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Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber
with an active volume of 7.2 × 6.0 × 6.9 m3. It is installed at the CERN Neutrino Platform in a
specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with
momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate mo-
mentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for
the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates
full-size components as designed for that module. This paper describes the beam line, the time
projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle
reconstruction. It presents the first results on ProtoDUNE-SP’s performance, including noise and
gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron life-
timemeasurements, and photon detector noise, signal sensitivity and time resolutionmeasurements.
The measured values meet or exceed the specifications for the DUNE far detector, in several cases
by large margins. ProtoDUNE-SP’s successful operation starting in 2018 and its production of large
samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.

Keywords: Noble liquid detectors (scintillation, ionization, single-phase), Time projection cham-
bers, Large detector systems for particle and astroparticle physics
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1 Introduction

The neutrino detectors at the far site of the Deep Underground Neutrino Experiment (DUNE) [1]
are planned to be built inside four cryostats, each of which will contain 17.5 kt of liquid argon (LAr).
The first detector to be constructed is planned to be a single-phase time projection chamber (TPC),
similar to, but a factor of 25 more massive than the pioneering T600 detector built by the ICARUS
collaboration [2]. The ProtoDUNE single-phase apparatus (ProtoDUNE-SP) [3], assembled and
tested at the CERN Neutrino Platform (the NP04 experiment at CERN) [4], is designed to act as
a test bed and full-scale prototype for the elements of the first far detector module of DUNE [5].
ProtoDUNE-SP contains 770 tonnes of LAr, 420 of which are in the active volume of the TPC.
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It is currently the largest liquid argon time projection chamber (LArTPC) ever constructed. It is
designed to meet the challenges of mechanics, electronics, high voltage, cryogenics, LAr purity,
data acquisition, data storage, event reconstruction and analysis. Installation of the ProtoDUNE-SP
detector was completed in early July 2018, the filling of the cryostat with argon was completed by
mid-September 2018, and data-taking with the full apparatus started in October 2018.

In addition to its role as a demonstration prototype and engineering test bed, the ProtoDUNE-
SP TPC was exposed to a tagged and momentum-analyzed particle beam with momentum settings
ranging from 0.3 GeV/c to 7 GeV/c. This beam enabled the acquisition of large samples of data
on the behavior of charged pions, kaons, protons, muons and positive electrons (positrons) in LAr.
The beam was set to deliver only positively-charged particles for the data samples used in this
paper, although future runs will also include negatively-charged particle beams. These data serve as
templates for understanding how these particles will appear when produced in neutrino interactions
in DUNE, and they will be an important reference in the analysis of interactions in DUNE. These
data also provide a real-world test bed for the development of algorithms for pattern recognition,
event reconstruction and analysis, and they will be used to measure the cross sections of interactions
of charged particles in LAr.

The ProtoDUNE-SP apparatus is designed to satisfy the stringent new requirements and achieve
the improved levels of performance required by DUNE [6]. The membrane cryostat and its
associated cryogenic system are the largest LAr systems ever constructed. The argon purification
system is the largest constructed to date. As compared to previous devices, such as ICARUS [2],
ArgoNeuT [7], LongBo [8], MicroBooNE [9], and the 35-ton prototype [10] which had shorter
maximum drift distances, the 3.6 m drift distance in ProtoDUNE-SP makes higher demands on
argon purity. The long drift distance also requires higher voltages in the HV system used to provide
the drift field, and the stored energy which may be released in a discharge is also higher than in
previous devices. To allow for higher voltages and to reduce the chance of discharges, ProtoDUNE-
SP incorporates specially-chosen materials for the cathode and the field cage structure, and new
shapes for the field rings. The sense-wire assemblies, known as Anode Plane Assemblies (APAs),
contain three planes of readout wires on both faces and are of a novel design and construction. To
improve the signal-to-noise ratio, the sense wire readout amplifiers and analog-to-digital converters
(ADCs) are placed inside the LAr close to the wires. Furthermore, the data acquisition system
accommodates a higher data rate and larger event sizes than previous LArTPC systems.

ProtoDUNE-SP includes a novel photon-detector design which embeds the photon detectors
within the APAs in order to collect scintillation light from ionized LAr. Due to the small available
area, the photon detectors are required to be highly efficient for detecting single photons. The
performance of the photon detectors in ProtoDUNE-SP is a primary topic of this paper.

Cosmic-ray interactions with the detector cause a buildup of positive ions that drift very slowly
towards the cathode. The accumulated space charge is proportional to the rate of incident cosmic
rays and it depends strongly on the drift distance. The space charge alters the electric field in
the detector, changing both its strength and its direction, causing distortions in both the measured
positions of particles traversing the detector and their apparent ionization densities. However, the
effects of space charge buildup are expected to be largely absent in the DUNE Far Detector due to
its low cosmic-ray rate, a consequence of its deep underground location. In the analyses presented
in this paper, corrections for the effects of space charge are applied where appropriate in order for
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the results of these studies to be generally applicable.
The ProtoDUNE-SP Technical Design Report [3] contains a detailed description of the de-

sign. A description of the apparatus as built, plus a description of the installation, testing and
commissioning is given in [11].

This paper is organized as follows. Section 2 describes different components of the ProtoDUNE-
SP detector. Section 3 describes details of the CERN beam line instrumentation. Sections 4-7
summarize results on TPC characterization, photon detector characterization, TPC response, and
photon detector response. Section 8 concludes the paper.

2 The ProtoDUNE-SP detector

The ProtoDUNE-SP apparatus, shown in figure 2, is described by a right-handed coordinate system
in which the y axis is vertical (positive pointing up) and the z axis is horizontal and points
approximately along the beam direction. The x axis is also horizontal and points along the nominal
electric field direction and is perpendicular to the wire planes1.

2.1 Cryostat

The TPC is installed in a membrane cryostat [12] with internal dimensions of 8.5 m in both the x
and z directions, and 7.9 m in y. The cryostat is filled to a height of about 7.3 m and its pressure is
maintained to 1050 mbar (absolute). The TPC is suspended by the detector support system, which
is a network of steel beams held in place by nine penetrations in the roof of the cryostat.

A detailed description of the design, construction, leak-checking, testing and validation of
the cryostat is given in [11]. The cryogenics control system is also described there. We give a
summary here of the argon purification system system that has played a crucial role in the detector
performance achieved.

The argon received from the supplier has contaminants of water, oxygen and nitrogen at the
parts per million level each. Water and oxygen will capture drifting electrons and the concentration
of these contaminants needs to be reduced by a factor of at least 104 and maintained at this level
to allow operation of the TPC. Purification of argon in the liquid phase, as required for the mass
of argon involved here, is reported in [13]. The present system builds on purification systems
developed for ICARUS and most recently at Fermilab [14] and [9], including the use of the same
filter materials. The main features of the system are indicated in figure 1. There are three circulation
loops. In one, liquid leaves the cryostat via a penetration in the side. It is pumped as liquid through
a set of filters, and it is reintroduced to the cryostat at the bottom. The pump can drive about 7 t/hr
giving a volume turnover time of about 4.5 days. In the second loop, argon gas from the purge pipes
with which each signal penetration is equipped is purified directly while warm and it is recondensed
to join the liquid flow out of the cryostat. In the third loop, the main boil-off from the argon is
recondensed directly and it then joins the liquid flow out of the cryostat. When the argon is first
circulated, the contamination level falls following a perfect mixing model with a time constant of

1Throughout this paper, the charge and energy deposited per unit track length are conventionally referred to as dQ/dx
and dE/dx respectively. The dx in these expressions is not oriented along the detector coordinate x but rather it is a
differential step along the track path.
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the turnover time until a steady state is reached in which the rate of contamination from leaks and
outgassing from impurities balances the clean-up rate. In the NP04 cryostat, thanks to the rate of
recirculation and the avoidance of leaks, this state is equivalent to an oxygen contamination [15]
of a few parts per trillion resulting in essentially full-strength signals from the furthest parts of the
TPC.

Figure 1: A schematic of the argon purification system at NP04.

Instrumentation for monitoring the state of the argon is distributed outside the TPC near the
innerwalls of the cryostat. Three puritymonitors, formerly usedwith the ICARUST600 detector [2],
were refurbished with new gold photocathodes and quartz fibers. They are deployed in ProtoDUNE-
SP, each at a different height. They monitor and give fast feedback on the drift electron lifetime
in the liquid argon. Two vertical columns of resistance temperature detectors (RTDs) measure
the temperature gradient of the liquid argon. Computational fluid dynamics (CFD) calculations
have been performed that predict the temperature distribution and the internal flow pattern of the
argon [16]. The temperature is predicted to vary by 15 mK total over the height of the liquid. The
RTDs have been cross calibrated in situ to better than 2 mK and their measurements agree with
the predictions within ±3.7 mK. A set of cameras and LED lights in the liquid and in the ullage
provides monitoring of the mechanical state of the apparatus during filling and operation.
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2.2 Time projection chamber

Figure 2 shows a view of the TPC with its major components labeled and a photo of one of the
two drift volumes. The active region of the TPC encloses a volume 6.0 m high, 6.9 m along the z
direction, and 7.2 m in the x direction. The TPC is divided into two separate half-volumes with a
solid, planar cathode at x = 0 in the yz plane, with three APAs 3.6 m from the cathode on either
side.

The cathode plane of the TPC is formed from six cathode plane assemblies (CPAs). Each CPA
is 1.15 m wide and 6.1 m high, and consists of three vertically stacked cathode panels. The stored
electrical energy in the TPCwhen fully charged presents a challenge. If the cathodewere electrically
conducting, an electrical breakdown can discharge it rapidly, endangering the front-end electronics.
Instead, the cathode is constructed out of resistive materials which give it a very long discharge time
constant, reducing the risk. The CPA panels are constructed from FR4, a fire-retardant fiberglass-
epoxy composite material. These panels are laminated on both sides with a commercial Kapton
film with a resistivity of ∼3.5 MΩ/sq. The cathode plane is biased at -180 kV to provide a 500 V/cm
drift field. A field cage with 60 voltage steps on each side of the cathode ensures the uniformity
of the nominal drift field between the cathode plane and the sense planes. The electric field differs
from the nominal prediction due to space-charge effects, which are described in section 6.1.

A sketch of an APA is shown in figure 3. Each APA has a rectangular stainless steel frame
6.1 m high, 2.3 m wide, and 76 mm thick. There are four layers (planes) of wires bonded on each
side of the frame. The wire planes and their wire orientations are (from outside in) the Grid (G)
layer (vertical), the U layer (+35.7◦ from vertical), the V layer (-35.7◦ from vertical), and the X layer
(vertical). A bronze wire mesh with 85% optical transparency is bonded directly over each side of
the APA frame to provide a grounded shield plane for the four wire planes mentioned above. Each
successive wire plane is built 4.75 mm above the previous layer, including the wire mesh. The wires
are terminated on wire boards which are stacked on the short ends the APA. The G and X layers
have the same wire pitch of 4.79 mm, but are staggered by half a wire pitch in relative position. The
U and V wires have a pitch of 4.67 mm. Wires on the two induction planes are helically wrapped
around the frame from the head, to the sides, and then to the foot. Wires are held in place with FR-4
boards with teeth cut in them as they wrap around the sides. The wire angle is chosen such that the
wires do not wrap more than one revolution to avoid creating ambiguities in track reconstruction.
Four wire support combs made out of 0.5 mm-thick G10 (a fiberglass-epoxy composite material)
are installed on each side of each APA uniformly spaced along the y direction, in order to hold
the long wires in place, helping to counteract gravitational, electrostatic, and fluid-flow forces that
would otherwise cause portions of the wires to be displaced from their nominal positions. Each
wire plane is electrically biased at a different potential such that the primary ionization electrons
created in the drift volume pass through the G, U and V planes without being captured, and finally
are collected on the X wires. Therefore, the X plane wires are also referred to as the collection
wires, and the U, V plane wires as the first and second induction plane wires. The grid plane wires
serve as an electrostatic discharge (ESD) protective shield and are not read out. The nominal wire-
plane bias voltages, to ensure electron collection only on collection-plane wires, are VG = −665 V,
VU = −370 V, VV = 0 V, VX = +820 V.

The G plane on the lowest-z APA on the x < 0 side of the detector was unintentionally not
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Figure 2: Top: a view of the TPC with its major components labeled; bottom: a photo of one of
the two drift volumes, where three APAs are on the left side and the cathode is on the right side.

connected to its voltage supply. The break in connectivity was determined to be inside the cryostat
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Figure 3: Sketch of a ProtoDUNE-SP APA, showing portions of the U (green), V (magenta), the
induction layers; and X (blue), the collection layer, to accentuate their angular relationships to the
frame and to each other. The induction layers are connected electrically across both sides of the
APA. The grid layer (G) wires (not shown), run vertically, parallel to the X layer wires. Separate
sets of G and X wires are strung on the two sides of the APA. From ref. [3].

and it could not be repaired for the duration of the run. Groups of four G plane wires are connected
to a 3.9 nF capacitor with the other terminal grounded. Without a voltage supply, drifting ionization
electrons will charge up the G-plane from its initial state to a potential that repels electrons and
prevents further charge collection. This charging process takes approximately 100 hours [5], and
the average charge measured by this APA is reduced during the charge-up time.

Electron diverters are installed in the two vertical gaps between the APAs on the negative-x
side of the cathode, but not between the APAs on the positive-x side. These diverters consist of
two vertical electrode strips, an inner electrode and an outer electrode, mounted on an insulating
board that protrudes approximately 25 mm into the drift volume beyond the G plane wires. Voltages
applied to the diverter electrodesmodify the local drift field so that electrons drift away from the gaps
between the APAs and into the active area. A diagram showing the field lines and equipotentials
in the vicinity of the electron diverters when they are working as designed is given in ref. [3].
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High currents were drawn from the electron diverters’ power supplies when they were energized,
due to one or more electrical shorts in the cold volume. The electron diverters were therefore left
unpowered. A resistive path to ground on each one ensured that the actual voltage on the outer
electrode was close to zero, which was not the intended voltage. The grounded diverter electrodes
collected charge near the gaps, and also distorted nearby drift paths.

2.3 Beam plug

The test beam enters the detector at mid-height and about 30 cm away from the cathode, on the
negative x side. It points down 11◦ from the horizontal, and towards the APA on the negative x side,
10◦ to the right of the z direction. In order to minimize the energy loss of beam particles prior to
their entry in the TPC due to the materials in the cryostat, the 40 cm of inactive liquid argon in front
of the TPC, and the field cage, a “beam plug” [3] is installed on the low-z, negative-x side of the
end-wall field cage, as shown in figure 4. This beam plug is constructed from a series of alternating
fiberglass and stainless steel rings to form a cylinder, and capped at entrance and exit ends with low
mass fiberglass plates. The stainless steel rings are connected to three sets of resistors to regulate
the voltage from the field cage to the grounded cryostat membrane. The beam plug extends through
an opening in the field cage about 5 cm inside the field cage boundary. The inside face of the beam
plug is covered with a mini field cage made from 0.8 mm thick printed circuit board to reduce the
drift field distortion introduced by this opening. The beam plug is filled with nitrogen at a nominal
pressure of 1.3 bar (absolute pressure) to balance the hydrostatic pressure of the liquid argon at this
height and also to maintain high dielectric strength to avoid HV breakdown. Besides, the cryostat
warm structure and the insulation are also modified to reduce the beam interaction with passive
materials.

~50cm

Nitrogen Line &
Electrical Ground

Glass-Epoxy
Ring Section

Secondary Beam 
Plug Support HV Connection

Profile #5

Mounting FlangeGrading 
Resistors (18x)

Grading Rings (7x)

Ground Potential

Beam

Figure 4: Drawing of the beam plug (left) and an image of the beam plug installed inside the
cryostat (right).
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2.4 Cold electronics

The U, V and X wire planes on both sides of an APA are read out by 20 front-end motherboards
(FEMBs) installed close to the wire boards on top of eachAPA. The FEMBs amplify, shape, digitize,
and transmit all 15,360 TPC channels’ signals to the warm interface electronics through cold data
cables, which are up to 7 m in length. Each FEMB contains one analog motherboard, which is
assembled with eight 16-channel analog front-end (FE) ASICs [17], to provide amplification and
pulse shaping, and eight 16-channel Analog to Digital Converter (ADC) ASICs for a total of 128
channels readout per FEMB.

Each FE ASIC channel has a dual-stage charge amplifier circuit with a programmable gain
selectable from 4.7, 7.8, 14 and 25mV/fC, and a 5th-order anti-aliasing shaper with a programmable
time constant with peaking times of 0.5, 1, 2, and 3 µs. The FE ASIC also has an option to enable
AC coupling and a baseline adjustment for operation at either 200 mV for the unipolar pulses on
the collection wires or 900 mV for the bipolar pulses on the induction wires. Under normal running
conditions the ASIC gain is set at 14 mV/fC and the peaking time is set at 2 µs for all channels.
On October 11, 2018, the internal ASIC baseline was changed to 900 mV for both induction and
collection channels in order to mitigate ASIC saturation with large input charge. Each FE ASIC also
has an adjustable pre-amplifier leakage current selectable from 100, 500, 1000, and 5000 pA. The
default leakage current is 500 pA. The estimated power dissipation of a FE ASIC is about 5.5 mW
per channel at 1.8V. Each FE ASIC contains a programmable pulse generator with a 6-bit DAC for
electronics calibration, which is connected to each channel individually via an injection capacitor.
The ADC ASIC has 16 independent 12-bit digitizers performing at speeds up to 2 megasamples
per second (MS/s).

A commercial Altera Cyclone IV FPGA, assembled on a mezzanine card that is attached to
the analog motherboard, provides clock and control signals to the FE and ADC ASICs. The FPGA
also serializes the 16 data streams from the ADCs into four 1.25 Gbps links for transmission to the
warm interface electronics over the cold data cables. The FPGA can also provide a calibration pulse
to each FE ASIC channel via the same injection capacitor used for the internal FE ASIC DAC, as
a cross-check for the electronics calibration. The production, commissioning and performance of
the cold electronics components are described in [18].

The number of TPC channels that do not respond to charge signals from cosmic-ray muons
evolved over the course of the data-taking period. Twenty-nine channels never showed any sensitivity
to signals, from September 2018 to January 2020. An additional seven became solidly unresponsive
during the run, making the total unresponsive channel count 36 in January 2020. Approximately
30 additional channels were found to be intermittently unresponsive during the run. During initial
cold-box testing before installation, 34 channels were identified as non-responsive; this includes the
29 initially dead channels and five intermittent ones that happened to be non-responsive during the
test.

2.5 Photon detectors

Liquid argon is a prolific emitter of scintillation light. Approximately 2.4×104 vacuum ultraviolet
(VUV) photons are created perMeV of energy deposited by ionization in LAr at the nominal electric
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field of 500 V/cm. Photon detectors are installed in ProtoDUNE-SP in order to detect a fraction
of these photons to measure interaction times and to get an independent measurement of deposited
energy. These photon detectors, however, cannot be placed outside of the field cage because it
blocks the scintillation light, and so the photon detectors are integrated in the APAs, occupying the
space between the two mesh planes. Ten bar-shaped photon detectors with dimensions of 8.6 cm
(height) 2.2 m (length) and 0.6 cm (thickness) are embedded at equally spaced heights within each
APA. A number of different designs of photon-detector technologies are implemented within this
size constraint. In each design, silicon photomultipliers [19] are used to convert the light to electrical
signals, which are brought out of the cryostat on copper cables. Most of the photon detectors sense
the light that reaches the ends of the bars – the exception is the so-called ARAPUCA design, which
collects light at several positions along the bar. More details on the photon detector system are
provided in section 5.

2.6 Cosmic-ray tagger

The CRT is a system of scintillation counters that covers almost the entire upstream and downstream
faces of the TPC. It was installed in order to provide triggers to read out the detector for a set of
cosmic-ray muons that pass through with known timing and direction, parallel to the TPC readout
planes. Since the ProtoDUNE-SP detector is on the surface, it is exposed to 20 kHz of cosmic-ray
muons. Most of these muons are not tagged before entry into the TPC. Both untagged muons
and muons tagged by the CRT are exploited to provide important calibration data and performance
indicators.

The CRT uses scintillation counters recycled from the outer veto of the Double Chooz exper-
iment [20]. It is constructed in four large assemblies, two mounted upstream and two mounted
downstream of the cryostat. Each assembly covers an area approximately 6.8 m high and 3.65 m
wide. The CRT uses 32 modules containing 64 scintillating strips each. The strips are 5 cm wide
and 365 cm long. The strips in each module are parallel to each other, and thus a module provides a
one-dimensional spatial measurement for each track at a given position along z. In order to enable
two-dimensional sensitivity in x and y, four modules are placed together into eight assemblies with
two modules being rotated by 90 degrees to create an assembly of 3.65 m by 3.65 m in size, as
shown in figure 5. Four of these units are placed to cover the upstream (front) face of the detector
and the other four placed against the downstream (back) face. Hamamatsu M64 multi-anode pho-
tomultiplier tubes detect the scintillation light and the resulting electrical pulses are digitized by
ADCs and recorded by the data acquisition system along with timestamps with 20 ns resolution.
A digitized pulse and its timestamp are called a “one-dimensional hit”. Two-dimensional hits are
reconstructed when two one-dimensional hits are recorded in overlapping CRT modules within a
coincidence window of 80 ns. A cosmic-ray muon track is reconstructed in the CRT by drawing a
line from hits in the front modules to hits in the back modules within a coincidence window dictated
by the estimated time of flight to travel from the front modules to the back modules.

Half of the 32 upstream CRTmodules cover the upstream face of the detector and the other half
of the CRT modules cover the downstream face of the detector as seen in figure 6. The upstream
CRTmodules are offset due to the beam pipe, which enters the cryostat at an angle. Because of this,
eight CRT modules cover the area near the cathode along the x direction, but 9.5 m upstream from
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Figure 5: Drawing of CRT modules overlaid (left) and an image of CRT modules installed
downstream (right). Two CRT modules measure the x coordinate and two CRT modules are rotated
to measure the y coordinate.

the front face of the TPC. The other eight upstream CRT modules sit to the left of the beam pipe
with an offset of 2.5 m upstream from the from face of the TPC. The downstream CRT modules are
centered with respect to the center of the TPC in x and sit 10 m downstream from the front face of
the TPC.

2.7 Data acquisition, timing and trigger system

The ProtoDUNE-SP data acquisition system (DAQ) is responsible for reading the data from the
TPC, the photon detector and the CRT. It also reduces the data volume using online triggering and
compression techniques and formats the data into trigger records2 for storage and offline processing.
TheTPChas two candidate readout solutions under test in ProtoDUNE-SP: RCE (ATCA-based) [21]
and FELIX (PCIe-based) [22]. Both of these systems ran simultaneously. For the beam runs, five
out of the six APAs were read out using RCEs and one APA was read out using FELIX. After the
beam runs, four APAswere converted fromRCE readout to FELIX readout. Fermilab’s artDAQ [23]
is used as the data-flow software.

The ProtoDUNE-SP timing system provides a 50MHz clock multiplexed on an 8b10b encoded
data stream that is broadcast to all endpoints. The timing system interfaces to the CERN SPS beam
presence signals and can be used to switch modes for data taking with and without beam. The
timing system data stream also provides the trigger distribution. The timing system is partitionable,
a feature that allows parts of the experiment to run independently. A clock synchronized to the

2The word “event” is customarily used for a triggered detector readout in many high-energy physics experiments. Due
to the need to refer to interactions as events and the presence of multiple interactions per detector readout, we standardize
on “trigger record” as the name of a unit of data produced by the DAQ.
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Figure 6: Installation of the Cosmic Ray Tagger (CRT): (top) 3D view with staggered upstream
modules visible in front of the cryostat, (bottom-left) side view, (bottom-right) top view, with
positions of the staggered upstream modules and downstream parallel modules indicated by labels.

Global Positioning System provides 64-bit timestamps that are used to mark the trigger and data
times irrespective of file name, run, or trigger record numbers.

A hardware triggering system was designed in order to perform event selection in ProtoDUNE-
SP. The core element of this system is the Central Trigger Board (CTB) which is a custom printed
circuit board (PCB) in charge of processing the status of the auxiliary detectors to aid in making
prompt readout decisions. The readout decisions are ultimately made by the timing system which
communicates with the CTB through various commands. The CTB hosts a MicroZed, which is a
commercial PCB with an onboard System-On-a-Chip (SoC). The SoC contains both Programmable
Logic (PL) and a Processing System (PS) and serves as an interface between the auxiliary detectors
(photon detectors, beam instrumentation, and CRT) and the DAQ through the timing system. The
CTB has 32 individual CRT pixel inputs (a pixel being a unit of two overlapping panels), 24 optical
inputs for the photon detection system, and seven inputs for beam instrumentation signals, all of
which are translated into digital pulses and forwarded to the PL for further processing.

The CTB triggering firmware operating in the PL is organized into a two-level hierarchy of
low-level and high-level triggers (LLTs and HLTs) which are configurable at run-time by the DAQ
system. LLTs are defined for inputs from a single subsystem while HLTs can be defined using
the various LLTs and can therefore span any or a combination of the subsystems. Several trigger
conditions can be set up; each one is uniquely identified by a bitmask and is embedded into a trigger
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word issued to the DAQ. An overview of the CTB trigger scheme and its interface with the DAQ is
depicted in figure 7.

Figure 7: CTB trigger hierarchy.

Additionally, multiple trigger conditions can be satisfied during a single triggered detector
readout. To distinguish between these, the CTB timestamps all LLTs and HLTs generated with the
50 MHz system clock. This (64-bit) timestamp is also included in the trigger word along with the
bitmask.

In the HLT, trigger conditions can be configured to require coincidences or anti-coincidences
between the various LLTs. Only when all the required conditions for an HLT are satisfied is a
trigger command passed to the timing system. The timing system is then responsible for validating
or vetoing3 the issued trigger. If accepted, the timing system forwards the readout decision to
the DAQ software and to the individual readout systems (i.e. TPC, photon detectors, and CRT).
However, for accountability4, the CTB sends a data word directly to the DAQ to be stored regardless
of whether or not the trigger is validated by the timing system.

All HLTs can be classified as beam-on or beam-off triggers. The former relies mostly on
the beam instrumentation inputs and requires the conditions to be satisfied during a beam spill
while the latter requires that the conditions are satisfied outside the beam spill. The most common
examples of beam-on triggers include those aimed at tagging electron, proton and kaon events.
By requiring different signal combinations from the beam instrumentation inputs, one can identify
specific particles for a relevant energy range, which will be discussed in section 3.

3In case a trigger has already been issued by the timing system.
4If beam pile-up occurs, the timing system vetoes any additional beam triggers if it has issued one in the last 10 ms.

However, the CTB still reports multiple beam triggers in this case.
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The most common examples of beam-off triggers are those arising from cosmic-ray activity.
Several of these triggers are in place to select events with specific topologies, requiring CRT pixels
from specific regions to register hits in coincidence with pixels from another region. For example,
by requiring that at least one upstream CRT pixel is hit in coincidence with a downstream CRT
pixel, one can select throughgoing muon candidates. Another trigger is set up for cathode-crossing
muon candidates, which is achieved by requiring coincidence hits on CRT pixels on opposing drift
volumes and sides of the cryostat. In addition to the logic-specific triggers, an aperiodic random
trigger is provided to read out the detector without regard to trigger conditions.

For each triggered readout of the detector, the TPC data consists of 6000 consecutive samples
of each ADC, which are digitized at a rate of 2 MHz, for a total of 3 ms of time. Each time period
of 500 ns between ADC samples is called a “tick." The data readout starts 250 µs (500 ticks) before
the trigger time in order to collect charge deposited by particles that arrive earlier than the trigger
but cause charge to arrive at the anodes during time periods that overlap those of triggered events.
Corresponding data from the photon detectors and the CRT are saved in the output data stream for
analysis. Compressed raw data trigger records have a typical size of 60 MB, and trigger rates of
40 Hz were reliably sustained by the data acquisition system. A typical physics run lasts several
hours.

3 CERN beam line instrumentation

The ProtoDUNE-SP TPC is located in the CERN North Area in a tertiary extension branch of
the H4 beam line. The 400 GeV/c primary proton beam is extracted from the CERN Super
Proton Synchrotron (SPS) and is directed towards a beryllium target, producing a mixed hadron
beam with a momentum of 80 GeV/c. This secondary beam is then transported to impinge on a
secondary target, producing a tertiary, very low energy (VLE) beam in the 0.3 - 7 GeV/c momentum
range. The H4-VLE beam line then accepts, momentum-selects and transports these particles to
the ProtoDUNE-SP detector. The secondary target material can be changed between copper and
tungsten. The latter is chosen for momenta below 4 GeV/c in order to increase the hadron content
of the beam. However, the copper target was unintentionally used for the 2 GeV/c run instead of
the tungsten target.

3.1 Beam line instrumentation components

The H4-VLE beam line is instrumented with three types of detectors that provide particle identifi-
cation and a trigger for the TPC. There are eight profile monitors (“XBPF”), three trigger counters
(“XBTF”) and two threshold Cherenkov counters (“XCET”). There are also three bending magnets
that direct the beam toward the ProtoDUNE-SP detector. The second of these magnets is also used
as part of a momentum spectrometer. The relative positions of each of these features can be seen in
figure 8. A description of the beam line design has been reported elsewhere [24], while an in-depth
discussion of the instrumentation can be found in [25].

The XBPFs, described in detail in [26], are scintillating fiber detectors, each containing
192 square fibers, approximately 1 mm thick. The fibers are arranged in a planar configuration
and cover an area of approximately 20 × 20 cm2. Each device contains a single plane of fibers
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Figure 8: A schematic diagram showing the relative positions of the trigger counters (XBTFs),
bending magnets (triangles), profile montiors (XBPFs) and Cherenkov detectors (XCETs) in the
H4-VLE beam line. Combining data from different pieces of instrumentation can be used for
triggering, reconstructing momentum and measuring time of flight.

and therefore measures one spatial coordinate. Pairs of these detectors, rotated by 90° with respect
to each other, are placed at several points along the beam line. This arrangement allows the
beam position to be tracked on a particle-by-particle basis. The XBPF data is also used in the
reconstruction of a particle’s momentum, discussed in section 3.3.1. Hits in the last two sets of
XBPF devices are used to measure the trajectories of the beam particles that are then extrapolated
to the face of the ProtoDUNE-SP TPC. The XBTFs are designed in a similar way. However, instead
of each fiber being read out separately, they are gathered into two bundles and therefore offer no
position resolution. Instead, the signals from upstream and downstream planes, which are separated
by 28.575 m, are connected to a time-to-digital converter (FMC-TDC [27]). The TDC signals from
these two planes provide a particle’s time of flight (TOF). The resolution of this measurement has
been measured to be approximately 900 ps [25].

Coincident signals from the middle and downstream XBTFs act as a “general trigger.” These
general triggers are sent to the CTB serving as conditions for HLTs as described in section 2.7.
During data taking across the momentum regime of interest, the measured efficiencies of the XBPFs
with respect to these triggers are greater than 95% for all chambers [25].

The two Cherenkov counters used in the H4-VLE are of similar design [28, 29], although one
is able to sustain a higher radiator gas pressure. The internal pressures of the two devices were
tuned to tag different particle species at various momenta. A combination of the TOF and the
two Cherenkov signals (high and low pressure), offers particle identification for analysis across the
whole momentum spectrum of interest. During the beam run, signals from these devices were sent
to the CTB to form HLTs tagged as various beam particle species.

3.2 Beam line simulation and optimization

The beam transported in the H4-VLE beam line is produced by the collision of the secondary
mixed hadron beam of 80 GeV/c with the secondary fixed target. To limit the contributions from
the decays of unstable low-energy hadrons such as pions and kaons, a beam line length of less
than 50 m is required. Low-energy beam particles need to be sufficiently separated from the high-
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energy background in this distance, and enough space for the beam line instrumentation is required.
Detailed simulation studies were carried out in order to meet these specifications.

The performance of the initial layout was calculated with the beam optics code Transport [30]
and refined by a comprehensiveMAD-X [31] (andMAD-X-PTC [32]) simulation [33]. TheMonteCarlo
simulations use two frameworks, G4beamline [34] and FLUKA [35, 36]. Different target lengths
and materials were investigated to satisfy the experimental needs of rate and beam composition.
The target choice (either copper or tungsten) and the different field strengths of the beam line’s
dipoles and quadrupoles are incorporated into the G4beamline and FLUKAmodels. Based on these
studies, estimates of the beam rates, compositions and background rates at the experiment location
are obtained. The background suppression was improved by optimizing the shielding using the
FLUKA simulation [25].

3.3 Beam line event reconstruction and particle identification

Information from the three types of beam line instruments (discussed in section 3.1) is combined
in order to perform particle identification on an event-by-event basis. A search window in time of
500 ns is defined around each general trigger; timestamps associated with data packets from each
device are then matched within this interval.

3.3.1 Momentum spectrometer technique/calculation

The three XBPF detectors surrounding the middle bending magnet provide a measurement of each
particle’s momentum. This is illustrated in figure 9 [28]. The lateral position of the particle at each
XBPF detector (χ1, χ2, χ3) is provided by the index of the activated fibers in the profile monitors.
These measurements, along with the known distances between the monitors (L1, L2, L3) and the
measured magnetic field are used with equations 3.1 and 3.2 to determine a particle’s bending angle
θ and momentum p.

cos θ =
M[∆L tan θ0 + ∆χ cos θ0] + L1∆L√

[M2 + L2
1][(∆L tan θ0 + ∆χ cos θ0)2 + ∆L2]

(3.1)

p =
299.7924

θ
×

∫ Lmag

0
(Bdl) (3.2)

Here, M ≡ α + χ1, α = χ3L2−χ2L3
L3−L2

cos θ0, ∆L ≡ L3 − L2, and ∆χ ≡ χ2 − χ3. θ0 is the nominal
bending angle of the beam and is equal to 120.003 mrad [25].

3.3.2 Particle identification logic

The beam line is designed to provide particle identification (PID) for the various particle types (p,
µ, π, e, K) comprising the beam. Depending on the beam momentum settings, different conditions
are applied to the data from the beam line instrumentation to extract the particle types. These
conditions are listed in table 1. This technique is demonstrated for selected runs at various beam
momenta in figures 10(a) – 10(d). Figure 11 shows the measured momentum and TOF distribution
throughout the selected runs. The red curves show expected TOF for several particle types (e, µ, π,
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Figure 18: Layout of the H2-VLE (and similarly H4-VLE) momentum spectrometer around the last 
dipole. 

To validate the performance of the spectrometer, we used the high statistics simulation, 
which includes all the material in the line, the gas in the Cherenkov detectors at the right pressures 
per momentum, as well as the expected special resolution of the profile monitors. For each 
particle, we compute its momentum from the above equation, and therefore the measured Δp/p 
of the line. Assuming no material in the beam line for a central momentum of 12 GeV/c and 
position resolutions of 0.2 mm, 0.5 mm and 0.8 mm we obtain a Δp/p of 1.1%, 2.5% and 3.9% 
accordingly, as shown on Figure 19. When the material along the beam is included, the 
reconstructed momentum resolution Δp/p deteriorates, because of the multiple scattering, with 
the effect becoming more significant in lower energies, as shown on Figures 20, 21 and 22. For 
the 2 GeV beam, the reconstructed momentum resolution with all material included and with 

Figure 9: A schematic diagram showing the method by which momentum is reconstructed for a
given beam particle (red), as discussed in the text. Taken from [28]. The direction of the x axis is
opposite to the convention used in this paper.

K , p and d) given the particle’s momentum, its mass, and assuming a distance of 28.575 m between
the TOF monitors.

4 TPC characterization

The large quantities of high-quality data collected by ProtoDUNE-SP enable many studies of the
performance of the TPC. This section describes the offline data preparation and noise suppression,
charge calibration, noise measurement, signal processing, event reconstruction, signal-to-noise
performance, and a measurement of the electron lifetime.

4.1 TPC data preparation and noise suppression

The ProtoDUNE-SP detector is typically triggered at a rate of 1-40 Hz where each trigger record
includes synchronized contiguous samples from all TPC channels, typically with a length of 3 ms
corresponding to 6000 ticks (ADC samples). Trigger records are processed independently of
one another, beginning with data preparation which converts the ADC waveform (ADC count for
each tick) for each channel to a charge waveform. The data preparation comprises evaluation
of pedestals, charge calibration, mitigation of readout issues, tail removal and noise suppression.
These operations are necessary in order to optimize the performance of subsequent stages of event
reconstruction. The data preparation steps are described in detail in the following subsections.
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Table 1: A summary of beam line instrumentation logic used in the identification of particle types.
Each cell reflects how a particular type of instrumentation is used at a given reference momentum.
When time of flight is used, the values of the lower and upper cuts are given in nanoseconds. In
the case of the high-pressure Cherenkov (XCET-H) and the low-pressure Cherenkov (XCET-L),
zero and one represent the absence and presence of a signal respectively. When a given piece of
instrumentation is not involved in a logic decision at a given momenta, a dash is used.

Momentum (GeV/c)
1 2 3 6 - 7

e
TOF (ns) 0, 105 0, 105 – –
XCET-L 1 1 1 1
XCET-H – – 1 1

µ / π
TOF (ns) 0, 110 0, 103 – –
XCET-L 0 0 0 1
XCET-H – – 1 1

K
TOF (ns) – – – –
XCET-L – – 0 0
XCET-H – – 0 1

p
TOF (ns) 110, 160 103, 160 – –
XCET-L 0 0 0 0
XCET-H – – 0 0

4.1.1 Pedestal evaluation

Voltage offsets are introduced at the inputs to the amplifier and ADC for each channel to keep
the signals in the appropriate range for each of these devices. These offsets and the gains of both
devices vary from channel to channel and so there are channel-to-channel variations in the ADC
pedestal, i.e. the mean ADC count that would be observed in the absence of signal. In addition, the
pedestal is observed to have significant variation from one trigger record to another, presumably
due to low-frequency (compared to the 3 ms readout window) noise pickup before the amplifier. To
cope with this, the pedestal is evaluated independently for each channel and each trigger record.

The pedestal is evaluated by histogramming the ADC count for all (typically 6000) ticks and
fitting the observed peak with a Gaussian whose mean is used as the pedestal. The RMS of the
fit Gaussian provides an initial estimate of the noise in the channel and is typically around four
to six ADC counts. Due to the sticky-code issues described in section 4.1.3, these ADC count
distributions are sometimes observed to have spikes at the offending sticky codes which can bias
the pedestal estimate. To reduce this bias, the peak bin is excluded from the fit if it holds more than
20% of the samples.

4.1.2 Initial charge waveforms

Initial charge waveforms are obtained for each channel by subtracting the pedestal from each of the
ADC counts and multiplying this difference by the gain assigned to the channel. These gains may
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(a) Nominal beam momentum = 1 GeV/c. Verti-
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(b) Nominal beam momentum = 2 GeV/c. Verti-
cal lines represent the time of flight cuts used for
electrons (blue), and muons/pions (red).
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(c) Nominal beam momentum = 3 GeV/c.
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(d) Nominal beam momentum = 6 GeV/c.

Figure 10: Time of flight distributions for different reference momenta, separated by particle using
the PID techniques listed in table 1. The distributions are normalized such that the maximum height
is equal to 1.

be set to 1.0 to obtain a charge waveform in units of ADC counts or they may be taken from a charge
calibration. The standard ProtoDUNE-SP reconstruction makes use of the calibration discussed in
section 4.2.

Figure 12(a) shows an example event display consisting of waveforms on wires in the collection
plane of APA 3 shown side by side in a two-dimension color plot. Pedestal subtraction and charge
calibration have been applied. APA 3 instruments the upstream drift volume on the side of the
cathode on which the beam enters.

4.1.3 Sticky code identification

A few percent of ADC ASIC channels suffer from an issue known as “sticky code,” in which certain
ADC values would be preferentially produced by the ADC independent of the input voltage causing
the readout channel to appear to “stick” at a particular value. The flaw in this ADC design is a
failure of transistor matching at the transition from digitizing the six most significant bits to the six
least significant bits. The sticky codes therefore tend to prefer values of zero or 63 plus a multiple
of 64, though other sticky codes have been observed in the data as well. Sticky codes were observed
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Figure 11: The distribution of particles’ time of flight against reconstructed momentum from
several runs at various beam reference momenta. The red curves are predictions for e, µ, π, K , p
and deuterons (d) in order of increasing time of flight.

in test-bench measurements in advance of installation, where the dynamic range of the ADC was
tested with a calibrated source of charge.

The pedestal histograms and a few waveforms for all channels were scanned by eye to obtain an
initial list of sticky codes and this list is extended when other problematic channels are uncovered.
A total of 498 codes in 312 channels (of 15360) have been identified as sticky and are mitigated as
described in the following section.

Approximately 70 channels are flagged as bad due to very high fractions of sticky codes or
population ofmultiplewidely-separated sticky values. Another 35 are flagged as noisy due to serious
but less-severe sticky-code issues. The solidly unresponsive channels mentioned in section 2.4 are
also flagged as bad. A total of 133 channels are flagged as bad or noisy. The data for these channels
are prepared like any others, but downstream processing such as deconvolution or track finding may
choose to ignore these channels or treat them in a special manner.

4.1.4 ADC code mitigation

For channels that have known sticky codes, if the ADC value on a particular sample is at one of the
sticky values, it is replaced with a value interpolated from the nearest-neighboring non-sticky codes.
If the two neighbors on either side exhibit a significant jump (20 ADC counts), the interpolation
uses a quadratic fit. Otherwise, linear interpolation is used.
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(a) After pedestal subtraction and calibration. (b) After ADC sticky code and timing mitigation.

(c) After tail removal. (d) After correlated noise removal.

Figure 12: Example event displays for a collection plane showing background reduction in suc-
cessive stages of data processing. The horizontal axis is the tick and vertical axis is the channel
number. The color scale represents the charge for each channel averaged over five ticks with the
range chosen to make the noise visible. Signals from charged tracks appear mostly in black and are
off scale, well above the noise level. Horizontal dashed lines indicate the boundaries between the
ten FEMBs used to read out the channels for this plane. The second from the bottom is FEMB 302
referenced in the text.

Figure 13 shows an example charge waveform before and after mitigation. This is from
FEMB 302 where sticky codes are particularly prevalent. A sticky code has been identified and the
waveform is significantly improved after mitigation. Sticky codes very close to the pedestal are not
flagged.

4.1.5 Timing mitigation

One of the 120 FEMBs (FEMB 302) does not receive the master timing signal used to clock the
ADCs. The ADCs on that FEMB make use of a backup clock that resides on the FEMB. Although
the master and FEMB clocks both nominally run at 2 MHz, reconstructed signals show that the
FEMB clock runs 0.07% slower than the master clock. The charge waveforms for FEMB 302 are
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Figure 13: Example of a raw ADC waveform with sticky codes (top) and the corresponding
waveform after pedestal subtraction and ADC sticky code mitigation (bottom). The dashed lines in
the top plot show the six-bit boundaries.

corrected to match the sampling rate and offset for the other channels. The charge for each sample
is replaced with a linear interpolation of the original charges of two samples nearest in time.

Figure 12(b) shows an event display made from mitigated waveforms for the same data with
the same scale and binning as figure 12(a). Both sticky-code and timing mitigations are added. The
shift in the FEMB 302 timing and reduction in noise are discernible. Channels flagged as bad or
noisy are zeroed and appear white in the display.

4.1.6 Tail removal

In each TPC channel, the amplifier and ADC are AC-coupled using a high-pass RC filter with a
time constant of approximately τRC =1.1 ms (2200 ticks) for collection-plane channels and 3.3 ms
(6600 ticks) for induction-plane channels. The typical signal from a charged track will be much
faster, 10-20 µs (20-40 ticks) and this AC coupling implies the observed signal will be followed by
a long tail of opposite sign whose area cancels that of the initial signal. The tails are much smaller
and are neglected in induction-plane channels, where the signals are bipolar and thus integrate to
zero.

The decay time is comparable to the mean time between cosmic-ray signals, about 1500 ticks,
and it is a significant fraction of the data readout time used to evaluate the pedestal, typically
6000 ticks. Variations in cosmic arrival time and charge deposit per channel (in particular due to
varying angle of incidence) imply that all signals are superimposed on a fluctuating background of
accumulated tails from preceding signals, many of which arrive before the readout window starts.
Tails from these fluctuations are clearly visible in collection-plane waveforms and event displays.
Large charge deposits in figure 12(b) are followed by blue regions indicating negative tails. Some
other regions are positive (orange) because the initial pedestal estimate is biased by the negative
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tails. The tails are removed in collection-plane channels using a time-domain correction, chosen
because of the large fraction of channels that start each trigger record with a significant tail from
charge that has arrived before the readout window starts.

Before tail removal, the (nominal) pedestal-subtracted value (ADC count or calibrated charge)
in sample i, di, is the sum of signal, si, and tail, ξi, contributions and a pedestal offset, po:

di = si + ξi + po (4.1)

The pedestal offset is not zero because the method used to evaluate the pedestal includes contribu-
tions from tails. Because the tails are exponential, the tail in any sample may be expressed in terms
of the signal and tail in the preceding sample:

ξi = βξi−1 + αsi−1 (4.2)

where β = e−1/τRC (τRC is the time constant in ticks) and α = 1 − 1/β obtained by requiring the
integral of the tail cancel that of the signal. Equations 4.1 and 4.2 may be solved to obtain the signal
and tail from the input data: eq. 4.1 is used to obtain si from di and ξi and eq. 4.2 to obtain ξi+1
from si and ξi for i = 0, 1, 2, .... The tail correction replaces the input data with the evaluated signal:
di → si.

In addition to α, β, this solution depends on two parameters: the pedestal offset and the tail
in the first sample, ξ0. The latter is unknown because the data preceding the start of the triggered
readout have not been recorded. These parameters are obtained by identifying signal-free regions
and choosing the values that minimize the sum of s2

i over those regions. This is done by iteratively
applying the signal finder first to the input data and then to each signal estimate.

Figure 12(c) shows an event display composed of waveforms after tail removal for the same
data with the same scale and binning as figure 12(b). Examples of two corrected waveforms from
ProtoDUNE-SP data are shown in figure 14.
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Figure 14: Examples of waveforms with tail removal. The black curve shows the original data {di}
and the red curve shows the corrected data, i.e. the signal {si}. The blue curve is the correction
added to the data, i.e. pedestal offset po minus estimated tail {ξi}. On the left, a very long pulse
produces a clearly visible tail. On the right, there is clear evidence of a tail from charge that
preceded the readout window as well as tail from signal within the window.

4.1.7 Correlated noise removal

One of the most significant sources of excess noise observed in the ProtoDUNE-SP detector has
a frequency distribution with a peak around 45 kHz. This noise source is found to be highly
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correlated among a group of channels that share the same low-voltage regulator in the same FEMB.
Following Ref. [37], a mitigation method is developed by dividing channels into groups. Each
FEMB amplifies and digitizes 128 channels: 40 adjacent U-plane channels, 40 adjacent V-plane
channels, and 48 adjacent collection-plane channels. The U-plane channels form a group, as do
the V-plane channels and the collection-plane channels. For each of the three groups, a correction
waveform is constructed based on the median value of samples from the group at every time tick and
it is subtracted from each channel’s waveform in that group. However, if the majority of waveforms
contain signals of ionization electrons, it is necessary to protect this time region to avoid signal
suppression. A region of interest (ROI) is defined as the ADC counts above an expected threshold
as well as 8 (20) ticks before (after). As an example, event displays consisting of waveforms before
and after the correlated noise removal (CNR) are shown in figure 12(c) and 12(d), respectively.
The correlated noise is visible as vertical bands in figure 12(c), and it is suppressed in figure 12(d).
Some sources of correlated noise remain in some portions of the detector, specifically those for
which the spatial correlation does not coincide with FEMB boundaries.

4.2 Charge calibration

The ProtoDUNE-SP electronics provide the capability to inject a known charge in short-duration
(< 1µs) pulses into each of the amplifiers connected to the TPC wires. The level of that charge is
controlled by a six-bit voltage digital-to-analog converter (DAC) and is nearly linear with Q = SQs

where S is the DAC setting (0, 1, ..., 63) and the step charge Qs = 3.43 fC = 21.4 ke, which is
comparable to the charge deposition of a minimum ionizing particle traveling parallel to the wire
plane and perpendicular to that plane’s wire direction.

A charge calibration is carried out so that ADC counts read out for each channel may be
converted to collected charge. The calibration is expressed as a gain for each channel normalized
such that the product of the gain and the integral of the ADC signal over the pulse in a collection
channel gives the charge in the pulse, i.e. Q = gA. The evaluation of charge for the bipolar TPC
signals in induction channels is more complicated but also proportional to the gain derived here.

Special runs were taken with injected voltage regularly alternating between ground and the
DAC level (one setting for each run) producing charge pulses of alternating sign. Fifty trigger
records with typically 12 pulses of each sign are processed for each channel at each DAC setting.
For each channel, the pedestal is evaluated for each event and a distribution of approximately 600
pedestal-subtracted areas in units of (ADC count)-ticks is obtained for each charge sign. The mean
of these signal area measurements are plotted as a function of DAC setting using data from many
runs, and a line constrained to pass through the origin is fit to DAC settings 1-7. The step charge
divided by the slope of this line provides the calibrated gain for each channel.

Figure 15 shows the uncalibrated area vs. DAC setting and the fit for a typical collection
channel. The response is fairly linear over the DAC setting range (-5, 20) with saturation setting
in outside this range. Typical track charge deposits are one to four times the step charge and
this saturation is only an issue for very heavily ionizing tracks. The gain for this channel is
g = (21.4 ke)/(909.4 (ADC count)-tick) = 23.5 e/((ADC count)-tick).

Figure 16 shows the residuals for the same data, i.e. the measured area minus that expected for
the fitted gain ∆A = A− SQs/g. These results are typical—most of the measured areas for positive

– 24 –



30− 20− 10− 0 10 20 30
Pulser DAC setting

10000−

5000−

0

5000

10000

15000

20000

25000
tic

k]
×

A
re

a 
[(

A
D

C
 c

ou
nt

)

 0.14±Slope: 909.41 

DUNE:ProtoDUNE-SP

Figure 15: Measured pulse area vs. DAC setting for a typical collection channel. The red line
shows the fit used to extract the gain.

smaller (S ≤ 7,Q . 160 ke) pulses are within 1% of their fitted values. The systematic shift for
higher values is also typical and presumably reflects non-linearity in the DAC.

All 15,360 ProtoDUNE channels were calibrated in this manner, and those gains are applied
early (before the mitigation and noise removal) in the typical processing of data from the detector.
Figure 17 shows the distribution of these gains for all channels. Channels flagged as bad or
especially noisy in an independent hand scan are shown separately. The gains for the remaining
good channels are contained in a narrow peak with an RMS of 5.1% reflecting channel-to-channel
response variation in the ADCs and gain and shaping time variations in the amplifiers.

4.3 TPC noise level

One very important goal for ProtoDUNE-SP is to demonstrate that noise levels are well below
signals from charged tracks; this is found to be the case for nearly all of the channels in the detector.
The noise is evaluated both for single ADC samples (sample noise) and for a contiguous range of
50 samples (integrated noise). The latter range is chosen to be sufficient to obtain the area of the
signal from a charged track in the detector traveling in the yz plane. Tracks with other angles with
respect to the electric field will leave longer pulses on the sense wires.

The noise is measured after initial data preparation. As discussed in section 4.1, the pedestal
is evaluated for each trigger record, and the charge calibration is applied to the ADC count minus
pedestal to obtain the initial charge measurement for each channel. Sticky codes are mitigated and
the AC-coupling tails are removed in the collection channels. The noise is evaluated both at this
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Figure 16: Measurement residuals (data - fit) for the same data as the preceding figure (black) plus
the same for data taken in the following months (colors). The dashed lines indicate deviations of
±1%.

point and after applying the CNR. The noise is expressed in units of collected electrons. To set
the scale, the bulk of the observed distribution of signal areas in each of the channels starts (as
expected) at about 30 ke.

The high rate of cosmic-ray signals—an average of one every 1500 ticks (0.75 ms) for the TPC-
side collection-plane channels—complicates the measurement of the noise. To avoid contamination
from these and radioactive (e.g. 39Ar) signals, a signal finder is applied and the noise is defined to be
the RMS ADC value outside the signal regions. For the integrated noise measurement, integration
regions start every 50 ticks (i.e. at ticks 0, 50, 100, ...) and regions are discarded if they have any
overlap with signal regions.

The signal finder used for this study makes use of a variable sample threshold and retains a
region of (-30, +50) ticks around any tick with signal magnitude above that threshold. The threshold
is evaluated independently for each channel every trigger record. The threshold starts at 300 e and,
if it is below five times the sample noise, is increased until it reaches that level. This allows efficient
removal of signals in quiet channels while retaining the noise in those that are noisier.

Visual inspection of raw waveforms were performed to identify bad channels in the detector,
mostly those with no signal or exceptionally high noise typically from sticky ADC codes. The
number of such channels is 90, i.e. 0.6% of the channels in the detector. These are excluded from
the noise summary plots below.

Figure 18 shows the distributions of sample and integrated noise levels before and after corre-
lated noise removal for trigger records 1-1000 of run 5240 taken October 12, 2018. The collection-
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Figure 17: Distribution of fitted gains for good (blue) and bad/noisy (red) channels. The legend
indicates the number of channels in each category and gives the mean (23.4 e/(ADC count)/tick))
and RMS/mean (5.1%) for the good channels.

plane and induction-plane channels are shown separately and, as expected, the noise levels are higher
for the induction-plane channels as the wires are longer. For the collection channels, the sample
noise is around 100 e before correlated noise removal falling to 80 e after the channel correlations
are removed. The corresponding values for the integrated noise are 1200 e and 900 e.

For charge deposits much faster than the nominal 2 µs shaping time of the amplifier, the area
A of the resulting signal pulse is proportional to the height h and shaping time τ: A = Khτ. The
shape is well understood [37] and has been verified with fits of the ProtoDUNE-SP pulser signals.
Numerical integration gives K = 1.269/tick = 2.538/µs. For such fast signals, the charge may
be deduced directly from the pulse height and its standard deviation is called the ENC (equivalent
noise charge) [37]. The ProtoDUNE-SP signals are slower than this but the ENC is a standard
metric and is presented here to allow comparison with results from other detectors.

The ratio of ENC to sample noise defined here is A/h = Kτ. The actual shaping time varies
from channel to channel but has central value around 2.2 µs which gives a ratio of ENC to sample
noise of 5.58. With this factor and the above values for the sampling noise, the mean ENC for the
collection channels is 530 e before correlated noise removal and 430 e after. The corresponding
numbers for the induction channels are 620 e and 500 e. These noise values are similar to the 500-
600 e values obtained from bench measurements with a prototype FEMB at LN2 temperature [3].

Figure 19 shows the noise frequency power spectra for data collected at the same time as
those used for figure 18. For each channel, a signal finder with a dynamic threshold of five times
the sample RMS in the non-signal region is used to identify signal samples. A discrete Fourier
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Figure 18: TPC sample (left) and 50-sample integrated (right) noise distributions before (top)
and after (bottom) correlated noise removal. Each plot has one entry for each channel excluding
bad channels with overflows shown in the last bin. Collection and induction channels are shown
separately.

transform is performed on non-overlapping blocks of 1000 contiguous samples selected from the
non-signal regions. The power spectra for good channels are averaged separately for each of the
four wire types: TPC-side collection, cryostat-sided collection and the two induction orientations,
U and V. These are normalized so that the sum over power terms or histogram entries is equal to
the RMS charge per sample, i.e. the sample noise shown on the left side of figure 18.

As expected for effective removal of signals from the TPC, the power distributions are very
similar for the TPC-side and cryostat-side collection channels. The induction wire distributions
have similar shapes. The small spike around 300 kHz is due to pickup noise in one of the APAs.
The CNR effectively suppresses both that and the excess noise below 100 kHz.

4.4 Signal processing

The recorded waveform on each TPC readout channel is a linear transformation of the current on
the connected wire as a function of time. This transformation includes the effect of induced currents
due to drifting and collecting charge, as well as the response of the front-end electronics. The goal
of the signal-processing stage of the offline data processing chain is to produce distributions of
charge arrival times and positions given the input waveforms. These charge arrival distributions are
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Figure 19: Noise frequency power spectra before and after CNR. Each plot is evaluated from
1000-sample blocks in non-signal regions. Upper and lower left respectively show the cryostat- and
TPC-side collection planes. The induction planes are on the right: top is U and and bottom is V.
The first bin in each plot includes only the zero frequency component. The others are sums over
20 kHz bins.

used in subsequent reconstruction steps, such as hit finding. Because the response is linear in the
arriving charge distribution, a deconvolution technique forms the core of the signal processing.

A charge moving in the vicinity of an electrode can induce electric current. Shockley-Ramo’s
theorem [38] states that the instantaneous electric current i on a particular electrode (wire) which
is held at constant voltage, is given by

i = e∇φ · ®ve, (4.3)

where e is the charge in motion, and ®ve is the charge velocity at a given location. The so-called
weighting potential φ of a selected electrode at a given location is determined by virtually removing
the charge and setting the potential of the selected electrode to unity while grounding all other
conductors.

The field response is defined to be the induced current on different wires due to a moving
point charge. The field response is an essential input to the signal processing procedure as will be
discussed below. For ProtoDUNE-SP, the field response is calculated with Garfield [39], a TPC drift
simulation code, in a 2D scheme as illustrated in figure 20(a). During the field response simulation,
a point charge is positioned at different positions in a horizontal plane 10 cm away from the grid
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plane and the drift path is recorded from the simulation as shown in figure 20(b). The electron
drift velocity can be determined from the electric field [40, 41], while the precomputed weighting
potential for a U-plane wire is also shown in figure 20(b). With the drift path and the weighting
potential, the field response of the point charge on the sense wire can be calculated according to
eq. (4.3). This procedure is repeated for a series of point charges that spans a region of 21 wires with
the wire of interest at the center. In order to sample the rapidly-changing field response functions
adequately, point charges are simulated drifting in from positions on a grid with a spacing of one
tenth of the wire pitch. After convolving the electronics response, the total response as a function
of time and wire pitch is presented in figure 21, where a “Log10” color scale is defined for the sake
of visibility:

i in “Log10” =


log10(i · 105), if i > 1 × 10−5,

0, if − 1 × 10−5 ≤ i ≤ 1 × 10−5,

−log10(−1 · i · 105), if i < −1 × 10−5.

(4.4)

As shown in figure 20(b), the weighting potential of the first induction (U) plane is significantly
different from zero over a region of a few wires even with the presence of the grid plane. As a result,
the current induced on a sense wire contains contributions not only from charges passing between
the wire and its immediate neighbors, but also from moving charges that are farther away. A region
that is 10 cm in front of the grid plane and ±10 wires around the wire of interest in the simulation
is sufficient to envelope the field response.

In order to deconvolve the ionization electron distribution from themeasured signal, it is natural
to mathematically describe this long-range effect as follows:

M(wi1, tj1) =
∫
wi2

∫
tj2

∫
tj3

Q(wi2, tj2) · F(wi2 − wi1, tj3 − tj2) · E(tj1 − tj3) · dtj3 · dtj2 · dtwi2

=

∫
wi2

∫
tj2

Q(wi2, tj2) · R(wi2 − wi1, tj1 − tj2) · dtj2 · dtwi2

(4.5)
where measured signal M(wi1, tj1) on the wi1th wire and time tj1 is a convolution of i) the ionization
charge distribution as a function of the position in wire number and the drift time: Q(wi2, tj2), ii)
the field response that describes the induced current on the wires when the ionization charge
move: F(wi2 − wi1, tj3 − tj2), and iii) the electronics response that amplify and shape the induced
current on the wire: E(tj1 − tj3). For simplicity, one can firstly convolve the field response and
the electronics response into the overall response function: R(wi2 − wi1, tj1 − tj2), in which the
fine-grained position-dependent field response function is averaged within one wire pitch.

Because of the long-range induction effect, instead of a 1D deconvolution involving only the
time dimension, a two-dimensional (2D) deconvolution involving both the time andwire dimensions
is performed to extract the ionization electron distribution. In practice, the FFT algorithm is
used to convert the data from the discrete 2D time and wire domain to a discrete 2D frequency
domain [42, 43]. To avoid amplifying high-frequency noise in the deconvolution, two Wiener-
inspired filters are applied separately in both dimensions. In addition, to further reduce the noise
contamination and improve the charge resolution, a technique for identifying the signal regions
of interest (SROI) is adopted and adjusted accordingly. The application of SROIs are particularly
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Figure 20: (a) Illustration of the 2D ProtoDUNE-SP TPC scheme for the Garfield simulation,
where ±10 wires (large black dots) are considered for each wire plane and the electrons drift
simulation starts 10 cm away from the grid plane. The inset shows the spacing of the starting points
of the simulated electrons; (b) Garfield simulation of electron drift paths (yellow lines) in a 2D
ProtoDUNE-SP TPC scheme and the equal weighting potential lines (green) for a given wire in
the first induction plane, where the latter is shown in percentage from 1% to 45%. A long-range
induction effect is noticed as the weighting potential has significant strength several wire spacings
away from any particular wire.

important to process the induction plane signals. As an example, a raw waveform that has been
de-noised as described in section 4.1 and the corresponding extracted charge distribution after the
deconvolution are shown in figure 22(a) and figure 22(b), respectively.

4.5 Event Reconstruction

There are two distinct steps in the ProtoDUNE-SP event reconstruction chain to go from the
deconvolved waveforms to fully reconstructed interactions: hit finding and pattern recognition.
These steps are described in sections 4.5.1 and 4.5.2, respectively.

4.5.1 Hit finding

The hit finding algorithm fits peaks in the wire waveforms, where a hit represents a charge deposition
on a singlewire at a given time. Each hit corresponds to a fitted peak. Ideally, after the deconvolution
process described in section 4.4, the signals on all wires, regardless of whether they are induction-
plane wires or collection-plane wires, will be waveforms containing possibly overlapping Gaussian-
shaped peaks. The algorithm searches for candidate hits in the waveform and fits them to a
Gaussian shape to produce the hits. Situations can occur in which charge deposits do not form
a simple Gaussian shape, for example when a particle trajectory is close to being in the plane
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X

Figure 21: The overall response function convolved with electronics response. The color density
is shown in a modified, sign-dependent base 10 log scale, as described in the text.

containing the wire under study and the electric field. If, after the candidate peak-finding, a very
large number of candidate peaks are found in a given SROI then the algorithm bypasses the hit-
fitting step and the pulse is instead divided into a number of evenly-spaced hits. An example of a
fitted waveform is shown in figure 23, where three hits have been reconstructed.

The two induction planes consist of wires that are wrapped around the APA. As a result, it
must be determined on which segment of the wrapped wire that a given energy deposit was actually
measured. Firstly, triplets of wires (one on each plane) are formed using signals within a narrow time
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(a) After Noise Filtering
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(b) After Deconvolution

Figure 22: An interaction vertex from the 7-GeV charged particle beam data (run 5152, event
89) measured on the induction U plane: (a) Raw waveform in ADC counts after noise filtering;
(b) Ionization charge in number of electrons, scaled by 200, extracted with the 2D deconvolution
technique.
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Figure 23: An example of a reconstructed waveform on a single wire from ProtoDUNE-SP data.

window. Often, for a given collection wire, only a single pair of induction wires are matched, thus
the hits are disambiguated at this stage. Otherwise, there can be multiple induction wires consistent
in time with the collection wire. In this case, the algorithm aims to minimise the difference in
charge between the collection wire and the candidate induction wires in a deterministic manner.
A full description of the method is given in Ref. [6]. Simulation studies show that this technique
assigns more than 99% of hits to their correct wire segments.

4.5.2 Pattern recognition with Pandora

Pattern recognition in ProtoDUNE-SP is performed using the Pandora software package [44], which
executes multiple algorithms to build up the overall picture of interactions in the detector. Pandora
has been used successfully in other liquid argon time projection chambers (LArTPCs) such as
MicroBooNE [45]. New features have been developed for ProtoDUNE-SP since it differs from
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MicroBooNE with its multiple TPCs and drift volumes in addition to the need for a testbeam
particle specific reconstruction chain.

Pandora contains chains of reconstruction algorithms that focus on specific topologies, but they
all follow a common pattern. The first step involves two-dimensional clustering of the reconstructed
hits in each of the three detector readout planes separately. Dedicated algorithms then match sets
of 2D clusters between the three views. If matching ambiguities are discovered, information from
all three views is used in order to motivate changes to the original 2D clustering. Once consistent
matches between 2D clusters have been made, three-dimensional hits are constructed and particle
interaction hierarchies are created.

In the Pandora ProtoDUNE-SP reconstruction, all of the clusters are reconstructed first under
the cosmic-ray hypothesis using a set of algorithms designed to reconstruct track-like particles.
Cosmic-ray candidates are subsequently identified and removed so that beam-particle analysis can
proceed. One important feature of the cosmic-ray reconstruction step is the “stitching” of tracks
across the boundaries between neighboring drift volumes bounded by a CPA or an APA. The
stitching procedure is applied when two 3D clusters have been reconstructed in neighbouring drift
volumes that have consistent direction vectors and an equal but opposite shift in the drift direction
from the CPA or APA. When the clusters are shifted by this amount, a single collinear cluster
with a known absolute position along the drift direction and time t0 relative to the trigger time
is produced. Figure 24 shows the reconstructed t0 distribution for data and simulation for those
cosmic-ray muon tracks that have been stitched at the cathode or anode. Cosmic-ray muons that
cross the cathode have t0 values between -2500 µs and 500 µs, and those that cross the anode have
−250 µs < t0 < 2750 µs. Tracks satisfying one or more of the following criteria are identified as
“clear” cosmic-ray candidates:

• The particle enters through the top of the detector and exits through the bottom.

• The measured t0 for stitched tracks is inconsistent with a particle coming from the beam.

• Any of the reconstructed hits appear to be located outside of the detector when assuming
t0 = 0, which indicates that the object is inconsistent with the timing of the beam.

The hits from these clear cosmic-ray candidates are removed from the trigger record before the
Pandora reconstruction chain continues to further process the data. These tracks, and in particular
those with a measured t0, form a critical component of the various detector calibrations detailed in
section 6.

Once the energy deposits from the clear cosmic rays have been removed, the reconstruction
continues with a 3D slicing algorithm that divides the detector into spatial regions containing all of
the hits from a single parent particle interaction. These 3D slices could contain beam particles or
cosmic rays that were not clear enough to be removed in the first-pass cosmic-ray removal process.
Two parallel reconstruction chains are applied to these slices - one is the aforementioned cosmic-ray
reconstruction, and the other is a test-beam specific reconstruction.

The test-beam specific reconstruction consists of a more complex chain of algorithms capable
of reconstructing the intricate hierarchies of particles seen in hadronic interactions that can produce
numerous track-like and shower-like topologies. Included in this reconstruction chain is a dedicated
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Figure 24: The Pandora reconstructed t0 distribution for cosmic-ray muons that cross either the
cathode or anode in data (black points) and simulation (red).

search for the primary interaction vertex of the test-beam particle. As well as being used to inform
the clustering, the vertex is essential for constructing the correct particle hierarchy.

Once the slices have been reconstructed under both hypotheses, cosmic-ray and test-beam, a
boosted decision tree (BDT) algorithm is used to determine which, if any, of the slices are consistent
with being of test-beamorigin. The input variables to theBDTprimarily use topological information
to measure the consistency of the interaction with the test-beam particle hypothesis. The output
from the reconstruction is in the form of a particle hierarchy, where links are made between parent
and child particles to give the flow of an interaction from the initial beam particle. Figure 25
shows an example of a fully reconstructed particle hierarchy for a simulated beam interaction,
where the incoming beam π+ is shown as the magenta track. A suite of tools have been produced
for ProtoDUNE-SP analysers to easily access this hierarchical information in order to perform the
analyses.

The charge deposition per unit length, dQ/dx is reconstructed for track-like objects such as
muons, charged pions, kaons, protons and the beginnings of electromagnetic showers. The charge
Q is taken as the area of the Gaussian fit to the individual hit. The segment length dx is calculated
as the wire spacing divided by the cosine of the angle between the track direction and the direction
normal to the wire direction in the wire plane. The raw dQ/dx is further calibrated to remove
nonuniform detector effects and converted to energy loss dE/dx for energy measurement and
particle identification. This procedure is described in section 6.3.

4.6 Signal to noise performance

The measurement of the signal-to-noise ratio (S/N) for the ProtoDUNE-SP detector is carried out
using a selected cosmic-raymuon sample in Run 5432 taken onOct. 20, 2018. Muon tracks crossing
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Figure 25: A reconstructed, simulated test-beam interaction showing the incoming beam π+ track
in magenta and a number of secondary particles created at the interaction vertex. The different
colors represent different reconstructed particles.

the LArTPC at shallow angles with respect to the anode plane and large angles with respect to the
direction of the wires in the planes are considered for the S/N characterization. To ensure good
track quality, track length is required to be at least 1 m. The electron drift lifetime of the sample
was approximately 24ms as independently measured by the purity monitor.

The signal on each wire in a plane is defined to be the maximum pulse height of the raw
waveform after subtracting the pedestal. The noise value is defined to be the standard deviation
of a Gaussian function fit to the distribution of ADC values in signal-free regions of a channel’s
waveform. The signal size depends on the angle of the track with respect to the wire and also with
respect to the electric field. We standardize the signal on a wire to be that from tracks that are
perpendicular to the wire and also perpendicular to the electric field. We define two angles θxz (the
angle made by the projection of a track on the xz plane with the z direction) and θyz (the angle made
by the projection of a track on the yz plane with the z direction). The two angles are illustrated in
figure 26. To minimize the influence of angular dependence of S/N, we select muon tracks that have
minimum component in both drift and wire direction. Angle cuts of θxz and θyz within 20◦ are
applied. A correction is applied to the raw waveform signal to standardize the strength, adjusting
for angular effects.

The angle-corrected S/N distributions are shown in figure 27. No electron drift lifetime
corrections are applied to the angle-corrected S/N calculations. The most probable values (MPVs)
of the S/N distributions after the noise mitigation are 40.3, 15.1, and 18.6 for the collection plane,
the U plane, and the V plane, respectively. The actual performance of the S/N for the three planes
is much better than the expectation in the ProtoDUNE-SP technical design report [3] - 9.0 for the
three planes. The angle-corrected S/N results with and without the noise filters, together with the
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Figure 26: The definitions of the track direction angles θxz and θyz

estimation using the averaged values of the S/N distributions, are summarized in table 2.
The differences in the average S/N values for the three planes is explained using the Shockley-

Ramo theorem, discussed in section 4.4. The three planes have similar weighting fields but different
local drift velocities. Among the three planes, the collection plane has the largest local drift velocity
and hence the best S/N performance. The S/N performance is slightly better for the V plane with
respect to the U plane. This is because the local drift velocity at the V plane is higher than that of
the U plane due to larger bias voltage, while the weighting fields are the same for both.

Table 2: Summary table of the angle-corrected S/N performance before and after the noise mit-
igation for the ProtoDUNE-SP detector. No electron drift lifetime corrections are applied. The
most-probable value (MPV) and the average value for each plane are listed.

Plane
Peak signal-to-noise ratio

Raw Data After noise filtering
MPV Average MPV Average

Collection 30.9 38.3 40.3 48.7
U 12.1 15.6 15.1 18.2
V 14.9 18.7 18.6 21.2

5 Photon detector characterization

5.1 The photon detector system

The ProtoDUNE-SP photon detector system (PDS) comprises 60 optical modules embedded within
the six APA frames of the TPC. These modules view the LAr volume from each anode side opposite
the central cathode. Three different photon collection technologies proposed for DUNE’s far
detector modules [3] are implemented in ProtoDUNE-SP’s PD system. In each technology, incident
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Figure 27: Angle-corrected S/N distributions before and after the noise filtering of the three planes
using the cosmic-ray muons for the characterization. The histograms are normalized such that the
maximum frequency is one.

LAr scintillation photons, which have wavelengths around 128 nm, are converted into longer-
wavelength photons using photofluorescent compounds as wavelength shifters (WLS). Visible light
is trapped within the modules, a portion of which is eventually incident on an array of silicon
photomultiplier photosensors (SiPMs) [19].

5.1.1 Light collectors

Each APA contains ten support structures located behind the wire planes for the PDS modules.
Each module is a long, thin bar oriented along the z axis. The spacing between modules in y

is approximately 60 cm, as illustrated in figure 28. Of the 60 modules, two are based on the
ARAPUCA photon detector technology [46], 29 are dip-coated light guides [47, 48], and 29 are
double-shift light guides [49]. All light-guide modules have the same dimensions. The optical
area of a module is 207.4 × 8.2 cm2 in size, and the light is read out on one end of the bar. The
ARAPUCAmodules are segmented longitudinally (along the z direction) into 12 cells, each with its
own readout. The first eight cells each have an optical area of 9.8× 7.9 cm2 and the remaining four
cells are double-area cells, each with an optical area of 19.6 × 7.9 cm2. One ARAPUCA module
is located in the top half of the upstream APA in the beam-side drift volume. A second is located
in the middle of the APA in the center of the opposite drift volume. The two light-guide designs
fill the remaining modules in alternating positions in the APAs. One example of each module
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type is highlighted in figure 28, together with the photo-sensor arrays equipping the module. The
installation of the modules within an APA behind the wire planes and a grounding mesh is also
visible in figure 28.

PD Module Designs

Dip-Coated Light Guides

Double-Shift Light Guides

ARAPUCA (Light Trap)

Figure 28: Picture of a ProtoDUNE-SP APA during assembly. Labels indicate the three types of
PDS modules inserted into the APA frame (left). Pictures of the three technologies (right) with
details of the photo-sensor arrays equipping the modules (insets). From left to right, they are a
dip-coated light-guide module, a double-shift light-guide module, and an ARAPUCA module.

The two light-guide designs convert incident VUV photons into the visible range using tetra-
phenyl butadiene (TPB) (emission peak ∼430 nm), while the ARAPUCA design uses p-terphenyl
(PTP) (emission peak ∼340 nm). In the dip-coated acrylic light guide, wavelength-shifted photons
are confined inside by total internal reflection and they are guided toward the end of the bar that is
in optical contact with a photosensor array. The double-shift light guide contains an internal light
guide doped with the second WLS (490 nm emission) to facilitate trapping of double-converted
photons within the module and guide them toward the photosensors at the end of the bar. The
ARAPUCA uses a dichroic filter window (400 nm cutoff) to reflect photons from a second WLS
(TPB) inside the cell underneath the window and prevent them from exiting before they are absorbed
or detected by the photosensors distributed inside the cell.

5.1.2 Photosensors

Three silicon photosensor models, each with an active area of 6× 6 mm2, are employed throughout
the photon detection system. They were selected among those that were available commercially or
that were newly developed during the PDS material procurement phase: the SensL SiPMMicroFC-
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60035-SMT (35 µmpixel size) and two types of HamamatsuMPPCS13360-6050 (50 µmpixel size)
- the CQ-type (Quartz windowed for Cryogenic application) and the VE-type (VErtical through-
silicon via). Arrays of photosensors of the same model are passively ganged together in parallel
forming large-area single channels for voltage supply and signal readout. The arrays formed by
three SensL SiPMs are indicated in the following as 3-S-SiPM, those formed by 3 Hamamatsu
MPPCs (VE-type) indicated as 3-H-MPPC and those with 12 Hamamatsu MPPC (CQ-type) as
12-H-MPPC. Each of the light-guide modules is read out by four channels with three photosensors
each, either 3-S-SiPM or 3-H-MPPC, arranged in a strip of 12 photosensors in total at one end of
the module. Each cell of each ARAPUCA module is read out by one 12-H-MPPC channel made
of 12 Hamamatsu MPPCs distributed in the plane opposite to the cell optical window, for a total of
144 photosensors in the ARAPUCA module (12 cells). The numbers of channels of the different
types and their distribution in the PDS modules are summarized in table 3. A 12-H-MPPC array
and a strip made by four 3-S-SiPM are shown in figure 28.

Table 3: Numbers of each type of PDS module installed in ProtoDUNE-SP, and the numbers of
sensors per channel and channels per module

Ph. sensors Type Channels Dip-coated Double-shift ARAPUCA Total channels
per channel of channel per module modules modules modules in PDS

3 3-S-SiPM 4 21 22 - 172
3 3-H-MPPC 4 8 7 - 60
12 12-H-MPPC 12 - - 2 24

The ratio of the photosensor area to the light collector surface area for the light-guide modules
(0.26%) is lower than that of the ARAPUCA cells (4.2% and 2.1% for the cells with double area).

5.1.3 Readout DAQ and triggering

Unamplified signals from the photosensors in the LAr are transmitted outside the cryostat on copper
cables. A dedicated, custom module was built for receiving and processing silicon photosensor
signals for the trigger and DAQ. The module is called the SiPM Signal Processor (SSP). A self-
contained, 1U SSP module reads out 12 independent PDS channels. Each channel has a voltage
amplifier and a 14-bit, 150 megasamples per second ADC that digitizes the (current) output signal
from photosensors into analog-to-digital units. The front-end amplifiers are configured to be fully-
differential with high common-mode noise rejection. Each amplifier has on its input a termination
resistor that matches the 100 Ω characteristic impedance of the signal cable. The least-significant
ADC bit corresponds to 66 nA in this configuration. The digitized data are stored in pipelines
in the SSP, corresponding to as much as 13.3 µs per trigger. The processing is performed by
FPGA (Field-Programmable Gate Array). The FPGA implements an independent data processor
for each channel. The processing incorporates a leading-edge discriminator and a constant fraction
discriminator for sub-clock timing resolution. A block diagram of the system is shown in Fig. 29.

Each channel is individually triggerable. Triggers can come from a periodic trigger, an internal
trigger based on the leading-edge discriminator local to the individual channel, or an external
global trigger distributed by the timing system as the general triggers issued by the beam line
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Figure 29: Block diagram of the ProtoDUNE-SP photon-detector readout module (SSP) with
interfaces to Trigger and DAQ systems.

instrumentation (sections 3.1,3.3). If a trigger is present, the channel will produce a data packet
consisting of a header and a waveform (a sequence of values in ADU) of predefined length. An
artDAQ process in the PD DAQ system (SSP boardreader) generates a fragment when the timing
systemproduces a trigger. This fragment contains all packets received from the SSPwith timestamps
in a window ±2.5 ms from the timestamp of the trigger. Each SSP fragment contain 12 packets,
one for each channel, with identical timestamps corresponding to the trigger time, and an arbitrary
number of additional packets generated for channels that have discriminators that fired.

5.1.4 Photon detector calibration and monitoring system

The PDS incorporates a pulsed UV-light monitoring and calibration system to determine the
photosensors’ gains, linearities, and timing resolution, and to monitor the stability of the system
response over time.

The system hardware consists of both warm and cold components. Figure 30 (left) shows a
schematic of the ProtoDUNE-SP PD calibration and monitoring system. Diffusers mounted on
the cathode-plane assembly panels serve as point light sources that illuminate the APA with the
PDS modules on the opposite side of the drift volume. The location of the diffusers on the CPA
panel is indicated by magenta discs. Also shown are the quartz fibers from the top of the CPA to
the diffusers. The other CPA side holds a second set of five diffusers to calibrate the PDS in the
opposite APA array.

The active system component is a 1U rack mount Light Calibration Module (LCM) sitting
outside the cryostat. The LCM generates light pulses that propagate through the quartz fiber-
optic cable to the diffusers at the CPA. The LCM consists of an FPGA-based control logic unit
coupled to an internal LED Pulser Module (LPM) and an additional bulk power supply. The LPM
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Figure 30: The ProtoDUNE-SP photon-detector calibration and monitoring system installation
on the CPA panels (left). The inset shows the actual lower left diffuser at time of installation.
Waveforms in a LED calibration run displayed in persistence trace mode (right) showing recorded
single and multi-photon signals. Each time tick (tt) represents 6.67 ns.

utilizes multiple digital outputs from the control board to control the pulse characteristics, and it
incorporates DACs to control the LPM pulse amplitude.

The calibration system produces UV light flashes with predefined pulse amplitude, pulse
width, repetition rate, and total number of pulses. A typical photosensor response to low amplitude,
shortest duration calibration pulses is shown in figure 30 (right) where many recorded waveforms
are overlaid with the color indicating the frequency, as in an oscilloscope persistence trace mode.
The UV light flashes can be produced in pairs with a fixed time difference between the two pulses
to study timing properties of the photon system.

5.2 Photosensor performance

Silicon photomultipliers convert light flashes into analog electrical pulses. When a photon hits
and is absorbed in a microcell of the avalanche photodiode matrix, an electron is lifted into the
conduction band. If the bias voltage exceeds the breakdown voltage, this photoelectron creates an
avalanche multiplication, with amplification (gain) typically in the 106 range, which leads to a rising
current signal. Silicon photomultipliers are implemented as photosensors in the ProtoDUNE-SP
PDS modules because of their compact design, low operating voltage and sensitivity to single
photons. To overcome the limitation due to their small sensitive area (6 × 6 mm2) and to limit
the number of channels, arrays of photosensors are passively ganged together in parallel forming
a large-area single channel for voltage supply and signal readout. The capacitance of the array
however increases with the number of photosensors connected in the array, and correspondingly
its recovery time. Therefore, the signal amplitude decreases and the intrinsic noise increases.
Operating at cryogenic temperature helps reduce the dark count rate. On the other hand, correlated
noise — afterpulses in the same pixel and optical crosstalk in neighboring pixels, both generated
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by the primary photoelectron event — is expected to grow at high signal gain settings. The adopted
multiplicity of the arrays in the ProtoDUNE-SP PDS design (three per channel in the 3-S-SiPM
and 3-H-MPPC for the electron bars and twelve per channel in the 12-H-MPPC for the ARAPUCA
cells) and the working parameters for operation (bias voltage and gain) were determined with
the requirement of acceptable signal-to-noise ratio allowing for sensitivity to single photoelectron
discrimination with minimal secondary effects.

Fifteen channels out of a total of 256 show anomalous readings. There are two that appear
to be disconnected. They fail their continuity checks and they have been unresponsive since the
earliest tests after cabling. There are two that appear to respond anomalously to light signals. Their
gains are similar to the others, but are somewhat higher, and their peak signal amplitudes are much
higher than those of similar channels. The remaining 11 pass their continuity checks but they do
not respond to light signals. These anomalous channels (all of the 3-S-SiPM type) have not been
investigated further. No channels have changed state since detector operation began.

The photosensor response is characterized using dedicated calibration runs that have fast, low-
amplitude LED flash triggers. Data are collected at several different bias voltage settings. These
calibration runs are periodically repeated in time.

5.2.1 Single photoelectron sensitivity
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Figure 31: Sample waveforms of single photon signal from a 3-S-SiPM channel (left) and 12-H-
MPPC channel (right) (three and twelve sensors passively ganged in parallel, respectively). Noise
filtered waveforms (red histogram) are superimposed, from noise-removal algorithms applied in
data processing.

Signal extraction and noise evaluation are performed for each recorded waveform. The wave-
form consists of 2000 samples of the photosensor output (in ADC units - ADU) at discrete, evenly
spaced points in time ("time ticks" - tt). The sampling interval is 6.67 ns and the duration of the
waveform is 13.3 µs. The trigger time, either from the global trigger or from the SSP internal
trigger, is at a fixed time relative to the start of the waveform. Typical recorded waveforms are
shown in figure 31.

The mean of the pedestal distribution, determined from a pre-sample portion of the waveform
before the trigger, gives the baseline value and the spread (σN ) is an estimate of the noise in the
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recorded event. After baseline subtraction, the charge of the signal (in ADU × tt units, proportional
to number of electrons or fC, where 1 ADU × tt = 2750 electrons) is evaluated by integration
of the portion of the waveform starting from the trigger time and extending over a 7 µs (1050
tt) time window. De-noising algorithms that preserve the signal rise time and integral [50] are
applied to more precisely evaluate the maximum amplitude in the same window corresponding to
the photoelectron current of the signal (in ADU or µA).

During detector assembly, the photosensors for each of the three- and twelve-unit channels were
pre-selected based onminimal difference in their nominal breakdown voltage (at warm temperature)
from that listed in data sheets. After this selection, the spread in breakdown voltages among the
sensors in the same 12-H-MPPC channel is typically ∆Vmax

bd ≤ 300 mV. All sensors in a channel
are biased at the same common voltage VB, and the pre-selection thus enables the photosensors in
the channels to all operate in relatively similar working conditions.

Typical charge (signal integral) and current (signal amplitude) distributions under pulsed LED
illumination and with a nominal operating VB setting are shown in figure 32 for a 12-H-MPPC
channel (top row) and for a 3-S-SiPM channel (bottom row).
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Figure 32: Charge (left) and current (right) distribution for typical 12-H-MPPC channel (VB = 48 V)
(top) and 3-S-SiPM channel (VB = 26 V) (bottom) under low amplitude pulsed LED illumination.
A fit of the charge distributions with a multi-Gaussian function giving peak positions and widths is
shown in red.

Themulti-peak structure corresponds to detection of 0, 1, 2, . . . photoelectron-induced avalanches.
The clear peak separation confirms good sensitivity to single PE detection for both the three-sensor
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and the twelve-sensor channels. The spread around the peaks in the charge spectra (left panels)
is partly due to over-voltage difference among sensors in the array. The asymmetric distribu-
tions around the peaks in the signal amplitude spectra (top right panel) may be due to secondary
avalanches from afterpulses and crosstalk in the sensors more visible in the H-MPPC due to the
faster recharge time. The 1-PE charge directly measures the overall gain of the photosensor array
at the applied bias voltage. The gain gi thus provides the charge per avalanche issued by the i−th
channel.

The gain as a function of bias voltage is shown in figure 33 for some of the 12-H-MPPC
channels and 3-S-SiPM channels. The gain response to varying VB is very uniform channel by
channel, as indicated by the slopes of the lines in figure 33. On the other hand, the intercept with
the horizontal axis, that defines the actual breakdown voltage Vbd of the multi-sensor channel at
LAr temperature, shows a relatively large spread, particularly for the 12-H-MPPC channels.

At the reference bias setting adopted for PDS operation (VB = 48 V for the 12-H-MPPC,
VB = 26Vfor the 3-S-SiPM- in either casewithin the range suggested by the differentmanufacturers)
the two types of photosensors are operated at different over-voltages VoV = (VB − Vbd) in the range
(3.3 - 4.2) V for the 12-H-MPPC channels and (5.0 - 5.5) V for the 3-S-SiPM channels. Gains are
correspondingly higher, by a factor ∼ 2, for the 3-S-SiPM channels as indicated in figure 33.
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Figure 33: Gain as a function of applied bias voltage for 12-H-MPPC channels (left), and for
3-S-SiPM channels (right). Linearity of individual channel response is shown by the linear fit
(red line) across the points at different bias voltage setting. The intercept of the fit line provides a
direct evaluation of the breakdown voltage at LAr temperature for each 12-H-MPPC and 3-S-SiPM
photosensor.

5.2.2 Signal to noise in photosensors in passive ganging configurations

The signal-to-noise ratio (SNR) is a good performance metric for the characterization of the
photosensor component of the PDS during normal operating conditions. The SNR of the individual
channel (three or twelve photosensors in parallel) at the reference bias voltage setting is here defined
as:

SNR =
µ1
σ0

(5.1)
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where, referring for example to figure 32 (left panels), the signal µ1 is the mean value from the
Gaussian fit of the one-PE peak (the minimal detectable signal), and the noise is evaluated from the
Gaussian spread, σ0 of the zero-PE peak. The SNR for all channels of the three types are shown
in figure 34. For the 12-H-MPPC channels of the ARAPUCA modules, the SNR values are around
6, while for the 3-S-SiPM channels of the double-shift and dip-coated bar modules the SNR is in
the range 10 to 12. The signal-to-noise ratio, as defined in equation 5.1, is directly proportional to
the gain and the higher SNR shown by the 3-S-SiPM channels is primarily due to their higher VoV
setting adopted for operation.
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Figure 34: Signal-to-Noise Ratio (SNR) for the 3-S-SiPM channels (left), for the 3-H-MPPC
channels (center), and for the 12-H-MPPC channels (right).

5.2.3 Light calibration

Calibration of the light response is necessary to convert the charge signal from the photosensors
into the corresponding number of photons detected. The detector calibration LED pulser is flashed
synchronously with the data acquisition. Calibration runs at varying intensities of the flasher are
needed in order to produce a suitable illumination in each PDS element. For each channel, the
digitized waveform recorded in coincidence with the short LED pulse is baseline subtracted and
the photosensor charge output is measured by waveform integration over a predefined time window
(see section 5.1). Typical charge distributions with multi-peak structure from a LED calibration
run are shown in figure 32 (left panels, top for a 12-H-MPPC channel and bottom for a 3-S-SiPM
channel).

Among the possible different calibration methods, the one adopted here relies on the statistical
features of photon counting measurements under stable pulsed, low illumination conditions. The
number of detected photons (n) per light flash follows the Poisson distribution with λ, the expected
mean number of photons detected per flash, whose value is directly related to the probability of
detecting 0-photons in that flash:

P(n) = λne−λ

n!
with P(0) = e−λ → λ = − ln P(0) (5.2)

The probability P(0) can be estimated by the relative frequency of detecting zero photoelectrons in
many LED trials, and from this the mean number of photons detected per flash is inferred:

λ = − ln
(

N0
NTot

)
(5.3)
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where N0 is the observed number of counts under the zero-PEpeak (1st peak in the charge distribution
of figure 32 - left panels) and NTot is the number of LED flashes in the calibration run.

The mean number of photons per flash, λ, depends on the illumination level (LED flash
amplitude). The illumination is maintained constant during the run and low enough to have
sufficient probability of 0-photon detected. In addition to this, the measured rate is corrected for the
accidental background rate of environmental photons, which are not correlated to the LED flash,
that may be detected in the trigger window. The background rate is measured in the portion of the
recorded waveforms before the LED trigger.
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Figure 35: Charge signal per detected photon (blue points) and charge signal per avalanche (black
points) as a function of applied over-voltage VoV for a typical 12-H-MPPC channel (left), and 3-
S-SiPM channel (right). The difference is due to the correlated noise contribution, mainly from
afterpulse and crosstalk in neighboring microcells of the photosensor. The vertical dotted line at
the operation over-voltage set point indicates the gain gi and the calibration factor ci used in data
analysis for the i-th channel shown in the figure.

The photosensor response to λ detected photons, estimated by equation (5.3), is the mean
charge output per flash 〈Q〉 in the calibration run (average of the distribution shown in figure 32
- left panels). The calibration factor for the i-th PDS channel is thus determined by the ratio
ci = 〈Q〉i/λi and represents the output charge per photon detected by the individual photosensor
channel.

The charge issued when an incident photon is detected is expected to be, on average, larger than
the single-avalanche induced charge. The comparison of the charge per photon detected (calibration
factor ci - blue line) and charge per avalanche (gain gi - red line) as a function of the applied over-
voltage VoV is shown in figure 35 for a typical 12-H-MPPC channel (left), and 3-S-SiPM channel
(right). The difference is due to the correlated noise contribution to the signal formation in the
photosensor. This is found to grow exponentially with increasing voltage.

5.2.4 Afterpulses and crosstalk

A common feature of Si-photosensors is the generation of avalanche pulses subsequent to a primary
event. The avalanche of a single microcell in a device has a finite probability of inducing an
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avalanche in neighboring microcells (optical crosstalk), or/and of re-triggering itself before the
microcell is fully recovered (afterpulse).
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Figure 36: Afterpulse and crosstalk contribution to the photosensor signal expressed by the average
number of avalanches generated per detected photon for the 3-S-SiPM channels (left), for the 3-H-
MPPC channels (center), and for the 12-H-MPPC channels (right).

The rate of these secondary pulses increases at higher gain settings. The correlated noise
due to these effects is a well-known limiting factor for a precise photon counting with silicon
photosensors. The measurement of the charge per photon detected (the calibration factor ci, defined
in section 5.2.3) and the charge per avalanche (the gain gi, defined in section 5.2.1) allows the
calculation of the crosstalk and afterpulse probability for each photosensor by the ratio ci/gi in
units of [Ava/Ph], average number of avalanches per photon detected. This ratio is sensitive to
the over-voltage on the photon detector and can be used to monitor for changes in the operating
characteristics of the photosensor as a measure of the stability of the PD system. Figure 36 shows the
measured avalanche/photon value for each channel in the PDS. An average of ∼1.3 Ava/Ph is found
for the 3-S-SiPM channels and the 12-H-MPPC, while a larger factor ∼1.6 Ava/Ph characterizes the
3-H-MPPC channels.

5.2.5 Response stability over time

The sensor gain, the calibration factor and the size of the afterpulse and crosstalk component of the
signal can be used as a system monitor. Any drift in these parameters is an indication of instability
in the system. The calibration data taken at various times during operation provide measurements
that indicate the system stability as a function of time. Figure 37 shows the value of the gain for
typical 12-H-MPPC channels and 3-S-SiPM channels over the course of several months. Within
the uncertainties of the measurements, neither the gain nor the other parameters were found to be
drifting over time for any of the sensors used in the ProtoDUNE-SP photon detector system.

5.3 Photon detector performance

The PDmodules (ARAPUCA and light-guide bars) are exposed to scintillation light from ionization
events in the drift volume. A fraction of the emitted photons impinge upon the optical surface of any
given PDS module, and a charge signal is issued, proportional to the number of photons detected
by the photosensors of the module. The detection efficiency εD of a PDS module is defined here as
the ratio of detected photons to impinging photons. Test-beam data from particles of known type,
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Figure 37: Stability of the photo-sensor response over time: gain stability (charge signal per
avalanche) for typical 12-H-MPPC channel (left) and 3-S-SiPM channel (right), from calibration
runs performed over ∼ 100 days of operation. The shaded band corresponds to a ±5% gain interval.
Gain variations over time are contained well within the band. Statistical error bars are small, not
visible inside the symbol

energy and incident direction in the LAr volume are used to determine εD and thus evaluate the
performance of the different detection technologies implemented in the PDS.

For each beam event, the number of detected photons NDet
j is evaluated from offline data

reconstruction (baseline subtraction, waveform integration and charge-to-photon conversion) for
each of the 29 light-guide bars and for each of the 12 cells of the ARAPUCA module in the
beam side of the PDS. A Monte-Carlo simulation of test beam events is used for extracting the
corresponding number of photons incident N Inc

j on each PDS element (light-guide module or cell in
the ARAPUCA module). This simulation is performed with the LArSoft toolkit [51], which has a
detailed description of the geometry of the ProtoDUNE-SP detector, including a proper description
of the materials and the positions of the TPC components surrounding the LAr volume (APA, CPA,
FC, as shown in figure 38).

Simulation of beam events is performed with standard Geant4/LArG4 generator within LAr-
Soft. This accounts for the well known features of scintillation in liquid argon ensuing ionization
processes.

Photon emission: The emission spectrum is a narrow band in the Vacuum-UV (VUV) wave-
length range peaking around λ = 128 nm (FWHM' 6 nm), exponentially distributed in time with
two very different time components (fast ∼ 5 ns and slow ∼ 1.3 − 1.4 µs, with intensity ratio 0.3 in
case of minimum ionizing particles). Electric fields applied to the LAr medium affect the intensity
of scintillation emission. At 500 V/cm (ProtoDUNE-SP operation), a photon yield of 2.4×104 pho-
tons/MeV for minimum ionizing particles is assumed in simulations, 60% of the maximum yield
measured at zero field. The relative uncertainty on the photon yield value is 8.5% [53]. The photon
yield dependence on increasing linear energy transfer, the rate of energy deposited by ionizing
particles, is not included in the current simulation.

Photon propagation: LAr is transparent to its own scintillation light. However, during prop-
agation through LAr, VUV photons may undergo Rayleigh scattering, absorption from residual
photo-sensitive impurities diluted in LAr and reflections at the boundary surfaces that delimit the
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Figure 38: 3D event display made with the Wire-Cell BEE display [52] showing data from a
7 GeV/c beam muon crossing the whole TPC volume, fully reconstructed by the LArTPC. Only
tracks inside a predefined sub-volume (red box) are shown. The beam muon track enters near the
cathode and propagates along the beam direction about 10◦ downward and 11◦ toward the anode
plane. Ten bars are located in each APA frame. The dip-coated bars are indicated in blue, the
double-shift bars in green and the segmented ARAPUCA bar in orange.

LAr volume. In the MC simulation, the Rayleigh scattering length, the reflectivities of materials for
VUV photons, and the absorption length as a function of the impurity concentration are parameters
that are fixed at their best estimates from existing data. Tracking each of the large number of VUV
photons emitted in an event using Geant4 is computationally expensive, so a pre-computed optical
library is used to look up the probability that a photon produced at a particular location in the liquid
argon volume is detected by a specific PDS channel. In order to create the optical library, the liquid
argon volume is segmented into small sub-volumes (voxels) of size ∼ 6 × 6 × 6 cm3. For each
voxel, a large number (of order 5 × 105) of VUV photons is sampled with an isotropic angular
distribution. All photons are tracked using Geant4, recording how many reach the sensitive area
of each optical detector. In the simulation used to create the optical library, the Rayleigh scattering
length for VUV photons in liquid argon is assumed to be 90 cm, according to the most recent
experimental determination [54, 55]. Due to the high level of purity during the beam run (Oxygen
equivalent impurity concentration < 100 ppt), absorption by impurities is assumed to be negligible.
Light reflection at VUV wavelength is low for perfectly polished metal surfaces (20% or less) and
effectively null for any other material. The actual reflectance of the (extruded, non polished) Al
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profiles of the field cage surrounding the LAr drift volume is unknown and therefore it is set to zero
in the current simulations. Once the library is created, ProtoDUNE-SP detector simulation jobs
retrieve information from the library when the trajectory of a ionizing particle in the LAr volume
is simulated by Geant4, converting the number of emitted photons from energy deposited in each
voxel directly into the number of photons impinging upon the area of each PD module coming from
this given voxel. The uncertainty on the rate at which photons arrive at the detector after photon
transport is dominated by the uncertainty on the Rayleigh scattering length. Neglecting reflections
at the LAr volume boundaries is expected to be a subdominant effect. A relative uncertainty of
5% is assigned to the number of photons incident on the detector surface by varying the Rayleigh
length by 20% around the nominal value in the simulation. The uncertainty on the possible bias
due to the photon library parameterization is not included in the total uncertainty.

Figure 39: Schematic diagram illustrating photons impinging on a TPC wire plane (left) where the
wire pitch p, the wire gauge d, and the incident photon angle (γ) are defined. On the right, the map
of transmission – color scale from 0 to 1 – through the set of parallel planes (TPC wire planes and
the mesh) as a function of the polar angles θ, φ of the incident photon direction (the planes lie on
the (y, z) plane, θ = γ when φ = ±π/2).

Photon transmission at the anode plane: The optical surfaces of the PDmodules lie immediately
behind the four wire planes of the TPC and a fifth (grounding) plane made by the woven metallic
mesh stretched across theAPA frame (see section 2.2). A correction is applied to account for the light
transmission through this series of parallel planes, which is not included in the detector simulation
in LArSoft. The geometrical transparency of the mesh (percentage ratio of opening to total area,
function of wire gauge and pitch) is 85% The transparency is reduced to 75% when the TPC wire
planes above the mesh plane are also considered. This corresponds to the transmission upper value
for orthogonal incident light. Transmission at any angle is then obtained based on a geometrical
model5, as illustrated in figure 39. A stand-alone simplified MC simulation is then performed
to evaluate the transmission of light from beam events. Optical photon emission is sampled
over straight trajectories crossing the LAr volume along the beam direction, nearly representing

5A simplified geometrical model is used in which VUV photons intercepting a wire of the mesh are absorbed
(no reflection). The transmission coefficient shows a dependence on the polar angle of incidence (θ) almost flat with
T=0.75-0.7 for photons incoming with θ < 45◦ and then decreasing above that angle. Only a small modulation in the
azimuthal angle φ is expected across the whole range due to the geometrical orientation of the wires and mesh planes
(φ = ±35.7◦, 0◦, 90◦) and the gauge per pitch ratios (d/p).
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beam muon tracks, or sampled according to a spatial parametrization of electromagnetic showers,
representing the longitudinal and transverse energy deposition from incident beam electrons. After
photon propagation to the APAs, the angular distribution of incident photons on each PD module
is folded with the transmission map to obtain the transmission coefficients for beam muons and
beam electrons. These were found in the 65-71% range, mildly depending on the position of the PD
module. The relative uncertainty on the transmission coefficients is evaluated to be 7% (one-sided)
to account for the simplified assumptions in the model (no reflection). The transmission coefficients
for each module so determined are then used to scale down the number of photons arriving at the
APA from the Geant4 MC simulation of the beam events into the actual number of photons N Inc

j

incident on the surface of the PD module behind the APA.

5.3.1 Efficiency

Runs with beam momentum settings from 2 to 7 GeV/c are considered for the efficiency study.
The muon and electron samples for the runs at different momenta are selected using the PID
information from the beam instrumentation and the recorded light signals passing quality cuts are
fully reconstructed (O(10k events/sample) for each run). Correspondingly, Monte Carlo runs were
generated with muons or electrons entering the TPC volume from the beam-plug with the same
momentum (nominal value and spread) and direction to reproduce the features of the H4-VLE beam
line (see section 3). The MC samples were generated with the same number of triggers as were
collected in the corresponding data samples. For each run the MC distribution of the number of
photons in the event impinging upon the j-th PDS element (light-guide module or ARAPUCA
cell) and the distribution from real data sample of photons detected by the same module/cell are
extracted.

Muon data: for each of the 12 cells of the ARAPUCA module located in APA 3 of the PDS
beam side, the mean value 〈NDet

j 〉 of the detected photon distribution from the muon data samples
with beam momenta of 2, 3, 6 and 7 GeV/c (open circles of assigned color) are displayed in figure
40 (top-left), the mean values 〈N Inc

j 〉 of the photons incident on the cell surface from the MC muon
event samples is shown in the (center-left) panel. Statistical errors are small (few per-mille relative
to the mean values, not visible inside the symbols), systematic uncertainties not shown in the figure
are discussed later in this section. The detection efficiency εj = 〈NDet

j 〉/〈N Inc
j 〉 given by the ratio of

the twomean values in the (bottom-left) panel, for each cell at all momenta. Cells in the ARAPUCA
module corresponding to channels j = 1, . . . , 12 are ordered along the z axis with the upstream
cell#1 at the beam entry point (z = 0) into the LArTPC volume. Muons at all incident momenta are
energetic enough to cross the entire LAr volume and exit from the downstream side (see figure 38).
The number of detected photons increases from cell to cell along z due to the increasing visibility
of the muon track from the cells deeper into the LAr volume. In every cell the number of detected
photons is observed to increase with incident muon beam momentum (open circles of different
color in figure 40) due to the increase in the energy loss along the track for more energetic muons.
Cells in the ARAPUCA module are of two types: the last four cells (channels j = 9, . . . , 12) have
double size but equal number of photosensors than the first eight. The high step in the number of
collected photons N Inc

j at j = 9 - figure 40 (center) - reflects the double geometrical acceptance of
these cells. A smaller step is observed in the detected photons NDet

j (top). This is due to the halved
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Figure 40: ARAPUCA cell efficiency as determined from beam muons (left) and beam electrons
(right). Cells are of two types with the last four cells (channels j = 9, . . . , 12) have double size
but equal number of photosensors than the first eight. Top: average number of detected photons
with beams at different momenta. Center: average number of photons incident on the cell surface
from MC simulation of electron and muon beams at corresponding momenta. Bottom: efficiency
of the cell from the detected-to-incident ratio. Statistical error bars are small, not visible inside the
symbols.
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photocathode coverage partly mitigated by the light trapping in the ARAPUCA cell.
For each light-guide module in the PDS beam side the number of detected photons and incident

photons were evaluated in the same manner from the same beam muon samples (data and MC runs
with beammomenta of 2, 3, 6 and 7 GeV/c). The efficiency from the ratio of the detected to incident
photons is shown in figure 41 (left) for the 15 double-shift light-guide modules in APA3, 2 and 1
and in figure 42 (left) for the 14 dip-coated light-guide modules. Statistical error bars are small,
not visible inside the symbols. The locations of APAs 1, 2, and 3 in the ProtoDUNE-SP detector
are shown in figure 38. The efficiency of light-guide modules is expected to be proportional to the
number of suitably placed photosensors, and inversely correlated with the length of the optically
active surface of a module with fixed width due to the attenuation of internally reflected optical
photons. As a crude characterization, the smallness of the ratio of number of photosensors to
optically active surface area of the light-guide modules relative to the ARAPUCA cells underlies
the corresponding ratios of efficiencies. A factor of two can be gained by instrumenting both ends
of the light guides, but improvement beyond that would require modification to the module design
to enable effective deployment of additional photosensors.
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Figure 41: Efficiency measurements of 15 double-shift light-guide modules (PDS beam side), as
determined from beam muons (left) and beam electrons (right) data at different momenta (only
modules j = 1, .., 10 in APA3, and 2 at the shorter distance from the shower and higher photon
counting are displayed).

Electron data: electrons with beam momenta of 2, 3, 6 and 7 GeV/c provide data samples for
a second independent set of efficiency measurements. Electrons deposit all their incident energy
in showers localized in a limited portion of the LAr volume, unlike muons on long, throughgoing
tracks. Electromagnetic showers develop in front of APA3, where the ARAPUCA module is
positioned nearly at the height of the entering beam (see figure 67 with a 3D display of 7 GeV/c
beam electron event). Light detected in the ARAPUCA cells, the MC estimate of the light arriving
on the cells’ optical surfaces and the corresponding detector efficiency are shown in the right-panels
of figure 40 (top), (center) and (bottom) respectively. For any given beam energy (open circle
colors in the plots), the distribution of the detected photons by the cells along the bar exhibits
a shower-like longitudinal profile, an indication of the position reconstruction capability of the
segmented ARAPUCA module. The number of detected photons is also clearly correlated with the
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Figure 42: Efficiency measurements of 14 dip-coated light-guide modules (PDS beam side), as
determined from beam muons (left) and beam electrons (right) data at different momenta (only
modules j = 1, .., 9 in APA3, and 2 at the shorter distance from the shower and higher photon
counting are displayed).

shower energy. The calorimetric energy reconstruction from scintillation light signals is discussed
in section 7.1.

The response of the light-guide modules (beam side) to beam electrons were also used for
efficiency measurements with beam momenta of 3, 6 and 7 GeV/c, excluding electron data at
2 GeV/c with the modules in APA1 at the farthest distance from the shower and low photon
counting. Results are shown in figure 41 (right) for the ten double-shift light-guide modules in
APA3 and APA2 and in figure 42 (right) for the nine dip-coated light-guide modules.

Efficiency: the photon detection efficiency was evaluated through 8 independent measurements
using muon data and electron data at four different beam momenta, for each element of the PDS (12
cells in one ARAPUCAmodule, 15 double-shift light-guide modules and 14 dip-coated light-guide
modules of the PDS beam side). By comparing the results, efficiency estimated from the electron
data is found in all elements systematically higher than from the muon data, regardless of the energy
of the particle [see figures 40 (bottom), 41 and 42]. The systematic difference may be due to bias
in the MC simulation at the photon emission stage (e.g., an unaccounted deviation in scintillation
yield for GeV-scale electrons and muons with respect to minimum-ionizing particles) and at the
propagation stage (e.g., a difference due to the computational method used to approximate the
number of photons reaching the PD optical window from localized volumes (EM showers) and
long tracks (muons)). The mean value from all available measurements 〈εj〉 for the j-th element
is taken as the best estimate of the efficiency of that element, and the standard deviation sj that
measures the dispersion around the mean is taken as an estimate of the systematic uncertainty
on the efficiency. The statistical uncertainty, evaluated from the standard errors of the mean
numbers of detected and incident photons in the data and MC samples of muons and electrons at
different energies, is negligible. Comparing modules or cells of the same type, relative variations
in efficiency are within ±6% for the ARAPUCA cells, ±20% for the double-shift modules and
greater than ±25% for the dip-coated modules. The median efficiency value with its statistical and
systematic uncertainty from each group of detectors (ε̃A, ε̃A2, ε̃DS, ε̃DC) is selected to characterize
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Table 4: Efficiencies of the detector technologies in the ProtoDUNE-SP PD system: median value
among detectors of the same type, determined from the average of independent measurements with
beam muons and electrons at different energies. The error is from systematic uncertainty, with
negligible statistical uncertainty. The number of detectors of different types examined correspond
to the fraction of PDS elements in the beam side upstream APAs (# 3 and 2), selected to determine
the median efficiency reported in the efficiency column.

No of PDS elements examined Detector Type Efficiency
8 ARAPUCA cell ε̃A = (2.00 ± 0.25) %
4 ARAPUCA cell (double area) ε̃A2 = (1.06 ± 0.09) %
10 Double-shift module ε̃DS = (0.21 ± 0.03) %
9 Dip-coated module ε̃DC = (0.08 ± 0.02) %

the different technologies implemented in the ProtoDUNE-SP PD system. These value are reported
in table 4. The overall relative uncertainty on the efficiency for all detector types is thus found to
be 8.5% . σε/ε . 13.5%, as determined from the set of measurements described above. This
appears compatible with the systematic error expected from uncertainty in the parameters of the
photon emission and propagation used in the MC generation.

5.3.2 Comparisons of cosmic-ray muons to simulation

The analysis of photon signals from cosmic-ray muons provides a check on the validity of the
photon simulation used to determine efficiency. Throughgoing cosmic-ray muons, or those which
enter through the upstream face and exit through the downstream face of the cryostat, are isolated
in the scintillation medium using CRT triggered events that have been matched to reconstructed
tracks in the TPC. A trigger from this sub-detector involves a four-fold coincidence of the x- and
y-measuring planes of the CRT over the span of 60 ns producing events that are very likely to contain
a throughgoing cosmic-ray muon. Two strategies were employed, both using an event definition
described by the sum of all detected photons in the twelve cells of the non-beam side ARAPUCA
module during a 13.33 µs externally tagged PDS trigger. Before either analysis, the sum of photons
per event collected at the detector surface in the simulation were scaled by a fixed amount in order
to eliminate a systematic normalization difference with data.

The first analysis, a comparison of the average light response as a function of transverse
distance, was employed to observe some of the bulk effects of the medium. Here, the transverse
distance is defined as the length of the segment between the reconstructed particle path and the
center point of the ARAPUCA module as they occupy the same position along the z axis. Since
the ARAPUCA module is in the central APA (APA6), this variable is exclusively a function of the
particle position in x and y as it bisects the detector in the z direction, exploiting the symmetry
of the detector. The results of this analysis, shown in the left plot of figure 43, suggest that the
measured data favor simulation with Rayleigh scattering length hypothesis of 90 cm as opposed
to a Rayleigh scattering length of 60 cm in the scintillation medium. A second analysis compares
each data track to a simulated track generated with matching position and trajectory in a medium
with Rayleigh scattering length set at 90 cm. Results, which are shown in the right-hand plot of
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Figure 43: The left-hand panel shows the ratio of the observed to the predicted PE yields as a
function of transverse distance, assuming two different values of the Rayleigh scattering length in
the simulation. The data agree more with simulation that employs a Rayleigh scattering length (LR)
of 90 cm as opposed to the 60 cm prediction. On the right, an event-by-event comparison is shown
for roughly 43,000 events taken over four months with a simulated Rayleigh scattering length of
90 cm. The dashed vertical lines in both plots represents where data and simulation agree. The
solid vertical lines in the right-hand plot represent the bounds of the plot on the left.

figure 43, demonstrate excellent agreement with simulation as a function of the transverse distance
from the ARAPUCA to the reconstructed track. In comparisons of data to simulation, one standard
deviation in the difference between the reconstructed simulated light and themeasured reconstructed
light is about 18.6%. These two comparisons show that photons are successfully reconstructed in
ProtoDUNE-SP and that the simulation of the optical properties of scintillation medium is in a good
agreement with the measurements.

5.3.3 Time resolution

The timing performance of the PD system intrinsically depends upon a combination of factors, from
the intrinsic time resolution of the photosensor, to the electronics response of the readout board
and signal digitization, to the features of the light propagation, wave-length shifting and photon
collection by the PD modules. The overall timing performance is evaluated here in two different
applications: time resolution of two consecutive light signals and time matching between light
signal and TPC signal.

Resolving successive light signals in time is of importance in physics reconstruction of cor-
related events, such as stopping muon with decay to Michel electron, or kaon decays, or nucleus
de-excitation into gammas after neutrino interaction. Some of these correlations may be observed
with light signals in LAr depending on the PD timing performance. To explore this, data were taken
with an external trigger from the LCM (Light Calibration Module) producing two consecutive LED
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flashes with a fixed time difference among them and from the common trigger time. The time dif-
ference between the pulses was set in the few µs range typical of the muon decay at rest, and much
larger than the pulse width. In figure 44 (left) a recorded waveform from the LCM trigger is shown
with the two generated consecutive LED pulses as detected by an ARAPUCA cell/12-M-MPPC
channel and digitized by the SSP readout board. The rise time of each of the two signals from the
common trigger was measured in the events collected with the LCM trigger and the distribution of
their time difference ∆t = (t2 − t1) is shown in figure 44 (right). The time resolution to observe two
separate light pulses is σ∆t ' 14 ns. Time jitter in the LCM pulse formation is small (sub-ns range)
and the dominant factor is from digitization (6.67 ns sampling period).
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Figure 44: PDS timing measurements: Double pulse light signal using the photon detector calibra-
tion system (left); Resolution in the time difference measurement between correlated light signals
(right).
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flash-matched tracks

tracks not matched to flash

Figure 45: PDS Timing Measurements: Correlation between the TPC track t0 time and the PDS
flash time. Non-matched tracks (red points) are mostly from CPA-crossing vertical muons (large
negative t0) whose flash was not recorded by the PDS at the opposite end of the drift distance.

An efficient light flash-to-track matching in LArTPC is important for a correct event recon-
struction, background rejection (especially for LArTPC’s operated on the surface) and low-energy
underground physics.
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An average of approximately 70 cosmic-ray tracks are observed overlaying each beam event
during TPC readout window. The cosmic-ray tracks arrive at random times relative to the beam
trigger. For some of these tracks, such as those that cross the cathode plane or cross one of the
anode planes, their actual time of entering the LArTPC volume (t0 time) can be reconstructed offline
from the TPC data by using the 3D track reconstruction algorithms and the geometrical features of
these CPA or APA crossing tracks. With the ProtoDUNE-SP TPC at its nominal electric field of
500 V/cm, the full drift time is 2.2 ms. Additional 2.5 ms (0.3 ms) are also recorded before (after)
the drift time period, for a total of 5 ms TPC readout window per recorded event. Cathode or anode
crossing muons have t0 time distributed over the entire recorded window and reconstructed with a
precision of about 20 µs.

PDS detected light flashes corresponding to the t0-determined TPC tracks are efficiently found
in the packets received from the SSP and contained in the PD fragment of the event. Matching
is performed in time inside the TPC readout range, looking for the closest flash timestamp to the
t0 time of the track, within a given coincidence window. In the case of CPA/APA-crossing tracks
the matching efficiency depends on the SSP discriminator threshold for the packet recording and
to the width of the coincidence window. An example of flash-to-track matching is given in figure
45, showing the bisector correlation of PDS flash time and TPC track t0 time, for a 4500 APA/CPA
crossing track sample. Tracks not matched to a flash are mostly the shorter CPA-crossing tracks
whose flash was below threshold.

6 TPC response

The high-quality ProtoDUNE-SP data will be used to measure particle-argon interaction cross
sections. Figure 46 shows various candidate events in the collection plane from ProtoDUNE-SP
data after the noise mitigation described in section 4.1 and electronics gain calibration described in
section 4.2. The color scale is in the unit of 1000 ionization electrons (ke).

It is essential to understand the charge response of wires in a LArTPC for calorimetry. In
order to measure the particle energy loss per unit length (dE/dx), it is important to correct for
nonuniformities in the detector response and determine the energy scale to convert charge to energy.
This section describes the procedure and results of the calibration of the charge and energy loss per
unit length of the ProtoDUNE-SP LArTPC. Section 6.1 discusses the calibration of space charge
effects caused by the ion accumulation in the TPC. Section 6.2 describes the measurement of drift
electron lifetime using TPC tracks and CRT information. Section 6.3 discusses the procedure to
correct for remaining nonuniformities in the detector response and determine the energy scale.
Section 6.4 shows the calibrated energy loss per unit length of different beam particles, including 1
GeV/c protons, muons, pions and electrons.

6.1 Space charge effects in ProtoDUNE-SP

As a detector located on the surface, ProtoDUNE-SP experiences a large flux of cosmic rays that
results in a substantial amount of ionization produced in the detector per unit time. Along with the
production of ionization electrons, argon ions are also produced in the detector by these cosmic
rays. Because argon ions have drift velocities on the order of several millimeters per second at
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(a) A 0.5 GeV/c electron candidate.
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(b) A 6 GeV/c electron candidate.
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(c) A 1 GeV/c pion candidate.
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(d) A 6 GeV/c pion candidate.
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(e) A 1 GeV/c stopping proton candidate.
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(f) A 2 GeV/c pion charge exchange candidate.
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(g) A 6 GeV/c kaon candidate.
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(h) Large cosmic air shower candidate producing
many parallel muons.

Figure 46: Various candidate events from ProtoDUNE-SP data, with beam particles entering from
the left. The x axis shows the wire number. The y axis shows the time tick in the unit of 0.5 µs.
The color scale represents the charge deposition. The beam particle starts approximately at wire
number 90 and tick number 4800.
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∼ 500 V/cm in liquid argon, 2–4 × 105 times slower than ionization electrons at the same electric
field, a considerable amount of positive space charge is expected in the detector as these argon
ions build up on a timescale of roughly ten minutes. A steady flux of cosmic rays ensures that
the positive ions are constantly replenished in the detector, leading to persistent distortions of the
electric field in the TPC.

These electric field distortions alter ionization electron drift paths in the detector, leading to
ionization charge being reconstructed at different positions in the detector than where the charge
originated from. The electric field distortions also impact the amount of prompt electron-ion
recombination experienced at the points of energy deposition in the detector. Both of these effects
can bias reconstructed particle energies and trajectories, and by modifying reconstructed dE/dx
along a particle track (or at the beginning of an electromagnetic shower), can lead to complications
in particle identification in a LArTPC detector. As a result, space charge effects should be carefully
characterized at any large LArTPC detector operating at or near the surface, and calibrated out when
reconstructing particle trajectories, energies and dE/dx. The observation of transverse ionization
charge migration during drift in early ProtoDUNE-SP data-taking, shown in figure 47, is consistent
with a large positive space charge density in the center of the TPC pulling ionization charge inward
toward the middle of the detector during drift toward the anode planes. This observation highlights
the fact that significant space charge effects are present at ProtoDUNE-SP and need to be addressed
when calibrating the detector. In contrast to the case of ProtoDUNE-SP, space charge effects are
expected to be negligible at the single-phase DUNE far detector due to the very low cosmic-ray rate
deep underground.
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Figure 47: Projections of reconstructed and t0-tagged cosmic-ray track end points in the xy plane
(left) and zx plane (right) in ProtoDUNE-SP data; the selected tracks are t0-tagged by requiring
that they cross the cathode plane (x = 0), as described in section 4.5.2. In the absence of space
charge effects, the track end points should be reconstructed along the boundary of the TPC active
volume (dashed lines). The gaps between the APAs can also be observed in the zx plane projection
(vertical streaks in the middle of the image).

Figure 48 shows the magnitude of spatial offsets at four faces of the ProtoDUNE-SP TPC (top,
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bottom, front or upstream with respect to the beam direction, back or downstream with respect to
the beam direction); specifically, spatial distortions in the direction normal to each detector face are
shown. These spatial distortions are estimated using the ends of reconstructed tracks that have been
t0-tagged in order to know their position in x, the ionization drift coordinate. The transverse spatial
distortion is determined by measuring the distance between the end of the track and the location of
the detector face in the direction orthogonal to the detector face being considered. As illustrated
in figure 48, spatial distortions as large as 40 cm are observed in ProtoDUNE-SP data, largest near
the faces of the TPC and furthest from the anode planes; the latter observation can be understood
as a result of charge originating further away from the anode experiencing space charge effects for
a longer time, yielding a larger impact on drift path in the detector.
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Figure 48: Spatial distortions normal to the top detector face (upper left), bottom detector face
(upper right), upstream detector face (lower left), and downstream detector face (lower right) in
ProtoDUNE-SP data. The color axis represents the additive correction (in cm) one must apply to
the start/end point of a track passing through the given detector face in order to correct its position
to the true entry/exit point at the side of the detector.

A dedicated simulation of space charge effects was developed for ProtoDUNE-SP, using a
software package originally developed for MicroBooNE [56, 57]. The analysis shown in figure 48
is for data; the same analysis applied to Monte Carlo simulated events is shown in figure 49.
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Comparing figures 48 and 49, similar trends are observed in simulation as compared to data,
building confidence that the spatial distortions observed in data are indeed a result of space charge
effects. However, there are also several differences:

• the magnitude of spatial distortions in data are generally larger than in simulation, by as much
as a factor of two at some locations in the detector;

• there is an asymmetry in the magnitude of the spatial distortions about the cathode (x = 0),
which is not present in simulation; and

• the trends in the spatial distortion maps differ qualitatively from the simulation in certain
parts of the detector, such as near the top of the upstream and downstream detector faces on
the x > 0 side of the cathode.

The first point above may be explained by a combination of potentially using an incorrect value for
the argon ion drift velocity, which is not well-known in liquid argon, and the possibility of liquid
argon flow (not included in simulation) moving the argon ions around in the TPC in addition to their
nominal drift in the applied electric field. The second and third points are potentially explained by
the effects of liquid argon flow alone. These explanations are at present speculative; more detailed
study is ongoing and will be reported in a future work.

Given the significant impact of space charge effects on particle trajectories, energies and dE/dx,
as well as the inability for the dedicated space charge simulation to reproduce the observations seen
in data, a data-driven simulation of space charge effects was produced for ProtoDUNE-SP using the
results shown in figures 48 and 49 as a starting point. This data-driven map of space charge effects
(both spatial distortions and electric field distortions, each with three components, for a total of six
three-dimensional maps) can be “inverted” to remove effects of space charge in a calibration step
for both events in actual data and those produced with this data-driven simulation. The data-driven
spatial distortion and electric field distortion maps are produced using the following steps:

• the two-dimensional transverse spatial offset maps at the four detector faces (top, bottom,
upstream, and downstream) shown in figures 48 and 49 are used to form a “scale factor”
map at each detector face by taking the ratio of the data map to the Monte Carlo map on a
pixel-by-pixel basis;

• the scale factormaps are used to rescale the simulated three-dimensional spatial distortionmap
by linearly interpolating the scale factors between the top and bottom detector faces for spatial
distortions in the y direction, linearly interpolating the scale factors between the upstream and
downstream detector faces for spatial distortions in the z direction, and performing the average
of the linear interpolations in these two directions for spatial distortions in the x direction; the
voxel-by-voxel scale factor obtained in this way is used as a multiplicative factor to rescale
the spatial distortion magnitude in the corresponding three-dimensional voxel (a “voxel” here
refers to a volumetric pixel);

• the resulting data-driven spatial distortion maps are then inverted in order to obtain “inverted
spatial distortion maps” that can be used to calibrate out spatial distortions in reconstructed
data or Monte Carlo events via repositioning reconstructed ionization charge space points in
three dimensions back to their point of original deposition (see more below); and
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Figure 49: Spatial distortions normal to the top detector face (upper left), bottom detector face
(upper right), upstream detector face (lower left), and downstream detector face (lower right) in the
original ProtoDUNE-SP Monte Carlo simulation. The color axis represents the additive correction
(in cm) one must apply to the start/end point of a track passing through the given detector face in
order to correct its position to the true entry/exit point at the side of the detector.

• the gradient of the spatial distortion along the local drift direction, determined using the
inverted spatial distortion maps, along with the known ionization electron drift velocity as
a function of electric field, are used to obtain the electric field distortion maps (in three
dimensions) using a method previously explored at MicroBooNE [58].

The result of this procedure is a set of three-dimensional spatial distortion and electric field maps
that are included in the ProtoDUNE-SP simulation used in the first results showcased in this work.

The electric field magnitude variations in a couple of slices of the ProtoDUNE-SP TPC are
shown in figure 50, comparing to the prediction of the original space charge effect simulation. It is
observed in figure 50 that the electric field magnitude variations in data are as large as 25% with
respect to the nominal drift electric field; an approximate estimate of the systematic uncertainty on
this number is 5%with respect to the nominal drift electric fieldmagnitude (20% relative uncertainty
with respect to the full systematic effect), driven by the uncertainty in extrapolating spatial offsets
from the detector faces into the center of the detector. The simulation utilizes the data-driven spatial

– 64 –



distortion maps to modify the reconstructed position of ionization charge to better represent data
events, while the data-driven electric field distortion maps are used to improve the prediction of
charge yield after electron-ion recombination, as this effect is dependent on the local electric field
magnitude.
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Figure 50: Two-dimensional slices of the three-dimensional electric field magnitude distortion map
in both ProtoDUNE-SP data (top row) and the original ProtoDUNE-SP Monte Carlo simulation
(bottom row); the local electric field distortion magnitude is shown as a percentage of the nominal
drift electric field magnitude. Shown are slices in the z direction (left column) and y direction (right
column), looking at the center of the detector in both slices.

Additionally, a calibration of particle dE/dx was developed for both tracks and the track-
like segments at the beginnings of electromagnetic showers measured by ProtoDUNE-SP. In this
calibration, the spatial distortion map is used to correct for spatial squeezing/stretching of charge,
impacting dx, and the electric field distortionmap is used to correct for the electric-field-dependence
of electron-ion recombination in the liquid argon, impacting dE . The performance of this first
attempt at a calibration of space charge effects at ProtoDUNE-SP is demonstrated in several of the
results presented in this work in sections 6.3 and 6.4.

The time dependence of space charge effects has been observed to be relatively small during
the period of time that ProtoDUNE-SP was taking beam data, on the order of 5% of the total
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spatial distortion magnitude. A detailed study of the time dependence of space charge effects at
ProtoDUNE-SP will be presented in a future work.

6.2 Drift electron lifetime

The liquid argon of the ProtoDUNE-SP detector contains impurities, such as water and oxygen, that
can capture the ionized electrons as they drift towards the APA. Although the negative ions formed
by the attached electrons still drift to the APA, they drift much more slowly than the unattached
electrons and contribute negligibly to the signals measured on the APAs. The charge measured by
the APAs then becomes reduced due to the impurities capturing the electrons, lowering and biasing
the amount of charge measured on the wire planes. This effect is modeled as an exponential decay
as a function of time:

Q(t) = Q0 exp (−(thit − t0)/τ) , (6.1)

where Q(t) is the charge measured on a wire, Q0 is the initial charge created by the ionization of
the argon accounting for recombination, t0 is the time at which the ionization took place, thit is the
time the drifting charge arrived the APA, and τ is the drift electron lifetime. A larger value of τ
corresponds to higher liquid argon purity, as fewer drifting electrons will attach to impurities as
they drift to the APA.

Purity monitors located inside the cryostat, but outside the field cage, measure the drift electron
lifetimes for the argon inside their drift volumes, and thus are not expected to measure exactly the
drift electron lifetime in the TPC. Furtheremore, the electric field strength in the purity monitors is
lower than the electric field strength inside the TPC. Since the rate of drift electron attachment to
impurities depends on the electric field strength, the measured lifetimes in the purity monitors are
expected to further differ from that in the TPC. In situ measurements of the drift electron lifetime
from signals in the TPC therefore are needed in order to calibrate the results of charge-based
analyses.

The drift electron lifetime inside the TPC is measured by fitting the dQ/dx of collection plane
hits from cosmic-ray tracks as a function of drift times. A sample of cosmic-ray tracks that pass
through the front and back faces of the TPC and the CRT are selected. CRT data are used to
calibrate track positions and to provide timestamps for TPC tracks.

The electron lifetime measurement starts by matching a CRT track to a TPC track using the
positions of X and Y from both tracks. The timestamp from the CRT hits serve as the t0 for the TPC
track. The dQ/dx of a hit is defined to be the hit charge (Q) obtained from the area of a Gaussian
fit to the deconvolved signal divided by the step length from the previous collection plane hit to the
current collection plane hit.

To avoid the space charge effect distortions on the location of a TPC hit, the CRT track is
used to determine the hit’s position in X and Y as a function of Z, which is found through which
collection plane wire the hit occurred. The track’s position is then fed into the electric field
calibration map from figure 50. This field map corrects the dQ/dx by a scale factor based on
electric field deviations from the space charge effect. The electric field distortions from the space
charge effect were observed to cause at most a 1.75% difference in dQ/dx along the drift distance.
These calibrated measurements of dQcalibrated/dx are fitted to a Landau function convolved with a
Gaussian to find the most probable value (MPV) for 100 µs bin in time. An example of such a fit is
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shown in figure 51. The function that describes the drift electron lifetime then can be quantified by
evaluating dQMPV/dx as such:

dQ(t)MPV
dx

=
dQ0,MPV

dx
exp(−(thit − tCRT)/τ) (6.2)

where adjustments in the timing are made based on the timestamp provided by the CRT.
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Figure 51: Distribution of dQ/dx for a slice of 100 µs for a lower purity run in early November
2018.

Data was taken using the CRT once it became operational on November 1st, 2018 and runs
were taken with the CRT during beam data-taking from November 1st, 2018 to November 11th,
2018, the last day of beam. Fits to the MPV of the dQ/dx distributions as functions of hit time
are shown starting the first day in November and for the final day of beam data-taking in figure 52.
During the end of October 2018, the pumps that circulate and purify the liquid argon were not
operating due to an external electrical issue. The pumps resumed recirculating and purifying on
November 1st and typically take approximately a week to return the TPC back to its previous state
of liquid argon purity. Because of this circumstance, these drift electron lifetime measurements
show the structure of charge attenuation for a lower purity run and a higher purity run during purity
recovery, respectively.

While the drift electron lifetime can represent the purity, another useful metric is the ratio of
dQ/dx at the anode and cathode or Qc

Qa
. This is calculated as follows:

Qc

Qa
= e

−tfull drift
τ (6.3)

where tfull drift is the time it takes to drift from the cathode to the anode, which was measured to be
2.3 ms. Runs were taken with the CRT operating for the last week of beam data-taking. The Qc/Qa

was measured for each day possible and occurred during a rise in purity in the detector.
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Figure 52: Plot theMPV of the dQ/dx distribution as a function of the hit time, fit to an exponential
decay function on November 1st, 2018 during a period of lower purity (top) and on November 11th,
2018 during a period of higher purity (bottom). Only statistical errors are included.

The systematic uncertainties determined for this measurement are from the uncertainty in the
SCE calibration and impacts diffusion have on the hits as a function of drift time. The SCE effect
uncertainty is estimated by evaluating the electron lifetime using a different SCE calibration map
measured using cosmic muons that cross the cathode and both anodes of the TPC. The difference
between the lifetime value obtained using this alternate map and the lifetime value obtained using
the SCE calibration discussed in section 6.1 is defined to be 1σ of the SCE systematic uncertainty.
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The uncertainty due to diffusion is estimated by turning diffusion off in the Monte Carlo simulation
of the ProtoDUNE-SP detector, with a lifetime set at 35 ms. The difference in the electron lifetime
values extracted with and without diffusion in the Monte Carlo simulation is taken to be the 1σ
variation due to the diffusion systematic, and is denoted σdiff . The fractional change in the lifetime
due to diffusion is σdiff

τ = 0.143, which corresponds to a difference in Qc/Qa by 0.7%, assuming
an electron lifetime of 35 ms. This value of the fractional uncertainty in the lifetime is assumed for
all dates investigated.

Towards the beginning of data-taking Qc/Qa was measured as low as 0.801±0.026, which is
equivalent to an electron lifetime of 10.4±1.5 ms, as seen in figure 53. Toward the end of data-
taking, higher purity was achieved with a Qc/Qa of 0.9745±0.0063 on November 11th of 2018, a
value close to a 100 ms drift electron lifetime.
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Figure 53: Plot ofQc/Qa duringNovember 2018 asmeasuredwith TPC tracks calibrated with CRT
data. Due to the run plan on November 6th, 2018, there was not enough data to make a precision
measurement of Qc/Qa on that day. Error bars include the statistical uncertainty, the uncertainty
from calibrating the SCE, and the uncertainty from diffusion’s impact on the measurement.

These electron lifetimes also approximate the amount of impurity in the detector as expressed in
units of oxygen equivalent concentration. Measurements indicate that at approximately 500 V/cm,
the impurity can be described as follows:

NO2 =
1

kaτ
=

300 ppt ms
τ

(6.4)

with NO2 being the concentration equivalent if all impurities were from oxygen and ka being the
attachment constant for oxygen [15]. Considering the inverse relationship between the drift electron
lifetime and the amount of oxygen equivalent impurity, the estimate predicts the impurity never went
above 40 ppt equivalent of oxygen in the week of data-taking. At the end of beam data-taking on
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November 11th, 2018, the impurity in the detector can be estimated to be approximately 3.4±0.7 ppt
oxygen equivalent.

6.3 Calibration based on cosmic-ray muons

The goal of detector calibration is to convert the measured charge in units of ADC counts to
energy in units of MeV, which provides important information for particle identification and energy
measurements. In order to get reliable calorimetric information, a two-step calibration procedure is
employed following the same method developed by the MicroBooNE collaboration [59]. In the first
step, the detector response is equalized using throughgoing cosmic-ray muons. In the second step,
the absolute energy scale is determined using stopping cosmic-ray muons. In both steps muons that
cross the cathode are used because their t0 can be reconstructed (section 4.5.2). The two steps are
described in the following sections.The two steps are described in the following sections, using the
results for Run 5770 that was taken on Nov. 3, 2018 as an example.

6.3.1 Charge calibration

The charge deposition per unit length (dQ/dx) in a LArTPC is affected by a number of factors
including electronics gain variations, space charge effects, attenuation (due to electronegative
impurities like O2 and H2O), diffusion, and other effects. Some effects are calibrated out using
measurements described in previous sections such as electronics gains (section 4.2) and space
charge effects (section 6.1). Calibrating the electron lifetime in situ via cathode-crossing muons
is complicated by the very complex space charge effects. Using the CRT allowed a much more
precise calibration, but that system was not operable until late in the run and therefore those more
precise lifetime measurements were not available for runs taken before then. The effect of diffusion
has not been measured yet. In the equalization step, cathode-crossing cosmic-ray muons are used
to calibrate the residual nonuniformity in the dQ/dx values throughout the TPC after the gain and
space charge effect calibrations. The following requirements are applied for track selection:

• Fiducial volume requirements: The fiducial volume FV1 is defined as a rectangular prism
shaped as follows: the boundary from the anode planes is 10 cm, the boundary from the
upstream and downstream ends is 40 cm, and the boundary from the top and bottom of the
TPC is 40 cm. In order for a track to be selected, its start point and its end point must be
outside FV1.

• Angular requirements: The reconstruction capability of LArTPCs is limited for tracks that
are parallel to the APA wires or contained in a plane containing a wire and the electric field
direction. Figure 54 shows the dQ/dx distribution as a function of θxz and θyz , the two
angles are illustrated in figure 26. To get a sample of well reconstructed tracks, tracks with
65◦ < |θxz | < 115◦ or 70◦ < |θyz | < 110◦ are removed, as indicated by the dashed lines in
figure 54.

Tracks passing the above selection criteria are used for dQ/dx calibration. Corrections are obtained
in the yz plane and as a function of the drift distance.
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Figure 54: Average dQ/dx distributions for ProtoDUNE-SP Run 5770 as functions of θxz and θyz
in the collection plane. The color scale represents average dQ/dx for a track. The regions inside the
dashed lines show the track incident angles excluded for the collection plane. 106764 throughgoing
cosmic ray muon tracks were used in making the plots, which constitutes 24.8% of the total number
of cathode-crossing tracks in Run 5770.

• YZ correction factors: dQ/dx values in the yz plane are affected by many factors including
non-uniform wire response caused by nearby dead channels or disconnected wires, detector
features such as the electron diverters and the wire support combs, and transverse diffusion.
Figures 55(a) and 55(b) show the dQ/dx distribution in the yz plane separately for the x > 0
drift volume and the x < 0 drift volume. The vertical stripes in the x < 0 plot show places
where charge has been collected or distorted by the grounded electron diverters. The first
APA on the left in figure 55(b) has a lower-than average dQ/dx because of the partially-
charged disconnected G plane. The wire support combs also distort the dQ/dx averages [5],
but only by around 5%, and only in very localized positions that are narrower than the bin
sizes in the figure. To correct for these non-uniformities we divide the yz plane in the two
ProtoDUNE-SP drift volumes into a number of 5×5 cm2 bins. Considering the dQ/dx values
of all the hits lying in a particular bin, the median dQ/dx value is calculated and denoted
(dQ/dx)local

YZ . Further, the median dQ/dx value is calculated considering the hits throughout
a drift volume, which is denoted (dQ/dx)global

YZ . The YZ correction factor is then defined as

C(y, z) =
(dQ/dx)global

YZ

(dQ/dx)local
YZ

. (6.5)

Figures 56(a) and 56(b) show the YZ correction factors for ProtoDUNE-SP Run 5770.

• X correction factors: The dQ/dx values along the drift direction are affected by factors
such as attenuation due to electronegative impurities and longitudinal diffusion. Figure 57(a)
shows the dQ/dx distribution as a function of x. The total drift volume is divided into 5 cm
bins in the x coordinate. The dQ/dx values are first corrected using YZ correction factors
based on the y and z coordinates of the hit. After the YZ correction, the median dQ/dx
value (dQ/dx)local

X is calculated for each bin. The median dQ/dx value for the whole TPC is
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denoted (dQ/dx)global
X . The X correction factor is defined to be

C(x) =
(dQ/dx)global

X

(dQ/dx)local
X

. (6.6)

Figure 57(b) shows the X correction factors for ProtoDUNE-SP Run 5770. The dQ/dx value
is then normalized to the average value at the two anodes by defining the normalization factor

NQ =
(dQ/dx)anode

(dQ/dx)global . (6.7)

Finally, the corrected dQ/dx value is given by,

(dQ/dx)corrected = NQC(y, z)C(x)(dQ/dx)reconstructed (6.8)
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(a) dQ/dx distribution in the yz plane, x > 0
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(b) dQ/dx distribution in the yz plane, x < 0

Figure 55: dQ/dx distributions for ProtoDUNE-SP Run 5770 in the yz plane, for x > 0 (a),
x < 0 (b), using cosmic-ray cathode-crossing muons. A sample of 99689 throughgoing cosmic
ray muon tracks was used in making the plots, which constitutes 23.2% of the total number of
cathode-crossing tracks in Run 5770.

Figure 58 shows the dQ/dx distribution for throughgoing cosmic-ray muons before and after
charge calibration. Once the detector response is equalized, a sample of stopping cosmic-ray muons
are selected to determine the absolute energy scale.

6.3.2 Energy scale calibration

The conversion between ADC counts and the number of electrons is primarily determined by the
electronics response, including both the gain and the shaping time, and the field response. Even
though the electronics gain is measured by the charge injection system (section 4.2) and the field
response is calculated with Garfield (section 4.4), the estimated uncertainty on the measurement
and calculation is at least a few percent. On the other hand, the energy loss per unit length for a
minimum ionizing particle is known to better than 1%. Therefore, a sample of stopping cosmic-ray
muons is selected to determine the absolute energy scale for both data and MC. The following cuts
are used to select the stopping muon sample:
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(a) YZ correction factors, x > 0
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Figure 56: YZ correction factors for ProtoDUNE-SP Run 5770 in the yz plane, for x > 0 (a),
x < 0 (b), using cosmic-ray cathode-crossing muons.
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Figure 57: dQ/dx distribution and X correction factors as a function of drift dimension x for
ProtoDUNE-SP Run 5770 (a) dQ/dx distribution and (b) X correction factors
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Figure 58: dQ/dx distribution for throughgoing cosmic-ray muons before and after calibration

• Fiducial volume cuts: Cathode-crossing tracks which start outside FV1 and end inside a
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smaller volume FV2 are used. The FV2 volume is a rectangular prism inside FV1 shaped as
follows: the boundary from the anode planes is 30 cm, the boundary from the upstream and
downstream ends is 50 cm, and the boundary from the top and bottom of the TPC is 50 cm.

• Angular cuts: Tracks with 65◦< |θxz | <115◦ and tracks with 70◦ < |θyz | <110◦ are
removed.

• Removing broken tracks: Some muons are reconstructed as two or more tracks, which
mimic a stopping muon. If the end points of the two tracks are within 30 cm and the angle
between them is less than 14◦, both tracks are removed. Additionally, any track which starts
or stops within 5 cm of an APA boundary are removed.

• Removing tracks with early and late hits: Tracks that are cut off by the 6000-tick TPC
readout window boundaries may mimic a stopping muon. If any hit associated with a track
has a peak time less than 250 ticks or greater than 5900 ticks, the track is removed.

• Removing tracks with Michel hits attached: The presence of an Michel electron can
confuse the reconstruction of the muon end point so muons that decay into Michel electrons
are removed. The Michel activities are identified by looking for isolated hits close to muon
end point. The number of hits within ±5 wires and ±50 ticks from the last hit of the muon
track and not belonging to the muon track or any other track longer than 100 cm is counted.
If the count is greater than 0, such tracks are removed.

After applying the above selection cuts, a highly pure sample of stopping muons remains.
Defining the purity as the number of true stopping muons divided by the total number of candidate
stopping muons in our sample, a purity of 99.74% is achieved based on Monte Carlo study. The
dQ/dx values are corrected as described in the previous section. The most probable dE/dx value
as a function of residual range for stopping muon tracks in LAr is accurately predicted by Landau-
Vavilov theory [60]. From the calibrated dQ/dx values (in ADC/cm) along the muon track in
its MIP region (120 to 200 cm from stopping point), the dE/dx (in MeV/cm) values are fitted
using the modified Box model [61] function to correct for the recombination effect with the charge
calibration constantCcal (ADC×tick/cm→ e/cm) as a free parameter in the χ2 minimization. Ccal is
effectively a scaling factor that accounts for the electronics gain, ADC conversion and other residual
effects that are not explicitly calibrated out. The energy loss from the stopping muon sample and a
comparison with the theoretical prediction in figure 59 show the result of the calibration procedure
for ProtoDUNE-SP Run 5770 and the corresponding Monte Carlo sample.(

dE
dx

)
calibrated

=

(
exp

(
( dQdx )calibrated

Ccal

β′Wion
ρE

)
− α

) (
ρE

β′

)
, (6.9)

where
Ccal = Calibration constant used to convert ADC values to number of electrons,
Wion = 23.6 × 10−6 MeV/electron (the work function of argon),
E = E field based on the measured space charge map,
ρ = 1.38 g/cm3 (liquid argon density at a pressure of 124.106 kPa),
α = 0.93, and
β′ = 0.212 (kV/cm)(g/cm2)/MeV.
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α and β′ are the Modified Box model parameters which were measured by the ArgoNeuT
experiment at an electric field strength of 0.481 kV/cm [61].

The calibration constant Ccal is normalized so that the unit (“ADC×tick”) corresponds to 200
electrons. In the case where the detector response is perfectly modeled (e.g. in the simulation), the
calibration constant Ccal should be exactly 1/200 = 5×10−3 ADC×tick/e. The calibration constants
derived for the collection plane by fitting the stopping muon samples to the predicted dE/dx curve
are shown in table 5. The uncertainties are statistical only. The difference between data and MC
calibration constants is caused by the uncertainties on the gain measurement and the simulation of
detector response.

Table 5: Calibration constants for the collection plane in MC and data.

Data MC
Fitted value of Ccal (5.4 ± 0.1) ×10−3 ADC×tick/e (5.03 ± 0.01) ×10−3 ADC×tick/e
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Figure 59: Stopping muon dE/dx distributions for the ProtoDUNE-SP cosmic-ray data and MC.
The black curves in (a) and (b) are the predicted most probable values (using the Landau-Vavilov
function) of dE/dx versus residual range and (c) is the dE/dx distribution for the stopping muon
sample. The histograms in (c) are normalized such that the maximum frequency is one.
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6.4 Calorimetric energy reconstruction and particle identification

The calibration constants derived from cosmic-ray muons are applied to beam particles. The
following sections discuss the dE/dx distributions for beam muons and pions (section 6.4.1), beam
protons (section 6.4.2) and beam electrons (section 6.4.3). The identification of MIP particles
(muons) and non-MIP particles (protons) is discussed in section 6.4.2.

6.4.1 Identification and calorimetric energy reconstruction of 1 GeV/c beam pions and
muons

Measurements of charged pion interactions with argon nuclei are an important physics goal of
the ProtoDUNE-SP experiment. Accurate measurement of these interactions allows a more precise
understanding of neutrino interactions producing final-state pions, a key study channel of the DUNE
experiment. Reconstructing these final state pions and any particles produced by their secondary
interactions is important for estimations of neutrino energy. This section describes the results
obtained from ProtoDUNE-SP Run 5387 taken on Oct. 18, 2018 corresponding to approximately
12 hours of exposure to a 1 GeV/c beam. The electron drift lifetime of this run was approximately
14 ms as measured by the purity monitor.

Selection of events with reconstructed beam pions: The beam line instrumentation as described
in section 3 can be used to find events where the beam line has delivered a pion to the TPC. For the
1 GeV beam energy runs considered here, the beam line PID conditions for pions and muons can
be found in table 1. At a beam momentum of 1 GeV/c the measured TOF of pions and muons is
indistinguishable so the PID will select both pions and muons. Events are first removed for periods
of unstable HV or one or more inactive TPC readout boards. The Pandora pattern recognition
framework, described in section 4.5.2 is used to reconstruct the particle trajectories in the TPC as
well as identify a reconstructed particle as a likely candidate for the beam line track. To remove
events where a track has been incorrectly identified as the primary beam particle, quality cuts are
placed on the distance and angle between the end of the beam line particle’s reconstructed trajectory
and the start of the assigned reconstructed TPC beam particle track. These cuts remove backgrounds
that are not aligned with the measured beam line track such as cosmic rays and secondary particles
produced by the beam particle interacting upstream of the TPC. The cuts used for data are as follows:

• Beam quality cuts: angle
The cosine of the angle between the beam line track and reconstructed TPC track is required
to be > 0.93.

• Beam quality cuts: position
◦ 0 cm ≤ (XStart

TPC − XEnd
Beam) ≤ 10 cm,

◦ -5 cm ≤ (YStart
TPC − YEnd

Beam) ≤ 10 cm,
◦ 30 cm ≤ (ZStart

TPC − ZEnd
Beam) ≤ 35 cm,

where XStart
TPC is the start position in X of the reconstructed candidate beam track in the TPC

before SCE corrections. XEnd
Beam is the projected X location of the intersection of the track

from the beam line instrumentation with the TPC. The cuts are not centered around zero due
the SCE shifting the start points of the reconstructed TPC tracks.
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A replica selection is also placed on beam MC events where the true simulated beam particle is
either a pion or muon. In MC the truth information of the beam particle is used in place of the beam
line information. The cuts used for MC are as follows:

• Beam quality cuts: angle
The cosine of the angle between the true beam particle and reconstructed TPC track is required
to be > 0.93.

• Beam quality cuts: position
◦ -3 cm ≤ (XStart

TPC − XEnd
Beam) ≤ 7 cm,

◦ -8 cm ≤ (YStart
TPC − YEnd

Beam) ≤ 7 cm,
◦ 27.5 cm ≤ (ZStart

TPC − ZEnd
Beam) ≤ 32.5 cm.

Here XEnd
Beam is the projected X location of the true beam particle’s intersection with the TPC

and XStart
TPC is same as for data.
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Figure 60: The ratio of track length (SCE corrected) and continuous-slowing-down-approximation
(CSDA) length for data candidates under the assumption the particle is a muon. The cut to select
the stopping muons is indicated. The histogram is normalized such that the maximum frequency is
one.

Selection of stopping muons: The track lengths of the selected beam particles can be used to
separate the beampions andmuons. As 1GeV/c pions have an expected interaction length in argon of
~1 m the majority of pions will interact before coming to a stop via ionization energy loss. Whereas
1GeV/c muons will stop predominantly via ionization energy losses with an expected path length
in argon of ~4m. The measured beam momentum is used to approximate the stopping range of
each particle under the assumption it is a muon using the continuous-slowing-down-approximation
(CSDA) range [62]. The distribution of the beam tracks’ reconstructed lengths divided by their
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calculated CSDA ranges is shown in figure 60. Requiring the ratio

0.9 <
Track Length

CSDA Stopping Range
< 1.1, (6.10)

selects a subsample of stopping particles, predominantly muons. A replica selection cut is placed
on the MC sample using the the simulated momentum for the true beam particle in each event as
input to the ratio calculation.
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Figure 61: Pion (a) and stopping muon (b) dE/dx distributions for the ProtoDUNE-SP beam
data after applying the calibration derived using cosmic-ray muons. The distribution for replica
selections on a beam Monte Carlo sample with space charge effect simulated is also shown. The
histograms are normalized such that the maximum frequency is one.

Calorimetric energy information of beam pions The charge signal calibration produced from
stopping cosmic-ray muons collected during the same run period described in section 6.3 is applied
to the selected beam tracks to calculate the true deposited energy as a function of distance (dE/dx)
along their trajectory. Figure 61(a) shows the distribution of dE/dx values of all hits on the
collection plane from the selected beam pion candidates. That is, all candidates that are not selected
by the stopping muon cut (eq. 6.10) described above. The selected particles are MIPs. The MPVs
of the calibrated data and MC samples agree to better than 1%.

Calorimetric energy information of beam stopping muons Figure 61(b) shows the distribution
of calibrated dE/dx values of all hits on the collection plane from the beam muon candidates
selected by the stopping particle cut (eq. 6.10). As with the pions, the MPVs of the data and MC
samples agree to better than 1%. The distribution of the dE/dx vs residual range for the selected
stopping muons is shown for data in figure 62(a) and for MC in figure 62(b). A clear Bragg peak is
seen at low residual range, as expected. The measured distribution displays good agreement with
the theoretical MPV curve for a stopping muon in argon, in both the minimum ionization region
and Bragg peak region of residual range.

– 78 –



0 50 100 150 200
Residual Range [cm]

0

2

4

6

8

10
dE

/d
X

 [M
eV

/c
m

]

0

50

100

150

200

250

DUNE:ProtoDUNE-SP

Expectation

Stopping Beam Muons - Data (1 GeV/c)

(a)

0

20

40

60

80

100

120

Stopping Beam Muons - MC (1 GeV/c)

0 50 100 150 200
Residual Range [cm]

0

2

4

6

8

10

dE
/d

X
 [M

eV
/c

m
]

DUNE:ProtoDUNE-SP

Expectation

Stopping Beam Muons - MC (1 GeV/c)

(b)

Figure 62: dE/dx vs residual range for selected stopping muons in the 1 GeV/c beam after applying
the calibration derived using cosmic-raymuons, in data (a) andMC (b). The expectedmost probable
value of dE/dx is plotted as a function of residual range for both.

6.4.2 Identification and calorimetric energy reconstruction of 1 GeV/c beam protons

To understand the detector response to protons interacting in a LArTPC, an analysis procedure,
including the selection of beam protons, detector calibration and calorimetric analysis, has been
developed. This section describes the results obtained from ProtoDUNE-SP Run 5387.

Stopping protons are used for the detector characterization in terms of calorimetry and particle
identification. Protons are selected using the same beam-TPC matching criteria described in
section 6.4.1. For the 1 GeV/c beammomentum runs considered here, the beam line PID conditions
for protons can be found in table 1.

Themeasured beammomentum is used to approximate the stopping range under the assumption
it is a proton using the CSDA range. Figure 63 shows the distribution of the reconstructed proton
tracks, divided by their expected CSDA ranges. The distribution peaks at 0.88, which is dominated
by the stopping protons. The peak position is less than one because of the energy loss upstream
and the SCE. The tail on the left of the distribution is due to the interacting protons, since their
drift distances inside the LAr are shorter than those of the stopping protons. The ratio cut, 0.74 ≤
(reconstructed proton track length/CSDA range) ≤ 1.09, is used to select the stopping protons.

After the proton event selection, the data-driven corrections, described in section 6.1, are
applied to correct for both the spatial and the E-field distortions due to the SCE. After these
corrections, the dQ/dx values (ADC/cm) of the stopping protons are converted to the corresponding
dE/dx values (MeV/cm) using the calibration constants described in section 6.3. The same analysis
procedure is applied to a Monte Carlo sample.

Figures 64(a) and 64(b) show the energy loss versus the residual range of the stopping proton
candidates for data and MC, respectively. The data and MC after the calibration procedure show
good agreement with the expected MPVs. The distributions of dE/dx in the data and the MC are
shown in figure 64(c). The MPVs of the dE/dx distributions between data and MC agree to better
than 1%.
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Figure 63: The distribution of the reconstructed proton track length divided by the associated
CSDA range. The histogram is normalized such that the maximum frequency is one. The incident
beam momentum is 1 GeV/c. The cut to select the stopping protons is indicated.

6.4.3 dE/dx for 1 GeV/c electrons

It is important to understand the LArTPC response to electromagnetic showers since DUNE will
measure electrons coming from oscillated neutrinos, produced via charged current interactions.
Accurate measurement of the calorimetric response of electrons in the ProtoDUNE-SP TPC allows
a more precise understanding of e/γ separation and estimation of electron neutrino energy. The
dE/dx for a photon-induced shower is expected to be twice the dE/dx of a single electron at the
beginning of the shower, due to the photon conversion into an electron-positron pair. This has been
verified in a LArTPC by the ArgoNeuT collaboration [63]. To successfully select νe charged-current
interactions in DUNE, a dE/dx metric can be used to remove electromagnetic-like background from
interactions such as neutral-current π0 production where the photons from π0 decay can mimic an
electron shower.

Electrons are selected in Run 5809 taken on Nov. 8, 2018 using the same beam-TPC matching
criteria described in section 6.4.1. For the 1 GeV/c beam momentum runs considered here, the
beam line PID conditions for electrons can be found in table 1.

The reconstruction of electron-induced showers in the detector follows the same procedure as in
track-like events. Signal processing (including deconvolution and noise removal) is followed by hit
finding and 2D cluster formation. The reconstruction framework Pandora [44] is used to reconstruct
3D showers. The position and the direction of the shower are used to define the beginning of the
shower, which is before the electromagnetic cascade develops. To ensure that the electron candidate
has not developed a cascade shower before entering the active TPC volume, a completeness cut was
required. The completeness is defined as the reconstructed shower energy divided by the incoming
electron’s momentum. Based on MC studies we expect to have losses due to energy loss upstream
and due to signal processing thresholds. If the completeness is at least 80%, the event is selected.
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Figure 64: Stopping proton dE/dx versus residual range distributions for the ProtoDUNE-SP beam
data (a) and MC (b), the expected most probable values are shown in red. The dE/dx distributions
after the SCE corrections of data and MC are shown in (c). The histograms in (c) are normalized
such that the maximum frequency is one.

To measure dE/dx, first, the charge deposition per unit length dQ/dx is measured on a single
wire at the collection plane. To calculate the effective pitch dx between hits, the direction of
the shower is used to measure the actual distance that the electron traverses in the TPC between
adjacent wires. Then, following the discussion in section 6.1 the SCE corrections are applied.
The conversion from dQ/dx to dE/dx uses the calibration constants described in section 6.3. To
measure dE/dx at the beginning of the shower, only hits within 4 cm along the direction of the
shower and 1 cm perpendicular to the shower are considered and the median dE/dx is computed.
The same analysis procedure is applied to the Monte Carlo sample.

The dE/dx distributions for 1 GeV/c electron candidates are shown in figure 65. The dE/dx
distributions in figure 65 follow the expected Gaussian-convolved Landau distribution with the
dE/dx peak value corresponding to one single ionizing particle. This results demonstrates an
understanding of the dE/dx metric for electrons that would be a valuable input for future analyses.
Electrons are selected using the same beam-TPC matching criteria described in section 6.4.1. For
the 1 GeV/c beam momentum runs considered here, the beam line PID conditions for electrons can

– 81 –



0 2 4 6 8 10
dE/dx [MeV/cm]

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
F

re
qu

en
cy

Data

MC

DUNE:ProtoDUNE-SP Positrons (1 GeV/c)

Figure 65: dE/dx at the beginning of the shower. The histograms are normalized such that the
maximum frequency is one.

be found in table 1.
The dE/dx distributions for various particle all show a good agreement between data and MC

in the peak. However, the resolution of dE/dx is slightly overestimated in the MC. This could be
due to the imperfect modeling of physics processes and/or detector effects.

6.4.4 Particle Identification: Protons and Muons

Robust particle identification (PID) is of fundamental importance for the physics goals of ProtoDUNE-
SP and the future DUNE experiment. The calorimetric-based PID method in a LArTPC uses the
reconstructed energy deposits as a function of residual range for the stopping particles. Event selec-
tions of the stoppingmuons and the stopping protons are described in section 6.3.2 and section 6.4.2,
respectively. The stopping protons andmuons are shown in figure 66(a). The highly-ionized protons
are clearly separated from the muons over the entire range from their stopping points.

Based on the obtained calorimetry information, a likelihood-based parameter, ζ , is adopted
to quantify the PID performance of the ProtoDUNE-SP detector. The method is to compare the
particle species with respect to the stopping proton hypothesis. The parameter ζ is defined to be:

ζ =
1

nDoF

∑
j

[
dEj

dx j
(Data) − dEj

dx j
(MC Proton)

]2√
δ2 dEj

dx j
(Data) + δ2 dEj

dx j
(MC Proton)

, (6.11)

where j is the j-th hit of a track and nDoF is the number of degrees of freedom.
Figure 66(b) shows the ζ distributions of the stopping protons and the stopping muons. The

protons and the muons are well-separated. The PID performance for pions is expected to be similar
to that of muons.
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Figure 66: (a) dE/dx versus residual range after the SCE corrections for the stopping protons
(upper band) and the muons (lower band). The solid lines represent the expected most probable
values for the protons (red) and the muons (blue). (b) The ζ distributions of the stopping protons
and muons. The histograms are normalized such that the maximum frequency is one.

7 Photon detector response

Homogeneous calorimeters are instrumented targets where the kinetic energy (E) of incident parti-
cles is absorbed and transformed into a detectable signal. The deposited energy is typically detected
in the form of charge or light. When the energy is large enough, a shower of secondary particles
is produced (through electromagnetic or strong processes) with progressively reduced energy. If
the shower is fully contained and the output signal is efficiently collected, the calorimetric energy
resolution is expected to be good, improving with energy as 1/

√
E . Calorimeters can also provide

information on shower position, direction and size as well as arrival time t0 of the particle.
A LArTPC is a sophisticated version of a homogeneous calorimeter, with additional imaging

and particle identification capabilities. Energy deposition in the liquid argon target yields free
charge from ionization and it also yields fast scintillation light. The best energy resolution would be
obtained by collecting both the charge and the light signals, which are anticorrelated by the random-
ness of the recombination processes. With detectors based on LArTPC technology, calorimetry
typically relies only on the charge signal collection, while the use of the light signal is limited to
t0 determination and triggering purposes. A first attempt to extend the use of scintillation light
for calorimetry was recently performed in a low energy range with a small sized LArTPC [64].
Operating protoDUNE-SP on the H4-VLE charged particle test beam offers the opportunity to di-
rectly probe with light the calorimetric response of liquid argon to fully contained EM and hadronic
showers in the sub- to few-GeV energy range.

7.1 Calorimetric energy reconstruction fromscintillation light and energy resolution

As described in section 5.1, in ProtoDUNE-SP the photon detection system comprises a series of
optical modules positioned inside the APA frames, behind the TPC wire planes and the grounded
mesh. The active liquid argon volume is only on one side of the APA’s, on the side facing the central
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cathode. The total photo-sensitive area is ∼ 1.5% of the boundary surface of the LAr volume.
The relatively modest optical coverage and the one-sided geometry of the PD system, compared
for example to the 4π coverage of scintillation or Cherenkov detectors, are expected to limit the
light yield and the uniformity of the calorimetric response along the drift direction. In this section,
beam electrons and data from the ARAPUCA module in the beam side of the PDS are utilized to
investigate the light yield and resolution of the ProtoDUNE-SP PD system.

Figure 67: 3D event display of a real 7 GeV beam electron in the TPC volume [only tracks inside a
predefined sub-volume (red box) are shown]. The beam electron enters near the cathode and an EM
shower develops in LAr along the beam direction, about 10◦ downward and 11◦ toward the anode
plane, where the PDS beam side modules are located inside the APA frames. Scintillation photons
from energy deposits along the shower are detected by the ARAPUCA module.

7.1.1 Beam electrons and EM showers

In a sequence of beam runs, data were collected with incident positive electrons (e+) with energies
of 0.3, 0.5, 1, 2, 3, 6 and 7 GeV, providing a large sample of EM showers developing in the LAr
volume. The beam is delivered with a typical momentum spread of ±5% around the nominal
setting. The beam line instrumentation (see section 3.3.1) provides an event-by-event particle
identification and momentum measurement with a precision of ∆p/p ' 2.5% [25]. Light signal
from the single beam side ARAPUCA module is used for this calorimetric response study. The
ARAPUCA module is positioned inside the upstream APA3 frame, nearly at the same height y of
the entering beam and oriented along the z axis. In figure 67 a 3D display of a 7 GeV electron
event from the ProtoDUNE-SP data sample is shown as reconstructed by the TPC. The EM shower
develops immediately downstream of the beam entry point in the LArTPC volume in front of the
ARAPUCAmodule, at ∼3 m distance in the x (drift) direction, and propagates longitudinally along
the beam direction, about 10◦ downward and 11◦ toward the anode plane. Scintillation light is
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emitted isotropically from every location at which ionization occurs along the shower. The total
photo-sensitive area of the ARAPUCA module is ∼ 0.5 × 10−3 of the surface surrounding the
LArTPC active volume (beam side). Summing over the twelve cells in the ARAPUCA module,
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Figure 68: Distributions of the incident beam electron energies (left) and corresponding detected
photon spectra (right) for the collected seven nominal beam energies (Gaussian fit superimposed -
red line). Fit parameters are used in figure 69. The photon spectra are relative to the sum of photons
detected by the 12 cells of the ARAPUCA PD module.

the total number of photons detected NPh =
∑

NDet
j is evaluated event by event, for each beam run.

Monte Carlo events, already used for the efficiency study, are also available, generated as described
in section 5.3 with incident electrons as in the beam runs (same energy distributions and direction).
Scintillation light from the EM shower development in LAr is propagated to the photo-detector(s)
and the total number of photons incident on the surface of the ARAPUCA module is evaluated for
each event of the MC simulated momentum run. In figure 68, the energy distribution (left) of the
incident electrons from the beam spectrometer of the CERN H4-VLE beam line for each beam run
and the corresponding calorimetric response from the ARAPUCA detector (right) expressed by the
number of detected photons are shown. A Gaussian fit of both distributions (red lines in figure 68)
gives the average electron energy 〈Ee〉 and the corresponding average photon counting 〈NPh〉, and
their spreads (σE, σN ), for each run. The average number of detected photons as a function of the
beam energy is shown in figure 69. This relationship gives the calorimetric energy response from
light data. Correspondingly, the response as obtained from the MC simulation, expressed by the

– 85 –



average number of detectable photons (incident at the detector surface) from EM showers at given
electron beam energy, is presented in figure 70 (left).

To a first approximation, the average light response is a linear function of the energy over the
entire range of tested beam energies as shown in figure 69 (left) with the result of the linear fit.
The slope of the fit p1 gives the light yield Ylight = 102.1 photons/GeV. The quoted Ylight is relative
to a diffuse light source (EM shower) at a distance of about 3 m (see figure 67). The non-zero
(negative) intercept (p0 = −8.4 photons from the fit) corresponds to an incident energy offset of
−82 ± 14 MeV from the nominal value for all beam energies. From the CERN H4-VLE beam line
MC simulations (section 3.2 and 3.3) beam electrons are expected to release 10-20 MeV in the
material in the portion of the beam line downstream the spectrometer and additional ∼ 20-30 MeV
while crossing the materials inside the cryostat from the end of the beam pipe and the active volume
of the TPC (cryostat insulation and membrane, beam tube and a thin LAr layer in between). The
observed energy offset from the linear fit of the light response provides direct evidence, though in
slight excess, of the expected energy loss of beam electrons before entering the LArTPC. A slight
deviation from linearity is observed in the light response at higher incident energies, both in the
data (figure 69 - left) and in the Monte Carlo (figure 70 - left). This is due to the light response
dependence on source-to-detector distance. At higher energies, the longitudinal shower profile
extends deeper in the LAr volume along the beam direction and closer to the ARAPUCA module,
with some increase of visibility. Based on the reconstruction of the shower profile at the different
incident electron energies (see figure 40 - top-right), a geometry correction to the cells’ acceptance
has been calculated and a normalization factor applied to the data at different energies. Most of the
nonlinearity was then removed. The intercept of the linear fit after correction indicates an energy
offset of -56 ± 14 MeV, in better agreement with the expected beam electron energy loss in the
materials before entering the TPC - details of this study can be found in [65].
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Figure 69: Number of detected photons (Gaussian fit mean value, from fig.68 right) as a function
of incident electron energy (Gaussian fit mean value, from fig.68 - left) (left panel). Reconstructed
energy resolution from the detected photon distributions (Gaussian fit standard deviation to the
mean ratio) (right panel). A line of slope p1 and intercept p0 is fit to the data in the left-hand plot,
and the function in equation (7.1) is fit to the data in the right-hand plot.

Based on the linearity of the light response, the relative calorimetric energy resolution σE/Ee

– 86 –



is obtained from the σN/NPh ratio of the light response (figure 69 - right). The energy resolution,
as for a homogeneous calorimeter, can be expressed in a general form [66] depending on three
different contributions:

σE

E
= k0 ⊕

k1√
E
⊕ k2

E
(7.1)

where the symbol ⊕ indicates a quadratic sum and E is in GeV. The terms on the right-hand side
are referred to below as the “constant term”, the “stochastic term” and the “noise term”. The
relative weight of the three terms depends on the energy of the incident particle. The stochastic
term contribution to the energy resolution comes from the statistical fluctuations in the number of
photons detected. The relatively large value (k1 = 9.9%) - when compared to typical homogeneous
calorimeters - is ascribed to the limited photo-sensitive coverage of the ARAPUCA module. The
noise term comes from the electronic noise of the readout chain. Its value (k2 = 0.057 GeV) is
exactly as expected from the measured signal-to-noise-ratio of the ARAPUCA readout (section
5.2.2). The constant term is large (k0 = 6.2%) and due to different contributions. The main one
comes from the incident beam electron energy spread (figure 68 - left), depending on the actual
beam line configuration (collimators aperture at different momentum setting). The mean value
of the relative energy spread σE/Ee = (5.8 ± 0.4)%. An additional contribution comes from
fluctuations in the energy loss in the materials before electrons enter the TPC. Since the energy loss
occurs downstream of the momentum spectrometer, this energy degradation and its fluctuation do
not appear in the incident beam energy spectra and it is evaluated by simulations (∼ 2%). Other
contributions to the resolution, such as non-uniformity on the detector illumination, channel to
channel response variation and possible shower leakage across the cathode, have been investigated
and shown to be negligible [65]. The light yield and resolution response obtained from a single
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Figure 70: Monte Carlo simulation of light response to EM showers: average number of incident
photons at the ARAPUCA bar surface from simulation vs average electron beam energy (left) and
Data/MC comparison (right) by the ratio of average number of photons detected to the corresponding
number of photons from MC simulation, at the different beam energies.

ARAPUCA module is adequate. An extrapolation of the performance to a PDS system consisting
entirely of ARAPUCA modules, obtained by scaling the detected photon response of the light
guide bars with the ratio of the ARAPUCA-to-light guide efficiencies (presented in section 5.3.1),
indicates that it can perform calorimetric energy reconstruction with an expected light yield of
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1.9 photons/MeV. This performance exceeds the specifications of the DUNE Far Detector [5] by
almost a factor of four.

A comparison of electron data and the correspondingMC simulation can be used to validate the
simulation of the light propagation and collection. The average number of photons incident on the
surface of theARAPUCAmodule from theMC(shown infigure 70 - left) is scaled by a normalization
factor η, an average value over the ARAPUCA cells’ efficiency shown in section 5.3.1, to give the
simulated detected photons 〈NPh〉simulated = η 〈NPh〉incident. The ratio 〈NPh〉detected/〈NPh〉simulated is
shown as a function of incident beam energy in figure 70 (right). A systematic deviation, between
5 and ≤ 10%, is found for electrons with energies between 0.3 GeV and 1 GeV. This deviation
is attributed to the statistical limitations on the visibility values of the photon library used in the
Monte Carlo for converting the energy deposited along the EM shower into the number of photons
impinging upon the ARAPUCA module.

8 Conclusions

This paper summarizes the first results on the performance of the ProtoDUNE-SP LArTPC using
large samples of data from a test-beam run at the CERN Neutrino Platform. The dedicated H4-VLE
beam line delivers electrons, pions, protons and kaons in the 0.3 – 7 GeV/c momentum range,
which are crucial to the study of detector performance and the measurement of particle-argon cross
sections. In table 6 the detector’s high-level performance parameters from studies and findings
presented in this report are shown and they are compared with the corresponding DUNE SP Far
Detector design specifications. For each of the categories shown, the ProtoDUNE-SP performance
meets or exceeds the DUNE specification, in several cases by a large margin. This successful
performance demonstrates the effectiveness of the single-phase detector design and the execution
of the fabrication, assembly, installation, commissioning, and operations phases [11].

Table 6: ProtoDUNE-SP performance for main parameters and corresponding DUNE specifica-
tions.

Detector parameter ProtoDUNE-SP performance DUNE specification

Average drift electric field 500 V/cm 250 V/cm (min)
500 V/cm (nominal)

LAr e-lifetime > 20 ms > 3 ms
TPC+CE
Noise (C) 550 e, (I) 650 e ENC (raw) < 1000 e ENC

Signal-to-noise 〈SNR〉 (C) 48.7, (I) 21.2 (w/CNR)
CE dead channels 0.2% < 1%
PDS light yield 1.9 photons/MeV > 0.5 photons/MeV

(@ 3.3 m distance) (@ cathode distance - 3.6 m)
PDS time resolution 14 ns < 100 ns

The electric field in the TPC drift volume was stable at the nominal level of 500 V/cm with
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>99.5% of uptime during the data taking periods with beam and cosmics.
A drift electron lifetime in LAr in excess of 20 ms has been achieved and it was sustained for

an extended period of data-taking. It reached approximately (89 ± 22) ms for the last day of beam
data-taking. This corresponds to a concentration of impurity in the liquid argon of 3.4±0.7 ppt
oxygen equivalent. The DUNE Far Detector specification is for the impurity concentration to be
less than 100 ppt O2 equivalent.

The TPC and cold electronics show excellent signal-to-noise performance. The signal-to-noise
ratios corresponding to the most-probable-value ionization of a minimum ionizing particle are 40.3,
15.1 and 18.6, for collection, U and Vwires, respectively, after noise filtering and signal processing.

The number of solidly unresponsive TPC channels was initially 29 out of 15360 and rose to
36 over the course of a year and five months of operations. Approximately 105 additional channels
are noisy or have other issues with the electronics so that they were not included in the analyses
presented in this report.

Three different photon detection technologies were implemented in the PDS and characterized
with muon and electron beam data. The ARAPUCA technology showed 2% efficiency, the highest
among the three, with a light response to EM energy deposit linear over the entire range of beam
energies. A PDS system consisting entirely of ARAPUCA modules, with an expected light yield
of 1.9 photons/MeV, will exceeds the specifications of the DUNE Far Detector.

Space-charge effects were predicted to be prominent in ProtoDUNE-SP. Spatial distortions in
the apparent positions of tracks of up to 40 cm are observed in the data, based on the points of entry
and exit into the TPC. Changes in the magnitude of the electric field by up to 25% are inferred from
the spatial distortion measurements. Data-based, three-dimensional maps of spatial offsets and
electric field strengths are made and are used to correct the observed data positions and ionization
strengths for use in precision analyses.

The measured resolutions of the calibrated TPC and photon detector responses to protons,
muons, electrons, and charged pions are similar to or better than those in the simulations that are
used to predict the performance of the first DUNE far detector module.

The data collected by ProtoDUNE-SP during beam runs and cosmic-ray runswill allow detailed
studies of detector characteristics such as fluid flow, and they will also allow the measurement of
argon-hadron cross sections. The results of these studies and measurements will be reported in
future publications.
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