
AI Denoising to Accelerate Detector Simulation
Lena Franklin (University of Maryland), Kevin Pedro (Fermilab)

Detector simulation is critical to experimental HEP; however this

simulation (commonly done through toolkits such as Geant4) is

computationally intensive. Performance can be improved

somewhat through technical optimization, but more is needed.

Using machine learning (ML) to accelerate simulation is a

promising field, however efforts to use generative adversarial

networks (GANs) or optimized autoencoders have faced issues.

Using convolutional neural networks (CNNs) for denoising has

been successful in non-HEP applications such as image

processing. This poster investigates the efficacy of using CNNs

to denoise Geant4 simulations. This could increase the accuracy

of simulations performed under settings designed to increase

computational efficiency.

Our loss function prioritizes interesting regions of the simulation

with high deposited energy by splitting the images into patches

and returning the mean absolute error of the patch with the

greatest loss, which corresponds to the patch with greater

energy deposits.

Initial training was done with 100x100 pixel images generated

from Geant4 simulations of single 100 GeV photons in the CMS

electromagnetic calorimeter. These images were randomly

rotated during preprocessing.

• Try using a kernel-based prediction architectures in which the

final network layer outputs a kernel of scalar weights to be

applied to a noisy input area

• Use a 3-dimensional dataset which will more accurately

reflect the detector for simulation purposes

• Analyze modified loss functions & preprocessing methods.

• Determine coarse settings to speed up Geant4 and generate

noisy images instead of adding noise by hand.

• Add additional images channels to store additional information

e.g. timing, PID, etc.

We use a network with nine convolutional layers and 3x3 pixel

kernels and 100 feature vectors at each layer. A rectified linear

unit (ReLU) activation function is applied at each layer. At each

convolutional layer, appropriate padding is used to preserve the

size of the input tensor in order to produce a denoised output

tensor with the same dimensions as the original noisy tensor.

The network accepts 2-dimensional input images with a single

channel which records the energy deposited in an x-y area of the

simulated detector.

Introduction

Network Architecture

Future Work

Loss and Training

References
Steve Bako, Thijs Vogels, et al. “Kernel-predicting convolutional networks for denoising 

Monte Carlo renderings,” ACM Trans. Graph. 36, 4, Article 97 (2017).

SimDenoising https://github.com/kpedro88/SimDenoising.git

SimDenoising_training https://github.com/lenafranklin/SimDenoising_training.git

Visualization of input 

(top), noisy (middle) and 

reconstructed (bottom) 

energy for 100x100 pixel 

images and 50x50 pixel 

patches in the loss 

function.

The ratio of the 

maximum energy value 

in each image in the 

reconstructed to ground 

truth images and the 

noisy and ground truth 

images for a network 

trained for 50 epochs on 

100x100 pixel images.

The ratio of total energy 

present in the 

reconstructed vs ground 

truth images and the 

noisy and ground truth 

images for a network 

trained for 50 epochs on 

100x100 pixel images.

The ratio of the maximum 

energy value in each image 

in the reconstructed and 

ground truth images and 

the noisy and ground truth 

images for a network 

trained for 50 epochs on 

50x50 pixel images.

The ratio of total energy 

present in the 

reconstructed vs ground 

truth images and the noisy 

and ground truth images 

for a network trained for 50 

epochs on 50x50 pixel 

images.

Optimizing Network Performance

Visualization of input 

(top), noisy (middle) 

and reconstructed 

(bottom) energy for 

50x50 pixel images. 

Loss during training as a 

function of epoch for a 

model trained for 

100x100 pixel images. 

Loss values reflect the 

average per-pixel energy 

difference in the region 

of interest. 50x50

Loss during training as a 

function of epoch for a 

model trained for 50x50 

pixel images. Loss 

values reflect the 

average per-pixel energy 

difference in the region 

of interest.

To improve the results

achieved, we attempted to

vary the parameters of the

network and of training,

including the input noise level

of the training and validation

data, the size and number of

patches tested within the loss

function, and the size of the

convolutional kernels.

Optimizing Network Performance
Performance was considerably improved when the size of the

input was reduced from 100x100 to 50x50 pixels. We

hypothesize this allowed the network to learn how to preserve

desired features of the images, rather than those created by

noise.

This work was supported in part by the U.S. Department of Energy, 

Office of Science, Office of Workforce Development for Teachers and 

Scientists (WDTS) under the Science Undergraduate Laboratory 

Internships Program (SULI).

Results of a 50 epoch training of images of 

100x100 pixels each, patch size of 50x50. 

Results of a 50 epoch training of images of 

50x50 pixels each, training on full image. 

Noise Level Total Energy Ratio: 
Reconstructed/Truth

Total Energy Ratio: 
Noisy/Truth

Maximum Energy Value 
Ratio: 

Reconstructed/Truth

Maximum 
Energy Value 

Ratio: 
Noisy/Truth

σ = 1 0.92 1.09 0.25 1.00
σ = 3 0.54 1.23 0.18 1.00
σ = 5 0.51 1.42 0.16 1.00
σ = 10 0.51 1.93 0.15 0.99
σ = 15 0.52 2.46 0.15 1.03
σ = 20 0.50 3.02 0.12 1.08

Noise Level Total Energy Ratio: 
Reconstructed/Truth

Total Energy Ratio: 
Noisy/Truth

Maximum Energy Value 
Ratio: 

Reconstructed/Truth

Maximum 
Energy Value 

Ratio: 
Noisy/Truth

σ = 4 0.99 1.03 1.01 1.00
σ = 12 0.97 1.13 1.00 1.01
σ = 20 0.96 1.26 1.00 1.03
σ = 40 0.95 1.62 0.93 1.05

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

FERMILAB-POSTER-20-123-SCD

https://github.com/kpedro88/SimDenoising.git
https://github.com/lenafranklin/SimDenoising_training.git

