ζ(3) + nf

(
67

6
− 8

3
ζ(3)

))
+ l2µQ

(
−222 +

52

9
nf

)
+ l3µQ

(
−53 +

10

9
nf

)]]

+ (δkM + δlM )

[
1− 2 lµQ + as

[
− 6 + 8 ζ(3)− 4 lµQ − 8 l2µQ

]
+ a2s

[
− 13343

432
+

155

6
ζ(3) +

2

3
ζ(4) +

190

9
ζ(5) + nf

(
205

216
+

20

9
ζ(3)

)
+ l2µQ

(
−285

4
+

37

18
nf

)
+ l3µQ

(
−53

2
+

5

9
nf

)
+ lµQ

(
−9017

72
+

265

3
ζ(3) + nf

(
115

36
− 4

3
ζ(3)

))]]

+ nh a
2
s

[
− 5 + 4 ζ(3) + 4 lµQ − l2µQ

]
+ nh a

2
s

[
(δkM + δlM )

(
−86

9
− 8 ζ(3) + 4 lµQ

)
± δkMδlM

(
−32

9
− 16 ζ(3) + 16 lµQ

)]}
. (72e)
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C Renormalized mixing matrix

For the reader’s convenience, we provide the relation between the mixing matrix ζ used
in this paper and its definition in Ref. [21], referred to as “HKL” in what follows. This is
easily derived from the relation between the operators On defined in Eq. (5) and the On,µν
of HKL: (

O1

O2

)
δµν = H2×2(a

B
s )

(
O2,µν

O4,µν

)
. (73)

The mixing matrix between regular and flowed operators in HKL, restricted to the two
operators which are relevant for this paper, is defined through(

Õ2,µν(t)

Õ4,µν(t)

)
= ζHKL

2×2 (t)

(
O2,µν

O4,µν

)
, ζHKL

2×2 =

(
ζHKL
22 ζHKL

24

ζHKL
42 ζHKL

44

)
, (74)

where the ζHKL
ij are the entries of the full 4 × 4 mixing matrix of HKL. Inserting Eq. (73)

and(
Õ1(t)

Õ2(t)

)
δµν = H2×2(µ̂

2εas)χ(t)

(
Õ2,µν(t)

Õ4,µν(t)

)
, with χ(t) =

(
1 0
0 ζχ(t)

)
, (75)

with ζχ(t) from Eq. (20), gives the renormalized mixing matrix used in the current paper
in terms of the bare mixing matrix of HKL:

ζ2×2(t) = H2×2(asµ̂
2ε)χ(t) ζHKL

2×2 (t)H−12×2(a
B
s )Z−12×2(as) . (76)

Explicitely, one finds:

ζ11(t) = 1 +
7

8
asCA + a2s

{
C2
A

[
227

180
− 87

80
ln 2 +

27

40
ln 3 +

3

32
Lµt

]

+ CATRnf

[
− 1

18
+

1

8
Lµt

]
+ CFTRnf

[
3

16
+

1

4
Lµt

]}
, (77a)

ζ12(t) = asCF

[
− 5

4
− 3

2
Lµt

]
+ a2s

[
C2
F

(
− 17

32
− 3

8
Lµt

)
+ CACF

(
− 431

60
+

1

2
ζ(2)− 4273

120
ln 2 +

2139

80
ln 3 +

1

8
Li2(1/4)

− 367

48
Lµt −

11

8
L2
µt

)
+ CFTRnf

(
15

8
+

1

2
ζ(2) +

5

3
Lµt +

1

2
L2
µt

)]
, (77b)

ζ21(t) =
5

12
as TRnf + a2s

[
CATRnf

(
209

480
+

9

20
ln 2− 27

80
ln 3

)
+ CFTRnf

(
1

4
+

1

2
Li2(1/4)− 1

4
ζ(2) +

10

3
ln 2− 21

8
ln 3

)]
, (77c)

ζ22(t) = 1 + asCF

[
1

8
− ln 2− 3

4
ln 3

]

23



Table 1: Notation in the ancillary file.

ζ
(0)
1 ζ

(2)
1 ζ13 ζ

(0)
2 ζ

(2)
2 ζ23

Eq. (36) (40) (42) (38) (40) (42)

code zeta01anc zeta21anc zeta13anc zeta02anc zeta22anc zeta23anc

γf2×2 ~γf3 ζ2×2
Eq. (54) (56) (77)

code gamma22anc gamma3anc ZetaMatrix22anc

+ a2s

{
CACF

[
− 691

384
− 55

8
ln 2 +

1

4
ln2 2 +

63

16
ln 3

+

(
11

96
− 11

12
ln 2− 11

16
ln 3

)
Lµt +

3

4
Li2(1/4)− 11

32
ζ(2)

]
+ CFTRnf

[
333

160
− 763

60
ln 2 +

249

40
ln 3 +

(
− 2

3
+

1

3
ln 2 +

1

4
ln 3

)
Lµt

+
1

4
Li2(1/4)− 1

8
ζ(2)

]
+ C2

F

[
47

128
+

113

8
ln 2 +

1

4
ln2 2− 219

32
ln 3

+
51

16
Li2(1/4) +

13

32
ζ(2)

]
+

1

16
c(2)χ

}
, (77d)

where c
(2)
χ is given in Eq. (23). The results including higher orders in ε are provided in the

ancillary file to this paper, see Appendix D.

D Ancillary File

The main results of this paper are provided in computer readable format (e.g. with
Mathematica [86]). The notation is described in Table 1. All coefficients are represented by
floating-point numbers in this file. The relative uncertainty for our numerically evaluated
coefficients is estimated to be 10−10 or better.

References
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