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Detector simulation is critical to experimental HEP; however this

simulation (commonly done through toolkits such as Geant4) is

computationally intensive. Performance can be improved

somewhat through technical optimization, but more is needed.

Using machine learning (ML) to accelerate simulation is a

promising field, however efforts to use generative adversarial

networks (GANs) or optimized autoencoders have faced issues.

Using convolutional neural networks (CNNs) for denoising has

been successful in non-HEP applications such as image

processing. This poster investigates the efficacy of using CNNs

to denoise Geant4 simulations. This could increase the accuracy

of simulations performed under settings designed to increase

computational efficiency.

Our loss function prioritizes interesting regions of the simulation

with high deposited energy by splitting the images into patches

and returning the mean absolute error of the patch with the

greatest loss, which corresponds to the patch with greater

energy deposits.

Initial training was done with 100x100 pixel images generated

from Geant4 simulations of single 100 GeV photons in the CMS

electromagnetic calorimeter. These images were randomly

rotated during preprocessing.

• Try using a kernel-based prediction architectures in which the

final network layer outputs a kernel of scalar weights to be

applied to a noisy input area

• Use a 3-dimensional dataset which will more accurately

reflect the detector for simulation purposes

• Analyze modified loss functions & preprocessing methods.

• Determine coarse settings to speed up Geant4 and generate

noisy images instead of adding noise by hand.

• Add additional images channels to store additional information

e.g. timing, PID, etc.

We use a network with nine convolutional layers and 3x3 pixel

kernels and 100 feature vectors at each layer. A rectified linear

unit (ReLU) activation function is applied at each layer. At each

convolutional layer, appropriate padding is used to preserve the

size of the input tensor in order to produce a denoised output

tensor with the same dimensions as the original noisy tensor.

The network accepts 2-dimensional input images with a single

channel which records the energy deposited in an x-y area of the

simulated detector.
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To improve the results

achieved, we attempted to

vary the parameters of the

network and of training,

including the input noise level

of the training and validation

data, the size and number of

patches tested within the loss

function, and the size of the

convolutional kernels.

Optimizing Network Performance
Performance was considerably improved when the size of the

input was reduced from 100x100 to 50x50 pixels. We

hypothesize this allowed the network to learn how to preserve

desired features of the images, rather than those created by

noise.
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Reconstructed/Truth
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Reconstructed/Truth

Maximum 
Energy Value 

Ratio: 
Noisy/Truth

σ = 1 0.92 1.09 0.25 1.00
σ = 3 0.54 1.23 0.18 1.00
σ = 5 0.51 1.42 0.16 1.00
σ = 10 0.51 1.93 0.15 0.99
σ = 15 0.52 2.46 0.15 1.03
σ = 20 0.50 3.02 0.12 1.08
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Reconstructed/Truth
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Energy Value 

Ratio: 
Noisy/Truth

σ = 4 0.99 1.03 1.01 1.00
σ = 12 0.97 1.13 1.00 1.01
σ = 20 0.96 1.26 1.00 1.03
σ = 40 0.95 1.62 0.93 1.05
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