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Improving the temporal resolution of single photon detectors has an impact on many 

applications , such as increased data rates and transmission distances for both classical  and 

quantum  optical communication systems, higher spatial resolution in laser ranging and 

observation of shorter-lived fluorophores in biomedical imaging . In recent years, superconducting 

nanowire single-photon detectors  (SNSPDs) have emerged as the highest efficiency time-resolving 

single-photon counting detectors available in the near infrared As the detection mechanism in 

SNSPDs occurs on picosecond time scales , SNSPDs have been demonstrated with exquisite 

temporal resolution below 15 ps . We reduce this value to 2.7±0.2 ps at 400 nm and 4.6±0.2 ps at 

1550 nm, using a specialized niobium nitride (NbN) SNSPD. The observed photon-energy 

dependence of the temporal resolution and detection latency suggests that intrinsic effects make a 

significant contribution. 
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METHODS 

Nanofabrication and screening. 
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Cryogenic setup.

Optical setup. 



Jitter and latency measurement.



Instrument response function (IRF) fitting.
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Figure 1 | Low-jitter superconducting nanowire single-photon detector.



Figure 2 | Instrument response function showing wavelength dependence of detection latency 

and jitter.
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Figure 3 | Bias current dependence of the jitter, normalized photon count rate (PCR) and detection 

latency difference. 



Figure 4 | Wavelength dependence of the jitter.

       



  
 

SUPPLEMENTARY INFORMATION 

 

Supplementary Note 1 | Exponentially modified Gaussian function fitting parameters.
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Supplementary Figure 5. 

 



 

Supplementary Figure 6. 



Supplementary Note 2 | Photon energy independence of SNSPD rising edge. 



 

Supplementary Figure 7. 

 

Supplementary Note 3 | Deviation from exponentially modified Gaussian (EMG) function for short 

wavelengths. 



 

 

Supplementary Figure 8.

 

 

 

 

Supplementary Note 4 | Temperature dependence of the jitter. 



 

Supplementary Figure 9.




