MAGIS-100 Laser Transport Vacuum Simulations and LED Atom Tracker

Jordan Aasman, CCI Program Mentors: Linda Valerio, Jesse Batko, Beth Klein

Vacuum Simulations on the Laser Transport System (LTS)

Purpose

MAGIS-100 uses atom <u>م</u> interferometry to measure the distance between the Sr atoms traversing the shaft. The laser must travel through vacuum to measure accurately. Project ensures the vacuum system has low enough pressure to Laser goes through the LTS to the top of the shaft meet experimental requirements.

Inside look at the LTS

LED Atom Tracker

Purpose

Where is To allow spectators to see where the Sr the Sr? atoms are while the experiment is running.

Procedure

1. Create vacuum tube in NX

2. Find conductance in Molflow

		Note .	ts Help	
d	Share 💭 Comments	Solution is done!	1 1 ⁵ 2 1	
		1		۲
	🐓 🔊 •	Close		
	Ideas Sensitivity			
		Main Menu 🛞	ANCVC	1- 2
	*	Preferences NODAL SOLUTION	ANSIS	😧 3 -
	0	B Solution	лп. 7 2020	😝 😜
'cm^2))	Element Loads (Pa*m/:	B General Postproc	15:01:35	
	8.9326E-10	B TimeHist Postpro		
	8.9326E-10	B Radiation Opt BMX = .116E-04		
	8.9326E-10	A PRNSOL Command	×	
	8.9326E-10	File		
	8.9326E-10	DETAT TEME NODAL SOLUTION DED NODE		
	8.9326E-10	PATH TERP RODE SOLUTION PER RODE		
	8.9326E-10	LOAD STEP= 1 SUBSTEP= 1		
		TIME- 1.0000 LOAD CASE- 0		Q
		NODE TEMP 1 0.11558E-004		2
		2 0.11548E-004 3 0.11517E-004		•
		4 8.11465E-004 5 8.11393E-004		Q
		6 0.11301E-004 7 0.11188E-004		40
		9 8.11227E-004		
		MAXIMUM ABSOLUTE VALUES		
		NODE 1 VALUE 0.11558E-004		
				80
	10 A		MIN	<u>@</u>
	_			

(B)																		
Paste								Merge & Center					Format Cell Insert					
02			0.71504	1637							Porma	ang i	as Table Styles		Cater + Patter	Select		
	E	F	G	н	1	L	ĸ	L	м	N	0	_	P	Q	R	s	т	Ē
1 z	Node B	x	у	z	Element	Element Length (in)	Element Length (m)	Element Name	Element ID Number	ID Number			Cross Sectional Area (m ²)(Perimeter of Vacuum piece)	ANSYS Conductance (m ² /s)	Element Name			
2 0	2	0.17	0	0	1	6.54125	0.17	HVTube	1	1	8		0.4732	0.7150	HVTube			
3 0	3	0.33	0	0	2	6.54125	0.17	HVTube	1	2	1		1.0000	0.0300	Ion Pump			
4 0	4	0.50	0	0	3	6.54125	0.17	HVTube	1									
5 0	5	0.66	0	0	4	6.54125	0.17	HVTube	1									
6 0	6	0.83	0	0	5	6.54125	0.17	HVTube	1									
7 0	7	1.00	0	0	6	6.54125	0.17	HVTube	1									
8 0	8	1.16	0	0	7	6.54125	0.17	HVTube	1									
9 0	9	1.33	0	0	8	6.54125	0.17	HVTube	1									
10 0 11	10	1.00	-1	0	9	39.37	1.00	Ion Pump	2									

3. Complete spreadsheet with nodes and conductance data, spreadsheet format courtesy of Jesse Batko, Fermilab

Paste 🗳 Form								Format Cell Insert D as Table Styles			
A1 0 ×	→ fx B	c	D	F	F	6	н		1	ĸ	1
1							Run 1	·		Run 2	
3	Einal E	actus Run A		Einal E	actus Rup B						
5 Dist	Pressure (Pa)	Pressure (Torr)	Dist	Pressure (Pa)	Pressure (Torr)	Dist	NODE	TEMP		NODE	TEMP
6 0.00	1.16E-05	8.67E-08	0.00	1.16E-05	8.67E-08	0.00	1	1.16E-05		1	1.16E-05
7 0.17	1.15E-05	8.66E-08	0.17	1.15E-05	8.66E-08	0.17	2	1.15E-05		2	1.15E-05
8 0.33	1.15E-05	8.64E-08	0.33	1.15E-05	8.64E-08	0.33	3	1.15E-05		3	1.15E-05
9 0.50	1.15E-05	8.60E-08	0.50	1.15E-05	8.60E-08	0.50	4	1.15E-05		4	1.15E-05
10 0.66	1.14E-05	8.55E-08	0.66	1.14E-05	8.55E-08	0.66	5	1.14E-05		5	1.14E-05
11 0.83	1.13E-05	8.48E-08	0.83	1.13E-05	8.48E-08	0.83	6	1.13E-05		6	1.13E-05
12 1.00	1.12E-05	8.39E-08	1.00	1.12E-05	8.39E-08	1.00	7	1.12E-05		7	1.12E-05
13 1.16	1.12E-05	8.41E-08	1.16	1.12E-05	8.42E-08	1.16	8	1.12E-05		8	1.12E-05
14 1.33 15	1.12E-05	8.42E-08	1.33	1.12E-05	8.42E-08	1.33	9	1.12E-05		9	1.12E-05
16	Max:	8.67E-08		Max:	8.67E-08						
17	Min:	8.39E-08		Min:	8.39E-08						
18	Avg:	8.54E-08		Avg:	8.54E-08						
19											
20											
21											
22											

Procedure

Use classical physics to model the atoms' trajectory and implement in a software program

	The function DelayTime[MaxHeight_,LEDDensity_] calculates a function to implement into the code using the height and LED density of the L
In[3]:=	DelayTime[5000, 60]	
	n^{th} LED time of 1st flash = 102.041 (9.89949	- Re[$\sqrt{98 0.326667 n}$]) milliseconds
	$n^{\mbox{th}}$ LED time of 2nd flash = 1010.15 + 58.3212	$2\sqrt{300 - n}$ milliseconds
	n^{th} LED delay time = -102.041 Re[$\sqrt{98 0.32}$	6667 n] + 102.041 Re[\(98.3267 - 0.326667 n] milliseconds)
	Minimum delay time (bottom of trajectory) =	1.68 milliseconds
	Maximum delay time (top of trajectory) = 58	.3 milliseconds
	Flash Time	Delay Time
	Flash time Tf (ms)	Delay time (ms)
	2000	60
Out[3]=	1500	40
	1000 Tf2	30
	500	20
	0 LED n	0 LED n

1. Calculate atoms' trajectory, Mathematica Notebook courtesy of Sam Carman, Stanford

#include <math.h

define LED_PIN

define LED_COUNT 300 // 300 LEDs in 5m Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800) void setup() strip.begin(); strip.setBrightness(255); strip.show(); // initialize all pixels to off

for (int n = 0; $n < LED_COUNT$; n++) { double wait = 102.041*(9.89949-sqrt((98.0-0.326667*n))): strip.setPixelColor(n, 255, 255, 255); strip.show(): delay(wait); strip.clear();

<pre>Pixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);</pre>	
n(); rightness(255); (); // initialize all pixels to off	
<pre>= 0; n < LED_COUNT; n++) { ait = (102.49*(4.427-sqrt((19.6-0.32*n)))); tPixelColor(n, 0, 255, 0); ow(); it); ear();</pre>	

Serial Monitor

2. Design in TinkerCAD

thermal units and generate code

6. Convert data back to vacuum 5. Run thermal simulation in ANSYS

Create and analyze the parts of the vacuum system.

7. Plot pressure distribution

Variables

The pressure profile was characterized with variations in pump size, pump spacing, and orifice size. It was found that a system with smaller orifice holes and more ion pumps will have a lower pressure profile.

Results

Middle mirror box's orifice

Ion Pumps, Photo: Ideal Vacuum Products. Ion pump quantity, placement, and speed effect the vacuum.

3. Create program in Arduino IDE

5. Run the Circuit

Results

A 5m section of the system completed, software programs for the different science modes in progress, power requirements calculated, and recommendations on how to scale up to 100m.

Future

Scale the system up to 100m by connecting 20 5m LED strips, power injection every 10m, include all LEDs in the code, complete software for all science modes, and ensure the system meets safety specifications.

-	-	 	

4. Connect Arduino to LED strip

-Program the circuit -Connect the circuit -Test the circuit on actual Arduino and LED strip

Initial design: 4 ion pumps, Final design: reduced orifice hole 0.8" orifice holes diameter to remove an ion pump

Blue-initial, orange-final. Final design meets experimental requirements at 8.67E-11 torr

// declare neopixel strip object: Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);

void setup() { // put your setup code here, to run once: strip.begin(); strip.setBrightness(127);

> 📀 🗈 🖻

void loop() {
 // put your main code here, to run repeatedly: scienceMode2();

void scienceMode2() double wait = 5.0; for (int i = 0, j = 200; i < 50; i++, j++) { strip.fill(strip.Color(127,0,0), i, 3); strip.fill(strip.Color(0,0,127), j, 3); strip.show(); delay(wait); strip.clear()

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Fermi National Accelerator Laboratory

