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We carry out an ab initio calculation of the neutrino flux-folded inclusive cross sections, measured
on 12C by the MiniBooNE and T2K collaborations in the charged-current quasielastic (CCQE)
regime. The calculation is based on realistic two- and three-nucleon interactions, and on a realistic
nuclear electroweak current with one- and two-nucleon terms that are constructed consistently with
these interactions and reproduce low-energy electroweak transitions. Numerically exact quantum
Monte Carlo methods are utilized to compute the nuclear weak response functions, by fully retaining
many-body correlations in the initial and final states and interference effects between one- and two-
body current contributions. We employ a nucleon axial form factor of the dipole form with ΛA = 1.0
or 1.15 GeV, the latter more in line with a very recent lattice QCD determination. The calculated
cross sections are found to be in good agreement with the neutrino data of MiniBooNE and T2K,
and antineutrino MiniBooNE data, yielding a consistent picture of nuclei and their electroweak
properties across a wide regime of energy and momenta.

PACS numbers: 21.60.De, 25.30.Pt

I. INTRODUCTION

There is a large program of accelerator neutrino ex-
periments in operation or in the planning phase in
the US and elsewhere to measure the parameters that
characterize the probabilities for flavor oscillations of
these particles—mass differences, mixing angles, and the
charge-conjugation and parity violating phase. These ex-
periments do not directly measure oscillation probabili-
ties, of course, but rather event-rate distributions as func-
tion of the observed energy E in the detector, schemati-
cally

Nα
β (E)∝

∫
dEν φα(Eν)P (να → νβ ;Eν)σβ(Eν , E) , (1)

where φα(Eν) is the flux of neutrinos of flavor α (να’s)
at the source as function of energy Eν , P (να → νβ ;Eν)
is the probability for oscillation of a να into a flavor νβ ,

and σβ(Eν , E) is the νβ-nucleus cross section. The neu-
trino energy is reconstructed from the tracks in the de-
tector of the outgoing lepton in an inclusive scattering
setting, and, additionally, the tracks of final hadrons in
a semi-inclusive one. As a consequence, the determina-
tion of oscillation parameters depends strongly on neu-
trino interaction physics, since the interactions observed
in the detector result from the folding of the energy-
dependent neutrino flux, energy-dependent cross section,
and energy-dependent nuclear (strong- and electroweak-
interaction) effects.

The appreciation of these difficulties has led, in the
last decade or so, to a flurry of activity by nuclear theo-
rists, who have attempted to provide accurate estimates

for neutrino-nucleus (ν-A) inclusive (and semi-inclusive)
cross sections (for a summary of efforts in this area see
Ref. [1]). This is a very challenging task, primarily, be-
cause neutrino fluxes in current (such as MiniBooNE,
T2K, MicroBooNE, and Minerνa) and future (DUNE)
experiments extend over a rather wide energy range, from
threshold to, in several cases, multi-GeV energies. Thus,
observed ν-A cross sections, resulting from the folding
in Eq. (1), may include contributions from energy- and
momentum-transfer regions of the nuclear weak response
where drastically different dynamical regimes are at play,
from the structure and collective behavior of low-lying
nuclear excitations in the threshold region, to the quark
substructure of individual nucleons in the deep inelastic
region. Moreover, for some of the nuclear targets em-
ployed in the detectors of these experiments, such as 40Ar
(MicroBooNE), and 56Fe and 208Pb (Minerνa), the full
structure of the ground states is difficult to calculate ex-
actly.

Theoretical studies have attempted to provide a de-
scription of the nuclear weak response in this wide range
of energy and momentum transfers. They typically rely
on a relativistic Fermi gas (RFG) [2–4] or relativistic
mean field (RMF) [5–8] picture of the nucleus. Some,
notably those of Refs. [9–13], include correlation effects
in the random-phase approximation (RPA) induced by
effective particle-hole interactions in the N -N , N -∆, ∆-
N , and ∆-∆ sectors, use various inputs from pion-nucleus
phenomenology, and lead to predictions for electromag-
netic and strong spin-isospin response functions of nuclei,
as measured, respectively, in inclusive electron scattering
and in pion and charge-exchange reactions, in reasonable
agreement with data. Some utilize the phenomenologi-
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cal SuperScaling (SuSA) approach—scaling with nuclear
mass number [14]—in which a universal scaling function,
derived from analyses of (e, e′) data on a number of nu-
clei, is used to obtain estimates for the corresponding ν-A
cross sections [15, 16]. Recently, SuSA, which has proven
to be quite successful, has been extended (SuSAv2) by
incorporating elements from the RMF approach to ac-
count for differences between the vector and axial com-
ponents of the weak current, and between their isoscalar
and isovector content [17–19]. Yet others rely on factor-
ization of the hadronic final state and realistic spectral
functions S(pm, Em) to combine an accurate description
of the nuclear ground state with relativistic currents and
kinematics. Spectral functions of atomic nuclei are calcu-
lated either with microscopic methods—for example, the
self-consistent Green’s function technique [20–23]—or by
combining inputs from (e, e′p) data to characterize the
low missing-momentum and missing-energy region with
accurate many-body calculations of the nuclear matter
spectral function [24–28] folded with the single-nucleon
density to describe the “correlation region”, correspond-
ing to high missing energies and momenta [29, 30].

Many of the above models have achieved a remark-
able phenomenological success and much improved agree-
ment with experimental data, compared to simple RFG
calculations. However, it is fair to note that they rely
on a somewhat approximate description of nuclear dy-
namics that does not fully capture correlation effects in
both the initial and final states and does not generally
use as inputs realistic nuclear interactions and consistent
electroweak currents. Hence, it is important to carefully
assess their validity—especially in the axial sector—by
testing them against more microscopic calculations.

In the present study we report on an ab initio calcu-
lation of the nuclear weak response induced by charged-
current (CC) (ν`, `

−) and (ν`, `
+) processes. The strong

interactions among nucleons are represented by two- and
three-body terms, while their coupling to the electroweak
field is accounted for by one- and two-body currents (see
the reviews [31, 32] and references therein). The two-
body interaction [33] is constrained by fits to the nucleon-
nucleon (NN) database up to lab energies of 350 MeV
(albeit it provides a good description of the NN cross
section well beyond the pion production threshold, up to
500 MeV or so). The three body interaction [34] is cal-
ibrated by a fit to the energies of a number of low-lying
nuclear states in the mass range A= 3–10.

The one-body currents follow from a non-relativistic
expansion of the covariant single-nucleon CC, including
nucleon electroweak form factors consistent with avail-
able experimental data. In particular, results reported
in Sec. III are obtained by using a dipole axial form fac-
tor with cutoff ΛA equal to either 1.0 GeV or 1.15 GeV.
The former has been extracted from proton and deuteron
experiments [35–38], while the latter is obtained by re-
cent lattice QCD calculations [39, 40] that also reproduce
the vector form factors measured in electron scattering.

Two-body currents are derived from meson-exchange

phenomenology including pion and ρ-meson exchanges as
well as N -to-∆ transition currents (with ∆’s taken, how-
ever, in the static limit) [41]. The short-range behavior
of these currents is prescribed to be consistent with that
of the two-nucleon interaction [42, 43]. In the vector sec-
tor, they contain no free parameters, while in the axial
sector the single unknown parameter present—the N -to-
∆ axial coupling constant—is fixed by reproducing the
experimental value of the tritium Gamow-Teller matrix
element.

The theoretical framework outlined above (and dis-
cussed more expansively in Sec. II below) has been shown
to provide, in numerically accurate quantum Monte Carlo
(QMC) calculations, a quantitatively successful descrip-
tion of a large body of experimental data on light nu-
clei (A ≤ 12), including, among others, energy spec-
tra of low-lying states, static properties (magnetic and
quadrupole moments), low-energy radiative and weak
transition rates, electromagnetic ground and transition
form factors, and electroweak dynamic response (for a re-
view, see [32] and references therein). Especially relevant
in the present context are the QMC studies of the 12C
electromagnetic ground-state structure [44], and longitu-
dinal and transverse response functions at intermediate
momentum transfers q in the (300–700) MeV range, and
for energy transfers ω in the quasielastic region [45].

However, it is also important to recognize the limi-
tations inherent to the approach we have adopted here:
firstly, it addresses only inclusive scattering; secondly, it
does not account for explicit pion production mechanisms
and therefore cannot describe the nuclear electroweak
response in the ∆ resonance region and beyond; and
thirdly, it relies on what is in essence a non-relativistic
formulation of the dynamics and electroweak currents.1

These limitations notwithstanding, it should be em-
phasized that in the quasielastic regime specified ear-
lier, this approach includes all of the relevant physics
for inclusive scattering and is expected to be quite ac-
curate. It is for this reason that we compare our pre-
dictions (in Sec. III) for the 12C flux-averaged inclusive
cross sections—differential in the outgoing lepton energy
and scattering angle—to the MiniBooNE and T2K CC
“quasielastic” (CCQE) data sets [46–48]. These data sets
are characterized by the absence of pions in the final
state. Clearly, their interpretation as purely “quasielas-
tic” is complicated by pions that are created at the
interaction vertex and are subsequently reabsorbed in
the nuclear medium [49]. The unambiguous identifica-
tion of these contributions is problematic, and model-
dependent at best, requiring an accurate modeling of
both the pion-production cross section and subsequent
reabsorption (and their interference). Currently, they are

1 Nevertheless, it could be argued that relativistic dynamical ef-
fects are implicitly subsumed in the interactions, which are fitted
to data; furthermore, the currents do include corrections beyond
the leading order [41].
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estimated using Monte Carlo event generators. As a con-
sequence, experimentally-extracted CCQE cross sections
are accompanied by significant uncertainties.

II. CALCULATION

The inclusive double-differential cross section for a
charged-current scattering process initiated by a neutrino
off a nuclear target can be expressed as( dσ

dT` d cos θ`

)CC

ν/ν̄
=
G2
F cos2θc

4π

|k`|
Eν

[
v00R00 − v0zR0z

+ vzzRzz + vxxRxx ∓ vxyRxy
]
, (2)

where the − or + sign corresponds to a neutrino (ν) or
antineutrino (ν) induced reaction. We adopt the values
GF = 1.1803× 10−5 GeV−2, corrected for the bulk of the
inner radiative corrections [50], and cos θc = 0.97425 [51].
The initial ν (or ν) and final lepton four-momenta are,
respectively, kν = (Eν ,kν) and k` = (E`,k`), T` is the ki-
netic energy of the lepton (rest mass m`), and θ` is its
scattering angle relative to the incoming neutrino direc-
tion. The kinematical factors vαβ associated with the
contraction of the leptonic tensor, in the general case in
which the dependence on m` is kept, are reported in Ap-
pendix A of Ref. [41].

The nuclear response functions encode all information
on nuclear structure and dynamics, and are defined, in a
schematic notation, as (see Ref. [41] for explicit expres-
sions)

Rαβ(q, ω) =
∑
f

〈f |jαCC(q, ω)|i〉〈f |jβCC(q, ω)|i〉∗

× δ(ω − Ef + Ei) , (3)

where |i〉 represents the ZA ground state of energy Ei,
|f〉 represents the bound or scattering state of the final
Z+1A or Z−1A nuclear system, depending on whether the
(ν`, `

−) or (ν`, `
+) process is being considered, of energy

Ef , jαCC(q, ω) are the relevant components of the weak
charged current (CC), and an average over the initial spin
projections of ZA is understood (note, however, that the
12C ground state has spin-parity assignments Jπ = 0+).
The dynamical framework adopted in the calculations be-
low has been described elsewhere in considerable detail,
most recently in the review [32]. Next, we provide a brief
description for completeness.

A. Interactions and currents

Strong interactions are described by two- and three-
nucleon terms, respectively, the Argonne v18 [33] (AV18)
and Illinois-7 [34] (IL7) models. The AV18 reproduced
the nucleon-nucleon database available at the time (1995)
with a χ2/datum close to one [33] for lab kinetic en-
ergy up to 350 MeV, slightly above the pion production

threshold. Even today that the database has increased
in size considerably (to over 5,200 data points over the
energy range 0–300 MeV), the AV18 still gives (without
a refit) a very respectable χ2/datum of about 1.5 [52].
The IL7 three-nucleon interaction model contains a small
number (4) of parameters, which characterize the overall
strengths of two- and multi-pion exchange terms involv-
ing ∆-isobar excitations, and of a purely phenomenolog-
ical (isospin-dependent) central term. These parameters
are constrained by a fit to the energies of about 23 low-
lying nuclear states with mass number A in the range 3–
10 [53]. The resulting AV18+IL7 Hamiltonian then leads,
in accurate QMC calculations, to predictions for about
100 ground- and excited-state energies up to A= 12, in-
cluding the 12C ground- and Hoyle-state energies, in good
agreement with the corresponding empirical values [32].

Electroweak probes couple to single nucleons (impulse
approximation) as well as to clusters of nucleons via one-
and many-body currents. The CC model adopted in the
present study, identical to that of Ref. [41] and most re-
cently employed to compute the muon-capture inclusive
rates on 3H and 4He [54], contains one- and two-body
terms. The former are derived from the covariant single-
nucleon CC in a non-relativistic expansion that retains
corrections proportional up to the inverse square of the
nucleon mass. Two-body (vector and axial) terms arise
from effective π- and ρ-meson exchanges, and N -to-∆
excitations, treated in the static limit. A ρπ transition
mechanism is also included in the axial component. In
GFMC calculations we utilize configuration-space repre-
sentations of these currents, regularized by a prescription
which, by construction, makes their short-range behav-
ior consistent with the AV18 interaction [31]. The value
for the transition (axial) coupling constant g∗A in the N -
to-∆ axial current is determined by reproducing, within
the present dynamical framework, the measured Gamow-
Teller matrix element contributing to tritium β-decay,
and is listed in Table I (Set I) of Ref. [41], where explicit
expressions for these currents can also be found.

The (isovector) nucleon form factors in the CC vector
component are taken as functions of the squared four-
momentum transfer (Q2 = q2 − ω2) from a modern fit
to the available electron scattering data [55] (in con-
trast to Ref. [41], in which we adopted a simple dipole
parametrization of these form factors). The axial form
factor GA(Q2) of the nucleon is of a dipole form with a
cutoff mass of either 1 GeV or 1.15 GeV, while its in-
duced pseudoscalar form factor, derived from the PCAC
constraint and pion-pole dominance, is in accord with
values extracted from precise measurements of the muon-
capture rate on hydrogen and 3He [56] as well as with
predictions based on chiral perturbation theory [57, 58].
Lastly, the N -to-∆ transition form factor in the vector
sector is as obtained in an analysis of γN data in the
∆-resonance region [59], while that in the axial sector,
because of the lack of available experimental data, is sim-
ply taken to have the same functional form of GA(Q2),
namely G∗A(Q2)/g∗A =GA(Q2)/gA, where g∗A is the (fit-
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ted) N -to-∆ axial coupling constant mentioned earlier.
Values for the parameters entering these axial form fac-
tors are specified in Ref. [41].

B. Electroweak response functions

The calculation of the response functions in Eq. (3)
proceeds in two steps. The first consists in Laplace-
transforming Rαβ(q, ω) with respect to ω, which reduces
to the following current-current correlator (Euclidean re-
sponse function)

Eαβ(q, τ) = 〈i|jβ†CC(q, ωqe) e−τ(H−Ei)jαCC(q, ωqe)|i〉 , (4)

where H is the Hamiltonian (here the AV18-IL7 model).
The energy dependence of jαCC(q, ω) comes in via the
nucleon and N -to-∆ transition form factors, which are
taken as functions of Q2, as noted above. We freeze
the ω-dependence by fixing Q2 at the value Q2

qe = q2 −
ω2

qe with the quasielastic energy transfer ωqe given by

ωqe =
√
q2 +m2 − m (m is the nucleon mass). This is

needed in order to exploit the completeness over the nu-
clear final states in evaluating the Laplace transforms of
Rαβ(q, ω). The correlator is then computed with Green’s
function Monte Carlo (GFMC) methods [44, 45, 60–63].
It should be stressed that no additional approximations
are made beyond those inherent to the modeling of the in-
teractions and currents. The response is thus calculated
ab initio by treating completely correlations in the initial
state, by accounting consistently through the imaginary-
time propagation for interaction effects in the final states,
and, in particular, by retaining in full the important in-
terference between one- and two-nucleon currents.

Because of the computational cost of the present study
(of the order of 130 million core hours on the mas-
sively parallel computer MIRA at ANL), however, we
only propagate the Z−1A system, i.e., jαCC in Eq. (4) is
the charge lowering current corresponding to the pro-
cess (ν`, `

+). If electromagnetic interactions and isospin-
symmetry-breaking terms in the strong interactions were
to be ignored, the final states |f ; Z+1A〉 and |f ; Z−1A〉
of the Z+1A and Z−1A nuclear systems would simply be
related to each other via |f ; Z+1A〉= (

∏
i τi,x) |f ; Z−1A〉,

where τi,x is the isospin flip operator converting proton
i into a neutron or viceversa. Matrix elements of the
charge-raising and charge-lowering current between the
ZA state and, respectively, the Z+1A and Z−1A states
would then be identical. We will assume here this is the
case for 12C, and obtain the response functions corre-
sponding to the (ν`, `

−) process from those corresponding
to the (ν`, `

+) process by correcting the final state ener-
gies of the 12B system by the difference in ground-state
energies between 12N and 12B—in practice, by shifting
the response functions by about 5.5 MeV. We expect this
approximation to be inaccurate in the threshold region;
however, in quasielastic kinematics and beyond, it should
be of little import.

0

5

10

15

20

25

𝑅
00

[G
eV

−
1 ]

1b q=300 MeV
12b q=300 MeV
1b q=500 MeV
12b q=500 MeV
1b q=700 MeV
12b q=700 MeV

0

20

40

60

80

100

120

140

𝑅
𝑥𝑥

[G
eV

−
1 ]

0
1
2
3
4
5
6
7
8
9

𝑅
𝑧𝑧

[G
eV

−
1 ]

0

5

10

15

20

𝑅
0𝑧

[G
eV

−
1 ]

-140

-120

-100

-80

-60

-40

-20

0

0 100 200 300 400 500

𝑅
𝑥𝑦

[G
eV

−
1 ]

𝜔 [MeV]

FIG. 1. GFMC response functions at q= 300 (red), 500
(blue), and 700 (green) MeV. Predictions obtained with
one-body (one- and two-body) currents are shown by dash
(solid) lines. Shaded areas result from a combination of
GFMC statistical errors and uncertainties associated with the
maximum-entropy inversion.
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The second step employs maximum-entropy tech-
niques, developed specifically for this type of problem
in Ref. [62] (a fairly complete account of them is given
in that work), to perform the analytic continuation of
the Euclidean response functions, corresponding to the
“inversion” of the Laplace transforms. The resulting
Rαβ(q, ωqe) are rescaled as follows to account for the cor-
rect ω-dependence of the various form factors. The 00,
0z, zz, and xx response functions are given by the inco-
herent sum of the (squared) matrix elements associated
with the CC vector (V ) and axial (A) components, while
the xy response function involves interference between
these components. The 00, 0z, and zz V contributions

are multiplied by the factor
[
GVE(Q2)/GVE(Q2

qe)
]2

and the

xx V contribution by
[
GVM (Q2)/GVM (Q2

qe)
]2

, where GVE
and GVM are the isoscalar and isovector combinations of
the proton (p) and neutron (n) electric (E) and magnetic
(M) form factors (in the parametrization of Ref. [55]).
These multiplicative factors naturally emerge by consid-
ering the dominant one-body terms in the CC V current.

The 0, 0z, zz, and xx A contributions are multiplied by

the factor
[
GA(Q2)/GA(Q2

qe)
]2

. For these contributions
such a rescaling turns out to fully restore the correct ω-
dependence, since the one- and two-body axial currents,
including those associated with ∆-isobar intermediate
states, are proportional to GA(Q2) in the present mod-
eling [41]. Lastly, the interference response is rescaled
by the factor

[
GA(Q2)/GA(Q2

qe)
]
×
[
GVM (Q2)/GVM (Q2

qe)
]
.

Below, we show that the procedure above essentially ac-
counts for the correct ω-dependence implicit in the com-
plete CC response.

The five response functions entering the CC cross sec-
tion have been calculated with GFMC methods for mo-
mentum transfers in the range (100–700) MeV in steps
of 100 MeV. To reduce clutter, we present in Fig. 1 only
those obtained at q= 300, 500, and 700 MeV (note that
the scales for Rαβ are different in each panel).2 The
transverse (xx) and interference (xy) response functions
are largest but of opposite sign (the xy response as de-
fined here is negative). Consequently, the contributions
vxxRxx and vxy Rxy in the CC cross section add up for
neutrino scattering and tend to cancel each other out for
antineutrino scattering (the kinematical factors vxx and
vxy are positive [41]).

Two-body terms in the CC significantly increase the
magnitude of the response functions obtained in impulse
approximation (i.e., with one-body currents), over the
whole quasielastic region, except for R00 at low ω. This
increase in strength mostly comes about because of con-
structive interference between the one- and two-body cur-
rent matrix elements, and is consistent with that ex-
pected on the basis of sum rule analyses [64]. Two-

2 Tabulations of GFMC-calculated Rαβ(q, ω) for q in the range
(100–700) MeV and ω from threshold to ω . q are available
upon request.
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FIG. 2. Transverse scaling functions obtained from Rxx and
Rxy including only one-body, and one- and two-body, terms
in the CC, denoted respectively as f1b

xx and f1b
xy , and f12b

xx

and f12b
xy . The different curves have been obtained for three

different values of the moment transfer.

body contributions are found to be especially large—
accounting for more than 50% of the total calculated
strength—in Rzz, which involves the longitudinal compo-
nents (along the direction of the three-momentum trans-
fer) of the CC.

C. Scaling analysis

The analysis of scaling properties of nuclear response
functions has proven to be a useful tool to elucidate
important aspects of the many-body dynamics in the



6

quasielastic region. Scaling occurs when the electroweak
response functions, divided by appropriate pre-factors
describing single-nucleon physics, no longer depend upon
the momentum q and energy transfer ω, but only on a
specific function of them ψ(q, ω), yielding

Rαβ
Gαβ

' 1

kF
fαβ(ψ) , (5)

where kF is the Fermi momentum of the system. In the
non-relativistic limit, the scaling variable is given by [65]

ψ =
m

q kF

(
ω − q2

2m
− ε
)
, (6)

where ε is introduced to account for nuclear binding ef-
fects.

The pre-factors associated with the electromagnetic
longitudinal and transverse responses can be found in
Ref. [65]. Here we extend the scaling analysis to the five
response functions relevant for neutrino-nucleus scatter-
ing induced by CC transitions. The (longitudinal and
transverse) pre-factors associated with vector currents
are related to those of (isovector) electromagnetic cur-
rents by the CVC constraint; the pre-factors associated
with axial currents bring about additional terms, whose
relativistic expressions can be found in Ref. [66].

Within the Fermi gas model [3], the following scaling
function can be analytically derived,

fFG
αβ (ψ) =

3

4
(1− ψ2)θ(1− ψ2) , (7)

by assuming one-body currents only. However, unlike
the latter expression, which is symmetric and centered
around ψ= 0, the scaling functions extracted from ex-
perimental data and those inferred from more realistic
models of nuclear dynamics exhibit a clearly asymmetric
shape, with a tail extending in the ψ > 0 region [67].
Moreover, while the Fermi gas scaling function is uni-
versal and does not depend upon the specific transition
operator, such is not the case when the spin and charge
dependence of nuclear interactions in the final states are
taken into account [61].

The xx (xy) scaling functions displayed in the upper
two (lower two) panels of Fig. 2 have been obtained as
in Eq. (5), i.e., by dividing the GFMC electroweak re-
sponse functions in the transverse (interference) channel
by the appropriate pre-factors for the CC vector and ax-
ial components. The upper and lower panels for each
set (xx and xy) correspond to including one-body only,
and one-and two-body, current operators. The dotted
(red), dashed (blue), and solid (green) lines show the xx
and xy scaling functions for q= 500, 600, and 700 MeV,
respectively. The shaded area indicates the uncertainty
in the maximum-entropy inversion procedure and also
reflects the statistical errors of the GFMC calculations.
The xy scaling functions, shown in the lower two pan-
els of Fig. 2, are almost identical to the xx ones in both
cases (one-body only, and one- and two-body currents).

In contrast to the Fermi gas model, nuclear correlations
in the initial and final states, which are exactly treated
in the GFMC method, yield asymmetric scaling func-
tions, with tails that extend well beyond ψ > 1. Note
that the scaling functions can be significantly different
in the other channels, for example the longitudinal and
transverse response in electron scattering [27].

The different curves clearly exhibit a scaling behavior,
as they are almost independent of momentum transfer.
This is expected to be even more accurate at larger q
values. More interesting is the observation that scaling
persists even when two-body current contributions are
included in the response functions, as shown in the sec-
ond and fourth panels of Fig. 2. While these contribu-
tions generate significant excess strength in fxx and fxy,
they do not spoil their scaling properties. An explana-
tion of these features can be found in Ref. [68] for the
case of the electromagnetic response, and similar consid-
erations remain valid here. In essence, in the xx and
xy responses the excess strength seen in the quasielas-
tic region comes about because two-body currents lead
to final states which are very similar to those produced
by an electroweak interaction vertex on a single nucleon
followed by the subsequent high-momentum strong inter-
action of this nucleon with another nucleon. The result-
ing (constructive) interference between the correspond-
ing matrix elements generates excess strength which is
spread out over the quasielastic peak region in a way very
similar to the response arising from the high-momentum
part of the single-nucleon currents associated with pion
exchange interactions. We defer to Ref. [68] for a more
comprehensive discussion of scaling in the present context
of microscopic Hamiltonians and currents. This reference
also discusses superscaling [14]—scaling with respect to
the mass number—and the absence of scaling observed
in the ∆-resonance region.

An analogous scaling behavior is also seen in the 00, 0z,
and zz channels. We capitalize on this feature in order
to extrapolate the response functions at large momentum
transfers q > q= 700 MeV, that is, beyond the range of
those calculated with GFMC methods. It turns out they
are needed when computing flux-folded cross sections (see
Sec. III below). We parametrize them as

Rαβ(q > q, ω) = Gαβ(q, ω)fαβ(ψ) , (8)

where fαβ(ψ) are the scaling functions determined from
the GFMC-calculated responses at q. The underlying as-
sumption is that the fαβ(ψ) for q > q coincide with those
at q. To account for the small scaling violations, we con-
servatively associate an uncertainty to this extrapolation
procedure corresponding to twice the difference between
the scaling functions at q= 600 and 700 MeV.
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III. RESULTS

Muon neutrino and antineutrino flux-averaged cross
sections are obtained from〈

dσ

dTµ d cos θµ

〉
=

∫
dEν φ(Eν)

dσ(Eν)

dTµ d cos θµ
, (9)

where φ(Eν) is the normalized νµ or νµ flux—those
for MiniBooNE and T2K are shown in Fig. 3—and
dσ(Eν)/(dTµ d cos θµ) are the corresponding inclusive
cross sections of Eq. (2). The experimental data are
binned in cos θµ bins of constant width (0.1) for Mini-
BooNE, and varying widths for T2K; when comparing
to these data, the calculated cross sections are averaged
over the relevant cos θµ bin.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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T2K 𝜈

FIG. 3. Normalized νµ fluxes of MiniBooNE and T2K, and
normalized νµ flux of MiniBooNE.

Predictions for the flux-averaged cross sections on 12C
corresponding to the two experiments and obtained by
including one-body only, and one- and two-body, cur-
rents are shown by, respectively, dashed (green) and
solid (blue) lines in Figs. 4–6. The shaded areas re-
sult from combining statistical errors associated with the
GFMC evaluation of the Euclidean response functions,
uncertainties in the maximum-entropy inversion of them,
and uncertainties due to extrapolation of the response
functions outside the calculated (q, ω) range, which is
100 MeV ≤ q ≤ 700 MeV and ω from threshold to ω . q.
This extrapolation is carried out by exploiting the scaling
property of the various response functions, as outlined at
the end of the previous section. The large cancellation
between the dominant terms proportional to vxxRxx and
vxy Rxy in antineutrino cross sections leads to somewhat
broader error bands than for the neutrino cross sections,
for which those terms add up. Furthermore, we note
that the cross-section scales in Figs. 4 and 5 are differ-
ent, those for the νµ-CCQE data being a factor of about
2 to 10 smaller than for the ν-CCQE data as the muon
scattering angle increases from 0◦ to 90◦.

Overall, the MiniBooNE νµ and νµ, and T2K νµ, data
are in good agreement with theory, when including the

contributions of two-body currents. This is especially no-
ticeable in the case of the MiniBooNE νµ data at forward
scattering angles. However, the calculated cross sections
underestimate somewhat the MiniBooNE νµ data at pro-
gressively larger muon kinetic energy Tµ and backward
scattering angles θµ, and the νµ data at forward θµ over
the whole Tµ range. By contrast, the full theory (with
one- and two-body currents) appears to provide a good
description of the T2K νµ data over the whole measured
region.

For a given initial neutrino energy Eν , the calculated
cross section is largest at the muon energy Tµ correspond-
ing to that of the quasielastic peak,

T qe
µ +mµ ≈

Eν

1 + 2 (Eν/m) sin2 θµ/2
, (10)

where m is nucleon mass, and on the r.h.s. of the equation
above we have neglected the muon mass. The position
of the quasielastic peak then moves to the left, towards
lower and lower T qe

µ , as θµ changes from the forward to
the backward hemisphere. The general trend expected on
the basis of this simple picture is reflected in the calcula-
tion and data, even though the cross sections in Figs. 4-6
result from a folding with the neutrino flux, which is far
from being monochromatic. Nevertheless, the correlation
between peak location in the flux-averaged cross sections
and θµ remains. For example, the T2K flux is largest
at Eν ≈ 560 MeV and fairly narrow; hence, one would
expect the T2K flux-averaged cross section be peaked at
the muon momentum p qe

µ ≈ 550 MeV for cos θµ = 1, and
p qe
µ ≈ 450 MeV for cos θµ = 0.65, in reasonable accord

with the data of Fig. 6.
In Figs. 4 and 5 we also present the flux-folded νµ

and νµ cross sections obtained in plane-wave-impulse-
approximation (PWIA) for three different bins in cos θµ
(corresponding to the forward, intermediate, and back-
ward region) of the MiniBooNE data. We have adopted
here the most naive (non-relativistic) formulation of
PWIA based on the single-nucleon momentum distri-
bution rather than the spectral function.3 Hence, the
PWIA response functions follow from

RPWIA
αβ (q, ω)=

∫
dpN(p)xαβ(p,q, ω)

× δ

(
ω − E − |p + q|2

2m
− p2

2mA−1

)
, (11)

where the factors xαβ(p,q, ω) denote appropriate combi-
nations of the CC components (the same single-nucleon
CC utilized in the GFMC calculations), and N(p) is the
nucleon momentum distribution in 12C (as calculated in
Ref. [69]). The effects of nuclear interactions are sub-
sumed in the single parameter E, which can be inter-
preted as an average separation energy (we take the value

3 It should be noted here that ab initio calculations of the 12C
spectral functions are not currently available.
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FIG. 4. MiniBooNE flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for different ranges of cos θµ. The experimental data and their shape uncertainties
are from Ref. [46]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA = 1.0 GeV.

E ≈ 20 MeV). The remaining terms in the δ-function
are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA−1. From these RPWIA

αβ we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering xαβ(p,q, ω) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
ticularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-

crease produced by two-body currents in the GFMC cal-
culations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ν case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as θµ changes from 0◦ to about 90◦, the ν cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.
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FIG. 5. Same as Fig. 4 but for νµ-CCQE scattering. The experimental data and their shape uncertainties are from Ref. [47].
The additional 17.4% normalization uncertainty is not shown here.

IV. CONCLUSIONS

We have reported on an ab initio study, based on re-
alistic nuclear interactions and electroweak currents, of
neutrino (and antineutrino) inclusive scattering on 12C in
the CCQE regime of the MiniBooNE and T2K data. Nu-
clear response functions have been calculated with QMC
methods and, therefore, within the description of nuclear
dynamics that we have adopted here, fully include the
effects of many-body correlations induced by the inter-
actions in the initial and final states, and correctly ac-
count for the important (constructive) interference be-
tween one- and two-body current contributions. This
interference leads to a significant increase in the cross-
section results obtained in impulse approximation, and
is important for bringing theory into much better agree-
ment with experiment.

The nucleon and nucleon-to-∆ electroweak form fac-
tors entering the currents have been taken from mod-
ern parameterizations of elastic electron scattering data
on the nucleon and deuteron, and neutrino scattering

data on the proton and deuteron. In particular, the Q2-
dependence of the nucleon axial form factor GA(Q2) is
of a dipole form with a cutoff ΛA≈ 1 GeV. The nucleon-
to-∆ axial coupling constant g∗A has been fixed by re-
producing the Gamow-Teller matrix element measured
in tritium β decay, while the Q2-dependence of its (tran-
sition) form factor G∗A(Q2) has simply been assumed to
be the same as that of GA(Q2), since no experimental
information is currently available on G∗A(Q2).

First-principles LQCD calculations of nucleon (and,
possibly, nucleon-to-∆) electroweak form factors could
potentially have a significant impact on calculations of
neutrino-nucleus cross sections, since these form factors
constitute essential inputs to the nuclear CC. This is
especially the case for GA(Q2) and the induced pseu-
doscalar form factor GP (Q2), whose Q2-dependence is
experimentally poorly known. In this context, it is in-
teresting to note that recent LQCD studies [39, 40, 70]
find the Q2 fall-off of GA(Q2) with increasing Q2 signif-
icantly less drastic than implied by the dipole behavior
with ΛA≈ 1 GeV. They also find the nucleon isovector
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FIG. 6. T2K flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for different ranges of cos θµ. The experimental data and their shape uncertainties are
from Ref. [48]. Calculated cross sections are obtained with ΛA = 1.0 GeV.

vector form factors in agreement with experimental data
which are of course quite accurate. These calculations
suggest a larger value of ΛA may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos θµ), obtained by replacing in the
dipole parametrization the cutoff ΛA≈ 1 GeV with the

value Λ̃A≈ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for νµ, the magnitude of
the increase turns out to be more pronounced for νµ than
for νµ—as a matter of fact, the νµ cross sections are re-
duced at backward angles (0.1 ≤ cos θµ ≤ 0.2). Overall,
it appears that the harder cutoff implied by the LQCD
calculation of GA(Q2) improves the accord of theory with
experiment, marginally for νµ and more substantially for
νµ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we

caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [71], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the ∆-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal effectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [28, 72] or on
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FIG. 7. The flux-folded GFMC cross sections for selected bins in cos θµ, obtained by replacing in the dipole parametrization

the cutoff ΛA≈ 1 GeV with the value Λ̃A≈ 1.15 GeV, more in line with a current LQCD determination [39]. The first two rows
correspond to the MiniBooNE flux-folded νµ and νµ CCQE cross sections, respectively; the last row corresponds to the T2K
νµ CCQE data. In the theoretical curves the total one- plus two-body current contribution to the cross section is displayed.

the short-time approximation of the nuclear many-body
propagator [68] for relativity and pion production, and
auxiliary-field-diffusion Monte Carlo methods [73] to de-
scribe the ground states of medium-weight nuclei. We
are optimistic that the next few years will witness sub-
stantive progress in the further development and imple-
mentation of these approximate methods to address the
high-energy region of the nuclear electroweak response.

Finally, factorization approaches can also be helpful in
obtaining some information on exclusive final states. For
more complete treatment of these or, in fact, low energy
peaks in the threshold region of the response quantum
computers could play a role, given sufficient size and suf-
ficiently low error rates [74, 75].
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