
Draft version January 9, 2020
Typeset using LATEX twocolumn style in AASTeX62

Cosmic Reionization On Computers: The Galaxy-Halo Connection between 5 ≤ z ≤ 10

Hanjue Zhu (朱涵珏),1 Camille Avestruz,2 and Nickolay Y. Gnedin3, 4, 5

1The University of Chicago; Chicago, IL 60637, USA
2Leinweber Center for Theoretical Physics; Department of Physics; University of Michigan, Ann Arbor, MI 48109, USA

3Particle Astrophysics Center; Fermi National Accelerator Laboratory; Batavia, IL 60510, USA
4Kavli Institute for Cosmological Physics; The University of Chicago; Chicago, IL 60637, USA

5Department of Astronomy & Astrophysics; The University of Chicago; Chicago, IL 60637, USA

(Received December 2, 2019)

Submitted to ApJ

ABSTRACT

We explore the connection between the stellar component of galaxies and their host halos during the

epoch of reionization (5 ≤ z ≤ 10) using the CROC (Cosmic Reionization on Computers) simulations.
We compare simulated galaxies with observations and find that CROC underpredicts the abundance
of luminous galaxies when compared to observed UV luminosity functions, and analogously the most

massive galaxies when compared to observed stellar mass functions. We can trace the deficit of star
formation to high redshifts, where the slope of the star formation rate to stellar mass relation is con-
sistent with observations, but the normalization is systematically low. This results in a star formation
rate density and stellar mass density that is systematically offset from observations. However, the

less luminous or lower stellar mass objects have luminosities and stellar masses that agree fairly well
with observational data. We explore the stellar-to-halo mass ratio, a key quantity that is difficult to
measure at high redshifts and that models do not consistently predict. In CROC, the stellar-to-halo

mass ratio decreases with redshift, a trend opposite to some abundance matching studies. These dis-
crepancies uncover where future effort should be focused in order to improve the fidelity of modeling
cosmic reionization. We also compare the CROC galaxy bias with observational measurements using
Lyman-Break Galaxy (LBG) samples. The good agreement of simulation and data shows that the

clustering of dark matter halos is properly captured in CROC.

Keywords: galaxies — methods, numerical — cosmology

1. INTRODUCTION

Observations of high-redshift galaxies inform model-
ing of galaxy formation during the epoch of reionization
(e.g. Bradley et al. 2012, Schmidt et al. 2014, Zitrin
et al. 2014, Zitrin et al. 2015, Oesch et al. 2015, Oesch
et al. 2016, Bernard et al. 2016, Livermore et al. 2017,
Ishigaki et al. 2018, Morishita et al. 2018). Current ob-
servations now robustly constrain the faint-end slope of
the UV luminosity functions at z & 6 . These obser-
vations come from gravitationally lensed images of the
most distant galaxies, but lensing measurements have
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systematic uncertainties associated with them (Wyithe
et al. 2011). Different measurements of the stellar mass
function at these redshifts also have considerable dis-
crepancies. Uncertainties in stellar mass measurements
come from both the intrinsic scatter in empirical rela-
tions and uncertainties in model-dependent assumptions
used to derive the stellar mass.

Future observational facilities, such as the James
Webb Space Telescope (JWST, Gardner et al. (2006))
and next generation ground-based telescopes, will in-
crease the sample of high redshift galaxies and push
observational limits to fainter values. Data from these

telescopes will help determine the faint end slopes of
the UV luminosity function and the stellar mass func-
tion. To maximize the impact of observations, we need
robust theoretical models to better predict high redshift

ar
X

iv
:2

00
1.

02
23

3v
1 

 [a
st

ro
-p

h.
G

A
]  

7 
Ja

n 
20

20
FERMILAB-PUB-20-012-A

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, 
Office of High Energy Physics.

http://orcid.org/0000-0003-0861-0922
http://orcid.org/0000-0001-8868-0810
mailto: hanjuezhu@uchicago.edu


2 Zhu et al.

galaxy properties and aid in the interpretation of up-
coming data.

Galaxy formation is difficult to model because it in-
corporates non-linear interplay between a wide range of
physical processes, such as gas cooling, star formation,
and stellar feedback processes. On the other hand, the
growth of large scale structure and the evolution of dark
matter halos can be predicted robustly using numerical
simulations in the ΛCDM model of cosmology. Dark
matter halos grow through cosmic accretion and merg-
ers with other halos. Galaxies form within dark matter
halos, forming stars from gas reservoirs, and growing
through both accretion of gas and stars and galaxy-
galaxy mergers. Given the robust results from dark
matter-only simulations and the complexity of galaxy
formation processes, it is natural for us to explore the
connections between observed galaxies and the under-
lying dark matter distribution (see Wechsler & Tinker
(2018) for a recent review). Galaxy-halo connections

encapsulate the physical processes driving galaxy for-
mation. This connection generally illustrates empirical
correlations between galaxy properties and the proper-
ties of the extended dark matter halos that host galaxies

(e.g. Conroy et al. 2006, White et al. 2007, Zheng et al.
2007, Firmani & Avila-Reese 2010, Wang et al. 2013,
Tinker et al. 2013, Birrer et al. 2014, Sun & Furlanetto

2016, Cohn 2017, Mitra et al. 2017).
Recent observations have also measured clustering

properties of high redshift galaxies as a way to further

connect observed galaxies with their host dark matter
halos (Barone-Nugent et al. 2014, Sobacchi & Mesinger
2015, Harikane et al. 2018). The clustering of dark mat-
ter halos is easily obtained from numerical simulations.

However, galaxy clustering depends on the detailed re-
lationship between the galaxies and their dark matter
host halos. Clustering statistics can therefore provide

additional constraints to galaxy formation models.
There are two kinds of approaches to model the

galaxy-halo connection - empirical modeling and physi-
cal modeling. Empirical modeling uses data to constrain
parameters that describe the galaxy-halo connection;
physical modeling either parameterizes (semi-analytical
modeling) or directly simulates the physics of galaxy for-
mation using cosmological hydrodynamical simulations.
Simulations solve for gravity and hydrodynamics, while
incorporating extensive physical prescriptions for galaxy

formation processes.
The Cosmic Reionization on Computers (CROC)

project produces such cosmological simulations that
self-consistently model relevant physical processes in
cosmological volumes during the Epoch of Reionization.

CROC therefore connects the dynamics of dark matter
and galaxy formation.

In this paper, we first look at how CROC outputs
compare to the observed luminosity and stellar mass
properties - we show the CROC UV luminosity func-
tion in Section 3.1, the stellar mass-to-light ratio in Sec-
tion 3.2, and the stellar mass function in 3.3. We addi-
tionally quantify the galaxy-halo connection in CROC
by looking at the stellar-to-halo mass ratio (SHMR) in
3.4. Subsequently, we show the star formation histories
in 3.5. Last, we use the relationship between the UV lu-
minosity and halo mass in CROC to calculate the galaxy
bias, or the excess clustering of galaxies compared with
that of the underlying matter, and compare with ob-
servational results from Barone-Nugent et al. (2014) in
Section 3.6. The galaxy bias complements the other
tests of the galaxy-halo connection.

2. METHODOLOGY

2.1. CROC Simulations

All CROC simulations we performed with the Adap-
tive Refinement Tree (ART) code (Kravtsov 1999;

Kravtsov et al. 2002; Rudd et al. 2008). They include
a wide range of physical processes that are thought
to be necessary for self-consistent modeling of cosmic
reionization, such as gravity and gas dynamics, fully

coupled radiative transfer, atomic cooling and heating
processes, molecular hydrogen formation, star forma-
tion and stellar feedback. Full details of the simula-

tions are described in the CROC method paper Gnedin
(2014). For stellar population syntesis modeling, we use
the Flexible Spectral Population Synthesis code (FSPS
Conroy & Gunn 2010a).

In this paper we use two sets of simulations: a set of 6
independent random realizations in Lbox = 40h−1 Mpc
comoving boxes with 10243 dark matter particles and
a set of 3 independent random realizations in Lbox =
80h−1 Mpc comoving boxes with 20483 dark matter par-
ticles. Both simulation sets have the same spatial reso-
lution of 100 pc in proper units (kept constant through-
out the simulation) and effective mass resolution of
M1 = 7× 106M� (defined as the mass of a dark matter
particle in an equivalent dark-matter-only simulation).

2.2. Halo Finder

We use the “yt” package to identify dark matter ha-
los in the simulations (Turk et al. 2011). Yt supports
two different halo finders: HOP (Eisenstein & Hut 1998)
and Rockstar (Behroozi et al. 2013). We compared re-
sults using the Lbox = 40h−1 Mpc boxes, which have
halo catalogs from both halo finders. Both halo finders
produce virtually indistinguishable results for all rela-
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tions discussed in future sections. HOP catalogs are
available for all CROC simulation boxes; Rockstar cat-
alogs are available for all Lbox = 40h−1 Mpc boxes but
not for Lbox = 80h−1 Mpc due to numerical limitations
of the Rockstar implementation on Blue Waters super-
computer. Unless specifically mentioned, by default we
use HOP catalogs for the Lbox = 80h−1 Mpc dataset.

Note, the halo mass output by HOP we choose is the
mass within a radius enclosing an average density that
is 160 times the critical density of the universe. The
halo mass selected from the Rockstar catalogs uses the
mass definition from Bryan & Norman (1998): the mass
within a radius enclosing an average density 360 times
the background density at z = 0, including unbound
particles.

3. RESULTS

3.1. The UV Luminosity function

We first compare the CROC galaxy UV luminosity

function (UVLF) with observational measurements in
the literature. Since the UVLF is relatively well mea-
sured all the way to z ∼ 10, it is a natural choice for com-

paring theoretical predictions with observations. Galaxy
luminosities at 1500Å are computed using the Flexible
Stellar Population Synthesis (FSPS) code (Conroy et al.
2009, 2010; Conroy & Gunn 2010b), including an obser-

vationally calibrated dust correction, as described in the
first CROC paper, Appendix B (Gnedin 2014).

Figure 1 shows the UVLF between 5 < z < 10

for CROC galaxies from all Lbox = 80h−1 Mpc and
Lbox = 40h−1 Mpc boxes. We overplot a compilation
of observed values. There is general agreement within

the observational measurements at low and moderate lu-
minosities, but CROC simulations systematically under-
predict luminosities of brighter galaxies with magnitudes
M1500. −19. Since the results from the 80h−1Mpc and

40h−1Mpc boxes agree fairly well, the source of the dis-
crepancy is not in the limited volume of the CROC sim-
ulations.

The primary reason for the discrepancy, therefore, is
the model for star formation and stellar feedback used
in CROC. As discussed in Gnedin (2014), this model
assumes a linear Kennicutt-Schmidt relation,

Σ̇∗ =
ΣH2

τDEP
, (1)

where the molecular gas depletion time τDEP = 1.5 Gyr
is taken as a universal constant, and ΣH2 is computed
using the fitting formulae from Gnedin & Draine (2014).
Stellar feedback is modeled with a “blastwave” approxi-

mation (Stinson et al. 2009, 2013; Governato et al. 2010;
Agertz et al. 2011, 2013; Brook et al. 2012).

The physical effects that are not modeled in CROC
simulations, such as AGN feedback and cosmic ray feed-
back, are expected to reduce the abundance of luminous
galaxies (Sijacki et al. 2015; Kaviraj et al. 2017). The
inclusion of these additional processes would likely ex-
acerbate, rather than resolve, the discrepancy with ob-
servations. The exact cause of the suppression of star
formation in massive galaxies in CROC simulations is
unclear. Such a cause may lie in the non-constancy of
the molecular gas depletion time; this is less likely as
the depletion time is a proxy to star formation efficiency,
and it is well established that self-regulation makes star
formation rates in the simulations independent of the
assumed value of efficiency (Hopkins et al. 2018; Orr
et al. 2018; Semenov et al. 2018); for the same reason
the detailed model for molecular hydrogen production
(which serves as another proxy for star formation effi-
ciency) should not matter for massive galaxies that are
expected to be in the self-regulation regime. Another

possibility is the excessive strength of stellar feedback in
the CROC model. The assumed feedback strength does
indeed affect the overall star formation rates in simu-
lated galaxies (Orr et al. 2018; Semenov et al. 2018)

approximately proportionately; however, stronger feed-
back usually affects less massive galaxies more, while in
our case it is in the most massive galaxies that the star

formation rate is mis-modeled most significantly. These
considerations serve as a motivation for further testing
of the sub-grid models in CROC.

3.2. The Stellar Mass-to-Light Ratio

In this section, we examine the stellar mass to lumi-
nosity ratio, or the stellar mass-to-light ratio, as a func-
tion of galaxy stellar mass. We plot this instead of the

M? −L? relation to reduce the dynamic range and bet-
ter illustrate modest trends. Note, the two relations are
interchangeable.

In Figure 2 we show the stellar mass-to-light ratio of
galaxies in the CROC simulations along with observa-
tional data from Song et al. (2016) and Duncan et al.
(2014). The line colors correspond to a redshift range
of 5 ≤ z ≤ 10. We see that at fixed stellar mass, the
mass-to-light ratio increases moderately with time for
both the CROC sample and the observations, and the
overall agreement is fair. This agreement means that
the amount of light produced per unit mass of stars in
CROC galaxies (i.e. the shapes of individual star forma-
tion histories) is captured faithfully. On the other hand,

the lack of bright galaxies in the simulations is appar-
ent in Figure 1, indicating that the overall level of star
formation in the most massive halos in CROC is lower
than that of observed galaxies. In other words, the star
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Figure 1. Comparison between the UV luminosity func-
tion (UVLF) from the CROC simulation suite boxes and ob-
servations. We manually apply an offset of 1 dex to each
redshift to facilitate comparison between CROC and ob-
servational data at each redshift. The dotted lines corre-
spond to the UVLF from the six 40h−1Mpc boxes in our
suite. Solid lines correspond to the UVLF from the three
80h−1Mpc boxes. The two sets of boxes agree well at all
redshifts shown. The observational data are from Atek et al.
(2015) (filled squares), Bouwens et al. (2015, 2017) (filled
circles), Finkelstein et al. (2015) (open diamonds), and La-
porte et al. (2016) (open circles). While there is general
agreement between the CROC predictions and observations,
CROC systematically underpredicts current measurements
at magnitudes M1500 . −19.

formation and stellar feedback model in the simulation

works reasonably well in fainter galaxies (M1500 & −18)
(L < L?) but is underprucing stars in brighter, L > L?

(M1500 . −18), galaxies. The same deficiency should
therefore manifest itself in the underprediction of stellar
mass functions for the most massive galaxies.

The good agreement for stellar mass-to-light ratios
also implies that any potential error due to stellar popu-
lation synthesis modeling is insignificant: in the simula-
tions we use Flexible Spectral Population Synthesis code
(FSPS Conroy & Gunn 2010a), while observational mea-

surements rely on Bruzual & Charlot models (Bruzual
& Charlot 2003, 2011).

3.3. Evolution of the Stellar Mass Function

The stellar mass function (SMF) provides another il-
lustrative comparison between CROC and observations;

in the simulations the stellar mass is a primary, directly
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Figure 2. Mass to light ratio of CROC galaxies as a function
of stellar mass. The solid line corresponds to the median
CROC ratios in each stellar mass bin, and the transparent
bands illustrate the 25th and 75th percentile values in each
stellar mass bin. Observational data are from Song et al.
(2016) and Duncan et al. (2014).

simulated quantity, while galactic UV luminosity is com-
puted in post-processing. However, this is with the
caveat that the observational inference of the (SMF) is
more assumption dependent than the UVLF. Figure 3

shows the stellar mass function of CROC galaxies and
the observed stellar mass functions from Duncan et al.
(2014) and Song et al. (2016).

The stellar mass function exhibits the deficit of mas-
sive galaxies, M? & 3× 108M�, which is consistent with
the deficit of bright galaxies discussed above. Since the

stellar mass-to-light ratios of massive galaxies in CROC
are realistic, the discrepancy we see in the UVLF in Fig-
ure 1 is driven by the inaccuracy of the star formation
and stellar feedback model and not, for example, by the
errors in computing stellar luminosities. In other words,
the galaxies that live in the most massive CROC halos
are less massive and less luminous than those actually

observed. In order to quantify this further, we consider
below the relation between stellar and halo masses in
the simulations.

For some applications, this deficiency of the simula-
tions can be “corrected” in post-processing by re-scaling
the simulated stellar masses as

M? →M?

(
1 +Az log10

(
1 +

M?

3× 108M�

))
, (2)
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Figure 3. Evolution of stellar mass function of CROC galax-
ies. We overplot observational data from Song et al. (2016)
in circles and data from Duncan et al. (2014) in diamonds.
Relative to observations, CROC has a deficit of high mass
objects at z < 8.

where Az ≈ 6, 10, 30 at z = 5, 6, 7. We do not use such
re-scaling in this paper, as our goal is to emphasize the

regimes where the simulations fail and to identify what
needs to be fixed in future simulations, not to simply
match all the existing observations.

3.4. Galaxy Properties and Halo Mass

In order to quantify the galaxy-halo connection in
CROC, we first examine the stellar-to-halo mass ratio

(SHMR), which quantifies the integrated efficiency of
star formation and merger-driven growth.

Figure 4 shows the stellar-to-halo mass ratio as a func-

tion of halo mass between 5 ≤ z ≤ 10. At fixed redshift,
the relationship flattens for halos with Mh & 1010M�.
The flattening is consistent with the deficiency in mas-
sive galaxies apparent in Figs. 1 and 3. As host halos
grow through hierarchical formation to form the largest
objects, galaxies do not seem to be forming more stars.
We explore the evolution of star formation separately in
subsequent sections.

Separate from the flattening of the SHMR is the red-
shift evolution, which is somewhat of an open question
given discrepancies between models and observations.

At fixed halo mass, the stellar-to-halo mass ratio of
CROC galaxies decreases with increasing redshift, in-
dicating the star formation efficiency in galaxies is lower
in the past. This is consistent with the results from

Tacchella et al. (2013), where they assume a time de-
lay for star formation that has a larger impact at higher
redshifts.

This evolutionary trend, however, is contrary to
the observational findings of Finkelstein et al. (2015),
Harikane et al. (2016) and Stefanon et al. (2017). Both
Finkelstein et al. (2015) and Harikane et al. (2016)
found evidence that the SHMR increases from z = 4 to
z = 7. On the other hand, Stefanon et al. (2017) found
no evidence of evolution between 4 ≤ z ≤ 7, consistent
with model predictions from the BLUETIDES simula-
tion (Wilkins et al. 2017; Bhowmick et al. 2018) and
from the FIRE-2 simulations (Ma et al. 2018).

The observational methods for constraining the
SHMR vary; Harikane et al. (2016) combined a halo
occupation distribution model for angular correlation
functions to constrain the SHMR with measurements of
stellar mass, and Stefanon et al. (2017) used an abun-
dance matching method. Additionally, the uncertainties
associated with the observed SHMR at high redshifts

have the same sources as those in the SMF, where stellar
masses are derived from empirical relations with large
intrinsic scatter. These factors could explain the dispar-

ity across observations in constraining the SHMR, and
much improved constraints can be expected from the
forthcoming JWST observations.

The comparison with observational constraints from

Finkelstein et al. (2015) and Harikane et al. (2016) needs
to be done with care as the observations only sample
halo masses in excess of 1011M� (M∗ > 3 × 108M�),

where CROC simulations fail. As an illustration, how-
ever, we can apply the correction from Equation (2) to
extend simulation results to higher stellar masses. Sur-

prisingly, we find that we are unable to match Harikane
et al. (2016) with corrections (2) that are chosen to re-
produce Duncan et al. (2014) measurement. In fact,
factors Az in Equation (2) would have to be 3 times
smaller to match Harikane et al. (2016). In other words,
we are unable to populate CROC dark matter halos with
stars with any M∗(Mh) in such a way as to match si-
multaneously Harikane et al. (2016) and Duncan et al.
(2014).

For comparison, in Figure 4 we show model predic-
tions from abundance matching (Behroozi et al. 2019)
with dashed lines. It is interesting to note that for halo
masses below Mh . 5 × 1011M�, the Behroozi et al.
(2019) model predicts that the SHMR decreases with

from z = 5 to z = 8, but above this mass range, the
redshift trend reverses. Despite the fact that both ap-
proaches reproduce the observed galaxy UVLF and SMF
in a given mass range (for CROC only for M? < 108M�),
CROC and Behroozi et al. (2019) display opposite evo-
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lution trends in the SHMR. This implies that the ob-
servational errors in the UVLF and SMF are still large
enough to allow opposite trends in the SHMR to be con-
sistent with the data.
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Figure 4. Stellar-to-halos-mass ratio as a function of halo
mass for CROC simulations (solid lines with bands) from z =
5 to z = 10 together with the same relation from Behroozi
et al. (2019) obtained from abundance matching. The SHMR
flattens at halo masses above Mh & 1010M�, reflecting the
deficiency in massive galaxies apparent in Figs. 1 and 3. The
bands illustrate the 25th and 75th percentile values in each
mass bin.

3.5. Star formation over cosmic time

The deficiency at high stellar masses can be better un-
derstood by looking at how the star formation rate at

fixed stellar mass varies with redshift, otherwise known
as the evolution of the “main sequence of galaxy for-
mation.” The solid lines in Figure 5 show that the star
formation rate at a fixed stellar mass decreases with red-

shift, consistent with the trends generally found in ob-
servational studies (c.f. Santini et al. 2017). At a given
redshift, the slope of the SFR-M? relation is sub-linear

and is slightly shallower than the slope of the observed
relation at 2 ≤ z < 3.

The star formation rate in galaxies has been rela-
tively well measured by several teams over the last few
years, such as Salim et al. (2007); Pannella et al. (2015);
Catalán-Torrecilla et al. (2015); Zahid et al. (2017) for
low redshift galaxies and Whitaker et al. (2012) for
galaxies up to z = 2.5. At even higher redshifts the
measurements are limited by a number of systematic
effects, such as those present in gravitationally lensed

systems that magnify and enable measurements of high
redshift objects. Therefore, the robustness of the rela-
tionship between star formation rate and stellar mass
at high redshifts is not yet well established. In gen-
eral our galaxies form stars at rates consistent with, but

perhaps somewhat lower than, observations. Note, how-
ever, that any difference between CROC and observed
galaxy star formation rates is much smaller than the
correction (Eq. 2) required to bring CROC stellar mass
functions in agreement with observational data.
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Figure 5. Star formation rate as a function of stellar mass
from z = 5 to z = 10. The bands illustrate the 25th and 75th
percentile values in each mass bin. We also show the relation
from observations in Santini et al. (2017), where the slope is
similar and a similar evolutionary trend exists. The z = 5
observed slope matches those in CROC, but the observed
normalization is higher. Also, note that the observed slope
steepens with time.

In Figure 6 we show the evolution of the global star
formation rate density (SFRD). First, we see that the
SFRD decreases as redshift increases. Next, as we in-

clude fainter galaxies into our calculation of SFRD,
the SFRD increases as expected. In order to com-
pare with observations, we integrate the UV luminosity

functions above the magnitude cutoff of M1500 ≈ −17.
Compared to simulations, the observational results give
higher SFRD value at all redshifts. This is another il-
lustration that that CROC is underproducing stars in
massive galaxies at all cosmic times.

The corresponding evolution of the global stellar mass
density is shown in Figure 7. The global stellar mass
density is harder to measure than the global SFR. The
observational uncertainties are therefore larger. Still,
the underprediction of stellar mass in CROC simulations
in galaxies above 108M� (thick dashed red line) is very

apparent.

3.6. Galaxy Bias

The galaxy bias measurement provides an additional
constraint on the galaxy-halo connection, measuring the
excess clustering of galaxies compared with the cluster-
ing of matter. The bias can be calculated in terms of
the two-point correlation function, 〈b2gal〉 = ξgg/ξmm,
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Figure 6. Evolution of star formation rate density (SFRD)
in CROC compared with data from Bouwens et al. (2016)
in blue errorbars, Oesch et al. (2013) in green errorbar, and
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4 5 6 7 8 9 10 11 12
Redshift

102

103

104

105

106

107

108

M
*[M

M
pc

3 ]

Global
M*, min = 106M
M*, min = 107M
M*, min = 108M
M*, min = 109M

Song+16
Grazian+15
Duncan+14
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ing their best-fit stellar mass functions above M? > 108M�.
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where ξ is the two-point correlation function of either
galaxies (gg) or matter (mm). When compared to ob-
served galaxies, we can constrain whether or not our
modeled galaxies have similar spatial clustering as the
observed galaxies. Given consistent cosmologies, we can
assume that our simulated halo bias matches that in
the real universe, 〈b2halo〉 = ξhh/ξmm. We can then use
the galaxy bias comparison to determine whether or not
CROC galaxies live in the right dark matter halos.

In order to calculate the galaxy bias across mass bins
including the bins of the most massive galaxies, whose
number counts are small, we can use the empirical form
of the bias dependence on the halo mass, b(Mh), and
compute the average galaxy bias for a given sample as
an integral over the halo mass function, instead of actu-
ally computing the ratio of two power spectra. For the
explicit calculation, we use the Tinker et al. (2010) halo
bias model, b(Mh), from the cosmology package Colos-
sus (Diemer 2018). The simulated halo mass function of
CROC well-matches the halo mass function from Tinker
et al. (2010), the corresponding bias model is therefore
the appropriate model to use for CROC halos. As an
example, for a halo sample with halo masses between
Mmin and Mmax the average bias is,

〈b2〉 =

∫Mmax

Mmin
b2(Mh) dn

dMh
dMh∫Mmax

Mmin

dn
dMh

dMh

. (3)

For a galaxy sample containing N galaxies (with an ar-
bitrary sample selection criterion) we can analogously

compute the average bias as the quadratic average of
bias factors of individual galaxies,

〈b2〉 =
1

N

N∑
i=1

b2(Mh,i), (4)

where Mh,i is the known halo mass for galaxy i from the
sample.

Figure 8 shows the so computed average galaxy bias
from all 6 boxes in the CROC suite. The blue and
red squares respectively show the average galaxy bias
for bright (M1500 < −19.4) and faint (M1500 > −19.4)

galaxies in CROC as a function of redshift. The black
squares show the average galaxy bias for all galaxies in
the simulation as a function of redshift. For compari-

son, the points with errorbars show observational infer-
ences of the bias from Barone-Nugent et al. (2014) with
the same UV magnitude selection. There is good agree-

ment between the simulations and the data, especially
at z ∼ 7, which indicates two things.

Given the assumption that the halo bias in simula-
tions reflects that of the real universe, and the fact that
the faint (low mass) end of the CROC luminosity (stel-
lar mass) function matches the observed function, we
can first say that the low luminosity sample of CROC
galaxies below M1500 = −19.4 live in the correct halos
and well reproduce the observed behavior.

The minimum stellar mass of galaxies brighter that

M1500 = −19.4 corresponds to M? ≈ 3× 108M�. These
brighter galaxies above the luminosity cutoff also seem
to well reproduce the observed galaxy bias, illustrat-
ing that the bias factor from Equation 4 has been mod-
eled correctly. However, this population of galaxies have
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UVLFs that are discrepant with the observed UVLF. In
other words, the high mass halos have galaxies in the
correct luminosity bin brighter than M1500 = −19.4, but
there are not enough stars in these galaxies to match the
UVLF at the bright end.

Note, the galaxy bias of the fainter galaxy bin may
appear to be on the high side. However, we use the
same number of CROC galaxies whose luminosities are
below the cutoff as the number of CROC galaxies that
lie above the cutoff, selecting the brightest galaxies when
rank ordered by luminosity. The resulting faint galaxy
sample is comprised of galaxies whose total masses are
above Mtot & 1011M�. The resulting galaxy bias is
therefore larger than if we included lower mass galaxies.
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Bias of LBGs with M1700 < 19.4 (BN+14)
Bias of LBGs with M1700 > 19.4 (BN+14)

Figure 8. Galaxy bias in the CROC simulations compared
with measurements from Barone-Nugent et al. (2014) and
dark matter halo bias from Tinker et al. (2010). We illustrate
the bias in two magnitude bins, brighter (blue) and fainter
(red) than M1500 = −19.4. As expected, the brighter galax-
ies exhibit a higher average bias in each redshift snapshot.
The CROC measurements are consistent with observations.
However, the faint bin of CROC galaxies exhibit a somewhat
higher bias than the observed value at z≤6.

4. SUMMARY AND DISCUSSION

In this paper, we examine the galaxy-halo connection
of halos in the mass range Mhalo ≈ 109 to 1012M� at
5 ≤ z ≤ 10 in CROC simulations. CROC simulations
include a wide range of physical processes necessary to
model cosmic reionization, including gravity, gas dy-
namics, fully coupled radiative transfer, radiative cool-

ing, star formation, and stellar feedback. We look at the
UV luminosity function, the stellar mass function, the
stellar-to-halo mass ratio, star formation histories and
the galaxy bias in CROC.

Our main findings include:

• CROC galaxies match the UV luminosity function
and the stellar mass function at the faint and low
mass end respectively.

• Our simulations underproduce stellar masses of
the most massive halos. Physical processes that
are not modeled in CROC, such as AGN feedback
and cosmic ray feedback, can reduce star forma-
tion rates in massive halos, further exacerbating
the discrepancy. Hence the most likely reason for
the discrepancy is that the CROC model for star
formation and feedback mis-models star formation
in high mass halos. Another, admittedly much less
likely, possibility is that the discrepancy between
CROC and observations in the high mass end is
due to a bias in observational results from, for ex-
ample, AGN contributions to galactic UV lumi-

nosities (Adams et al. 2019).

• The stellar-to-halo mass ratio in CROC decreases

with redshift, consistent with some other models,
but inconsistent with abundance matching predic-
tions from Behroozi et al. (2019) and some of the
observed trends. In fact, we are unable to populate

CROC dark matter halos with stars with any func-
tion form of M∗(Mh) in such a way as to match
simultaneously Harikane et al. (2016) and Duncan

et al. (2014). Since all models and observational
constraints match the observed luminosity func-
tions and use the same cosmology, the lack of con-
sistency even in the sign of the redshift evolution

implies that the observed luminosity functions are
not accurate enough to constrain the stellar-to-
halo-mass ratio at z > 5.

These results will help focus efforts on improving the

accuracy and physical fidelity of future simulations of
cosmic reionization.
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480, 800

Ishigaki, M., Kawamata, R., Ouchi, M., et al. 2018, ApJ,

854, 73

Kaviraj, S., Laigle, C., Kimm, T., et al. 2017, MNRAS,

467, 4739

Kravtsov, A. V. 1999, PhD thesis, NEW MEXICO STATE

UNIVERSITY

Kravtsov, A. V., Klypin, A., & Hoffman, Y. 2002, ApJ,

571, 563

Laporte, N., Infante, L., Troncoso Iribarren, P., et al. 2016,

ApJ, 820, 98

Livermore, R. C., Finkelstein, S. L., & Lotz, J. M. 2017,

ApJ, 835, 113

Ma, X., Hopkins, P. F., Garrison-Kimmel, S., et al. 2018,

MNRAS, 478, 1694
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